يعرض 1 - 4 نتائج من 4 نتيجة بحث عن '"С. В. Чубарова"', وقت الاستعلام: 0.59s تنقيح النتائج
  1. 1
    Academic Journal

    المصدر: Meditsinskiy sovet = Medical Council; № 18 (2022); 20-28 ; Медицинский Совет; № 18 (2022); 20-28 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/7116/6388; Corren J. Asthma phenotypes and endotypes: an evolving paradigm for classification. Discov Med. 2013;15(83):243–249. Available at: https://www.discoverymedicine.com/Jonathan-Corren/2013/04/26/asthmaphenotypes-and-endotypes-an-evolving-paradigm-for-classification/.; Thomas M., Gruffydd-Jones K., Stonham C., Ward S., Macfarlane T.V. Assessing asthma control in routine clinical practice: use of the Royal College of Physicians ‘3 questions’. Prim Care Respir J. 2009;18(2):83–88. https://doi.org/10.3132/pcrj.2008.00045.; Геппе Н.А., Колосова Н.Г., Кондюрина Е.Г., Малахов А.Б., Мизерницкий Ю.Л., Ревякина В.А. (ред.). Национальная программа «Бронхиальная астма у детей. Стратегия лечения и профилактика». 5-е изд. М.: Оригиналмакет; 2017. 160 с. Режим доступа: http://astgmu.ru/wp-content/uploads/2018/10/Natsionalnaya-programma-BA-u-detej.-Strategiyalecheniya-i-profilaktika.pdf.; Masoli M., Fabian D., Holt S., Beasley R. Global Initiative for Asthma (GINA) Program. The global burden of asthma: executive summary of the GINA Dissemination Committee Report. Allergy. 2004;59(5):469–478. https://doi.org/10.1111/j.1398-9995.2004.00526.x.; Barnes P.J., Adcock I.M. Glucocorticoid resistance in inflammatory diseases. Lancet. 2009;373(9678):1905–1917. https://doi.org/10.1016/S0140-6736(09)60326-3.; Pepper A.N., Renz H., Casale T.B., Garn H. Biologic Therapy and Novel Molecular Targets of Severe Asthma. J Allergy Clin Immunol Pract. 2017;5(4):909–916. https://doi.org/10.1016/j.jaip.2017.04.038.; Lötvall J., Akdis C.A., Bacharier L.B., Bjermer L., Casale T.B., Custovic A. et al. Asthma endotypes: a new approach to classification of disease entities within the asthma syndrome. J Allergy Clin Immunol. 2011;127(2):355–360. https://doi.org/10.1016/j.jaci.2010.11.037.; Carr T.F., Zeki A.A., Kraft M. Eosinophilic and Noneosinophilic Asthma. Am J Respir Crit Care Med. 2018;197(1):22–37. https://doi.org/10.1164/rccm.201611-2232PP.; Leckie M.J., ten Brinke A., Khan J., Diamant Z., O’Connor B.J., Walls C.M. et al. Effects of an interleukin-5 blocking monoclonal antibody on eosinophils, airway hyper-responsiveness, and the late asthmatic response. Lancet. 2000;356(9248):2144–2148. https://doi.org/10.1016/s0140-6736(00)03496-6.; Kips J.C., O’Connor B.J., Langley S.J. Woodcock A., Kerstjens H.A.M., Postma D.S. et al. Effect of SCH55700, a humanized anti-human interleukin-5 antibody, in severe persistent asthma: A pilot study. Am J Respir Crit Care Med. 2003;167(12):1655–1659. https://doi.org/10.1164/rccm.200206-525OC.; Svenningsen S., Nair P. Asthma Endotypes and an overview of targeted therapy for asthma. Front Med (Lausanne). 2017;4:158. https://doi.org/10.3389/fmed.2017.00158.; Moore W.C., Meyers D.A., Wenzel S.E., Teague W.G., Li H., Li X. et al. Identification of asthma phenotypes using cluster analysis in the Severe Asthma Research Program. Am J Respir Crit Care Med. 2010;181(4):315–323. https://doi.org/10.1164/rccm.200906-0896OC.; Loza M.J., Djukanovic R., Chung K.F., Horowitz D., Ma K., Branigan P. et al. Validated and longitudinally stable asthma phenotypes based on cluster analysis of the ADEPT study. Respir Res. 2016;17(1):165. https://doi.org/10.1186/s12931-016-0482-9.; Lefaudeux D., De Meulder B., Loza M.J., Peffer N., Rowe A., Baribaud F. et al. U-BIOPRED clinical adult asthma clusters linked to a subset of sputum omics. J Allergy Clin Immunol. 