-
1Academic Journal
المؤلفون: M. A. Boldyshevskaya, L. A. Tashireva, E. S. Andryukhova, T. A. Dronova, S. V. Vtorushin, V. M. Perelmuter, М. А. Болдышевская, Л. А. Таширева, Е. С. Андрюхова, Т. А. Дронова, С. В. Вторушин, В. М. Перельмутер
المساهمون: The study was supported by the Russian Foundation for Basic Research (project No. 23-15-00135)., Работа выполнена при финансовой поддержке гранта Российского научного фонда (№ 23-15-00135).
المصدر: Advances in Molecular Oncology; Том 10, № 4 (2023); 76-85 ; Успехи молекулярной онкологии; Том 10, № 4 (2023); 76-85 ; 2413-3787 ; 2313-805X ; 10.17650/2313-805X-2023-10-4
مصطلحات موضوعية: апоптоз, malignant neoplasms, epithelial-mesenchymal transition, apoptosis, злокачественные новообразования, эпителиально-мезенхимальный переход
وصف الملف: application/pdf
Relation: https://umo.abvpress.ru/jour/article/view/611/328; Jacob J., Coulombe P., Kwan R. et al. Types I and II keratin intermediate filaments. Cold Spring Harb Perspect Biol 2018;10(4):a018275. DOI:10.1101/cshperspect.a018275; Moll R., Divo M., Langbein L. The human keratins: biology and pathology. Histochem Cell Biol 2008;129(6):705–33. DOI:10.1007/s00418-008-0435-6; Werner S., Keller L., Pantel K. Epithelial keratins: biology and implications as diagnostic markers for liquid biopsies. Mol Aspects Med 2020;72(5):100817. DOI:10.1016/j.mam.2019.09.001; Karantza V. Keratins in health and cancer: more than mere epithelial cell markers. Oncogene 2011;30(2):127–38. DOI:10.1038/onc.2010.456; Ho M., Thompson B., Fisk J. et al. Update of the keratin gene family: evolution, tissue-specific expression patterns, and relevance to clinical disorders. Hum Genomics 2022;16(1):1–21. DOI:10.1186/s40246-021-00374-9; Komine M., Freedberg I., Blumenberg M. Regulation of epidermal expression of keratin K17 in inflammatory skin diseases. J Invest Dermatol 1996;107(4):569–75. DOI:10.1111/1523-1747.ep12582820; Komine M., Rao L., Kaneko T. et al. Inflammatory versus proliferative processes in epidermis. Tumor necrosis factor alpha induces K6b keratin synthesis through a transcriptional complex containing NFkappa B and C/EBPbeta. J Biol Chem 2000;275(41):32077–88. DOI:10.1074/jbc.M001253200; Völkel C., De Wispelaere N., Weidemann S. et al. Cytokeratin 5 and cytokeratin 6 expressions are unconnected in normal and cancerous tissues and have separate diagnostic implications. Virchows Arch 2022;480(2):433–47. DOI:10.1007/s00428-021-03204-4; Coulombe P., Fuchs E. Elucidating the early stages of keratin filament assembly. J Cell Biol 1990;111(1):153–69. DOI:10.1083/jcb.111.1.153; Inaba Y., Chauhan V., van Loon A.P. et al. Keratins and the plakin family cytolinker proteins control the length of epithelial microridge protrusions. Elife 2020;9:e58149. DOI:10.7554/eLife.58149; Windoffer R., Beil M., Magin T. et al. Cytoskeleton in motion: the dynamics of keratin intermediate filaments in epithelia. J Cell Biol 2011;194(5):669–78. DOI:10.1083/jcb.201008095; Snider N., Omary M. Post-translational modifications of intermediate filament proteins: mechanisms and functions. Nat Rev Mol Cell Biol 2014;15(3):163–77. DOI:10.1038/nrm3753; Hrudka J., Fišerová H., Jelínková K. et al. Cytokeratin 7 expression as a predictor of an unfavorable prognosis in colorectal carcinoma. Sci Rep 2021;11(1):17863. DOI:10.1038/s41598-021-97480-4; Dum D., Menz A., Völkel C. et al. Cytokeratin 7 and cytokeratin 20 expression in cancer: a tissue microarray study on 15,424 cancers. Exp Mol Pathol 2022;126:104762. DOI:10.1016/j.yexmp.2022.104762; Han W., Hu C., Fan Z.J. et al. Transcript levels of keratin 1/5/6/14/15/16/17 as potential prognostic indicators in melanoma patients. Sci Rep 2021;11(1):1023. DOI:10.1038/s41598-020-80336-8; Weng Y., Cui Y., Fang J. Biological functions of cytokeratin 18 in cancer. Mol Cancer Res 2012;10(4):485–93. DOI:10.1158/1541-7786.MCR-11-0222; Willms A., Schupp H., Poelker M. et al. TRAIL-receptor 2 — a novel negative regulator of p53. Cell Death Dis 2021;12(8):757. DOI:10.1038/s41419-021-04048-1; Bozza W., Zhang Y., Zhang B. Cytokeratin 8/18 protects breast cancer cell lines from TRAIL-induced apoptosis. Oncotarget 2018;9(33):23264–73. DOI:10.18632/oncotarget.25297; Ku N., Omary M. A disease- and phosphorylation-related nonmechanical function for keratin 8. J Cell Biol 2006;174(1): 115–25. DOI:10.1083/jcb.200602146; Chen Y., Lin S., Chang W. et al. Requirement for ERK activation in acetone extract identified from Bupleurrum scorzonerifolium induced A549 tumor cell apoptosis and keratin 8 phosphorylation. Life Sci 2005;76(21):2409–20. DOI:10.1016/j.lfs.2004.09.044; Arentz G., Chataway T., Condina M. et al. Increased phospho-keratin 8 isoforms in colorectal tumors associated with EGFR pathway activation and reduced apoptosis. ISRN Mol Biol 2012;706545. DOI:10.5402/2012/706545; Zeng Y., Zou M., Liu Y. et al. Keratin 17 suppresses cell proliferation and epithelial-mesenchymal transition in pancreatic cancer. Front Med 2020;7:572494. DOI:10.3389/fmed.2020.572494; Weerasinghe S., Ku N., Altshuler P. et al. Mutation of caspase- digestion sites in keratin 18 interferes with filament reorganization, and predisposes to hepatocyte necrosis and loss of membrane integrity. J Cell Sci 2014;127(Pt. 7):1464–75. DOI:10.1242/jcs.138479; Chen J., Cheng X., Merched-Sauvage M. et al. An unexpected role for keratin 10 end domains in susceptibility to skin cancer. J Cell Sci2006;119(Pt. 24):5067–76. DOI:10.1242/jcs.03298; Alam H., Gangadaran P., Bhate A.V. et al. Loss of keratin 8 phosphorylation leads to increased tumor progression and correlates with clinico-pathological parameters of OSCC patients. PLoS One 2011;6(11):e27767. DOI:10.1371/journal.pone.0027767; McGinn O., Ward A., Fettig L. et al. Cytokeratin 5 alters β-catenin dynamics in breast cancer cells. Oncogene 2020;39(12):2478–92. DOI:10.1038/s41388-020-1164-0; Meng Y., Wu Z., Yin X. et al. Keratin 18 attenuates estrogen receptor alpha-mediated signaling by sequestering LRP16 in cytoplasm. BMC Cell Biol 2009;10:96. DOI:10.1186/1471-2121-10-96; Kawai T., Yasuchika K., Ishii T. et al. Keratin 19, a cancer stem cell marker in human hepatocellular carcinoma. Clin Cancer Res 2015;21(13):3081–91. DOI:10.1158/1078-0432.CCR-14-1936; Sharma P., Tiufekchiev S., Lising V. et al. Keratin 19 interacts with GSK3β to regulate its nuclear accumulation and degradation of cyclin D3. Mol Biol Cell 2021;32(21):ar21. DOI:10.1091/mbc.E21-05-0255; Tsai F., Lai M., Cheng J. et al. Novel K6-K14 keratin fusion enhances cancer stemness and aggressiveness in oral squamous cell carcinoma. Oncogene 2019;38(26):5113–26. DOI:10.1038/s41388-019-0781-y; Elazezy M., Schwentesius S., Stegat L. et al. Emerging insights into keratin 16 expression during metastatic progression of breast cancer. Cancers 2021;13(15):3869. DOI:10.3390/cancers13153869; Yuanhua L., Pudong Q., Wei Z. et al. TFAP2A induced KRT16 as an oncogene in lung adenocarcinoma via EMT. Int J Biol Sci 2019;15(7):1419–28. DOI:10.7150/ijbs.34076; Ghosh D., Hsu J., Soriano K. et al. Spatial heterogeneity in cytoskeletal mechanics response to TGF-β1 and hypoxia mediates partial epithelial-to-meshenchymal transition in epithelial ovarian cancer cells. Cancers (Basel) 2023;15(12):3186. DOI:10.3390/cancers15123186.; Hyejung J., Bomin K., Byung M. et al. Cytokeratin 18 is necessary for initiation of TGF-β1-induced epithelial–mesenchymal transition in breast epithelial cells. Mol Cell Biochem 2016;423(1–2):21–8. DOI:10.1007/s11010-016-2818-7; Ren M., Gao Y., Chen Q. et al. The Overexpression of keratin 23 promotes migration of ovarian cancer via epithelial-mesenchymal transition. Biomed Res Int 2020;2020:1–12. DOI:10.1155/2020/8218735; Shi R., Liu L., Wang F. et al. Downregulation of cytokeratin 18 induces cellular partial EMT and stemness through increasing EpCAM expression in breast cancer. Cell Signal 2020;76:109810. DOI:10.1016/j.cellsig.2020.109810; Shi R., Wang C., Fu N. et al. Downregulation of cytokeratin 18 enhances BCRP-mediated multidrug resistance through induction of epithelial-mesenchymal transition and predicts poor prognosis in breast cancer. Oncol Rep 2019;41(5):3015–26. DOI:10.3892/or.2019.7069; Fortier A., Asselin E., Cadrin M. Keratin 8 and 18 loss in epithelial cancer cells increases collective cell migration and cisplatin sensitivity through claudin1 up-regulation. J Biol Chem 2013;288(16):11555–71. DOI:10.1074/jbc.M112.428920; Obermajer N., Doljak B., Kos J. Cytokeratin 8 ectoplasmic domain binds urokinase-type plasminogen activator to breast tumor cells and modulates their adhesion, growth and invasiveness. Mol Cancer 2009;8:88. DOI:10.1186/1476-4598-8-88; Wang Z., Yang M., Lei L. et al. Overexpression of KRT17 promotes proliferation and invasion of non-small cell lung cancer and indicates poor prognosis. Cancer Manag Res 2019;11:7485–97. DOI:10.2147/CMAR.S218926; Wu X., Xiao J., Zhao C. et al. Claudin1 promotes the proliferation, invasion and migration of nasopharyngeal carcinoma cells by upregulating the expression and nuclear entry of β-catenin. Exp Ther Med 2018;16(4):3445–51. DOI:10.3892/etm.2018.6619; Lam V., Sharma P., Nguyen T. et al. Morphology, motility, and cytoskeletal architecture of breast cancer cells depend on keratin 19 and substrate. Cytometry A 2020;97(11):1145–55. DOI:10.1002/cyto.a.24011; Alsharif S., Sharma P., Bursch K. et al. Keratin 19 maintains E-cadherin localization at the cell surface and stabilizes cell-cell adhesion of MCF7 cells. Cell Adh Migr 2021;15(1):1–17. DOI:10.1080/19336918.2020.1868694; Saha S., Kim K., Yang G. et al. Cytokeratin 19 (KRT19) has a role in the reprogramming of cancer stem cell-like cells to less aggressive and more drug-sensitive cells. Int J Mol Sci 2018;19(5):1423–44. DOI:10.3390/ijms19051423; Ricciardelli C., Lokman N., Pyragius C. et al. Keratin 5 overexpression is associated with serous ovarian cancer recurrence and chemotherapy resistance. Oncotarget 2017;8(11):17819–32. DOI:10.18632/oncotarget.14867; Wang P., Chen Y., Ding G. et al. Keratin 18 (KRT18) induces proliferation, migration, and invasion in gastric cancer via the MAPK signaling pathway. Clin Exp Pharmacol 2020;48(1):147–56. DOI:10.1111/1440-1681.13401; https://umo.abvpress.ru/jour/article/view/611
-
2Academic Journal
المؤلفون: E. S. Andryukhova, N. V. Krakhmal, L. A. Tashireva, S. V. Vtorushin, M. V. Zavyalova, V. M. Perelmuter, Е. С. Андрюхова, Н. В. Крахмаль, Л. А. Таширева, С. В. Вторушин, М. В. Завьялова, В. М. Перельмутер
المصدر: Siberian journal of oncology; Том 22, № 5 (2023); 180-189 ; Сибирский онкологический журнал; Том 22, № 5 (2023); 180-189 ; 2312-3168 ; 1814-4861
مصطلحات موضوعية: лимфогенное метастазирование, novel coronavirus infection, COVId-19, lung disease, lymph node metastasis, новая коронавирусная инфекция, поражение легких
وصف الملف: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/2772/1168; Klimek M. Pulmonary lymphangitis carcinomatosis: systematic review and meta-analysis of case reports, 1970–2018. Postgrad Med. 2019 Jun; 131(5): 309–18. doi:10.1080/00325481.2019.1595982.; Doyle L. Gabriel Andral (1797–1876) and the first reports of lymphangitis carcinomatosa. J R Soc Med. 1989; 82(8): 491–3. doi:10.1177/014107688908200814.; Trapnell D.H. Radiological Appearances of Lymphangitis Carcinomatosa of the Lung. Thorax. 1964; 19: 251–60. doi:10.1136/thx.19.3.251.; Babu S., Satheeshan B., Geetha M., Salih S. A rare presentation of pulmonary lymphangitic carcinomatosis in cancer of lip: case report. World J Surg Oncol. 2011; 9: 77. doi:10.1186/1477-7819-9-77.; Yamamoto T., Nakane T., Kimura T., Osaki T. Pulmonary lymphangitic carcinomatosis from an oropharyngeal squamous cell carcinoma: a case report. Oral Oncol. 2000; 36(1): 125–8. doi:10.1016/s1368-8375(99)00060-3.; Tighe D., Cavilla S., Simcock R. Pulmonary lymphangitic carcinomatosis from head and neck squamous cell carcinoma. Int J Oral Maxillofac Surg. 2014; 43(7): 806–10. doi:10.1016/j.ijom.2013.12.003.; Iguchi H., Hashimoto K., Sunami K., Yamane H. A case of fatal respiratory failure after surgery for advanced supraglottic laryngeal carcinoma. Acta Otolaryngol Suppl. 2004; (554): 71–3. doi:10.1080/03655230410018327.; Zieske L.A., Myers E.N., Brown B.M. Pulmonary lymphangitic carcinomatosis from hypopharyngeal adenosquamous carcinoma. Head Neck Surg. 1988; 10(3): 195–8. doi:10.1002/hed.2890100308.; Fend F., Gruber U., Fritzsche H., Rothmund J., Breitfellner G., Mikuz G. Occult papillary carcinoma of the thyroid with pulmonary lymphangitic spread diagnosed by lung biopsy. Klin Wochenschr. 1989; 67(13): 687–90. doi:10.1007/BF01718031.; Digumarthy S.R., Fischman A.J., Kwek B.H., Aquino S.L. Fluorodeoxyglucose positron emission tomography pattern of pulmonary lymphangitic carcinomatosis. J Comput Assist Tomogr. 2005; 29(3): 346–9. doi:10.1097/01.rct.0000163952.03192.ef.; Jiménez-Fonseca P., Carmona-Bayonas A., Font C., PlasenciaMartínez J., Calvo-Temprano D., Otero R., Beato C., Biosca M., Sánchez M., Benegas M., Varona D., Faez L., Antonio M., de la Haba I., Madridano O., Solis M.P., Ramchandani A., Castañón E., Marchena P.J., Martín M., de la Peña F.A., Vicente V.; EPIPHANY study investigators and the Asociación de Investigación de la Enfermedad Tromboembólica de la Región de Murcia. The prognostic impact of additional intrathoracic findings in patients with cancer-related pulmonary embolism. Clin Transl Oncol. 2018; 20(2): 230–42. doi:10.1007/s12094-017-1713-3.; Belhassine M., Papakrivopoulou E., Venet C., Mestdagh C., Schroeven M. Gastric adenocarcinoma revealed by atypical pulmonary lymphangitic carcinomatosis. J Gastrointest Oncol. 2018; 9(6): 1207–12. doi:10.21037/jgo.2018.07.06.; Bruce D.M., Heys S.D., Eremin O. Lymphangitis carcinomatosa: a literature review. J R Coll Surg Edinb. 1996; 41(1): 7–13.; Pandey S., Ojha S. Delays in Diagnosis of Pulmonary Lymphangitic Carcinomatosis due to Benign Presentation. Case Rep Oncol Med. 2020. doi:10.1155/2020/4150924.; Okayama M., Kanemitsu Y., Oguri T., Asano T., Fukuda S., Ohkubo H., Takemura M., Maeno K., Ito Y., NIImi A. A Rare Case of Isolated Chronic Cough Caused by Pulmonary Lymphangitic Carcinomatosis as a Primary Manifestation of Rectum Carcinoma. Intern Med. 2018; 57(18): 2709–12. doi:10.2169/internalmedicine.0572-17.; Charest M., Armanious S. Prognostic implication of the lymphangitic carcinomatosis pattern on perfusion lung scan. Can Assoc Radiol J. 2012; 63(4): 294–303. doi:10.1016/j.carj.2011.04.004.; Prakash P., Kalra M.K., Sharma A., Shepard J.A., Digumarthy S.R. FDG PET/CT in assessment of pulmonary lymphangitic carcinomatosis. Am J Roentgenol. 2010; 194(1): 231–6. doi:10.2214/AJR.09.3059.; Yahng S.A., Kang H.H., Kim S.K., Lee S.H., Moon H.S., Lee B.Y., Kim H.S., Seo E.J. Erdheim-Chester disease with lung involvement mimicking pulmonary lymphangitic carcinomatosis. Am J Med Sci. 2009; 337(4): 302–4. doi:10.1097/MAJ.0b013e31818d7a64.; Im Y., Lee H., Lee H.Y., Baek S.Y., Jeong B.H., Lee K., Kim H., Kwon O.J., Han J., Lee K.S., Ahn M.J., Kim J., Um S.W. Prognosis of pulmonary lymphangitic carcinomatosis in patients with non-small cell lung cancer. Transl Lung Cancer Res. 2021; 10(11): 4130–40. doi:10.21037/tlcr-21-677.; https://www.siboncoj.ru/jour/article/view/2772