2016;139(6):1797–1807. https://doi.org/10.1016/j.jaci.2016.08.048.; Haldar P., Brightling C.E., Hargadon B., Gupta S., Monteiro W., Sousa A. et al. Mepolizumab and exacerbations of refractory eosinophilic asthma. N Engl J Med. 2009;360(10):973–984. https://doi.org/10.1056/NEJMoa0808991.; Wenzel S. Severe asthma: from characteristics to phenotypes to endotypes. Clin Exp Allergy. 2012;42(5):650–658. https://doi.org/10.1111/j.1365-2222.2011.03929.x.; Nair P. Anti-interleukin-5 monoclonal antibody to treat severe eosinophilic asthma. N Engl J Med. 2014;371(13):1249–1251. https://doi.org/10.1056/NEJMe1408614.; Xu X., Reitsma S., Wang D.Y., Fokkens W.J. Highlights in the advances of chronic rhinosinusitis. Allergy. 2021;76(11):3349–3358. https://doi.org/10.1111/all.14892.; Asano K., Ueki S., Tamari M., Imoto Y., Fujieda S., Taniguchi M. Adult‐onset eosinophilic airway diseases. Allergy. 2020;75(12):3087–3099. https://doi.org/10.1111/all.14620.; Vinall S.L., Townsend E.R., Pettipher R. A paracrine role for chemoattractant receptor-homologous molecule expressed on T helper type 2 cells (CRTH2) in mediating chemotactic activation of CRTH2+ CD4+ T helper type 2 lymphocytes. Immunology. 2007;121(4):577–584. https://doi.org/10.1111/j.1365-2567.2007.02606.x.; Barnes P.J. The cytokine network in asthma and chronic obstructive pulmonary disease. J Clin Invest. 2008;118(11):3546–3556. https://doi.org/10.1172/JCI36130.; Robinson D., Humbert M., Buhl R., Cruz A.A., Inoue H., Korom S. et al. Revisiting Type 2-high and Type 2-low airway inflammation in asthma: current knowledge and therapeutic implications. Clin Exp Allergy. 2017;47(2):161–175. https://doi.org/10.1111/cea.12880.; Cosmi L., Liotta F., Maggi L., Annunziato F. Role of type 2innate lymphoid cells in allergic diseases. Curr Allergy Asthma Rep. 2017;17(10):66. https://doi.org/10.1007/s11882-017-0735-9.; Hammad H., de Heer H.J., Soullie T., Hoogsteden H.C., Trottein F., Lambrecht B.N. Prostaglandin D2 inhibits airway dendritic cell migration and function in steady state conditions by selective activation of the D prostanoid receptor 1. J Immunol. 2003;171(8):3936–3940. https://doi.org/10.4049/jimmunol.171.8.3936.; Faveeuw C., Gosset P., Bureau F., Angeli V., Hirai H., Maruyama T. et al. Prostaglandin D2 inhibits the production of interleukin-12 in murine dendritic cells through multiple signaling pathways. Eur J Immunol. 2003;33(4):889–898. https://doi.org/10.1002/eji.200323330.; Gosset P., Pichavant M., Faveeuw C., Bureau F., Tonnel A.B., Trottein F. Prostaglandin D2 affects the differentiation and functions of human dendritic cells: impact on the T cell response. Eur J Immunol. 2005;35(5):1491–1500. https://doi.org/10.1002/eji.200425319.; Tanaka K., Hirai H., Takano S., Nakamura M., Nagata K. Effects of prostaglandin D2 on helper T cell functions. Biochem Biophys Res Commun. 2004;316(4):1009–1014. https://doi.org/10.1016/j.bbrc.2004.02.151.; Wills-Karp M., Finkelman F.D. Untangling the complex web of IL-4- and IL-13-mediated signaling pathways. Sci Signal. 2008;1(51):pe55. https://doi.org/10.1126/scisignal.1.51.pe55.; Bartemes K.R., Kephart G.M., Fox S.J., Kita H. Enhanced innate type 2 immune response in peripheral blood from patients with asthma. J Allergy Clin Immunol. 2014;134(3):671–678.e4. https://doi.org/10.1016/j.jaci.2014.06.024.; Flood-Page P., Swenson C., Faiferman I., Matthews J., Williams M., Brannick L. et al. A study to evaluate safety and efficacy of mepolizumab in patients with moderate persistent asthma. Am J Respir Crit Care Med. 2007;176(11):1062–1071. https://doi.org/10.1164/rccm.200701-085OC.; Hirose K., Iwata A., Tamachi T., Nakajima H. Allergic airway inflammation: key players beyond the Th2 cell pathway. Immunol Rev. 2017;278(1):145– 161. https://doi.org/10.1111/imr.12540.; Khorasanizadeh M., Eskian M., Assa’ad A.H., Camargo C.A., Jr,, Rezaei N. Efficacy and Safety of Benralizumab, a Monoclonal Antibody against IL-5Rα, in Uncontrolled Eosinophilic Asthma. Int Rev Immunol. 2016;35(4):294–311. https://doi.org/10.3109/08830185.2015.1128901.; Nair P., Pizzichini M.M.M., Kjarsgaard M., Inman M.D., Efthimiadis A., Pizzichini E. et al. Mepolizumab for prednisone-dependent asthma with sputum eosinophilia. N Engl J Med. 2009;360(10):985–993. https://doi.org/10.1056/NEJMoa0805435.; Samitas K., Zervas E., Gaga M. T2-low asthma: currentapproach to diagnosis and therapy. Curr Opin Pulm Med. 2017;23(1):48–55. https://doi.org/10.1097/MCP.0000000000000342.; Licari A., Castagnoli R., Brambilla I., Marseglia A., Tosca M.A., Marseglia G.L. et al. New approaches for identifyingand testing potential new anti-asthma agents. Expert Opin Drug Discov. 2018;13(1):51–63. https://doi.org/10.1080/17460441.2018.1396315.; Saglani S., Lloyd C.M. Eosinophils in the pathogenesis of paediatric severe asthma. Curr Opin Allergy Clin Immunol. 2014;14(2):143–148. https://doi.org/10.1097/ACI.0000000000000045.; Schleich F.N., Manise M., Sele J., Henket M., Seidel L., Louis R. Distribution of sputum cellular phenotype in a large asthma cohort: predicting factors for eosinophilic vs neutrophilic inflammation. BMC Pulm Med. 2013;13:11. https://doi.org/10.1186/1471-2466-13-11.; Cowan D.C., Taylor D.R., Peterson L.E., Cowan J.O., Palmay R., Williamson A. et al. Biomarker-based asthma phenotypes of corticosteroid response. J Allergy Clin Immunol. 2015;135(4):877–883.e1. https://doi.org/10.1016/j.jaci.2014.10.026.; Price D., Wilson A.M., Chisholm A., Rigazio A., Burden A., Thomas M. et al. Predicting frequent asthma exacerbations using blood eosinophil count and other patient data routinely available in clinical practice. J Asthma Allergy. 2016;9:1–12. https://doi.org/10.2147/JAA.S97973.; Busse W., Spector S., Rosen K., Wang Y., Alpan O. High eosinophil count: a potential biomarker for assessing successful omalizumab treatment effects. J Allergy Clin Immunol. 2013;132(2):485–486.e11. https://doi.org/10.1016/j.jaci.2013.02.032.; Wagener A.H., de Nijs S.B., Lutter R., Sousa A.R., Weersink E.J., Bel E.H. et al. External validation of blood eosinophils, FE(NO) and serum periostin as surrogates for sputum eosinophils in asthma. Thorax. 2015;70(2):115– 120. https://doi.org/10.1136/thoraxjnl-2014-205634.; Ullmann N., Bossley C.J., Fleming L., Silvestri M., Bush A., Saglani S. Blood eosinophil counts rarely reflect airway eosinophilia in children with severe asthma. Allergy. 2013;68(3):402–406. https://doi.org/10.1111/all.12101.; Bjerregaard A., Laing I.A., Backer V., Sverrild A., Khoo S.K., Chidlow G. et al. High fractional exhaled nitric oxide and sputum eosinophils are associated with an increased risk of future virus-induced exacerbations: a prospective cohort study. Clin Exp Allergy. 2017;47(8):1007–1013. https://doi.org/10.1111/cea.12935.; Baraldi E., de Jongste J.C. European Respiratory Society/American Thoracic Society (ERS/ATS). Task Force. Measurement of exhaled nitric oxide in children, 2001. Eur Respir J. 2002;20(1):223–237. https://doi.org/10.1183/09031936.02.00293102.; Dweik R.A., Boggs P.B., Erzurum S.C., Irvin C.G., Leigh M.W., Lundberg J.O. et al. An official ATS clinical practice guideline: interpretation of exhaled nitric oxide levels (FENO) for clinical applications. Am J Respir Crit Care Med. 2011;184(5):602–615. https://doi.org/10.1164/rccm.9120-11ST.; Pijnenburg M.W., De Jongste J.C. Exhaled nitric oxide in childhood asthma: a review. Clin Exp Allergy. 2008;38(2):246–259. https://doi.org/10.1111/j.1365-2222.2007.02897.x.; Giannetti M.P., Cardet J.C. Interleukin-5 antagonists usher in a new generation of asthma therapy. Curr Allergy Asthma Rep. 2016;16(11):80. https://doi.org/10.1007/s11882-016-0662-1.; Nannini L.J. Treat to target approach for asthma. J Asthma. 