-
3Academic Journal
المؤلفون: N. V. Krakhmal, M. V. Zavyalova, S. V. Vtorushin, L. A. Tashireva, V. M. Perelmuter, Н. В. Крахмаль, М. В. Завьялова, С. В. Вторушин, Л. A. Таширева, В. М. Перельмутер
المصدر: Siberian journal of oncology; Том 22, № 3 (2023); 66-75 ; Сибирский онкологический журнал; Том 22, № 3 (2023); 66-75 ; 2312-3168 ; 1814-4861
مصطلحات موضوعية: рак молочной железы, cell extrusion, cancer invasion, breast cancer, клеточная экструзия, опухолевая инвазия
وصف الملف: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/2604/1131; Slattum G.M., Rosenblatt J. Tumour cell invasion: an emerging role for basal epithelial cell extrusion. Nat Rev Cancer. 2014 Jul; 14(7): 495-501. doi:10.1038/nrc3767. Epub 2014 Jun 19.; Pankova K., Rosel D., Novotny M., Brabek J. The molecular mechanisms of transition between mesenchymal and amoeboid invasiveness in tumor cells. Cell Mol Life Sci. 2010 Jan; 67(1): 63-71. doi:10.1007/s00018-009-0132-1.; Friedl P., Locker J., Sahai E., Segall J.E. Classifying collective cancer cell invasion. Nat Cell Biol. 2012 Aug; 14(8): 777-83. doi:10.1038/ncb2548.; Spano D., Heck C., De Antonellis P., Christofori G., Zollo M. Molecular networks that regulate cancer metastasis. Semin Cancer Biol. 2012 Jun; 22(3): 234-49. doi:10.1016/j.semcancer.2012.03.006.; Cheung K.J., Gabrielson E., Werb Z., Ewald A.J. Collective invasion in breast cancer requires a conserved basal epithelial program. Cell. 2013 Dec 19; 155(7): 1639-51. doi:10.1016/j.cell.2013.11.029.; Haeger A., Wolf K., Zegers M.M., Friedl P. Collective cell migration: guidance principles and hierarchies. Trends Cell Biol. 2015 Sep; 25(9): 556-66. doi:10.1016/j.tcb.2015.06.003.; Eisenhoffer G.T., Loftus P.D., Yoshigi M., Otsuna H., Chien C.B., Morcos P.A., Rosenblatt J. Crowding induces live cell extrusion to maintain homeostatic cell numbers in epithelia. Nature. 2012; 484(7395): 546-9. doi:10.1038/nature10999.; Slattum G., Gu Y., Sabbadini R., Rosenblatt J. Autophagy in oncogenic K-Ras promotes basal extrusion of epithelial cells by degrading S1P. Curr Biol. 2014 Jan 6; 24(1): 19-28. doi:10.1016/j.cub.2013.11.029.; Gudipaty S.A., Rosenblatt J. Epithelial cell extrusion: Pathways and pathologies. Semin Cell Dev Biol. 2017; 67: 132-140. doi:10.1016/j.semcdb.2016.05.010.; Tabasinezhad M., Samadi N., Ghanbari P., Mohseni M., Saei A.A., Sharifi S., Saeedi N., Pourhassan A. Sphingosin 1-phosphate contributes in tumor progression. J Cancer Res Ther. 2013; 9(4): 556-63. doi:10.4103/0973-1482.126446.; Kuipers D., Mehonic A., Kajita M., Peter L., Fujita Y., Duke T., Charras G., Gale J.E. Epithelial repair is a two-stage process driven first by dying cells and then by their neighbours. J Cell Sci. 2014 Mar 15; 127(Pt 6): 1229-41. doi:10.1242/jcs.138289.; Ngo P.A., Neurath M.F., Lopez-Posadas R. Impact of Epithelial Cell Shedding on Intestinal Homeostasis. Int J Mol Sci. 2022 Apr 9; 23(8): 4160. doi:10.3390/ijms23084160.; Gu Y., Forostyan T., Sabbadini R., Rosenblatt J. Epithelial cell extrusion requires the sphingosine-1-phosphate receptor 2 pathway. J Cell Biol. 2011 May 16; 193(4): 667-76. doi:10.1083/jcb.201010075.; Slattum G., McGee K.M., Rosenblatt J. P115 RhoGEF and microtubules decide the direction apoptotic cells extrude from an epithelium. J Cell Biol. 2009 Sep 7; 186(5): 693-702. doi:10.1083/jcb.200903079.; Kelley L.C., Lohmer L.L., Hagedorn E.J., Sherwood D.R. Traversing the basement membrane in vivo: a diversity of strategies. J Cell Biol. 2014; 204(3): 291-302. doi:10.1083/jcb.201311112.; Tamimi R.M., Colditz G.A., Hazra A., Baer H.J., Hankinson S.E., Rosner B., Marotti J., Connolly J.L., Schnitt S.J., Collins L.C. Traditional breast cancer risk factors in relation to molecular subtypes of breast cancer. Breast Cancer Res Treat. 2012 Jan; 131(1): 159-67. doi:10.1007/s10549-011-1702-0.; Prat A., Ellis M.J., Perou C.M. Practical implications of geneexpression-based assays for breast oncologists. Nat Rev Clin Oncol. 2011 Dec 6; 9(1): 48-57. doi:10.1038/nrclinonc.2011.178.; Denisov E.V., Litviakov N.V., Zavyalova M.V., Perelmuter V.M., Vtorushin S.V., Tsyganov M.M., Gerashchenko T.S., Garbukov E.Y., Slonimskaya E.M., Cherdyntseva N.V. Intratumoral morphological heterogeneity of breast cancer: neoadjuvant chemotherapy efficiency and multidrug resistance gene expression. Sci Rep. 2014 Apr 16; 4: 4709. doi:10.1038/srep04709.; Luond F, Tiede S., Christofori G. Breast cancer as an example of tumour heterogeneity and tumour cell plasticity during malignant progression. Br J Cancer. 2021 Jul; 125(2): 164-175. doi:10.1038/s41416-021-01328-7.; Goldhirsch A., Winer E.P., Coates A.S., Gelber R.D., Piccart-Gebhart M., Thurlimann B., Senn H.J.; Panel members. Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann Oncol. 2013 Sep; 24(9): 2206-23. doi:10.1093/annonc/mdt303.; Romagnoli M., Bresson L., Bi-Cicco A., Perez-Lanzon M., Legoix P., Baulande S., de la Grange P., De Arcangelis A., Georges-Labouesse E., Sonnenberg A., Deugnier M.A., Glukhova M.A., Faraldo M.M. Laminin-binding integrins are essential for the maintenance of functional mammary secretory epithelium in lactation. Development. 2020; 147(4): dev181552. doi:10.1242/dev.181552.; Smeland H.Y., Askeland C., Wik E., Knutsvik G., Molven A., Edelmann R.J., Reed R.K., Warren D.J., Gullberg D., Stuhr L., Akslen L.A. Integrin a11p1 is expressed in breast cancer stroma and associates with aggressive tumor phenotypes. J Pathol Clin Res. 2020 Jan; 6(1): 69-82. doi:10.1002/cjp2.148.; Andrade D., Rosenblatt J. Apoptotic regulation of epithelial cellular extrusion. Apoptosis. 2011 May; 16(5): 491-501. doi:10.1007/s10495-011-0587-z.; https://www.siboncoj.ru/jour/article/view/2604
-
4Academic Journal
المؤلفون: Yu. Yu. Rakina, N. V. Krakhmal, D. S. Pismenny, A. V. Zavyalov, S. V. Vtorushin, S. G. Afanasyev, M. V. Zavyalova, Ю. Ю. Ракина, Н. В. Крахмаль, Д. С. Письменный, А. В. Завьялов, С. В. Вторушин, С. Г. Афанасьев, М. В. Завьялова
المصدر: Siberian journal of oncology; Том 22, № 2 (2023); 93-102 ; Сибирский онкологический журнал; Том 22, № 2 (2023); 93-102 ; 2312-3168 ; 1814-4861
مصطلحات موضوعية: гематогенные метастазы, β1 integrin, β3 integrin, MMP2, tumor morphological heterogeneity, distant metastases, интегрины β1 и β3, ММР2, морфологическая гетерогенность опухоли
وصف الملف: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/2538/1099; McGuigan A., Kelly P., Turkington R.C., Jones C., Coleman H.G., McCain R.S. Pancreatic cancer: A review of clinical diagnosis, epidemiology, treatment and outcomes. World J Gastroenterol. 2018; 24(43): 4846–61. doi:10.3748/wjg.v24.i43.4846.; Park W., Chawla A., O’Reilly E.M. Pancreatic Cancer: A Review. JAMA. 2021; 326(9): 851–62. doi:10.1001/jama.2021.13027.; Dorman K., Heinemann V., Kobold S., von Bergwelt-Baildon M., Boeck S. Novel systemic treatment approaches for metastatic pancreatic cancer. Expert Opin Investig Drugs. 2022; 31(3): 249–62. doi:10.1080/13543784.2022.2037552.; Ren B., Cui M., Yang G., Wang H., Feng M., You L., Zhao Y. Tumor microenvironment participates in metastasis of pancreatic cancer. Mol Cancer. 2018; 17(1): 108. doi:10.1186/s12943-018-0858-1.; Schaffner F., Ray A.M., Dontenwill M. Integrin α5β1, the Fibronectin Receptor, as a Pertinent Therapeutic Target in Solid Tumors. Cancers (Basel). 2013; 5(1): 27–47. doi:10.3390/cancers5010027.; Pan B., Guo J., Liao Q., Zhao Y. β1 and β3 integrins in breast, prostate and pancreatic cancer: A novel implication. Oncol Lett. 2018; 15(4): 5412–6. doi:10.3892/ol.2018.8076.; Sliker B.H., Goetz B.T., Barnes R., King H., Maurer H.C., Olive K.P., Solheim J.C. HLA-B infuences integrin beta-1 expression and pancreatic cancer cell migration. Exp Cell Res. 2020; 390(2): 111960. doi:10.1016/j.yexcr.2020.111960.; Casari I., Howard J.A., Robless E.E., Falasca M. Exosomal integrins and their infuence on pancreatic cancer progression and metastasis. Cancer Lett. 2021; 507: 124–34. doi:10.1016/j.canlet.2021.03.010.; Zeltz C., Primac I., Erusappan P., Alam J., Noel A., Gullberg D. Cancer-associated fbroblasts in desmoplastic tumors: emerging role of integrins. Semin Cancer Biol. 2020; 62: 166–81. doi:10.1016/j.semcancer.2019.08.004.; Görte J., Danen E., Cordes N. Therapy-Naive and Radioresistant 3-Dimensional Pancreatic Cancer Cell Cultures Are Efectively Radiosensitized by β1 Integrin Targeting. Int J Radiat Oncol Biol Phys. 2022; 112(2): 487–98. doi:10.1016/j.ijrobp.2021.08.035.; Torres C., Grippo P.J. Pancreatic cancer subtypes: a roadmap for precision medicine. Ann Med. 2018; 50(4): 277–87. doi:10.1080/07853890.2018.1453168.; Ракина Ю.Ю., Завьялова М.В., Крахмаль Н.В., Кошель А.П., Афанасьев С.Г., Вторушин С.В. Морфологические и экспрессионные особенности протоковой аденокарциномы поджелудочной железы. Сибирский онкологический журнал. 2017; 16(4): 26–31. doi:10.21294/1814-4861-2017-16-4-26-31.; Krakhmal N.V., Zavyalova M.V., Denisov E.V., Vtorushin S.V., Perelmuter V.M. Cancer Invasion: Patterns and Mechanisms. Acta Naturae. 2015; 7(2): 17–28. doi:10.32607/20758251-2015-7-2-17-28.; Dong S., Wang L., Guo Y.B., Ying H.F., Shen X.H., Meng Z.Q., Chen Hao, Chen Q.W., Li Z.S. Risk factors of liver metastasis from advanced pancreatic adenocarcinoma: a large multicenter cohort study. World J Surg Onc. 2017; 15(1): 120. doi:10.1186/s12957-017-1175-7.; https://www.siboncoj.ru/jour/article/view/2538
-
5Academic Journal
المؤلفون: O. I. Kovalev, S. V. Vtorushin, E. V. Kaigorodova, О. И. Ковалев, С. В. Вторушин, Е. В. Кайгородова
المصدر: Bulletin of Siberian Medicine; Том 22, № 2 (2023); 122-133 ; Бюллетень сибирской медицины; Том 22, № 2 (2023); 122-133 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2023-22-2
مصطلحات موضوعية: химиорезистентность, cancer stem cells, malignant ascites, tumor spheroids, chemoresistance, опухолевые стволовые клетки, злокачественный асцит, опухолевые сфероиды
وصف الملف: application/pdf
Relation: https://bulletin.ssmu.ru/jour/article/view/5229/3401; https://bulletin.ssmu.ru/jour/article/view/5229/3424; Motohara T., Masuda K., Morotti M., Zheng Y., El-Sahhar S., Chong K.Y. et al. An evolving story of the metastatic voyage of ovarian cancer cells: Cellular and molecular orchestration of the adipose-rich metastatic microenvironment. Oncogene. 2019;38(16):2885–2898. DOI:10.1038/s41388-018-0637-x.; Ahmed N., Abubaker K., Findlay J.K. Ovarian cancer stem cells: Molecular concepts and relevance as therapeutic targets. Mol. Asp. Med. 2014;39:110–125. DOI:10.1016/j.mam.2013.06.002.; Horst D., Kriegl L., Engel J., Kirchner T., Jung A. Prognostic significance of the cancer stem cell markers CD133, CD44, and CD166 in colorectal cancer. Cancer Investigation. 2009;27(8):844–850. DOI:10.1080/07357900902744502.; Yan Y., Zuo X., Wei D. Concise Review: Emerging Role of CD44 in Cancer Stem Cells: A Promising Biomarker and Therapeutic Target. Stem Cells Translational Medicine. 2015;4(9):1033–1043. DOI:10.5966/sctm.2015-0048.; Lee Y.J., Wu C.C., Li J.W., Ou C.C., Hsu S.C., Tseng H.H. et al. A rational approach for cancer stem-like cell isolation and characterization using CD44 and prominin-1(CD133) as selection markers. Oncotarget. 2016;7(48):78499–78515. DOI:10.18632/oncotarget.12100.; Gao M.Q., Choi Y.P., Kang S., Youn J.H., Cho N.H. CD24+ cells from hierarchically organized ovarian cancer are enriched in cancer stem cells. Oncogene. 2010;29(18):2672–2680. DOI:10.1038/onc.2010.35.; Zhang S., Balch C., Chan M.W., Lai H.C., Matei D., Schilder J.M. et al. Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res. 2008;68(11):4311–4320. DOI:10.1158/0008-5472.CAN08-0364.; Li Z., Block M.S., Vierkant R.A., Fogarty Z.C., Winham S.J., Visscher D.W. et al. The inflammatory microenvironment in epithelial ovarian cancer: a role for TLR4 and MyD88 and related proteins. Tumour Biology: the Journal of the International Society for Oncodevelopmental Biology and Medicine. 2016;37(10):13279–13286. DOI:10.1007/s13277-016-5163-2.; Burns K., Clatworthy J., Martin L., Martinon F., Plumpton C., Maschera B. et al. Tollip, a new component of the IL-1RI pathway, links IRAK to the IL-1 receptor. Nature Cell Biology. 2000;2(6):346–351. DOI:10.1038/35014038.; López J., Valdez-Morales F.J., Benítez-Bribiesca L., Cerbón M., Carrancá A.G. Normal and cancer stem cells of the human female reproductive system. Reproductive Biology and Endocrinology. 2013;11:53. DOI:10.1186/1477-7827-11-53.; Spizzo G., Went P., Dirnhofer S., Obrist P., Moch H., Baeuerle P.A. et al. Overexpression of epithelial cell adhesion molecule (Ep-CAM) is an independent prognostic marker for reduced survival of patients with epithelial ovarian cancer. Gynecologic Oncology. 2006;103(2):483–488. DOI:10.1016/j.ygyno.2006.03.035.; Chang B., Liu G., Xue F., Rosen D.G., Xiao L., Wang X. et al. ALDH1 expression correlates with favorable prognosis in ovarian cancers. Modern Pathology: an Official Journal of the United States and Canadian Academy of Pathology. 2009;22(6):817–823. DOI:10.1038/modpathol.2009.35.; Deng S., Yang X., Lassus H., Liang S., Kaur S., Ye Q. et al. Distinct expression levels and patterns of stem cell marker, aldehyde dehydrogenase isoform 1 (ALDH1), in human epithelial cancers. PLoS One. 2010;5(4):e10277. DOI:10.1371/journal.pone.0010277.; Cioffi M., D’Alterio C., Camerlingo R., Tirino V., Consales C., Riccio A. et al. Identification of a distinct population of CD133(+)CXCR4(+) cancer stem cells in ovarian cancer. Sci. Report. 2015;5:10357. DOI:10.1038/srep10357.; Kajiyama H., Shibata K., Terauchi M., Ino K., Nawa A., Kikkawa F. Involvement of SDF-1alpha/CXCR4 axis in the enhanced peritoneal metastasis of epithelial ovarian carcinoma. International Journal of Cancer. 2008;122(1):91–99. DOI:10.1002/ijc.23083.; Krohn A., Song Y.H., Muehlberg F., Droll L., Beckmann C., Alt E. CXCR4 receptor positive spheroid forming cells are responsible for tumor invasion in vitro. Cancer Letters. 2009;280(1):65–71. DOI:10.1016/j.canlet.2009.02.005.; Rodda D.J., Chew J.L., Lim L.H., Loh Y.H., Wang B., Ng H.H. et al. Transcriptional regulation of nanog by OCT4 and SOX2. J. Biol. Chem. 2005;280(26):247317. DOI:10.1074/jbc.M502573200.; Alemohammad H., Asadzadeh Z., Motafakker Azad R., Hemmat N., Najafzadeh B., Vasefifar P. et al. Signaling pathways and microRNAs, the orchestrators of NANOG activity during cancer induction. Life Sci. 2020;260:118337. DOI:10.1016/j.lfs.2020.118337.; Lin F.K., Chui Y.L. Generation of induced pluripotent stem cells from mouse cancer cells. Cancer Biother. Radiopharm. 2012;27(10):694–700. DOI:10.1089/cbr.2012.1227.; Kaufhold S., Garbán H., Bonavida B. Yin Yang 1 is associated with cancer stem cell transcription factors (SOX2, OCT4, BMI1) and clinical implication. J. Exp. Clin. Cancer Res. 2016;35:84. DOI:10.1186/s13046-016-0359-2.; Stevanovic M., Zuffardi O., Collignon J., Lovell-Badge R., Goodfellow P. The cDNA sequence and chromosomal location of the human SOX2 gene. Mamm. Genome. 1994;5(10):640– 642. DOI:10.1007/BF00411460.; Peng S., Maihle N.J., Huang Y. Pluripotency factors Lin28 and Oct4 identify a sub-population of stem cell-like cells in ovarian cancer. Oncogene. 