2020;57(6):687– 690. https://doi.org/10.1080/02770903.2019.1591443.; Normansell R., Walker S., Milan S.J., Walters E.H., Nair P. Omalizumab for asthma in adults and children. Cochrane Database Syst Rev. 2014;(1):CD003559. https://doi.org/10.1002/14651858.CD003559.pub4.; Farne H.A., Wilson A., Powell C., Bax L., Milan S.J. Anti-IL5 therapies for asthma. Cochrane Database Syst Rev. 2017;(9):CD010834. https://doi.org/10.1002/14651858.CD010834.pub3.; Zayed Y., Kheiri B., Banifadel M., Hicks M., Aburahma A., Hamid K. et al. Dupilumab safety and efficacy in uncontrolled asthma: a systematic review and meta-analysis of randomized clinical trials. J Asthma. 2019;56(10):1110–1119. https://doi.org/10.1080/02770903.2018.1520865.; Fajt M.L., Wenzel S.E. Asthma phenotypes and the use of biologic medications in asthma and allergic disease: the next steps toward personalized care. J Allergy Clin Immunol. 2015;135(2):299–310. https://doi.org/10.1016/j.jaci.2014.12.1871.; Flood-Page P.T., Menzies-Gow A.N., Kay A.B., Robinson D.S. Eosinophil’s role remains uncertain as anti-interleukin-5 only partially depletes numbers in asthmatic airway. Am J Respir Crit Care Med. 2003;167(2):199–204. https://doi.org/10.1164/rccm.200208-789OC.; Pavord I., Korn S., Howarth P., Bleecker E.R., Buhl R., Keene O.N. et al. Mepolizumab for severe eosinophilic asthma (DREAM): a multicentre, double-blind, placebo-controlled trial. Lancet. 2012;380(9842):651–659. https://doi.org/10.1016/S0140-6736(12)60988-X.; Hoshino M., Ohtawa J. Effects of adding omalizumab, an anti-immunoglobulin E antibody, on airway wall thickening in asthma. Respiration. 2012;83(6):520–528. https://doi.org/10.1159/000334701.; Tajiri T., Niimi A., Matsumoto H., Ito I., Oguma T., Otsuka K. et al. Comprehensive efficacy of omalizumab for severe refractory asthma: a time-series observational study. Ann Allergy Asthma Immunol. 2014;113(4):470–475. https://doi.org/10.1016/j.anai.2014.06.004.; Tajiri T., Matsumoto H., Hiraumi H., Ikeda H., Morita K., Izuhara K. et al. Efficacy of omalizumab in eosinophilic chronic rhinosinusitis patients with asthma. Ann Allergy Asthma Immunol. 2013;110(5):387–388. https://doi.org/10.1016/j.anai.2013.01.024.; Wenzel S., Ford L., Pearlman D., Spector S., Sher L., Skobieranda F. et al. Dupilumab in persistent asthma with elevated eosinophil levels. N Engl J Med. 2013;368(26):2455–2466. https://doi.org/10.1056/NEJMoa1304048.; Wechsler M.E. Inhibiting IL-4 and IL-13 in difficult-to-control asthma. N Engl J Med. 2013;368(26):2511–2513. https://doi.org/10.1056/NEJMe1305426.; Garlisi C.G., Kung T.T., Wang P., Minnicozzi M., Umland S.P., Chapman R.W. et al. Effects of chronic anti-interleukin-5 monoclonal antibody treatment in a murine model of pulmonary inflammation. Am J Respir Cell Mol Biol. 1999;20(2):248–255. https://doi.org/10.1165/ajrcmb.20.2.3327.; Ortega H.G., Liu M.C., Pavord I.D., Brusselle G.G., FitzGerald J.M., Chetta A. et al. Mepolizumab treatment in patients with severe eosinophilic asthma. N Engl J Med. 2014;371(13):1198–1207. https://doi.org/10.1056/NEJMoa1403290.; Castro M., Mathur S., Hargreave F. et al. Reslizumab for poorly controlled, eosinophilic asthma: a randomized, placebo-controlled study. Am J Respir Crit Care Med. 2011;184(10):1125–1132. https://doi.org/10.1164/rccm.201103-0396OC.; Castro M., Zangrilli J., Wechsler M.E., Bateman E.D., Brusselle G.G., Bardin P. et al. Reslizumab for inadequately controlled asthma with elevated blood eosinophil counts: results from two multicentre, parallel, double-blind, randomised, placebo-controlled, phase 3 trials. Lancet Respir Med. 2015;3(5):355–366. https://doi.org/10.1016/S2213-2600(15)00042-9.; Mukherjee M., Paramo F.A., Kjarsgaard M., Salter B., Nair G., LaVigne N. et al. Weight-adjusted intravenous reslizumab in severe asthma with inadequate response to fixed-dose subcutaneous mepolizumab. Am J Respir Crit Care Med. 2018;197(1):38–46. https://doi.org/10.1164/rccm.201707-1323OC.; Walsh G.M. Tralokinumab, an anti-IL-13 mAb for the potential treatment of asthma and COPD. Curr Opin Investig Drugs. 2010;11(11):1305–1312. Available at: https://pubmed.ncbi.nlm.nih.gov/21157650/.; May R.D., Monk P.D., Cohen E.S., Manuel D., Dempsey F., Davis N.H.E. et al. Preclinical development of CAT-354, an IL-13-neutralising antibody, for the treatment of severe uncontrolled asthma. Br J Pharmacol. 2012;166(1):177–193. https://doi.org/10.1111/j.1476-5381.2011.01659.x.; Piper E., Brightling C., Niven R., Oh C., Faggioni R., Poon K. et al. A phase II placebo-controlled study of tralokinumab in moderate-to-severe asthma. Eur Respir J. 2013;41(2):330–338. https://doi.org/10.1183/09031936.00223411.; Noonan M., Korenblat P., Mosesova S., Scheerens H. , Arron J.R., Zheng Y. et al. Dose-ranging study of lebrikizumab in asthmatic patients not receiving inhaled steroids. J Allergy Clin Immunol. 2013;132(3):567–574. https://doi.org/10.1016/j.jaci.2013.03.051.; Diamant Z., Gauvreau G.M., Cockcroft D.W., Boulet L.P., Sterk P.J., de Jongh F.H.C. et al. Inhaled allergen bronchoprovocation tests. J Allergy Clin Immunol. 2013;132(5):1045–1055.e6. https://doi.org/10.1016/j.jaci.2013.08.023.; Scheerens H., Arron J.R., Zheng Y., Erickson R.W., Choy D.F., Harris J.M. et al. The effects of lebrikizumab in patients with mild asthma following whole lung allergen challenge. Clin Exp Allergy. 2014;44(1):38–46. https://doi.org/10.1111/cea.12220.; Jiang H., Harris M.B., Rothman P. IL-4/IL-13 signalling beyond JAK/STAT. J Allergy Clin Immunol. 2000;105(6 Pt 1):1063–1070. https://doi.org/10.1067/mai.2000.107604.; Liu Y., Zhang S., Li D.W., Jiang S.J. Efficacy of anti-interleukin-5 therapy with mepolizumab in patients with asthma: a meta-analysis of randomized placebo-controlled trials. PLoS ONE. 2013;8(3):e59872. https://doi.org/10.1371/journal.pone.0059872.; Parker J.M., Oh C.K., LaForce C., Miller S.D., Pearlman D.S., Le C. et al. Safety profile and clinical activity of multiple subcutaneous doses of MEDI-528, a humanized anti-interleukin-9 monoclonal antibody, in two randomized phase 2a studies in subjects with asthma. BMC Pulm Med. 2011;11:14. https://doi.org/10.1186/1471-2466-11-14.; Cheng G., Arima M., Honda K., Hirata H., Eda F., Yoshida N. et al. Antiinterleukin-9 antibody treatment inhibits airway inflammation and hyperreactivity in mouse asthma model. Am J Respir Crit Care Med. 2002;166(3):409–416. https://doi.org/10.1164/rccm.2105079.; Yang G., Li L., Volk A., Emmell E., Petley T., Giles-Komar J. et al. Therapeutic dosing with anti-interleukin-13 monoclonal antibody inhibits asthma progression in mice. J Pharmacol Exp Ther. 2005;313(1):8–15. https://doi.org/10.1124/jpet.104.076133.; Singh D., Kane B., Molfino N.A., Faggioni R., Roskos L., Woodcock A. A phase 1 study evaluating the pharmacokinetics, safety and tolerability of repeat dosing with a human IL-13 antibody (CAT-354) in subjects with asthma. BMC Pulm Med. 2010;10:3. https://doi.org/10.1186/1471-2466-10-3.; Corren J., Lemanske R.F., Hanania N.A., Korenblat P.E., Parsey M.V., Arron J.R. et al. Lebrikizumab treatment in adults with asthma. N Engl J Med. 2011;365(12):1088–1098. https://doi.org/10.1056/NEJMoa1106469.; Laviolette M., Gossage D., Gauvreau G., Leigh R., Olivenstein R., Katial R. et al. Effects of benralizumab on airway eosinophils in asthmatic patients with sputum eosinophilia. J Allergy Clin Immunol. 2013;132(5):1086–1096. https://doi.org/10.1016/j.jaci.2013.05.020.; Pérez de Llano L.A., Cosío B.G., Domingo C., Urrutia I., Bobolea I., Valero A. et al. Efficacy and safety of reslizumab in patients with severe asthma with inadequate response to omalizumab: A multicenter, open-label pilot study. J Allergy Clin Immunol Pract. 