2010;29(14):2153–2159. DOI:10.1038/onc.2009.500.; Baba T., Convery P.A., Matsumura N., Whitaker R.S., Kondoh E., Perry T. et al. Epigenetic regulation of CD133 and tumorigenicity of CD133+ ovarian cancer cells. Oncogene. 2009;28(2):209–218. DOI:10.1038/onc.2008.374.; Curley M.D., Therrien V.A., Cummings C.L., Sergent P.A., Koulouris C.R., Friel A.M. et al. CD133 expression defines a tumor initiating cell population in primary human ovarian cancer. Stem Cells. 2009;27(12):2875–2883. DOI:10.1002/stem.236.; Silva I.A., Bai S., McLean K., Yang K., Griffith K., Thomas D. et al. Aldehyde dehydrogenase in combination with CD133 defines angiogenic ovarian cancer stem cells that portend poor patient survival. Cancer Res. 2011;71(11):3991–4001. DOI:10.1158/0008-5472.CAN-10-3175.; Wei X., Dombkowski D., Meirelles K., Pieretti-Vanmarcke R., Szotek P.P., Chang H.L. et al. Mullerian inhibiting substance preferentially inhibits stem/progenitors in human ovarian cancer cell lines compared with chemotherapeutics. Proc. Natl. Acad. Sci. U S A. 2010;107(44):18874–18879. DOI:10.1073/pnas.1012667107.; Jiang H., Lin X., Liu Y., Gong W., Ma X., Yu Y. et al. Transformation of epithelial ovarian cancer stemlike cells into mesenchymal lineage via EMT results in cellular heterogeneity and supports tumor engraftment. Mol. Med. 2012;18(1):1197– 1208. DOI:10.2119/molmed.2012.00075.; Motohara T., Masuko S., Ishimoto T., Yae T., Onishi N., Muraguchi T. et al. Transient depletion of p53 followed by transduction of c-Myc and K-Ras converts ovarian stem-like cells into tumor-initiating cells. Carcinogenesis. 2011;32(11):1597–1606. DOI:10.1093/carcin/bgr183.; Gao M.Q., Choi Y.P., Kang S., Youn J.H., Cho N.H. CD24+ cells from hierarchically organized ovarian cancer are enriched in cancer stem cells. Oncogene. 2010;29(18):2672– 2680. DOI:10.1038/onc.2010.35.; Кайгородова Е.В., Федулова Н.В., Очиров М.О., Дьяков Д.А., Молчанов С.В., Часовских Н.Ю. Различные популяции опухолевых клеток в асцитической жидкости больных раком яичников. Бюллетень сибирской медицины. 2020;19(1):50–58. DOI:10.20538/1682-0363-2020-1-50-58.; Кайгородова Е.В., Очиров М.О., Молчанов С.В., Рогачев Р.Р., Дьяков Д.Д., Чернышова А.Л. и др. Различные популяции EpСam-положительных клеток в асцитической жидкости у больных раком яичников: связь со степенью канцероматоза. Бюллетень сибирской медицины. 2021;20(2):44–53. DOI:10.20538/1682-0363-2021-2-44-53.; Wang Z., Yang L., Huang Z., Li X., Xiao J., Qu Y. et al. Identification of prognosis biomarkers for high-grade serous ovarian cancer based on stemness. Front. Genet. 2022;13:861954. DOI:10.3389/fgene.2022.861954.; Bai S., Ingram P., Chen Y.C., Deng N., Pearson A., Niknafs Y.S. et al. EGFL6 regulates the asymmetric division, maintenance, and metastasis of ALDH+ ovarian cancer cells. Cancer Res. 2016;76(21):6396–6409. DOI:10.1158/0008-5472.CAN-16-0225.; Wang K., Wang Y., Wang Y., Liu S., Wang C., Zhang S. et al. EIF5A2 enhances stemness of epithelial ovarian cancer cells via a E2F1/KLF4 axis. Stem Cell Res. Ther. 2021;12(1):186. DOI:10.1186/s13287-021-02256-2.; Giordano M., Decio A., Battistini C., Baronio M., Bianchi F., Villa A. et al. L1CAM promotes ovarian cancer stemness and tumor initiation via FGFR1/SRC/STAT3 signaling. J. Exp. Clin. Cancer Res. 2021;40(1):319. DOI:10.1186/s13046-021-02117-z.; Zhang Y., Wang Y., Zhao G., Tanner E.J., Adli M., Matei D. FOXK2 promotes ovarian cancer stemness by regulating the unfolded protein response pathway. J. Clin. Invest. 2022;132(10):151591. DOI:10.1172/JCI151591.; Schwitalla S., Fingerle A.A., Cammareri P., Nebelsiek T., Göktuna S.I., Ziegler P.K. et al. Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-celllike properties. Cell. 2013;152(1-2):25–38. DOI:10.1016/j.cell.2012.12.012.; Raghavan S., Mehta P., Xie Y., Lei Y.L., Mehta G. Ovarian cancer stem cells and macrophages reciprocally interact through the WNT pathway to promote pro-tumoral and malignant phenotypes in 3D engineered microenvironments. J. Immunother. Cancer. 2019;7(1):190. DOI:10.1186/s40425-019-0666-1.; Zhang S., Balch C., Chan M.W., Lai H.C., Matei D., Schilder J.M. et al. Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res. 2008;68(11):4311–4320. DOI:10.1158/0008-5472.CAN-08-0364.; Lau W., Peng W.C., Gros P., Clevers H. The R-spondin/Lgr5/Rnf43 module: regulator of Wnt signal strength. Genes Dev. 2014;28(4):305–316. DOI:10.1101/gad.235473.113.; Генинг С.О., Абакумова Т.В., Антонеева И.И., Ризванов А.А., Генинг Т.П., Гуфурбаева Д.У. Стволово-подобные опухолевые клетки и провоспалительные цитокины в асцитической жидкости пациенток с раком яичников. Клиническая лабораторная диагностика. 2021;66(5):297– 303. DOI:10.51620/0869-2084-2021-66-5-297-303.; Meirelles K., Benedict L.A., Dombkowski D., Pepin D., Preffer F.I., Teixeira J. et al. Human ovarian cancer stem/ progenitor cells are stimulated by doxorubicin but inhibited by Mullerian inhibiting substance. Proceedings of the National Academy of Sciences of the United States of America. 2012;109(7):2358–2363. DOI:10.1073/pnas.1120733109.; Bourguignon L.Y., Peyrollier K., Xia W., Gilad E. Hyaluronan-CD44 interaction activates stem cell marker Nanog, Stat- 3-mediated MDR1 gene expression, and ankyrin-regulated multidrug efflux in breast and ovarian tumor cells. The Journal of Biological Chemistry. 2008;283(25):17635–17651. DOI:10.1074/jbc.M800109200.; Xia M., Overman M.J., Rashid A., Chatterjee D., Wang H., Katz M.H. et al. Expression and clinical significance of epidermal growth factor receptor and insulin-like growth factor receptor 1 in patients with ampullary adenocarcinoma. Human Pathology. 2015;46(9):1315–1322. DOI:10.1016/j.humpath.2015.05.012.; Garson K., Vanderhyden B.C. Epithelial ovarian cancer stem cells: underlying complexity of a simple paradigm. Reproduction. 2015;149(2):59–70. DOI:10.1530/REP-14-0234.; Jäger M., Schoberth A., Ruf P., Hess J., Hennig M., Schmalfeldt B. et al. Immunomonitoring results of a phase II/III study of malignant ascites patients treated with the trifunctional antibody catumaxomab (anti-EpCAM x anti-CD3). Cancer Res. 2012;72(1):24–32. DOI:10.1158/0008-5472.CAN-11-2235.; Akhter M.Z., Sharawat S.K., Kumar V., Kochat V., Equbal Z., Ramakrishnan M. et al. Aggressive serous epithelial ovarian cancer is potentially propagated by EpCAM+CD45+ phenotype. Oncogene. 2018;37(16):2089–2103. DOI:10.1038/s41388-017-0106-y.; Wicha M.S., Liu S., Dontu G. Cancer stem cells: an old idea – a paradigm shift. Cancer Res. 2006;66(4):1883–1890. DOI:10.1158/0008-5472.CAN-05-3153.; Кайгородова Е.В., Ковалев О.В., Чернышова А.Л., Вторушин С.В., Шпилёва О.В. Гетерогенность EpCAM-положительных клеток в асцитической жидкости low-grade серозной карциномы яичников: клинический случай. Опухоли женской репродуктивной системы. 2021;17(4):90– 95. DOI:10.17650/1994 4098 2021 17 4 90 95.; Козик А.В., Кайгородова Е.В., Грищенко М.Ю., Вторушин С.В., Чернышова А.Л. EPCAM+CD45+ клетки в асцитической жидкости больных новообразованиями яичников: связь с уровнями онкомаркеров и степенью злокачественности. Сибирский онкологический журнал. 2022;21(5):44– 51. DOI:10.21294/1814-4861-2022-21-5-44-51.; Kaigorodova E.V., Kozik A.V., Zavaruev I.S. Grishchenko M.Y. Hybrid/atypical forms of circulating tumor cells: current state of the art. Biochemistry Moscow. 2022;87(4):380– 390. DOI:10.1134/S0006297922040071.; Izar B., Tirosh I., Stover E.H., Wakiro I., Cuoco M.S., Alter I. et al. A single-cell landscape of high-grade serous ovarian cancer. Nature Medicine. 2020;26(8):1271–1279. DOI:10.1038/s41591-020-0926-0.; Wu X., Liu X., Koul S., Lee C.Y., Zhang Z., Halmos B. AXL kinase as a novel target for cancer therapy. Oncotarget. 2014;5(20):9546–9563. DOI:10.18632/oncotarget.2542.; Shield K., Ackland M.L., Ahmed N., Rice G.E. Multicellular spheroids in ovarian cancer metastases: Biology and pathology. Gynecologic Oncology. 2009;113(1):143–148. DOI:10.1016/j.ygyno.2008.11.032.; Bapat S.A., Mali A.M., Koppikar C.B., Kurrey N.K. Stem and progenitor-like cells contribute to the aggressive behavior of human epithelial ovarian cancer. Cancer Res. 2005;65(8):3025– 3029. DOI:10.1158/0008-5472.CAN-04-3931.; Shield K., Ackland M.L., Ahmed N., Rice G.E. Multicellular spheroids in ovarian cancer metastases: biology and pathology. Gynecol. Oncol. 2009;113(1):143–148. DOI:10.1016/j.ygyno.2008.11.032.; Liu X., Taftaf R., Kawaguchi M., Chang Y.F., Chen W., Entenberg D. et al. Homophilic CD44 interactions mediate tumor cell aggregation and polyclonal metastasis in patient-derived breast cancer models. Cancer Discov. 2019;9(1):96–113. DOI:10.1158/2159-8290.CD-18-0065.; Xu S., Yang Y., Dong L., Qiu W., Yang L., Wang X. et al. Construction and characteristics of an E-cadherin-related three-dimensional suspension growth model of ovarian cancer. Scientific Reports. 2014;4:5646. DOI:10.1038/srep05646.; Sodek K.L., Ringuette M.J., Brown T.J. Compact spheroid formation by ovarian cancer cells is associated with contractile behavior and an invasive phenotype. International Journal of Cancer. 2009;124(9):2060–2070. DOI:10.1002/ijc.24188.; Kenny H.A., Chiang C.Y., White E.A., Schryver E.M., Habis M., Romero I.L. et al. Mesothelial cells promote early ovarian cancer metastasis through fibronectin secretion. The Journal of Clinical Investigation. 2014;124(10):4614–4628. DOI:10.1172/JCI74778.; Iwanicki M.P., Chen H.Y., Iavarone C., Zervantonakis I.K., Muranen T., Novak M. et al. Mutant p53 regulates ovarian cancer transformed phenotypes through autocrine matrix deposition. JCI Insight. 2016;1(10):e86829. DOI:10.1172/jci.insight.86829.; Lengyel E. Ovarian cancer development and metastasis. Am. J. Pathol. 2010;177(3):1053–1064. DOI:10.2353/ajpath.2010.100105.; Elloul S., Elstrand M.B., Nesland J.M., Tropé C.G., Kvalheim G., Goldberg I. et al. Snail, slug, and smad-interacting protein 1 as novel parameters of disease aggressive ness in metastatic ovarian and breast carcinoma. Cancer. 2005;103(8):1631–1643. DOI:10.1002/cncr.20946.; Veatch A.L., Carson L.F., Ramakrishnan S. Differential expression of the cell-cell adhesion molecule E-cadherin in ascites and solid human ovarian tumor cells. International Journal of Cancer. 1994;58(3):393–399. DOI:10.1002/ijc.2910580315.; Latifi A., Luwor R.B., Bilandzic M., Nazaretian S., Stenvers K., Pyman J. et al. Isolation and characterization of tumor cells from the ascites of ovarian cancer patients: molecular phenotype of chemoresistant ovarian tumors. PloS One. 2012;7(10):e46858. DOI:10.1371/journal.pone.0046858.; Fritz J.L., Collins O., Saxena P., Buensuceso A., Ramos Valdes Y., Francis K.E. et al. A novel role for NUAK1 in promoting ovarian cancer metastasis through regulation of fibronectin production in spheroids. Cancers. 2020;12(5):1250. DOI:10.3390/cancers12051250.; Ojasalu K., Brehm C., Hartung K., Nischak M., Finkernagel F., Rexin P. et al. Upregulation of mesothelial genes in ovarian carcinoma cells is associated with an unfavorable clinical outcome and the promotion of cancer cell adhesion. Molecular Oncology. 2020;14(9):2142–2162. DOI:10.1002/1878-0261.12749.; Reinartz S., Lieber S., Pesek J., Brandt D.T., Asafova A., Finkernagel F. et al. Cell type-selective pathways and clinical associations of lysophosphatidic acid biosynthesis and signaling in the ovarian cancer microenvironment. Molecular Oncology. 2019;13(2):185–201. DOI:10.1002/1878-0261.12396.; Kipps E., Tan D.S., Kaye S.B. Meeting the challenge of ascites in ovarian cancer: new avenues for therapy and research. Nature reviews. Cancer. 2013;13(4):273–282. DOI:10.1038/nrc3432.; Rakina M., Kazakova A., Villert A., Kolomiets L., Larionova I. Spheroid formation and peritoneal metastasis in ovarian cancer: the role of stromal and immune components. International Journal of Molecular Sciences. 2022;23(11):6215. DOI:10.3390/ijms23116215.; Dick J.E., Bhatia M., Gan O., Kapp U., Wang J.C. Assay of human stem cells by repopulation of NOD/SCID mice. Stem Cells. 1997;15Suppl.1:199–203;discussion 204–197. DOI:10.1002/stem.5530150826.; Wang L., Mezencev R., Bowen N.J., Matyunina L.V., McDonald J.F. Isolation and characterization of stem-like cells from a human ovarian cancer cell line. Molecular and Cellular Biochemistry. 2012;363(1-2):257–268. DOI:10.1007/s11010-011-1178-6.; De Thé H. Differentiation therapy revisited. Nat. Rev. Cancer. 2018;18(2):117–127 DOI:10.1038/nrc.2017.103.; Nayak S., Mahenthiran A., Yang Y., McClendon M., Mania-Farnell B., James C.D. et al. Bone morphogenetic protein 4 targeting glioma stem-like cells for malignant glioma treatment: latest advances and implications for clinical application. Cancers (Basel). 2020;12(2):516. DOI:10.3390/cancers12020516.; Arima Y., Nobusue H., Saya H. Targeting of cancer stem cells by differentiation therapy. Cancer Sci. 2020;111(8):2689– 2695. DOI:10.1111/cas.14504.; Correa R.J., Peart T., Valdes Y.R., DiMattia G.E., Shepherd T.G. Modulation of AKT activity is associated with reversible dormancy in ascites-derived epithelial ovarian cancer spheroids. Carcinogenesis. 2012;33(1):49–58. DOI:10.1093/carcin/bgr241.; Hua H., Zhang H., Chen J., Wang J., Liu J., Jiang Y. Targeting Akt in cancer for precision therapy. Journal of Hematology & Oncology. 2021;4(1):128. DOI:10.1186/s13045-021-01137-8.; Emami K.H., Nguyen C., Ma H., Kim D.H., Jeong K.W., Eguchi M. et al. A small molecule inhibitor of beta-catenin/CREB-binding protein transcription [corrected]. Proceedings of the National Academy of Sciences of the United States of America. 2004;101(34):12682–12687. DOI:10.1073/pnas.0404875101.; Rafehi S., Ramos Valdes Y., Bertrand M., McGee J., Préfontaine M., Sugimoto A. et al. TGFβ signaling regulates epithelial-mesenchymal plasticity in ovarian cancer ascites-derived spheroids. Endocrine-Related Cancer. 2016;23(3):147–159. DOI:10.1530/ERC-15-0383.; Jäger M., Schoberth A., Ruf P., Hess J., Hennig M., Schmalfeldt B. et al. Immunomonitoring results of a phase II/III study of malignant ascites patients treated with the trifunctional antibody catumaxomab (anti-EpCAM x anti-CD3). Cancer Research. 2012;72(1):24–32. DOI:10.1158/0008-5472.CAN11-2235.; https://bulletin.ssmu.ru/jour/article/view/5229
-
6Academic Journal
المؤلفون: V. M. Perelmuter, E. S. Grigorieva, M. V. Zavyalova, L. A. Tashireva, V. V. Alifanov, O. E. Saveleva, S. V. Vtorushin, E. L. Choynzonov, N. V. Cherdyntsevа, В. М. Перельмутер, Е. С. Григорьева, М. В. Завьялова, Л. А. Таширева, В. В. Алифанов, О. Е. Савельева, С. В. Вторушин, Е. Л. Чойнзонов, Н. В. Чердынцева
المساهمون: The work was carried out with the financial support of the Russian Science Foundation (grant No. 19-75-30016). The equipment of the Center for Collective Use “Medical Genomics” of the Tomsk National Research Medical Center of the Russian Academy of Sciences was used in the work., Работа выполнена при финансовой поддержке Российского научного фонда (грант № 19-75-30016). В работе использовано оборудование Центра коллективного пользования «Медицинская геномика» Томского национального исследовательского медицинского центра Российской академии наук.