2019;7(7):2277–2283.e2. https://doi.org/10.1016/j.jaip.2019.01.017.; Bleecker E.R., FitzGerald J.M., Chanez P., Papi A., Weinstein S.F., Barker P. et al. Efficacy and safety of benralizumab for patients with severe asthma uncontrolled with high-dosage inhaled corticosteroids and long-acting beta2-agonists (SIROCCO): a randomised, multicentre, placebo-controlled phase 3 trial. Lancet. 2016;388(10056):2115–2127. https://doi.org/10.1016/S0140-6736(16)31324-1.; FitzGerald J.M., Bleecker E., Nair P., Korn S., Ohta K., Lommatzsch M. et al. Benralizumab, an anti-interleukin-5 receptor alpha monoclonal antibody, as add-on treatment for patients with severe, uncontrolled, eosinophilic asthma (CALIMA): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet. 2016;388(10056):2128–2141. https://doi.org/10.1016/S0140-6736(16)31322-8.; Parulekar A.D., Diamant Z., Hanania N.A. Role of biologics targeting type 2 airway inflammation in asthma: what have we learned so far? Curr Opin Pulm Med. 2017;23(1):3–11. https://doi.org/10.1097/MCP.0000000000000343.; Menzies-Gow A., Ponnarambil S., Downie J., Bowen K., Hellqvist Å., Colice G. DESTINATION: a phase 3, multicentre, randomized, doubleblind, placebo-controlled, parallel-group trial to evaluate the longterm safety and tolerability of tezepelumab in adults and adolescents with severe, uncontrolled asthma. Respir Res. 2020;21(1):279. https://doi.org/10.1186/s12931-020-01541-7.; Chung K.F., Wenzel S.E., Brozek J.L., Bush A., Castro M., Sterk P.J. et al. International ERS/ATS guidelines on definition, evaluation and treatment of severe asthma. Eur Respir J. 2014;43(2):343–373. https://doi.org/10.1183/09031936.00202013.; https://www.med-sovet.pro/jour/article/view/7116

  2. 2
    Academic Journal

    المصدر: PULMONOLOGIYA; Том 28, № 1 (2018); 43-49 ; Пульмонология; Том 28, № 1 (2018); 43-49 ; 2541-9617 ; 0869-0189 ; 10.18093/0869-0189-2018-28-1

    وصف الملف: application/pdf

    Relation: https://journal.pulmonology.ru/pulm/article/view/960/803; Архипов В.В., Григорьева Е.В., Гавришина Е.В. Контроль над бронхиальной астмой в России: результаты многоцентрового наблюдательного исследования НИКА. Пульмонология. 2011; (6): 87–93. DOI:10.18093/0869-0189-2011-0-6-87-93.; Титова О., Козырев А., Суховская О. Влияние различных факторов риска на течение и прогноз бронхиальной астмы. Врач. 2013; (6): 85–87.; Демко И.В., Гордеева Н.В., Петрова М.М., Артюхов И.П. Клиника и лечение бронхиальной астмы, сочетающейся с патологией сердечно-сосудистой системы. Бюллетень сибирской медицины. 2007; (2): 90–97.; Позднякова О.Ю., Байда А.П., Батурин В.А. Факторы риска формирования неконтролируемой бронхиальной астмы. Врач. 2013; (11): 19–22.; Marincu I., Frent S., Tomescu M.C., Mihaicuta S. Rates and predictors of uncontrolled bronchial asthma in elderly patients from western Romania. Clin. Interv. Aging. 2015; (10): 963–967. DOI:10.2147/CIA.S83141.; Кобякова О.С., Деев И.А., Куликов Е.С. и др. Естественное течение бронхиальной астмы: факторы, не позволяющие достичь контроля в долгосрочной перспективе. Сибирское медицинское обозрение. 2017; (5): 9–18. DOI:10.20333/2500136-2017-5-9-18.; Soriano J.B., Visick G.T., Muellerova H. et al. Patterns of comorbidities in newly diagnosed COPD and asthma in primary care. Chest. 2005; 128 (4): 2099–2107. DOI:10.1378/chest.128.4.2099.; Карапетян Е.И., Авдеева Н.В. Анализ причин неконтролируемого течения бронхиальной астмы. Бюллетень физиологии и патологии дыхания 2010; 36: 35–37.; Рузанов Д.Ю., Давидовская Е.И., Барановская Т.В. и др. Фенотипы и состояния бронхиальной астмы с неконтролируемым течением. Проблемы здоровья и экологии. 2016; 2: 34–39.; Жестков А.В., Нагаткин Д.А. Проблемы контроля бронхиальной астмы в первичном звене здравоохранения Самарской области. Вестник современной клинической медицины. 2014; 7 (2): 15–18.; Урясьев О.М. Бронхиальная астма и коморбидная кардиальная патология: частота и клинико-функциональные особенности. Земский врач. 2013; 3 (20): 22–27.; Demoly P., Paggiaro P., Plaza V. et al. Prevalence of asthma control among adults in France, Germany, Italy, Spain and the UK. Eur. Respir. Rev. 2009; 112 (18): 105–112. DOI:10.1183/09059180.00001209.; Fuhlbrigge A., Reed M.L., Stempel D.A. et al. The status of asthma control in the U.S. adult population. Allergy Asthma Proc. 2009; 30 (5): 529–533. DOI:10.2500/aap.2009.30.3276.; Gold L.S., Thompson P., Salvi S. et al. Level of asthma control and health care utilization in Asia-Pacific countries. Respir. Med. 2014; 108 (2): 271–277. DOI:10.1016/j.rmed.2013.12.004.; Reddel H.K., Taylor D.R., Bateman E.D. et al. An official American Thoracic Society/European Respiratory Society statement: asthma control and exacerbations: standardizing endpoints for clinical asthma trials and clinical practice. Am. J. Respir. Crit. Care Med. 2009; 180 (1): 59–99. DOI:10.1164/rccm.200801-060ST; https://journal.pulmonology.ru/pulm/article/view/960

  3. 3
    Academic Journal

    المصدر: PULMONOLOGIYA; Том 26, № 6 (2016); 649-656 ; Пульмонология; Том 26, № 6 (2016); 649-656 ; 2541-9617 ; 0869-0189 ; 10.18093/0869-0189-2016-26-6

    وصف الملف: application/pdf

    Relation: https://journal.pulmonology.ru/pulm/article/view/789/669; Chuchalin A., Khaltaev N., Antonov N. et al. Chronic respiratory diseases and risk factors in 12 regions of Russian Federation. Intern. J. COPD. 2014; 9: 963–974.; Чучалин А.Г., Айсанов З.Р., Авдеев С.Н. и др. Федеральные клинические рекомендации по диагностике и лечению хронической обструктивной болезни легких. Русский медицинский журнал. 2014; 22 (5): 331–346.; Зыков К.А., Агапова О.Ю., Бейлина В.Б. и др. Новые подходы к лечению пациентов с сочетанием бронхиальной астмы и ХОБЛ – фокус на пролонгированные Мхолинолитики. Русский медицинский журнал. 2014; 25: 1836–1941.; Fu J., McDonald V., Gibson P. et al. Systemic inflammation in older adults with asthmaCOPD overlap syndrome. Allergy Asthma Immunol. Res. 2014; 6 (4): 316–324.; Сочетание хронической обструктивной болезни легких и бронхиальной астмы: согласительный документ Испанского общества пульмонологов и торакальных хирургов. Пульмонология. 2013; (1): 13–19.; Wylam M., Sathish V., Van Oosten S. et al. Mechanisms of cigarette smoke effects on human airway smooth muscle. PLoS One. 2015; 10 (6): e0128778.; Guedes A., Deshpande D., Dileepan M. et al. CD38 and airway hyperresponsiveness: studies on human airway smooth muscle cells and mouse models. J. Physiol. Pharmacol. 2015; 93 (2): 145–153.; Собко Е.А., Крапошина А.Ю., Демко И.В. и др. Маркер эндотелиальной дисфункции CD38/АДФрибозилциклаза при бронхиальной астме. Клиническая медицина. 2013; 2: 34–38.; Global Strategy for Asthma Management and Prevention. Revised 2015. Available at: www.ginasthma.com; De Marco R., Pesce G., Marcon A. et al. The coexistence of asthma and chronic obstructive pulmonary disease (COPD): prevalence and risk factors in young, middleaged and elderly people from the general population. PLoS One. 2013; 8 (5): e62985.; Diagnosis of diseases of chronic airflow limitation: asthma, COPD and asthmaCOPD overlap syndrome (ACOS). Global Strаtegy for Asthma Management and Prevention. 2014. Available at: http//www.jinasthma.org (Accessed at:15.01.2016).; Papaiwannou A., Zarogoulidis P., Porpodis K et al. Asthma chronic obstructive pulmonary disease overlap syndrome (ACOS): current literature review. J. Thorac. Dis. 2014; 6 (Suppl. 1): 146–151.; SolerCataluña J., Cosío B., Izquierdo J. et al. Consensus document on the overlap phenotype COPDasthma in COPD. Archivos de bronconeumología. 2012; 48 (9): 331–337.; Авдеев С.Н. Воспаление дыхательных путей у больных ХОБЛ и новые возможности противовоспалительной терапии. Практическая пульмонология. 2012; 3: 28–36.; Vaguliene N., Zemaitis M., Lavinskiene S. et al. Local and systemic neutrophilic inflammation in patients with lung cancer and chronic obstructive pulmonary disease. BMC Immunology. 2013; 6:14–36.; https://journal.pulmonology.ru/pulm/article/view/789