المصدر: Advances in Molecular Oncology; Том 9, № 4 (2022); 96‑111 ; Успехи молекулярной онкологии; Том 9, № 4 (2022); 96‑111 ; 2413-3787 ; 2313-805X ; 10.17650/2313-805X-2022-9-4
مصطلحات موضوعية: влияние химиотерапии, circulating tumor cells, apoptosis, the effect of chemotherapy, циркулирующие опухолевые клетки, апоптоз
وصف الملف: application/pdf
Relation: https://umo.abvpress.ru/jour/article/view/481/285; Vismara M., Reduzzi C., Daidone M.G. et al. Circulating tumor cells (CTCs) heterogeneity in metastatic breast cancer: different approaches for different needs. Adv Exp Med Biol 2020;1220: 81–91. DOI:10.1007/978-3-030-35805-1_6; Савельева О.Е., Таширева Л.А., Булдаков М.А. и др. Экспрессия CXCR4 в различных популяциях циркулирующих и оди- ночных опухолевых клеток рака молочной железы. Сибирский онкологический журнал 2018;17(4):75–80. DOI:10.21294/1814-4861-2018-17-4-75-80; Krog B.L., Henry M.D. Biomechanics of the circulating tumor cell microenvironment. Adv Exp Med Biol 2018;1092:209–33. DOI:10.1007/978-3-319-95294-9_11; Meng S., Tripathy D., Frenkel E.P. et al. Circulating tumor cells in patients with breast cancer dormancy. Clin Cancer Res 2004;10(24):8152–62. DOI:10.1158/1078-0432.CCR-04-1110; Aceto N., Bardia A., Miyamoto D.T. et al. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell 2014;158(5):1110–22. DOI:10.1016/j.cell.2014.07.013; Weinberg R.A. Leaving home early: reexamination of the canonical models of tumor progression. Cancer Cell 2008;14(4):283–4. DOI:10.1016/j.ccr.2008.09.009; Buchheit C.L., Weigel K.J., Schafer Z.T. Cancer cell survival during detachment from the ECM: multiple barriers to tumour progression. Nat Rev Cancer 2014;14(9):632–41. DOI:10.1038/nrc3789; Yu T., Wang C., Xie M. et al. Heterogeneity of CTC contributes to the organotropism of breast cancer. Biomed Pharmacother 2021;137:111314. DOI:10.1016/j.biopha.2021.111314; Barzegar Behrooz A., Syahir A., Ahmad S. CD133: beyond a cancer stem cell biomarker. J Drug Target 2019;27(3):257–69. DOI:10.1080/1061186X.2018.1479756; Guo F., Yang Z., Sehouli J. et al. Blockade of ALDH in cisplatinresistant ovarian cancer stem cells in vitro synergistically enhances chemotherapy-induced cell death. Curr Oncol 2022;29(4):2808–22. DOI:10.3390/curroncol29040229; Chen C., Zhao S., Karnad A. et al. The biology and role of CD44 in cancer progression: therapeutic implications. J Hematol Oncol 2018;11(1):64. DOI:10.1186/s13045-018-0605-5; Cao Z.-Q., Wang Z., Leng P. Aberrant N-кадгерин expression in cancer. Biomed Pharmacother 2019;118:109320. DOI:10.1016/j.biopha.2019.109320; Jordan N.V., Bardia A., Wittner B.S. et al. HER2 expression identifies dynamic functional states within circulating breast cancer cells. Nature 2016;537(7618):102–6. DOI:10.1038/nature19328; Kallergi G., Konstantinidis G., Markomanolaki H. et al. Apoptotic circulating tumor cells in early and metastatic breast cancer patients. Mol Cancer Ther 2013;12(9):1886–95. DOI:10.1158/1535-7163.MCT-12-1167; Spiliotaki M., Mavroudis D., Kapranou K. et al. Evaluation of proliferation and apoptosis markers in circulating tumor cells of women with early breast cancer who are candidates for tumor dormancy. Breast Cancer Res;16(6):485. DOI:10.1186/s13058-014-0485-8; Jansson S., Bendahl P.O., Larsson A.M. et al. Prognostic impact of circulating tumor cell apoptosis and clusters in serial blood samples from patients with metastatic breast cancer in a prospective observational cohort. BMC Cancer 2016;16:433. DOI:10.1186/s12885-016-2406-y; Pandya V., Githaka J.M., Patel N. et al. BIK drives an aggressive breast cancer phenotype through sublethal apoptosis and predicts poor prognosis of ER-positive breast cancer. Cell Death Dis 2020;11(6):448. DOI:10.1038/s41419-020-2654-2; Xu Y., So C., Lam H.M. et al. Flow cytometric detection of newlyformed breast cancer stem cell-like cells after apoptosis reversal. J Vis Exp 2019;143. DOI:10.3791/58642; Zimmermann M., Meyer N. Annexin V/7-AAD staining in keratinocytes. Methods Mol Biol 2011;740:57–63. DOI:10.1007/978-1-61779-108-6_8; Madjd Z., Mehrjerdi A.Z., Sharifi A.M. et al. CD44+ cancer cells express higher levels of the anti-apoptotic protein Bcl-2 in breast tumours. Cancer Immun 2009;9:4.; Mori Y., Takeuchi A., Miyagawa K. et al. CD133 prevents colon cancer cell death induced by serum deprivation through activation of Akt-mediated protein synthesis and inhibition of apoptosis. FEBS Open Bio 2021;11(5):1382–94. DOI:10.1002/2211-5463.13145; Nguyen P.T., Nguyen D., Chea C. et al. Interaction between N-cadherin and decoy receptor-2 regulates apoptosis in head and neck cancer. Oncotarget 2018;9(59):31516–30. DOI:10.18632/oncotarget.25846; Xu Y., So C., Lam H.M. et al. Apoptosis reversal promotes cancer stem cell-like cell formation. Neoplasia 2018;20(3):295–303. DOI:10.1016/j.neo.2018.01.005; https://umo.abvpress.ru/jour/article/view/481
-
7Academic Journal
المؤلفون: A. V. Kozik, E. V. Kaigorodova, M. Yu. Grishchenko, S. V. Vtorushin, A. L. Chernyshova, А. В. Козик, Е. В. Кайгородова, М. Ю. Грищенко, С. В. Вторушин, А. Л. Чернышова
المساهمون: The study was supported by a grant from the President of the Russian Federation MD-2017.2020.7., Исследование выполнено при финансовой поддержке гранта Президента РФ МД-2017.2020.7.
المصدر: Siberian journal of oncology; Том 21, № 5 (2022); 44-51 ; Сибирский онкологический журнал; Том 21, № 5 (2022); 44-51 ; 2312-3168 ; 1814-4861
مصطلحات موضوعية: пограничные опухоли яичников, ascitic fluid, atypical/hybrid cell forms, EPCAM+CD45+ cells, CA125, HE4, HGSC, LGSC, borderline ovarian tumors, асцитическая жидкость, атипичные/гибридные формы опухолевых клеток, EpCAM+CD45+ клетки
وصف الملف: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/2306/1029; Penet M.F., Krishnamachary B., Wildes F.B., Mironchik Y., Hung C.F., Wu T.C., Bhujwallan Z.M. Ascites Volumes and the Ovarian Cancer Microenvironment. Front Oncol. 2018; 8: 595. doi:10.3389/fonc.2018.00595.; Степанов И.В., Падеров Ю.М., Афанасьев С.Г. Перитонеальный канцероматоз. Сибирский онкологический журнал. 2014; 5: 45–53.; Rheinländer A., Schraven B., Bommhardt U. CD45 in human physiology and clinical medicine. Immunol Lett. 2018; 196: 22–32. doi:10.1016/j.imlet.2018.01.009.; Huang L., Yang Y., Yang F., Liu S., Zhu Z., Lei Z., Guo J. Functions of EpCAM in physiological processes and diseases (Review). Int J Mol Med. 2018; 42(4): 1771–85. doi:10.3892/ijmm.2018.3764.; Kaigorodova E.V., Savelieva O.E., Tashireva L.A., Tarabanovskaya N.A., Simolina E.I., Denisov E.V., Slonimskaya E.M., Choynzonov E.L., Perelmuter V.M. Heterogeneity of Circulating Tumor Cells in Neoadjuvant Chemotherapy of Breast Cancer. Molecules. 2018; 23(4): 727. doi:10.3390/molecules23040727.; Кайгородова Е.В., Ковалев О.В., Чернышова А.Л., Вторушин С.В., Шпилева О.В. Гетерогенность EpCAM-положительных клеток в асцитической жидкости low-grade серозной карциномы яичников: клинический случай. Опухоли женской репродуктивной системы. 2021; 17(4): 90–5. doi:10.17650/1994-4098-2021-17-4-90-95.; Kaigorodova E.V., Fedulova N.V., Ochirov M.O., Dyakov D.A., Molchanov S.V., Chasovskikh N.Yu. Dissimilar tumor cell populations in ascitic fluid of ovarian cancer patients. Bulletin of Siberian Medicine. 2020; 19(1): 50–8. doi:10.20538/1682-0363-2020-1-50-58.; Kaigorodova E.V., Kozik A.V., Zavaruev I.S., Grishchenko M.Y. Hybrid/Atypical Forms of Circulating Tumor Cells: Current State of the Art. Biochemistry (Moscow). 2022; 87(4): 380–90. doi:10.1134/S0006297922040071.; Adams D.L., Martin S.S., Alpaugh R.K., Charpentier M., Tsai S., Bergan R.C., Ogden I.M., Catalona W., Chumsri S., Tang C.M., Cristofanilli M. Circulating giant macrophages as a potential biomarker of solid tumors. Proc Natl Acad Sci USA. 2014; 111(9): 3514–9. doi:10.1073/pnas.1320198111.; Dietz M.S., Sutton T.L., Walker B.S., Gast C.E., Zarour L., Sengup-ta S.K., Swain J.R., Eng J., Parappilly M., Limbach K., Sattler A., Burlingame E., Chin Y., Gower A., Mira J.L.M., Sapre A., Chiu Y.J., Clayburgh D.R., Pommier S.J., Cetnar J.P., Fischer J.M., Jaboin J.J., Pommier R.F., Sheppard B.C., Tsikitis V.L., Skalet A.H., Mayo S.C., Lopez C.D., Gray J.W., Mills G.B., Mitri Z., Chang Y.H., Chin K., Wong M.H. Relevance of circulating hybrid cells as a non-invasive biomarker for myriad solid tumors. Sci Rep. 2021; 11(1). doi:10.1038/s41598-021-93053-7.; Gast C.E., Silk A.D., Zarour L., Riegler L., Burkhart J.G., Gustafson K.T., Parappilly M.S., Roh-Johnson M., Goodman J.R., Olson B., Schmidt M., Swain J.R., Davies P.S., Shasthri V., Iizuka S., Flynn P., Watson S., Korkola J., Courtneidge S.A., Fischer J.M., Jaboin J., Billingsley K.G., Lopez C.D., Burchard J., Gray J., Coussens L.M., Sheppard B.C., Wong M.H. Cell fusion potentiates tumor heterogeneity and reveals circulating hybrid cells that correlate with stage and survival. Sci Adv. 2018; 4(9). doi:10.1126/sciadv.aat7828.; Adams D., Adams D.K., Lin S.H., Cristofanilli M., Bergan R.C., Marks J.R., Martin S.S., Chumsri S., Ho T.H., Lapidus R.G., Tsai S., Tang Ch.M., Alpaugh R.K. Cancer-associated macrophage-like cells as prognostic indicators of overall survival in a variety of solid malignancies. J Clin Oncol. 2017; 35(15): 11503. doi:10.1200/JCO.2017.35.15_suppl.11503.; Manjunath Y., Porciani D., Mitchem J.B., Suvilesh K.N., Avella D.M., Kimchi E.T., Staveley-O’Carroll K.F., Burke D.H., Li G., Kaifi J.T. Tumor-Cell-Macrophage Fusion Cells as Liquid Biomarkers and Tumor Enhancers in Cancer. Int J Mol Sci. 2020; 21(5): 1872. doi:10.3390/ijms21051872.; Кайгородова Е.В., Очиров М.О., Молчанов С.В., Рогачев Р.Р., Дьяков Д.Д., Чернышова А.Л., Шпилева О.В., Ковалев О.В., Вторушин С.В. Различные популяции EpСam-положительных клеток в асцитической жидкости у больных раком яичников: связь со степенью канцероматоза. Бюллетень сибирской медицины. 2021; 20(2): 44–53. doi:10.20538/1682-0363-2021-2-44-53.; Hass R., von der Ohe J., Dittmar T. Hybrid Formation and Fusion of Cancer Cells In Vitro and In Vivo. Cancers (Basel). 2021; 13(17): 4496. doi:10.3390/cancers13174496.; Reduzzi C., Vismara M., Gerratana L., Silvestri M., De Braud F., Raspagliesi F., Verzoni E., Di Cosimo S., Locati L.D., Cristofanilli M., Daidone M.G., Cappelletti V. The curious phenomenon of dual-positive circulating cells: Longtime overlooked tumor cells. Semin Cancer Biol. 2020; 60: 344–50. doi:10.1016/j.semcancer.2019.10.008.; McGranahan N., Swanton C. Clonal heterogeneity and tumor evolution: past, present, and the future. Cell. 2017; 168(4): 613–28. doi:10.1016/j.cell.2017.01.018.; Aithal A., Rauth S., Kshirsagar P., Shah A., Lakshmanan I., Junker W.M., Jain M., Ponnusamy M.P., Batra S.K. MUC16 as a novel target for cancer therapy. Expert Opin Ther Targets. 2018; 22(8): 675–86. doi:10.1080/14728222.2018.1498845.; Kato Y., Ozawa S., Miyamoto C., Maehata Y., Suzuki A., Maeda T., Baba Y. Acidic extracellular microenvironment and cancer. Cancer Cell Int. 2013; 13(1): 89. doi:10.1186/1475-2867-13-89.; Bastida-Ruiz D., Van Hoesen K., Cohen M. The dark side of cell fusion. Int J Mol Sci. 2016; 17(5): 638. doi:10.3390/ijms17050638.; Weiler J., Mohr M., Zänker K.S., Dittmar T. Matrix metalloproteinase-9 (MMP9) is involved in the TNF-α-induced fusion of human M13SV1-Cre breast epithelial cells and human MDA-MB-435-pFDR1 cancer cells. Cell Commun Signal. 2018; 16(1): 14. doi:10.1186/s12964-018-0226-1.; Jiang E., Yan T., Xu Z., Shang Z. Tumor Microenvironment and Cell Fusion. Biomed Res Int. 2019. doi:10.1155/2019/5013592.; Melzer C., von der Ohe J., Hass R. MSC stimulate ovarian tumor growth during intercellular communication but reduce tumorigenicity after fusion with ovarian cancer cells. Cell Commun Signal. 2018; 16(1): 1–9. doi:10.1186/s12964-018-0279-1.; Ramakrishnan M., Mathur S.R., Mukhopadhyay A. Fusion-Derived Epithelial Cancer Cells Express Hematopoietic Markers and Contribute to Stem Cell and Migratory Phenotype in Ovarian Carcinoma. Significance of Hemato-Epithelial Ovarian Cancer Compartment. Cancer Res. 2013; 73(17): 5360–70. doi:10.1158/0008-5472.CAN-13-0896.; Akhter M.Z., Sharawat S.K., Kumar V., Kochat V., Equbal Z., Ramakrishnan M., Kumar U., Mathur S., Kumar L., Mukhopadhyay A. Aggressive serous epithelial ovarian cancer is potentially propagated by EpCAM+ CD45+ phenotype. Oncogene. 2018; 37(16): 2089–103. doi:10.1038/s41388-017-0106-y.; Gershenson D.M. Management of borderline ovarian tumours. Best Pract Res Clin Obstet Gynaecol. 2017; 41: 49–59. doi:10.1016/j.bpobgyn.2016.09.012.; Gizzo S., Berretta R., Di Gangi S., Guido M., Zanni G.C., Franceschetti I., Quaranta M., Plebani M., Nardelli G.B., Patrelli T.S. Borderline ovarian tumors and diagnostic dilemma of intraoperative diagnosis: could preoperative He4 assay and ROMA score assessment increase the frozen section accuracy? A multicenter case-control study. BioMed Research International. 2014. doi:10.1155/2014/803598.; Messalli E.M., Grauso F., Balbi G., Napolitano A., Seguino E., Torella M. Borderline ovarian tumors: features and controversial aspects. Eur J Obstet Gynecol Reprod Biol. 2013; 167(1): 86–9. doi:10.1016/j.ejogrb.2012.11.002.; https://www.siboncoj.ru/jour/article/view/2306
-
8Academic Journal
المؤلفون: M. V. Zavyalova, D. M. Loos, D. S. Pismenny, A. A. Durova, E. S. Andryukhova, E. O. Rodionov, S. V. Miller, S. A. Tuzikov, O. V. Pankova, L. A. Tashireva, S. V. Vtorushin, V. M. Perelmuter, М. В. Завьялова, Д. М. Лоос, Д. С. Письменный, А. А. Дурова, Е. С. Андрюхова, Е. О. Родионов, С. В. Миллер, С. А. Тузиков, О. В. Панкова, Л. А. Таширева, С. В. Вторушин, В. М. Перельмутер
المصدر: Siberian journal of oncology; Том 21, № 5 (2022); 69-81 ; Сибирский онкологический журнал; Том 21, № 5 (2022); 69-81 ; 2312-3168 ; 1814-4861
مصطلحات موضوعية: внутриопухолевая гетерогенность, squamous cell carcinoma, adenocarcinoma, regenerative hyperplasia, squamous metaplasia, lymph node metastasis, morphological heterogeneity, patterns, intratumoral heterogeneity, плоскоклеточная карцинома, аденокарцинома, регенераторная гиперплазия, плоскоклеточная метаплазия, лимфогенное метастазирование, морфологическая гетерогенность, паттерны
وصف الملف: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/2310/1032; Wu Y., Han C., Gong L., Wang Z., Liu J., Liu X., Chen X., Chong Y., Liang N., Li S. Metastatic Patterns of Mediastinal Lymph Nodes in SmallSize Non-small Cell Lung Cancer (T1b). Front Surg. 2020; 7. doi:10.3389/fsurg.2020.580203.; Sereno M., Rodríguez-Esteban I., Gómez-Raposo C., Merino M., López-Gómez M., Zambrana F., Casado E. Lung cancer and peritoneal carcinomatosis. Oncol Lett. 2013; 6(3): 705–8. doi:10.3892/ol.2013.1468.; Meza R., Meernik C., Jeon J., Cote M.L. Lung cancer incidence trends by gender, race and histology in the United States, 1973-2010. PLoS One. 2015; 10(3). doi:10.1371/journal.pone.0121323.; Yuan M., Liu J.Y., Zhang T., Zhang Y.D., Li H., Yu T.F. Prognostic Impact of the Findings on Thin-Section Computed Tomography in stage I lung adenocarcinoma with visceral pleural invasion. Sci Rep. 2018; 8(1): 4743. doi:10.1038/s41598-018-22853-1.; Lakha S., Gomez J.E., Flores R.M., Wisnivesky J.P. Prognostic significance of visceral pleural involvement in early-stage lung cancer. Chest. 2014; 146(6): 1619–26. doi:10.1378/chest.14-0204.; Савенкова О.В., Завьялова М.В., Бычков В.А., Чойнзонов Е.Л, Перельмутер В.М. Связь экспрессии матриксных металлопротеиназ с морфологической гетерогенностью, дифференцировкой опухоли и лимфогенным метастазированием плоскоклеточной карциномы гортани. Сибирский онкологический журнал. 2015; 1(1): 51–8.; An N., Leng X., Wang X., Sun Y., Chen Z. Survival comparison of Three histological subtypes of lung squamous cell carcinoma: A populationbased propensity score matching analysis. Lung Cancer. 2020; 142: 13–9. doi:10.1016/j.lungcan.2020.01.020.; Pankova O.V., Denisov E.V., Ponomaryova A.A., Gerashchenko T.S., Tuzikov S.A., Perelmuter V.M. Recurrence of squamous cell lung carcinoma is associated with the co-presence of reactive lesions in tumor-adjacent bronchial epithelium. Tumour Biol. 2016; 37(3): 3599–607. doi:10.1007/s13277-015-4196-2.; Pankova O.V., Rodionov E.O., Miller S.V., Tuzikov S.A., Tashireva L.A., Gerashchenko T.S., Denisov E.V., Perelmuter V.M. Neoadjuvant chemotherapy combined with intraoperative radiotherapy is effective to prevent recurrence in high-risk non-small cell lung cancer (NSCLC) patients. Transl Lung Cancer Res. 2020; 9(4): 988–99. doi:10.21037/tlcr-19-719.; Amin M.B., Greene F.L., Edge S.B., Compton C.C., Gershenwald J.E., Brookland R.K., Meyer L., Gress D.M., Byrd D.R., Winchester D.P. The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA Cancer J Clin. 2017; 67(2): 93–9. doi:10.3322/caac.21388.; Nicholson A.G., Tsao M.S., Beasley M.B., Borczuk A.C., Brambilla E., Cooper W.A., Dacic S., Jain D., Kerr K.M., Lantuejoul S., Noguchi M., Papotti M., Rekhtman N., Scagliotti G., van Schil P., Sholl L., Yatabe Y., Yoshida A., Travis W.D. The 2021 WHO Classification of Lung Tumors: Impact of Advances Since 2015. J Thorac Oncol. 2022; 17(3): 362–87. doi:10.1016/j.jtho.2021.11.003.; Salgado R., Denkert C., Demaria S., Sirtaine N., Klauschen F., Pruneri G., Wienert S., Van den Eynden G., Baehner F.L., Penault-Llorca F., Perez E.A., Thompson E.A., Symmans W.F., Richardson A.L., Brock J., Criscitiello C., Bailey H., Ignatiadis M., Floris G., Sparano J., Kos Z., Nielsen T., Rimm D.L., Allison K.H., Reis-Filho J.S., Loibl S., Sotiriou C., Viale G., Badve S., Adams S., Willard-Gallo K., Loi S.; International TILs Working Group 2014. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Ann Oncol. 2015; 26(2): 259–71. doi:10.1093/annonc/mdu450.; https://www.siboncoj.ru/jour/article/view/2310
-
9Academic Journal
المؤلفون: L. E. Sinyanskiy, N. V. Krakhmal, S. S. Naumov, S. V. Patalyak, S. G. Afanasyev, S. V. Vtorushin, Л. Е. Синянский, Н. В. Крахмаль, С. С. Наумов, С. В. Паталяк, С. Г. Афанасьев, С. В. Вторушин
المساهمون: The reported study was funded by RFBR, project number 20-315-90027., Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 20-315-90027.