  4. 4
    Academic Journal

    المصدر: PULMONOLOGIYA; Том 26, № 5 (2016); 618-622 ; Пульмонология; Том 26, № 5 (2016); 618-622 ; 2541-9617 ; 0869-0189 ; 10.18093/0869-0189-2016-26-5

    وصف الملف: application/pdf

    Relation: https://journal.pulmonology.ru/pulm/article/view/771/665; Global Initiative for Chronic Obstructive Lung Disease (GOLD). Global strategy for diagnosis, management, and prevention of chronic obstructive pulmonary disease. 2013. Available at www.goldcopd.org.; Hurst J.R., Vestbo J., Anzueto A. et al. Susceptibility to exacerbation in chronic obstructive pulmonary disease. N. Engl. J. Med. 2010; 363: 1128–1138.; Anthonisen N.R., Manfreda J., Warren C.P. et al. Antibiotic therapy in exacerbations of chronic obstructive pulmonary disease. Ann. Intern. Med. 1987; 106: 196–204.; Global Initiative for Chronic Obstructive Lung Disease (GOLD). 2015. Available at www.goldcopd.org; Donaldson G.C., Seemungal T.A., Bhowmik A., Wedzicha J.A. Relationship between exacerbation frequency and lung function decline in chronic obstructive pulmonary disease. Thorax. 2002; 57: 847–852.; Soler-Cataluna J.J., Martinez-Garcia M.A., Sanchez R.P. et al. Severe acute exacerbations and mortality in patients with chronic obstructive pulmonary disease. Thorax. 2005; 60: 925–931.; Pavord I.D., Jones P.W., Burgel P.R., Rabe K.F. Exacerbations of COPD. Int. J. Chron. Obstruct. Pulm. Dis. 2016; 11 (Spec. Iss.): 21–30.; Синопальников А.И., Зайцев А.А. Современный взгляд на фармакотерапию обострений хронической обструктивной болезни легких. Лечащий врач. 2009; 10.; Dy R., Sethi S. The lung microbiome and exacerbations of COPD. Curr. Opin. Pulm. Med. 2016; 22 (3): 196–202.; Синопальников А.И., Романовских А.Г. Инфекционное обострение хронической обструктивной болезни легких. В кн.: Синопальников А.И., Козлов Р.С. Внебольничные инфекции дыхательных путей: руководство для врачей. М.: Премьер МТ, Наш Город; 2007.; Miravitlles M., Murio C., Guerrero T., Gisbert R. Cost of chronic bronchitis and COPD: a 1-year follow-up study. Chest. 2003; 123: 784–791.; Hurst J.R., Wedzicha J.A. Management and prevention of chronic obstructive pulmonary disease exacerbations: a state of the art review. BMC Med. 2009; 7: 40–45.; Утешев Д.Б., Бунятян Н.Д., Карабиненко А.А., Крылов И.А. Нарушения бронхокинетики и мукоцилиарного клиренса при ХОБЛ. Русский медицинский журнал. 2010; 9: 530.; Ходзицкая В.К., Ходзицкая С.В. Нарушение и коррекция мукоцилиарного клиренса при заболеваниях дыхательных путей и ЛОР-органов. Болезни и антибиотики. 2010; 1 (3).; Чикина С.Ю., Белевский А.С. Мукоцилиарный клиренс в норме и при патологии. Практическая пульмонология. 2012; 1 (44): 2–5.; Poole P.J., Black P.N. Oral mucolytic drugs for exacerbations of chronic obstructive pulmonary disease: systematic review. Br. Med. J. 2001; 322: 1271–1274.; Stey C., Steurer J., Bachmann S. et al. The effect of oral N-acetylcysteine in chronic bronchitis: a quantitative systematic review. Eur. Respir. J. 2000; 16: 253–262.; Синопальников А.И., Клячкина И.Л. Роль ингаляционных муколитических препаратов в комплексной терапии обострений хронической обструктивной болезни легких. Атмосфера. Пульмонология и аллергология. 2002; 3.; Чучалин А.Г., Айсанов З.Р., Авдеев С.Н. и др. Федеральные клинические рекомендации по диагностике и лечению хронической обструктивной болезни легких. М.: Российское респираторное общество; 2014.; https://journal.pulmonology.ru/pulm/article/view/771