المصدر: Siberian journal of oncology; Том 21, № 4 (2022); 56-63 ; Сибирский онкологический журнал; Том 21, № 4 (2022); 56-63 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2022-21-4
مصطلحات موضوعية: CDX2, epithelial-mesenchymal transition, FRMD6, ZEB1, HTR2B, эпителиально-мезенхимальный переход
وصف الملف: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/2243/1017; Ferlay J., Colombet M., Soerjomataram I., Parkin D.M., Piñeros M., Znaor A., Bray F. Cancer statistics for the year 2020: An overview. Int J Cancer. 2021. doi:10.1002/ijc.33588.; Состояние онкологической помощи населению России в 2019 году. М., 2020. С. 72–5.; Одинцова И.Н., Черемисина О.В., Писарева Л.Ф., Спивакова И.О., Вусик М.В. Эпидемиология колоректального рака в Томской области. Сибирский онкологический журнал. 2017; 16(4): 89–95. doi:10.21294/1814-4861-2017-16-4-89-95.; Hao Y., Baker D., Ten Dijke P. TGF-β-Mediated Epithelial-Mesenchymal Transition and Cancer Metastasis. Int J Mol Sci. 2019; 20(11): 2767. doi:10.3390/ijms20112767.; Karlsson M.C., Gonzalez S.F., Welin J., Fuxe J. Epithelial-mesenchymal transition in cancer metastasis through the lymphatic system. Mol Oncol. 2017; 11(7): 781–91. doi:10.1002/1878-0261.12092.; Erin N., Grahovac J., Brozovic A., Efferth T. Tumor microenvironment and epithelial mesenchymal transition as targets to overcome tumor multidrug resistance. Drug Resist Updat. 2020; 53. doi:10.1016/j.drup.2020.100715.; Xu W., Yang Z., Lu N. A new role for the PI3K/Akt signaling pathway in the epithelial-mesenchymal transition. Cell Adh Migr. 2015; 9(4): 317–24. doi:10.1080/19336918.2015.1016686.; Wilson M.M., Weinberg R.A, Lees J.A., Guen V.J. Emerging Mechanisms by which EMT Programs Control Stemness. Trends Cancer. 2020; 6(9): 775–80. doi:10.1016/j.trecan.2020.03.011.; Hapke R.Y., Haake S.M. Hypoxia-induced epithelial to mesenchymal transition in cancer. Cancer Lett. 2020; 487: 10–20. doi:10.1016/j.canlet.2020.05.012.; Goossens S., Vandamme N., Van Vlierberghe P., Berx G. EMT transcription factors in cancer development re-evaluated: Beyond EMT and MET. Biochim Biophys Acta Rev Cancer. 2017; 1868(2): 584–91. doi:10.1016/j.bbcan.2017.06.006.; Williams E.D., Gao D., Redfern A., Thompson E.W. Controversies around epithelial-mesenchymal plasticity in cancer metastasis. Nat Rev Cancer. 2019; 19(12): 716–32. doi:10.1038/s41568-019-0213-x.; Feng Y.L., Chen D.Q., Vaziri N.D., Guo Y., Zhao Y.Y. Small molecule inhibitors of epithelial-mesenchymal transition for the treatment of cancer and fibrosis. Med Res Rev. 2020; 40(1): 54–78. doi:10.1002/med.21596.; Kumari N., Reabroi S., North B.J. Unraveling the Molecular Nexus between GPCRs, ERS, and EMT. Mediators Inflamm. 2021; 2021. doi:10.1155/2021/6655417.; Lu Y., Ding Y., Wei J., He S., Liu X., Pan H., Yuan B., Liu Q., Zhang J. Anticancer effects of Traditional Chinese Medicine on epithelial-mesenchymal transition EMT in breast cancer: Cellular and molecular targets. Eur J Pharmacol. 2021; 907. doi:10.1016/j.ejphar.2021.174275.; Dongre A., Weinberg R.A. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol. 2019; 20(2): 69–84. doi:10.1038/s41580-018-0080-4.; Valenzuela G., Canepa J., Simonetti C., Solo de Zaldívar L., Marcelain K., González-Montero J. Consensus molecular subtypes of colorectal cancer in clinical practice: A translational approach. World J Clin Oncol. 2021; 12(11): 1000–8. doi:10.5306/wjco.v12.i11.1000.; Roseweir A.K., Kong C.Y., Park J.H., Bennett L., Powell A.G.M.T., Quinn J., van Wyk H.C., Horgan P.G., McMillan D.C., Edwards J., Roxburgh C.S. A novel tumor-based epithelial-to-mesenchymal transition score that associates with prognosis and metastasis in patients with Stage II/III colorectal cancer. Int J Cancer. 2019; 144(1): 150–9. doi:10.1002/ijc.31739.; Синянский Л.Е., Вторушин С.В., Паталяк С.В., Афанасьев С.Г. Прогностическая роль молекулярных подтипов рака толстой кишки. Современный взгляд на проблему. Сибирский онкологический журнал. 2021; 20(3): 107–14. doi:10.21294/1814-4861-2021-20-3-107-114.; Wang F., Sun G., Peng C., Chen J., Quan J., Wu C., Lian X., Tang W., Xiang D. ZEB1 promotes colorectal cancer cell invasion and disease progression by enhanced LOXL2 transcription. Int J Clin Exp Pathol. 2021; 14(1): 9–23.; Soll C., Riener M.O., Oberkofler C.E., Hellerbrand C., Wild P.J., DeOliveira M.L., Clavien P.A. Expression of serotonin receptors in human hepatocellular cancer. Clin Cancer Res. 2012; 18(21): 5902–10. doi:10.1158/1078-0432.CCR-11-1813.; Ebrahimkhani M.R., Oakley F., Murphy L.B., Mann J., Moles A., Perugorria M.J., Ellis E., Lakey A.F., Burt A.D., Douglass A., Wright M.C., White S.A., Jaffré F., Maroteaux L., Mann D.A. Stimulating healthy tissue regeneration by targeting the 5-HT₂B receptor in chronic liver disease. Nat Med. 2011; 17(12): 1668–73. doi:10.1038/nm.2490.; Ye D., Xu H., Tang Q., Xia H., Zhang C., Bi F. The role of 5-HT metabolism in cancer. Biochim Biophys Acta Rev Cancer. 2021; 1876(2). doi:10.1016/j.bbcan.2021.188618.; Yu J., Li S., Xu Z., Guo J., Li X., Wu Y., Zheng J., Sun X. CDX2 inhibits epithelial-mesenchymal transition in colorectal cancer by modulation of Snail expression and β-catenin stabilisation via transactivation of PTEN expression. Br J Cancer. 2021; 124(1): 270–80. doi:10.1038/s41416-020-01148-1.; Gunn-Moore F.J., Welsh G.I., Herron L.R., Brannigan F., Venkateswarlu K., Gillespie S., Brandwein-Gensler M., Madan R., Tavaré J.M., Brophy P.J., Prystowsky M.B., Guild S. A novel 4.1 ezrin radixin moesin (FERM)-containing protein, ‘Willin’. FEBS Lett. 2005; 579(22): 5089–94. doi:10.1016/j.febslet.2005.07.097.; De Sousa E. Melo F., Wang X., Jansen M., Fessler E., Trinh A., de Rooij L.P., de Jong J.H., de Boer O.J., van Leersum R., Bijlsma M.F., Rodermond H., van der Heijden M., van Noesel C.J., Tuynman J.B., Dekker E., Markowetz F., Medema J.P., Vermeulen L. Poor-prognosis colon cancer is defined by a molecularly distinct subtype and develops from serrated precursor lesions. Nat Med. 2013; 19(5): 614–8. doi:10.1038/nm.3174.; https://www.siboncoj.ru/jour/article/view/2243
-
10Academic Journal
المؤلفون: V. O. Tarakanova, N. V. Krakhmal, S. V. Patalyak, M. N. Tarasov, N. N. Babyshkina, S. V. Vtorushin, В. О. Тараканова, Н. В. Крахмаль, С. В. Паталяк, М Н. Тарасов, Н. Н. Бабышкина, С. В. Вторушин
المصدر: Siberian journal of oncology; Том 21, № 3 (2022); 135-142 ; Сибирский онкологический журнал; Том 21, № 3 (2022); 135-142 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2022-21-3
مصطلحات موضوعية: адъювантная гормонотерапия, luminal subtypes, ROR1, BMI-1, adjuvant hormone therapy, люминальные подтипы
وصف الملف: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/2171/996; Siegel R.L., Jakubowski C.D., Fedewa S.A., Davis A., Azad N.S. Colorectal cancer in the young: epidemiology, prevention, management. Am Soc Clin Oncol Educ Book. 2020; 40: 1–14. doi:10.1200/ EDBK_279901.; Sørlie T., Perou C.M., Tibshirani R., Aas T., Geisler S., Johnsen H., Hastie T., Eisen M.B., van de Rijn M., Jeffrey S.S., Thorsen T., Quist H., Matese J.C., Brown P.O., Botstein D., Lønning P.E., Børresen-Dale A.L. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA. 2001; 98(19): 10869–74. doi:10.1073/pnas.191367098.; Early Breast Cancer Trialists’ Collaborative Group (EBCTCG). Aromatase inhibitors versus tamoxifen in early breast cancer: patient-level meta-analysis of the randomised trials. Lancet. 2015; 386(10001): 1341–52. doi:10.1016/S0140-6736(15)61074-1.; Araki K., Miyoshi Y. Mechanism of resistance to endocrine therapy in breast cancer: the important role of PI3K/Akt/mTOR in estrogen receptor-positive, HER2-negative breast cancer. Breast Cancer. 2018; 25(4): 392–401. doi:10.1007/s12282-017-0812-x.; Zhao H., Zhou L., Shangguan A.J., Bulun S.E. Aromatase expression and regulation in breast and endometrial cancer. J Mol Endocrinol. 2016; 57(1): 19–33. doi:10.1530/JME-15-0310.; Gustin J.P., Miller J., Farag M., Rosen D.M., Thomas M., Scharpf R.B., Lauring J. GATA3 frame shift mutation promotes tumor growth in human luminal breast cancer cells and induces transcriptional changes seen in primary GATA3 mutant breast cancers. Oncotarget. 2017; 8(61): 103415–427. doi:10.18632/oncotarget.21910.; Emmanuel N., Lofgren K.A., Peterson E.A., Meier D.R., Jung E.H., Kenny P.A. Mutant GATA3 Actively Promotes the Growth of Normal and Malignant Mammary Cells. Anticancer Res. 2018; 38(8): 4435–41. doi:10.21873/anticanres.12745.; Ellis M.J., Ding L., Shen D., Luo J., Suman V.J., Wallis J.W., Van Tine B.A., Hoog J., Goiffon R.J., Goldstein T.C., Ng S., Lin L., Crowder R., Snider J., Ballman K., Weber J., Chen K., Koboldt D.C., Kandoth C., Schierding W.S., McMichael J.F., Miller C.A., Lu C., Harris C.C., McLellan M.D., Wendl M.C., DeSchryver K., Allred D.C., Esserman L., Unzeitig G., Margenthaler J., Babiera G.V., Marcom P.K., Guenther J.M., Leitch M., Hunt K., Olson J., Tao Y., Maher C.A., Fulton L.L., Fulton R.S., Harrison M., Oberkfell B., Du F., Demeter R., Vickery T.L., Elhammali A., Piwnica-Worms H., McDonald S., Watson M., Dooling D.J., Ota D., Chang L.W., Bose R., Ley T.J., Piwnica-Worms D., Stuart J.M., Wilson R.K., Mardis E.R. Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature. 2012; 486(7403): 353–60. doi:10.1038/nature11143.; Gonzalez R.S., Wang J., Kraus T., Sullivan H., Adams A.L., Cohen C. GATA-3 expression in male and female breast cancers: comparison of clinicopathologic parameters and prognostic relevance. Hum Pathol. 2013; 44(6): 1065–70. doi:10.1016/j.humpath.2012.09.010.; Hurtado A., Holmes K.A., Ross-Innes C.S., Schmidt D., Carroll J.S. FOXA1 is a key determinant of estrogen receptor function and endocrine response. Nat Genet. 2011; 43(1): 27–33. doi:10.1038/ng.730.; Ma C.X., Reinert T., Chmielewska I., Ellis M.J. Mechanisms of aromatase inhibitor resistance. Nat Rev Cancer. 2015; 15(5): 261–75. doi:10.1038/nrc3920.; Generali D., Bates G., Berruti A., Brizzi M.P., Campo L., Bonardi S., Bersiga A., Allevi G., Milani M., Aguggini S., Dogliotti L., Banham A.H., Harris A.L., Bottini A., Fox S.B. Immunomodulation of FOXP3+ regulatory T cells by the aromatase inhibitor letrozole in breast cancer patients. Clin Cancer Res. 2009; 15(3): 1046–51. doi:10.1158/1078-0432.CCR08-1507.; De A. Wnt/Ca21 signaling pathway: a brief overview. Acta Biochim Biophys Sin (Shanghai). 2011; 43(10): 745–56. doi:10.1093/ abbs/gmr079.; Cai X., Yao Z., Li L., Huang J. Role of DKK4 in Tumorigenesis and Tumor Progression. Int J Biol Sci. 2018; 14(6): 616–21. doi:10.7150/ ijbs.24329.; Hasan K., Widhopf 2nd G.F., Zhang S., Lam S.M., Shen Z., Briggs S.P., Parker B.A., Kipps T.J. Wnt5a induces ROR1 to recruit cortactin to promote breast-cancer migration and metastasis. NPJ Breast Cancer. 2019; 5: 35. doi:10.1038/s41523-019-0131-9.; Zhang S., Zhang H., Ghia E.M., Huang J., Wu L., Zhang J., Lam S., Lei Y., He J., Cui B., Widhopf 2nd G.F., Yu J., Schwab R., Messer K., Jiang W., Parker B.A., Carson D.A., Kipps T.J. Inhibition of chemotherapy resistant breast cancer stem cells by a ROR1 specifc antibody. Proc Natl Acad Sci USA. 2019; 116(4): 1370–7. doi:10.1073/pnas.1816262116.; Karvonen H., Barker H., Kaleva L., Niininen W., Ungureanu D. Molecular Mechanisms Associated with ROR1-Mediated Drug Resistance: Crosstalk with Hippo-YAP/TAZ and BMI-1 Pathways. Cells. 2019; 8(8): 812. doi:10.3390/cells8080812.; Borcherding N., Kusner D., Liu G.H., Zhang W. ROR1, an embryonic protein with an emerging role in cancer biology. Protein Cell. 2014; 5(7): 496–502. doi:10.1007/s13238-014-0059-7.; Balakrishnan A., Goodpaster T., Randolph-Habecker J., Hoffstrom B.G., Jalikis F.G., Koch L.K., Berger C., Kosasih P.L., Rajan A., Sommermeyer D., Porter P.L., Riddell S.R. Analysis of ROR1 Protein Expression in Human Cancer and Normal Tissues. Clin Cancer Res. 2017; 23(12): 3061–71. doi:10.1158/1078-0432.CCR-16-2083.; Zhang S., Zhao X., Zhang D. Cellular and molecular immunopathogenesis of ulcerative colitis. Cell Mol Immunol. 2014; 11(3): 314. doi:10.1038/cmi.2014.18.; Saleh R.R., Antrás J.F., Peinado P., Pérez-Segura P., Pandiella A., Amir E., Ocaña A. Prognostic value of receptor tyrosine kinase-like orphan receptor (ROR) family in cancer: A meta-analysis. Cancer Treat Rev. 2019; 77: 11–9. doi:10.1016/j.ctrv.2019.05.006.; Gonzalez-Angulo A.M., Timms K.M., Liu S., Chen H., Litton J.K., Potter J., Lanchbury J.S., Stemke-Hale K., Hennessy B.T., Arun B.K., Hortobagyi G.N., Do K.A., Mills G.B., Meric-Bernstam F. Incidence and outcome of BRCA mutations in unselected patients with triple receptornegative breast cancer. Clin Cancer Res. 2011; 17(5): 1082–9. doi:10.1158/1078-0432.CCR-10-2560.; Li C., Wang S., Xing Z., Lin A., Liang K., Song J., Hu Q., Yao J., Chen Z., Park P.K., Hawke D.H., Zhou J., Zhou Y., Zhang S., Liang H., Hung M.C., Gallick G.E., Han L., Lin C., Yang L. A ROR1-HER3-lncRNA signalling axis modulates the Hippo-YAP pathway to regulate bone metastasis. Nat Cell Biol. 2017; 19(2): 106–19. doi:10.1038/ncb3464.; Cao J., Wang X., Dai T., Wu Y., Zhang M., Cao R., Zhang R., Wang G., Jiang R., Zhou B.P., Shi J., Kang T. Twist promotes tumor metastasis in basal-like breast cancer by transcriptionally upregulating ROR1. Theranostics. 2018; 8(10): 2739–51. doi:10.7150/thno.21477.; Hammer A., Laghate S., Diakonova M. Src tyrosyl phosphorylates cortactin in response to prolactin. Biochem Biophys. Res. Commun. 2015; 463: 644–9. doi:10.1016/j.bbrc.2015.05.116.; Pandey G., Borcherding N., Kolb R., Kluz P., Li W., Sugg S., Zhang J., Lai D.A., Zhang W. ROR1 Potentiates FGFR Signaling in BasalLike Breast Cancer. Cancers (Basel). 2019; 11(5): 718. doi:10.3390/ cancers11050718.; Fultang N., Illendula A., Lin J., Pandey M.K., Klase Z., Peethambaran B. ROR1 regulates chemoresistance in Breast Cancer via modulation of drug efux pump ABCB1. Sci Rep. 2020; 10(1): 1821. doi:10.1038/ s41598-020-58864-0.; Yu J., Chen L., Cui B., Widhopf G.F. 2nd, Shen Z., Wu R., Zhang L., Zhang S., Briggs S.P., Kipps T.J. Wnt5a induces ROR1/ROR2 heterooligomerization to enhance leukemia chemotaxis and proliferation. J Clin Invest. 2016; 126(2): 585-98. doi:10.1172/JCI83535.; Faião-Flores F., Emmons M.F., Durante M.A., Kinose F., Saha B., Fang B., Koomen J.M., Chellappan S.P., Maria-Engler S.S., Rix U., Licht J.D., Harbour J.W., Smalley K.S.M. HDAC Inhibition Enhances the In Vivo Efcacy of MEK Inhibitor Therapy in Uveal Melanoma. Clin Cancer Res. 2019; 25(18): 5686–5701. doi:10.1158/1078-0432.CCR-18-3382.; Hoefich K.P., Guan J., Edgar K.A., O’Brien C., Savage H., Wilson T.R., Neve R.M., Friedman L.S., Wallin J.J. The PI3K inhibitor taselisib overcomes letrozole resistance in a breast cancer model expressing aromatase. Genes Cancer. 2016; 7(3–4): 73–85. doi:10.18632/ genesandcancer.100.; Baselga J., Campone M., Piccart M., Burris H.A., Rugo H.S., Sahmoud T., Noguchi S., Gnant M., Pritchard K.I., Lebrun F., Beck J.T., Ito Y., Yardley D., Deleu I., Perez A., Bachelot T., Vittori L., Xu Z., Mukhopadhyay P., Lebwohl D., Hortobagyi G.N. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med. 2012; 366(6): 520–9. doi:10.1056/NEJMoa1109653.; Gray F., Cho H.J., Shukla S., He S., Harris A., Boytsov B., Jaremko Ł., Jaremko M., Demeler B., Lawlor E.R., Grembecka J., Cierpicki T. BMI1 regulates PRC1 architecture and activity through homo- and hetero-oligomerization. Nat Commun. 2016; 7: 13343. doi:10.1038/ ncomms13343.; Claude-Taupin A., Boyer-Guittaut M., Delage-Mourroux R., Hervouet E. Use of epigenetic modulators as a powerful adjuvant for breast cancer therapies. Methods Mol Biol. 2015; 1238: 487–509. doi:10.1007/978-1-4939-1804-1_25.; Kreso A., van Galen P., Pedley N.M., Lima-Fernandes E., Frelin C., Davis T., Cao L., Baiazitov R., Du W., Sydorenko N., Moon Y.C., Gibson L., Wang Y., Leung C., Iscove N.N., Arrowsmith C.H., Szentgyorgyi E., Gallinger S., Dick J.E., O’Brien C.A. Self-renewal as a therapeutic target in human colorectal cancer. Nat Med. 2014; 20(1): 29–36. doi:10.1038/ nm.3418.; Bolomsky A., Schlangen K., Schreiner W., Zojer N., Ludwig H. Targeting of BMI-1 with PTC-209 shows potent anti-myeloma activity and impairs the tumour microenvironment. J Hematol Oncol. 2016; 9: 17. doi:10.1186/s13045-016-0247-4.; Darwish N.H., Sudha T., Godugu K., Elbaz O., Abdelghaffar H.A., Hassan E.E., Mousa S.A. Acute myeloid leukemia stem cell markers in prognosis and targeted therapy: potential impact of BMI-1, TIM-3 and CLL-1. Oncotarget. 2016; 7(36): 57811–20. doi:10.18632/ oncotarget.11063.; Sahasrabuddhe A.A. BMI1: A Biomarker of Hematologic Malignancies. Biomark Cancer. 2016; 8: 65–75. doi:10.4137/BIC.S33376.; Althobiti M., Muftah A.A., Aleskandarany M.A., Joseph C., Toss M.S., Green A., Rakha E. The prognostic signifcance of BMI1 expression in invasive breast cancer is dependent on its molecular subtypes. Breast Cancer Res Treat. 2020; 182(3): 581–9. doi:10.1007/s10549-020- 05719-x.; https://www.siboncoj.ru/jour/article/view/2171
-
11Academic Journal
المؤلفون: D. V. Vasilchenko, N. V. Krakhmal, S. V. Vtorushin, M. V. Zavyalova, Д. В. Васильченко, Н. В. Крахмаль, С. В. Вторушин, М. В. Завьялова
المصدر: Siberian journal of oncology; Том 19, № 3 (2020); 146-155 ; Сибирский онкологический журнал; Том 19, № 3 (2020); 146-155 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2020-19-3
مصطلحات موضوعية: факторы прогноза, FOXA1, ELF5, breast cancer, prognosis factors, рак молочной железы
وصف الملف: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/1498/757; Simon I., Barnett J., Hannett N., Harbison C.T., Rinaldi N.J., Volkert T.L., Wyrick J.J., Zeitlinger J., Gifford D.K., Jaakkola T.S., Young R.A. Serial regulation of transcriptional regulators in the yeast cell cycle. Cell. 2001 Sep 21; 106(6): 697–708. doi:10.1016/s0092-8674(01)00494-9.; Accili D., Arden K.C. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell. 2004 May 14; 117(4): 421–6. doi:10.1016/s0092-8674(04)00452-0.; Vaquerizas J.M., Kummerfeld S.K., Teichmann S.A., Luscombe N.M. A census of human transcription factors: function, expression and evolution. Nat Rev Genet. 2009 Apr; 10(4): 252–63. doi:10.1038/nrg2538.; Singh M., Ding Y., Zhang L.Y., Song D., Gong Y., Adams S., Ross D.S., Wang J.H., Grover S., Doval D.C., Shao C., He Z.L., Chang V., Chin W.W., Deng F.M., Singh B., Zhang D., Xu R.L., Lee P. Distinct breast cancer subtypes in women with early-onset disease across races. Am J Cancer Res. 2014; 4(4): 337–52.; Lambert S.A., Jolma A., Campitelli L.F., Das P.K., Yin Y., Albu M., Chen X., Taipale J., Hughes T.R., Weirauch M.T. The Human Transcription Factors. Cell. 2018 Feb 8; 172(4): 650–665. doi:10.1016/j.cell.2018.01.029.; Boyadjiev S.A., Jabs E.W. Online Mendelian Inheritance in Man (OMIM) as a knowledgebase for human developmental disorders. Clin Genet. 2000 Apr; 57(4): 253–66. doi:10.1034/j.1399-0004.2000.570403.x.; Furney S.J., Higgins D.G., Ouzounis C.A., López-Bigas N. Structural and functional properties of genes involved in human cancer. BMC Genomics. 2006 Jan 11; 7: 3. doi:10.1186/1471-2164-7-3.; Papavassiliou K.A., Papavassiliou A.G. Transcription factor drug targets. J. Cell Biochem. 2016 May; 117(12): 2693–2696. doi:10.1002/jcb.25605.; Hagenbuchner J., Ausserlechner M.J. Targeting transcription factors by small compounds Current strategies and future implications. Biochem Pharmacol. 2016 May; 107: 1–13. doi:10.1016/j.bcp.2015.12.006.; Liu H., Shi J., Wilkerson M.L., Lin F. Immunohistochemical evaluation of GATA3 expression in tumors and normal tissues: a useful immunomarker for breast and urothelial carcinomas. Am J Clin Pathol. 2012 Jul; 138(1): 57–64. doi:10.1309/AJCP5UAFMSA9ZQBZ.; Braxton D.R., Cohen C., Siddiqui M.T. Utility of GATA3 immunohistochemistry for diagnosis of metastatic breast carcinoma in cytology specimens. Diagn Cytopathol. 2015 Aug; 43(4): 271–7. doi:10.1002/dc.23206.; Zheng R., Blobel G.A. GATA Transcription Factors and Cancer. Genes Cancer. 2010 Dec; 1(12): 1178–1188. doi:10.1177/1947601911404223.; Lentjes M.H.F.M., Niessen H.E.C., Akiyama Y., de Bruïne A.P., Melotte V., van Engeland M. The emerging role of GATA transcription factors in development and disease. Expert Rev Mol Med. 2016 Mar; 18: e3. doi:10.1017/erm.2016.2.; Miettinen M., McCue P.A., Sarlomo-Rikala M., Rys J., Czapiewski P., Wazny K., Langfort R., Waloszczyk P., Biernat W., Lasota J., Wang Z. GATA3: a multispecific but potentially useful marker in surgical pathology: a systematic analysis of 2500 epithelial and nonepithelial tumors. Am J Surg Pathol. 2014 Jan; 38(1): 13–22. doi:10.1097/PAS.0b013e3182a0218f.; Sellheyer K., Krahl D. Expression pattern of GATA-3 in embryonic and fetal human skin suggests a role in epidermal and follicular morphogenesis. J Cutan Pathol. 2010 Mar; 37(3): 357–361. doi:10.1111/j.1600-0560.2009.01416.x.; Theodorou V., Stark R., Menon S., Carroll J.S. GATA3 acts upstream of FOXA1 in mediating ESR1 binding by shaping enhancer accessibility. Genome Res. 2013 Jan; 23(1): 12–22. doi:10.1101/gr.139469.112.; Gustin J.P., Miller J., Farag M., Rosen D.M., Thomas M., Scharpf R.B., Lauring J. GATA3 frameshift mutation promotes tumor growth in human luminal breast cancer cells and induces transcriptional changes seen in primary GATA3 mutant breast cancers. Oncotarget. 2017 Oct 20; 8(61): 103415–427. doi:10.18632/oncotarget.21910.; Emmanuel N., Lofgren K.A., Peterson E.A., Meier D.R., Jung E.H., Kenny P.A. Mutant GATA3 Actively Promotes the Growth of Normal and Malignant Mammary Cells. Anticancer Res. 2018; 38(8): 4435–41. doi:10.21873/anticanres.12745.; Fang S.H., Chen Y., Weigel R.J. GATA-3 as a marker of hormone response in breast cancer. J Surg Res. 2009 Dec; 157(2): 290–5. doi:10.1016/j.jss.2008.07.015.; Izzo F., Mercogliano F., Venturutti L., Tkach M., Inurrigarro G., Schillaci R., Cerchietti L., Elizalde V.P., Proietti C. Progesterone receptor activation down regulates GATA3 by transcriptional repression and increased protein turnover promoting breast tumor growth. Breast Cancer Res. 2014 Dec; 16: 491. doi:10.1186/s13058-014-0491-x.; Yan W., Cao Q.J., Arenas R.B., Bentley B., Shao R. GATA3 inhibits breast cancer metastasis through the reversal of epithelial-mesenchymal transition. J Biol Chem. 2010 Apr; 285(18): 14042–51. doi:10.1074/jbc.M110.105262.; Si W., Huang W., Zheng Y., Yang Y., Liu X., Shan L., Zhou X., Wang Y., Su D., Gao J., Yan R., Han X., Li W., He L., Shi L., Xuan C., Liang J., Sun L., Wang Y., Shang Y. Dysfunction of the reciprocal feedback loop between GATA3- and ZEB2-nucleated repression programs contributes to breast cancer metastasis. Cancer Cell. 2015 Jun; 27(6): 822–836. doi:10.1016/j.ccell.2015.04.011.; Yu W., Huang W., Yang Y., Qiu R., Zeng Y., Hou Y., Sun G., Shi H., Leng S., Feng D., Chen Y., Wang S., Teng X., Yu H., Wang Y. GATA3 recruits UTX for gene transcriptional activation to suppress metastasis of breast cancer. Cell Death Dis. 2019 Nov 4; 10(11): 832. doi:10.1038/s41419-019-2062-7.; Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature. 2012; 490(7418): 61–70. doi:10.1038/nature11412.; Pereira B., Chin S.F., Rueda O.M., Vollan H.K., Provenzano E., Bardwell H.A., Pugh M., Jones L., Russell R., Sammut S.J., Tsui D.W., Liu B., Dawson S.J., Abraham J., Northen H., Peden J.F., Mukherjee A., Turashvili G., Green A.R., McKinney S., Oloumi A., Shah S., Rosenfeld N., Murphy L., Bentley D.R., Ellis I.O., Purushotham A., Pinder S.E., BørresenDale A.L., Earl H.M., Pharoah P.D., Ross M.T., Aparicio S., Caldas C. The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes. Nat Commun. 2016 May 10; 7: 11479. doi:10.1038/ncomms11479.; Mair B., Konopka T., Kerzendorfer C., Sleiman K., Salic S., Serra V., Muellner M.K., Theodorou V., Nijman S.M. Gain- and Loss-ofFunction Mutations in the Breast Cancer Gene GATA3 Result in Differential Drug Sensitivity. PLoS Genet. 2016 Sep 2; 12(9): e1006279. doi:10.1371/journal.pgen.1006279.; Takaku M., Grimm S.A., Roberts J.D., Chrysovergis K., Bennett B.D., Myers P., Perera L., Tucker C.J., Perou C.M., Wade P.A. GATA3 zinc finger 2 mutations reprogram the breast cancer transcriptional network. Nat Commun. 2018 Mar 13; 9(1): 1059. doi:10.1038/s41467-018-03478-4.; Gonzalez R.S., Wang J., Kraus T., Sullivan H., Adams A.L., Cohen C. GATA-3 expression in male and female breast cancers: comparison of clinicopathologic parameters and prognostic relevance. Hum Pathol. 2013 Jun; 44(6): 1065–70. doi:10.1016/j.humpath.2012.09.010.; Mehra R., Varambally S., Ding L., Shen R., Sabel M.S., Ghosh D., Chinnaiyan A.M., Kleer C.G. Identification of GATA3 as a breast cancer prognostic marker by global gene expression meta-analysis. Cancer Res. 2005 Dec 15; 65(24): 11259–64. doi:10.1158/0008-5472.CAN-05-2495.; Viedma-Rodríguez R., Baiza-Gutman L., Salamanca-Gómez F., Diaz-Zaragoza M., Martínez-Hernández G., Ruiz Esparza-Garrido R., Velázquez-Flores M.A., Arenas-Aranda D. Mechanisms associated with resistance to tamoxifen in estrogen receptor-positive breast cancer (review). Oncol Rep. 2014 Jul; 32(1): 3–15. doi:10.3892/or.2014.3190.; Jiang Y.Z., Yu K.D., Zuo W.J., Peng W.T., Shao Z.M. GATA3 mutations define a unique subtype of luminal-like breast cancer with improved survival. Cancer. 2014 May 1; 120(9): 1329–37. doi:10.1002/cncr.28566.; Ellis M.J., Ding L., Shen D., Luo J., Suman V.J., Wallis J.W., Van Tine B.A., Hoog J., Goiffon R.J., Goldstein T.C., Ng S., Lin L., Crowder R., Snider J., Ballman K., Weber J., Chen K., Koboldt D.C., Kandoth C., Schierding W.S., McMichael J.F., Miller C.A., Lu C., Harris C.C., McLellan M.D., Wendl M.C., DeSchryver K., Allred D.C., Esserman L., Unzeitig G., Margenthaler J., Babiera G.V., Marcom P.K., Guenther J.M., Leitch M., Hunt K., Olson J., Tao Y., Maher C.A., Fulton L.L., Fulton R.S., Harrison M., Oberkfell B., Du F., Demeter R., Vickery T.L., Elhammali A., Piwnica-Worms H., McDonald S., Watson M., Dooling D.J., Ota D., Chang L.W., Bose R., Ley T.J., Piwnica-Worms D., Stuart J.M., Wilson R.K., Mardis E.R. Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature. 2012 Jun 10; 486(7403): 353–60. doi:10.1038/nature11143.; Sangoi A.R., Shrestha B., Yang G., Mego O., Beck A.H. The Novel Marker GATA3 is Significantly More Sensitive Than Traditional Markers Mammaglobin and GCDFP15 for Identifying Breast Cancer in Surgical and Cytology Specimens of Metastatic and Matched Primary Tumors. Appl Immunohistochem Mol Morphol. 2016 Apr; 24(4): 229–37. doi:10.1097/PAI.0000000000000186.; Laurent E., Begueret H., Bonhomme B., Veillon R., Thumerel M., Velasco V., Brouste V., Hoppe S., Fournier M., Grellety T., MacGrogan G. SOX10, GATA3, GCDFP15, Androgen Receptor, and Mammaglobin for the Differential Diagnosis Between Triple-negative Breast Cancer and TTF1-negative Lung Adenocarcinoma. Am J Surg Pathol. 2019 Mar; 43(3): 293–302. doi:10.1097/PAS.0000000000001216.; Hannenhalli S., Kaestner K.H. The evolution of Fox genes and their role in development and disease. Nat Rev Genet. 2009 Apr; 10(4): 233–40. doi:10.1038/nrg2523.; Bernardo G.M., Keri R.A. FOXA1: a transcription factor with parallel functions in development and cancer. Biosci Rep. 2012; 32(2): 113–30. doi:10.1042/BSR20110046.; Robinson J.L., Holmes K.A., Carroll J.S. FOXA1 mutations in hormone-dependent cancers. Front Oncol. 2013; 3: 20. doi:10.3389/fonc.2013.00020.; Zhang G., Zhao Y., Liu Y., Kao L.P., Wang X., Skerry B., Li Z. FOXA1 defines cancer cell specificity. Sci Adv. 2016 Mar; 2(3): e1501473. doi:10.1126/sciadv.1501473.; Carroll J.S. Mechanisms of oestrogen receptor (ER) gene regulation in breast cancer. Eur. J. Endocrinol. 2016 Jul; 75(1): 41–9. doi:10.1530/EJE-16-0124.; Hurtado A., Holmes K.A., Ross-Innes C.S., Schmidt D., Carroll J.S. FOXA1 is a key determinant of estrogen receptor function and endocrine response. Nat Genet. 2011 Jan; 43(1): 27–33. doi:10.1038/ng.730.; Barbieri C.E., Baca S.C., Lawrence M.S., Demichelis F., Blattner M., Theurillat J.P., White T.A., Stojanov P., Van Allen E., Stransky N., Nickerson E., Chae S.S., Boysen G., Auclair D., Onofrio R.C., Park K., Kitabayashi N., MacDonald T.Y., Sheikh K., Vuong T., Guiducci C., Cibulskis K., Sivachenko A., Carter S.L., Saksena G., Voet D., Hussain W.M., Ramos A.H., Winckler W., Redman M.C., Ardlie K., Tewari A.K., Mosquera J.M., Rupp N., Wild P.J., Moch H., Morrissey C., Nelson P.S., Kantoff P., Gabriel S.B., Golub T.R., Meyerson M., Lander E.S., Getz G., Rubin M., Garraway L.A. Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat Genet. 2012 May; 44(6): 685–9. doi:10.1038/ng.2279.; Yang Y.A., Yu J. Current perspectives on FOXA1 regulation of androgen receptor signaling and prostate cancer. Genes Dis. 2015 Jun; 2(2): 144–151. doi:10.1016/j.gendis.2015.01.003.; Nakshatri H., Badve S. FOXA1 in breast cancer. Expert Rev Mol Med. 2009 Mar; 11:e8. doi:10.1017/S1462399409001008.; Yamaguchi N., Ito E., Azuma S., Honma R., Yanagisawa Y., Nishikawa A., Kawamura M., Imai J., Tatsuta K., Inoue J., Semba K., Watanabe S. FoxA1 as a lineage-specific oncogene in luminal type breast cancer. Biochem Biophys Res Commun. 2008 Jan; 365(4): 711–7. doi:10.1016/j.bbrc.2007.11.064.; Shigekawa T., Ijichi N., Ikeda K., Horie-Inoue K., Shimizu C., Saji S., Aogi K., Tsuda H., Osaki A., Saeki T., Inoue S. FOXP1, an estrogeninducible transcription factor, modulates cell proliferation in breast cancer cells and 5-year recurrence-free survival of patients with tamoxifen-treated breast cancer. Horm Cancer. 2011 Oct; 2(5): 286–97. doi:10.1007/s12672- 011-0082-6.; Bernardo G.M., Bebek G., Ginther C.L., Sizemore S.T., Lozada K.L., Miedler J.D., Anderson L.A., Godwin A.K., Abdul-Karim F.W., Slamon D.J., Keri R.A. FOXA1 represses the molecular phenotype of basal breast cancer cells. Oncogene. 2013 Jan; 32(5): 554–63. doi:10.1038/onc.2012.62.; Rangel N., Fortunati N., Osella-Abate S., Annaratone L., Isella C., Catalano M.G., Rinella L., Metovic J., Boldorini R., Balmativola D., Ferrando P., Marano F., Cassoni P., Sapino A., Castellano I. FOXA1 and AR in invasive breast cancer: new findings on their co-expression and impact on prognosis in ER-positive patients. BMC Cancer. 2018; 18(1): 703. doi:10.1186/s12885-018-4624-y.; Bozovic-Spasojevic I., Zardavas D., Brohee S., Ameye L., Fumagalli D., Ades F., de Azambuja E., Bareche Y., Piccart M., Paesmans M., Sotiriou S. The prognostic role of androgen receptor in patients with earlystage breast cancer: a meta-analysis of clinical and gene expression data. Clin Cancer Res. 2017 Jun; 23(11): 2702–2712. doi:10.1158/1078-0432.CCR-16-0979.; Hisamatsu Y., Tokunaga E., Yamashita N., Akiyoshi S., Okada S., Nakashima Y., Taketani K., Aishima S., Oda Y., Morita M., Maehara Y. Impact of GATA-3 and FOXA1 expression in patients with hormone receptor-positive/HER2-negative breast cancer. Breast cancer. 2015; 22(5): 520–8. doi:10.1007/s12282-013-0515-x.; Horimoto Y., Arakawa A., Harada-Shoji N., Sonoue H., Yoshida Y., Himuro T., Igari F., Tokuda E., Mamat O., Tanabe M., Hino O., Saito M. Low FOXA1 expression predicts good response to neo-adjuvant chemotherapy resulting in good outcomes for luminal HER2-negative breast cancer cases. Br J Cancer. 2015 Jan; 112(2): 345–51. doi:10.1038/bjc.2014.595.; De Lara S., Nyqvist J., Werner Rönnerman E., Helou K., Kenne Sarenmalm E., Einbeigi Z., Karlsson P., Parris T.Z., Kovács A. The prognostic relevance of FOXA1 and Nestin expression in breast cancer metastases: a retrospective study of 164 cases during a 10-year period (2004-2014). BMC Cancer. 2019 Feb; 19(1): 187. doi:10.1186/s12885-019-5373-2.; Jing X., Liang H., Hao C., Hongxia L., Cui X. Analyses of an epigenetic switch involved in the activation of pioneer factor FOXA1 leading to the prognostic value of estrogen receptor and FOXA1 co-expression in breast cancer. Aging (Albany NY). 2019 Sep 28; 11(18): 7442–7456. doi:10.18632/aging.102250.; Yamaguchi N., Nakayama Y., Yamaguchi N. Down-regulation of Forkhead box protein A1 (FOXA1) leads to cancer stem cell-like properties in tamoxifen-resistant breast cancer cells through induction of interleukin-6. J Biol Chem. 2017 May; 292(20): 8136–8148. doi:10.1074/jbc.M116.763276.; Fu X., Jeselsohn R., Pereira R., Hollingsworth E.F., Creighton C.J., Li F., Shea M., Nardone A., De Angelis C., Heiser L.M., Anur P., Wang N., Grasso C.S., Spellman P.T., Griffith O.L., Tsimelzon A., Gutierrez C., Huang S., Edwards D.P., Trivedi M.V., Rimawi M.F., Lopez-Terrada D., Hilsenbeck S.G., Gray J.W., Brown M., Osborne C.K., Schiff R. FOXA1 overexpression mediates endocrine resistance by altering the ER transcriptome and IL-8 expression in ER-positive breast cancer. Proc Natl Acad Sci USA. 2016 Oct; 113(43): 6600–6609. doi:10.1073/pnas.1612835113.; Robinson J.L., Hickey T.E., Warren A.Y., Vowler S.L., Carroll T., Lamb A.D., Papoutsoglou N., Neal D.E., Tilley W.D., Carroll J.S. Elevated levels of FOXA1 facilitate androgen receptor chromatin binding resulting in a CRPC-like phenotype. Oncogene. 2014; 33(50): 5666–74. doi:10.1038/onc.2013.508.; Robinson D.R., Wu Y.M., Vats P., Su F., Lonigro R.J., Cao X., Kalyana-Sundaram S., Wang R., Ning Y., Hodges L., Gursky A., Siddiqui J., Tomlins S.A., Roychowdhury S., Pienta K.J., Kim S.Y., Roberts J.S., Rae J.M., Van Poznak C.H., Hayes D.F., Chugh R., Kunju L.P., Talpaz M., Schott A.F., Chinnaiyan A.M. Activating ESR1 mutations in hormoneresistant metastatic breast cancer. Nat.Genet. 2013 Dec; 45(12): 1446–51. doi:10.1038/ng.2823.; Jeselsohn R., De Angelis C., Brown M., Schiff R. The Evolving Role of the Estrogen Receptor Mutations in Endocrine Therapy-Resistant Breast Cancer. Curr Oncol Rep. 2017 May; 19(5): 35. doi:10.1007/s11912-017-0591-8.; Van Poznak C., Somerfield M.R., Bast R.C., Cristofanilli M., Goetz M.P., Gonzalez-Angulo A.M., Hicks D.G., Hill E.G., Liu M.C., Lucas W., Mayer I.A., Mennel R.G., Symmans W.F., Hayes D.F., Harris L.N. Use of Biomarkers to Guide Decisions on Systemic Therapy for Women with Metastatic Breast Cancer: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol. 2015 Aug; 33(24): 2695–704. doi:10.1200/JCO.2015.61.1459.; Schrijver W., Schuurman K., van Rossum A., Droog M., Jeronimo C., Salta S., Henrique R., Wesseling J., Moelans C., Linn S.C., van den Heuvel M., van Diest P., Zwart W. FOXA1 levels are decreased in pleural breast cancer metastases after adjuvant endocrine therapy, and this is associated with poor outcome. Mol Oncol. 2018 Nov; 12(11): 1884–94. doi:10.1002/1878-0261.12353.; Wang W., Yi M., Chen S., Li J., Li G., Yang J., Zheng P., Zhang H., Xiong W., McCarthy J.B., Li G., Li X., Xiang B. Significance of the NOR1- FOXA1/HDAC2-Slug regulatory network in epithelial-mesenchymal transition of tumor cells. Oncotarget. 2016; 7(13): 16745–59. doi:10.18632/oncotarget.7778.; Anzai E., Hirata K., Shibazaki M., Yamada C., Morii M., Honda T., Yamaguchi N., Yamaguchi N. FOXA1 Induces E-Cadherin Expression at the Protein Level via Suppression of Slug in Epithelial Breast Cancer Cells. Biol Pharm Bull. 2017; 40(9): 1483–1489. doi:10.1248/bpb.b17-00307.; Choi Y.S., Chakrabarti R., Escamilla-Hernandez R., Sinha S. Elf5 conditional knockout mice reveal its role as a master regulator in mammary alveolar development: failure of Stat5 activation and functional differentiation in the absence of Elf5. Dev Biol. 2009 May; 329(2): 227–41. doi:10.1016/j.ydbio.2009.02.032.; Kalyuga M., Gallego-Ortega D., Lee H.J., Roden D.L., Cowley M.J., Caldon C.E., Stone A., Allerdice S.L., Valdes-Mora F., Launchbury R., Statham A.L., Armstrong N., Alles M.C., Young A., Egger A., Au W., Piggin C.L., Evans C.J., Ledger A., Brummer T., Oakes S.R., Kaplan W., Gee J.M., Nicholson R.I., Sutherland R.L., Swarbrick A., Naylor M.J., Clark S.J., Carroll J.S., Ormandy C.J. ELF5 suppresses estrogen sensitivity and underpins the acquisition of antiestrogen resistance in luminal breast cancer. PLoS Biol. 2012; 10(12): e1001461. doi:10.1371/journal.pbio.1001461.; Oakes S.R., Naylor M.J., Asselin-Labat M.L., Blazek K.D., Gardiner-Garden M., Hilton H.N., Kazlauskas M., Pritchard M.A., Chodosh L.A., Pfeffer P.L., Lindeman G.J., Visvader J.E., Ormandy C.J. The Ets transcription factor Elf5 specifies mammary alveolar cell fate. Genes Dev. 2008 Mar; 22(5): 581–6. doi:10.1101/gad.1614608.; Tanos T., Sflomos G., Echeverria P.C., Ayyanan A., Gutierrez M., Delaloye J.F., Raffoul W., Fiche M., Dougall W., Schneider P., YalcinOzuysal O., Brisken C. Progesterone/RANKL is a major regulatory axis in the human breast. Sci Transl Med. 2013 Apr; 5(182): 182ra55. doi:10.1126/scitranslmed.3005654.; Harris J., Stanford P.M., Sutherland K., Oakes S.R., Naylor M.J., Robertson F.G., Blazek K.D., Kazlauskas M., Hilton H.N., Wittlin S., Alexander W.S., Lindeman G.J., Visvader J.E., Ormandy C.J. Socs2 and elf5 mediate prolactin-induced mammary gland development. Mol Endocrinol. 2006 May; 20(5): 1177–87. doi:10.1210/me.2005-0473.; Battula V.L., Evans K.W., Hollier B.G., Shi Y., Marini F.C., Ayyanan A., Wang R.Y., Brisken C., Guerra R., Andreeff M., Mani S.A. Epithelial-mesenchymal transition-derived cells exhibit multilineage differentiation potential similar to mesenchymal stem cells. Stem Cells. 2010; 28(8): 1435–45. doi:10.1002/stem.467.; Chakrabarti R., Hwang J., Andres Blanco M., Wei Y., Lukačišin M., Romano R.A., Smalley K., Liu S., Yang Q., Ibrahim T., Mercatali L., Amadori D., Haffty B.G., Sinha S., Kang Y. Elf5 inhibits the epithelialmesenchymal transition in mammary gland development and breast cancer metastasis by transcriptionally repressing Snail2. Nat Cell Biol. 2012; 14(11): 1212–22. doi:10.1038/ncb2607.; Gallego-Ortega D., Ledger A., Roden D.L., Law A.M., Magenau A., Kikhtyak Z., Cho C., Allerdice S.L., Lee H.J., Valdes-Mora F., Herrmann D., Salomon R., Young A.I., Lee B.Y., Sergio C.M., Kaplan W., Piggin C., Conway J.R., Rabinovich B., Millar E.K., Oakes S.R., Chtanova T., Swarbrick A., Naylor M.J., O'Toole S., Green A.R., Timpson P., Gee J.M., Ellis I.O., Clark S.J., Ormandy C.J. ELF5 Drives Lung Metastasis in Luminal Breast Cancer through Recruitment of Gr1+ CD11b+ MyeloidDerived Suppressor Cells. PLoS Biol. 2015 Dec; 13(12): e1002330. doi:10.1371/journal.pbio.1002330.; Fitzgerald L.M., Browne E.P., Christie K.D., Punska E.C., Simmons L.O., Williams K.E., Pentecost B.T., Jawale R., Otis C.N., Arcaro K.F. ELF5 and DOK7 regulation in anti-estrogen treated cells and tumors. Cancer Cell Int. 2016 Feb; 16: 8. doi:10.1186/s12935-016-0282-9.; Omata F., McNamara K.M., Suzuki K., Abe E., Hirakawa H., Ishida T., Ohuchi N.,•Sasano H. Effect of the normal mammary differentiation regulator ELF5 upon clinical outcomes of triple negative breast cancers patients. Breast Cancer. 2018. Jul; 25(4): 489–496. doi:10.1007/s12282-018-0842-z.; Yao B., Zhao J., Li Y., Li H., Hu Z., Pan P., Zhang Y., Du E., Liu R., Xu Y. Elf5 inhibits TGF-β-driven epithelial-mesenchymal transition in prostate cancer by repressing SMAD3 activation. Prostate. 2015; 75(8): 872–82. doi:10.1002/pros.22970.; Xie B.X., Zhang H., Wang J., Pang B., Wu R.Q., Qian X.L., Yu L., Li S.H., Shi Q.G., Huang C.F., Zhou J.G. Analysis of differentially expressed genes in LNCaP prostate cancer progression model. J Androl. 2011; 32(2): 170–82. doi:10.2164/jandrol.109.008748.; Wu B., Cao X., Liang X., Zhang X., Zhang W., Sun G., Wang D. Epigenetic regulation of Elf5 is associated with epithelial-mesenchymal transition in urothelial cancer. PLoS One. 2015; 10(1): e0117510. doi:10.1371/journal.pone.0117510.; Lapinskas E.J., Svobodova S., Davis I.D., Cebon J., Hertzog P.J., Pritchard M.A. The Ets transcription factor ELF5 functions as a tumor suppressor in the kidney. Twin Res Hum Genet. 2011; 14(4): 316–22. doi:10.1375/twin.14.4.316.; Risinger J.I., Maxwell G.L., Chandramouli G.V., Jazaeri A., Aprelikova O., Patterson T., Berchuck A., Barrett J.C. Microarray analysis reveals distinct gene expression profiles among different histologic types of endometrial cancer. Cancer Res. 2003 Jan; 63(1): 6–11.; https://www.siboncoj.ru/jour/article/view/1498
-
12Academic Journal
المؤلفون: D. B. Erdyneeva, N. N. Babyshkina, T. A. Dronova, S. V. Vtorushin, E. M. Slonimskaya, V. N. Stegniy, N. V. Cherdyntseva, Д. Б. Эрдынеева, Н. Н. Бабышкина, Т. А. Дронова, С. В. Вторушин, Е. М. Слонимская, В. Н. Стегний, Н. В. Чердынцева
المساهمون: The study was supported by the Russian Foundation for Basic Research (RFBR) grant № 17-29-06037 «Genomic regulation of the breast cancer progression during chemotherapy»., Работа выполнена при финансовой поддержке гранта РФФИ № 17-29-06037 офи_м «Геномные механизмы регуляции опухолевой прогрессии рака молочной железы в условиях лекарственной терапии».
المصدر: Siberian journal of oncology; Том 19, № 4 (2020); 138-145 ; Сибирский онкологический журнал; Том 19, № 4 (2020); 138-145 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2020-19-4
مصطلحات موضوعية: механизмы резистентности, cyclin D1, tamoxifen, resistance mechanisms, циклин D1, тамоксифен
وصف الملف: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/1540/778; Рак. ВОЗ [Интернет]. URL: https://www.who.int/ru/news-room/fact-sheets/detail/cancer. (дата обращения: 28.01.2019).; Каприн А.Д., Старинский В.В., Петрова Г.В. Злокачественные новообразования в России в 2017 году (заболеваемость и смертность). М., 2018. 250 с.; Curigliano G., Burstein H.J., Winer E.P., Gnant M., Dubsky P., Loibl S., Colleoni М., Regan M.M., Piccart-Gebhart M., Senn H.-J., Thürlimann B. De-escalating and escalating treatments for early-stage breast cancer: the St. Gallen International Expert Consensus Conference on the Primary Therapy of Early Breast Cancer 2017. Ann Oncol. 2017 Jun; 28(8): 1700–12. doi:10.1093/annonc/mdx308.; Burstein H.J., Curigliano G., Loibl S., Dubsky P., Gnant M., Poortmans P., Colleoni М., Carsten D., Piccart-Gebhart M., Regan M., Senn H.-J., Winer E.P., Thurlimann B. Estimating the Benefits of Therapy for Early Stage Breast Cancer The St Gallen International Consensus Guidelines for the Primary Therapy of Early Breast Cancer 2019. Ann Oncol. 2019 Oct; 30(10): 1541–57. doi:10.1093/annonc/mdz235.; Hunt T. Cell biology. Cell cycle gets more cyclins. Nature. 1991 Apr 11; 350(6318): 462–3. doi:10.1038/350462a0.; Sherr C.J., Roberts J.M. Inhibitors of mammalian G1 cyclindependent kinases. Genes Dev. 1995 May 15; 9(10): 114963. doi:10.1101/gad.9.10.1149.; Sicinski P., Donaher J.L., Parker S.B., Li T., Fazeli A., Gardner H., Haslam S.Z., Bronson R.T., Elledge S.J., Weinberg R.A. Cyclin D1 provides a link between development and oncogenesis in the retina and breast. Cell. 1995 Aug 25; 82(4): 621–30. doi:10.1016/0092-8674(95)90034-9.; Wang T.C., Cardiff R.D., Zukerberg L., Lees E., Arnold A., Schmidt E.V. Mammary hyperplasia and carcinoma in MMTV-cyclin D1 transgenic mice. Nature. 1994 Jun 23; 369(6482): 669–71. doi:10.1038/369669a0.; Alle K.M., Henshall S.M., Field A.S., Sutherland R.L. Cyclin D1 protein is overexpressed in hyperplasia and intraductal carcinoma of the breast. Clin Cancer Res. 1998 Apr; 4(4): 847–54.; Kato J., Matsushime H., Hiebert S.W., Ewen M.E., Sherr C.J. Direct binding of cyclin D to the retinoblastoma gene product (pRb) and pRb phosphorylation by the cyclin D-dependent kinase CDK4. Genes Dev. 1993 Mar; 7(3): 331–42. doi:10.1101/gad.7.3.331.; O’Leary B., Finn R.S., Turner N.C. Treating cancer with selective CDK4/6 inhibitors. Nat Rev Clin Oncol. 2016; 13(7): 41730. doi:10.1038/nrclinonc.2016.26.; Zwijsen R.M., Buckle R.S., Hijmans E.M., Loomans C.J., Bernards R. Ligand-independent recruitment of steroid receptor coactivators to estrogen receptor by cyclin D1. Genes Dev. 1998; 12(22): 3488–98. doi:10.1101/gad.12.22.3488.; Griekspoor A., Margarido T.C., Zwart W., Michalides R. Review of: BRCA1 and cyclin D1: gate keepers in hormone responsive tissues? Breast Cancer Online. 2006 Mar 22; 9(4): 1–3. doi:10.1017/S1470903106005098.; Ortiz A.B., Garcia D., Vicente Y., Palka M., Bellas C., Martin P. Prognostic significance of cyclin D1 protein expression and gene amplification in invasive breast carcinoma. PLoS One. 2017 Nov 15; 12(11): e0188068. doi:10.1371/journal.pone.0188068.; Holm K., Staaf J., Jönsson G., Vallon-Christersson J., Gunnarsson H., Arason A., Magnusson L., Barkardottir R.B., Hegardt C., Ringnér M., Borg A. Characterisation of amplification patterns and target genes at chromosome 11q13 in CCND1-amplified sporadic and familial breast tumours. Breast Cancer Res Treat. 2012 Jun; 133(2): 583–94. doi:10.1007/s10549-011-1817-3.; Roy P.G., Pratt N., Purdie C.A., Baker L., Ashfield A., Quinlan P., Thompson A.M. High CCND1 amplification identifies a group of poor prognosis women with estrogen receptor positive breast cancer. Int J Cancer. 2010 Jul; 127(2): 355–60. doi:10.1002/ijc.25034.; Bartkova J., Lukas J., Muller H., Lutzhoft D., Strauss M., Bartek J. Cyclin D1 protein expression and function in human breast cancer. Int J Cancer. 1994 May; 57: 353–361. doi:10.1002/ijc.2910570311.; Solomon D.A., Wang Y., Fox S.R., Lambeck T.C., Giesting S., Lan Z., Senderowicz A.M., Conti C.J., Knudsen E.S. Cyclin D1 splice variants. Differential effects on localization, RB phosphorylation, and cellular transformation. J Biol Chem. 2003; 278(32): 30339–47. doi:10.1074/jbc.M303969200.; Thakur N., Kumari S., Mehrotra R. Association between Cyclin D1 G870A (rs9344) polymorphism and cancer risk in Indian population: meta-analysis and trial sequential analysis. Biosci Rep. 2018 Nov 30; 38(6): BSR20180694. doi:10.1042/BSR20180694.; Sergentanis T.N., Economopoulos K.P. Cyclin D1 G870A polymorphism and breast cancer risk: a meta-analysis comprising 9,911 cases and 11,171 controls. Mol Biol Rep. 2010 Dec; 38(8): 4955–63. doi:10.1007/s11033-010-0639-4.; Lu C., Dong J., Ma H., Jin G., Hu Z., Peng Y., Guo X., Wang X., Shen H. CCND1 G870A polymorphism contributes to breast cancer susceptibility: a meta-analysis. Breast Cancer Res Treat. 2008 Sep 26; 116(3): 571–575. doi:10.1007/s10549-008-0195-y 60.; Cui J., Shen L., Wang Y. Specific CCND1 G870A Alleles associated with breast cancer susceptibility: a meta-analysis of 5,528 cases and 5,353 controls. Asian Pac J Cancer Prev. 2012; 13(10): 5023–25. doi:10.7314/APJCP.2012.13.10.5023.; Soleimani Z., Kheirkhah D., Sharif M.R., Sharif A., Karimian M., Aftabi Y. Association of CCND1 gene c.870G>A polymorphism with breast cancer risk: a case-control study and a meta-analysis. Pathol Oncol Res. 2016 Dec 21; 23(3): 621–631. doi:10.1007/s12253-016-0165-3.; Hosokawa Y., Suzuki R., Joh T., Maeda Y., Nakamura S., Kodera Y., Arnold A., Seto M. A small deletion in the 3’-untranslated region of the cyclin D1/PRAD1/bcl-1 oncogene in a patient with chronic lymphocytic leukemia. Int J Cancer 1998; 76(6): 791–796. doi:10.1002/(sici)1097-0215(19980610)76:63.0.co;2-t.; Dai X., Zhang X., Wang B., Wang C., Jiang J., Wu C. Association between polymorphism rs678653 in human Cyclin D1 gene (CCND1) and susceptibility to cancer: a meta-analysis. Medical Science Monitor. 2016 Mar 16; 22: 863–874. doi:10.12659/msm.895237.; Mavaddat N., Dunning A.M., Ponder B.A.J., Easton D.F., Pharoah P.D. Common genetic variation in candidate genes and susceptibility to subtypes of breast cancer. Cancer Epidemiol Biomarkers Prev. 2009 Jan; 18(1): 255–259. doi:10.1158/1055-9965.epi-08-0704.; Hicks C., Asfour R., Pannuti A., Miele L. An Integrative genomics approach to biomarker discovery in breast cancer. Cancer Inform. 2011 Jul; 10: 185–204. doi:10.4137/CIN.S6837.; Ahlin C., Lundgren C., Embretsén-Varro E., Jirström K., Blomqvist C., Fjällskog M. High expression of cyclin D1 is associated to high proliferation rate and increased risk of mortality in women with ER-positive but not in ER-negative breast cancers. Breast Cancer Res Treat. 2017 Aug; 164(3): 667–678. doi:10.1007/s10549-017-4294-5.; Kenny F.S., Hui R., Musgrove E.A., Gee J.M., Blamey R.W., Nicholson R.I., Sutherland R.L., Robertson J.F. Overexpression of cyclin D1 messenger RNA predicts for poor prognosis in estrogen receptor-positive breast cancer. Clin Cancer Res. 1999 Aug; 5(8): 2069–2076.; He Q., Wu J., Liu X.L., Ma Y.H., Wu X.T., Wang W.Y., An H.X. Clinicopathological and prognostic significance of cyclin D1 amplification in patients with breast cancer: a meta-analysis. J BUON. 2017; 22(5): 1209–16.; Beca F., Pereira M., Cameselle-Teijeiro J.F., Martins D., Schmitt F. Altered PPP2R2A and Cyclin D1 expression defines a subgroup of aggressive luminal-like breast cancer. BMC Cancer. 2015; 15: 285. doi:10.1186/s12885-015-1266-1.; Sun X., Zhangyuan G., Shi L., Wang Y., Sun B., Ding Q. Prognostic and clinicopathological significance of cyclin B expression in patients with breast cancer: a meta-analysis. Medicine (Baltimore). 2017 May; 96(19): e6860. doi:10.1097/MD.0000000000006860.; Tobin N.P., Lundgren K.L., Conway C., Anagnostaki L., Costello S., Landberg G. Automated image analysis of cyclin D1 protein expression in invasive lobular breast carcinoma provides independent prognostic information. Hum Pathol. 2012 Nov; 43(11): 2053–61. doi:10.1016/j.humpath.2012.02.015.; Elsheikh S., Green A.R., Aleskandarany M.A., Grainge M., Paish C.E., Lambros M.B., Reis-Filho J.S., Ellis I.O. CCND1 amplification and cyclin D1 expression in breast cancer and their relation with proteomic subgroups and patient outcome. Breast Cancer Res Treat. 2007 Jul 26; 109(2): 325–335. doi:10.1007/s10549-007-9659-8.; Rudas M., Lehnert M., Huynh A., Jakesz R., Singer C., Lax S., Schippinger W., Dietze O., Greil R., Stiglbauer W., Kwasny W., Grill R., Stierer M., Gnant M.F., Filipits M., Austrian Breast and Colorectal Cancer Study G. Cyclin D1 expression in breast cancer patients receiving adjuvant tamoxifen-based therapy. Clin Cancer Res. 2008 Mar 15; 14(6): 1767–74. doi:10.1158/1078-0432.CCR-07-4122.; Aaltonen K., Amini R.M., Landberg G., Eerola H., Aittomaki K., Heikkila P., Nevanlinna H., Blomqvist C. Cyclin D1 expression is associated with poor prognostic features in estrogen receptor positive breast cancer. Breast Cancer Res Treat. 2009; 113(1): 75–82. doi:10.1007/s10549-008-9908-5.; Choschzick M., Heilenkotter U., Lebeau A., Jaenicke F., Terracciano L., Bokemeyer C., Sauter G., Simon R. MDM2 amplification is an independent prognostic feature of node-negative, estrogen receptor-positive early-stage breast cancer. Cancer Biomark. 2010; 8(2): 53–60. doi:10.3233/DMA-2011-0806.; Umekita Y., Ohi Y., Sagara Y., Yoshida H. Overexpression of cyclin D1 predicts for poor prognosis in estrogen receptor negative breast cancer patients. Int J Cancer. 2002; 98(3): 415–418. doi:10.1002/ijc.10151.; Lundgren K., Brown M., Pineda S., Cuzick J., Salter J., Zabaglo L., Howell A., Dowsett M., Landberg G. Effects of cyclin D1 gene amplification and protein expression on time to recurrence in postmenopausal breast cancer patients treated with anastrozole or tamoxifen: a TransATAC study. Breast Cancer Res. 2012; 14(2): R57. doi:10.1186/bcr3161.; Li Z., Cui J., Yu Q., Wu X., Pan A., Li L. Evaluation of CCND1 amplification and CyclinD1 expression: diffuse and strong staining of CyclinD1 could have same predictive roles as CCND1 amplification in ER positive breast cancers. Am J Transl Res. 2016 Jan 15; 8(1): 142–153.; Hui R., Finney G.L., Carroll J.S., Lee C.S., Musgrove E.A., Sutherland R.L. Constitutive overexpression of cyclin D1 but not cyclin E confers acute resistance to antiestrogens in T-47D breast cancer cells. Cancer Res. 2002; 62: 6916–23.; Wilcken N.R., Prall O.W., Musgrove E.A., Sutherland R.L. Inducible overexpression of cyclin D1 in breast cancer cells reverses the growthinhibitory effects of antiestrogens. Clin Cancer Res. 1997; 3: 849–854.; Huber-Keener K.J., Liu X., Wang Z., Wang Y., Freeman W., Wu S., Planas-Silva M.D., Ren X., Cheng Y., Zhang Y., Vrana K., Liu C.G., Yang J.M., Wu R. Differential gene expression in tamoxifen-resistant breast cancer cells revealed by a new analytical model of RNA-Seq Data. PLoSONE. 2012; 7(7): e41333. doi:10.1371/journal.pone.0041333.; Ahnstrom M., Nordenskjold B., Rutqvist L.E., Skoog L., Stal O. Role of cyclin D1 in ErbB2-positive breast cancer and tamoxifen resistance. Breast Cancer Res Treat. 2005; 91(2): 145–151. doi:10.1007/s10549-004-6457-4.; Stendahl M., Kronblad A., Ryden L., Emdin S., Bengtsson N.O., Landberg G. Cyclin D1 overexpression is a negative predictive factor for tamoxifen response in postmenopausal breast cancer patients. Br J Cancer. 2004; 90(10): 1942–1948. doi:10.1038/sj.bjc.6601831.; Babyshkina N., Vtorushin S., Zavyalova M., Patalyak S., Dronova T., Litviakov N., Slonimskaya E., Kzhyshkowska J., Cherdyntseva N., Choynzonov E. The distribution pattern of ERα expression, ESR1 genetic variation and expression of growth factor receptors: association with breast cancer prognosis in Russian patients treated with adjuvant tamoxifen. Clin Exp Med. 2017 Aug; 17(3): 383–393. doi:10.1007/s10238-016-0428-z.; Слонимская Е.М., Вторушин С.В., Бабышкина Н.Н., Паталяк С.В. Роль морфологических и генетических особенностей строения рецепторов эстрогенов альфа в развитии резистентности к эндокринотерапии тамоксифеном у пациенток с люминальным раком молочной железы. Сибирский онкологический журнал. 2014; 3: 39–44.; Xing J., Li J., Fu L., Gai J., Guan J., Li Q. SIRT4 enhances the sensitivity of ER-positive breast cancer to tamoxifen by inhibiting the IL-6/STAT3 signal pathway. Cancer Med. 2019 Nov; 8(16):7086–7097. doi:10.1002/cam4.2557.; Cheng R., Liu Y.J., Cui J.W., Yang M., Liu X.L. , Li P., Wang Z., Zhu L.Z., Lu S.Y., Zou L., Wu X.Q., Li Y.X., Zhou Y., Fang Z.Y., Wei W. Aspirin regulation of c-myc and cyclinD1 proteins to overcome tamoxifen resistance in estrogen receptor-positive breast cancer cells. Oncotarget. 2017 May 2; 8(18): 30252–30264. doi:10.18632/oncotarget.16325.; Zheng X.Q., Guo J.P., Yang H., Kanai M., He L.L., Li Y.Y., Koomen J.M., Minton S., Gao M., Ren X.B., Coppola D., Cheng J.Q. Aurora-A is a determinant of tamoxifen sensitivity through phosphorylation of ERα in breast cancer. Oncogene. 2014 Oct; 33(42): 4985–96. doi:10.1038/onc.2013.444.; Кононенко И.Б., Снеговой А.В., Сельчук В.Ю. Ингибиторы циклин-зависимых киназ: эффективность и безопасность. Медицинский Совет. 2019; 10: 42–55. doi:10.21518/2079-701X-2019-10-42-55.; Sobhani N., D’Angelo A., Pittacolo M., Roviello G., Miccoli A., Corona S.P., Bernocchi O., Generali D., Otto T. Updates on the CDK4/6 inhibitory strategy and combinations in breast cancer. Cells. 2019 Apr 6; 8(4). pii: E321. doi:10.3390/cells8040321.; Finn R.S., Dering J., Conklin D., Kalous O., Cohen D.J., Desai A.J., Ginther C., Atefi M., Chen I., Fowst C., Los G., Slamon D.J. PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human breast cancer cell lines in vitro. Breast Cancer Res. 2009; 11(5): R77. doi:10.1186/bcr2419.; Cristofanilli M., Turner N.C, Bondarenko I., Ro J., Im S.A., Masuda N., Colleoni M., DeMichele A., Loi S., Verma S., Iwata H., Harbeck N., Zhang K., Theall K.P., Jiang Y., Bartlett C.H., Koehler M., Slamon D. Fulvestrant plus palbociclib versus fulvestrant plus placebo for treatment of hormone-receptor-positive, HER2-negative metastatic breast cancer that progressed on previous endocrine therapy (PALOMA-3): final analysis of the multicentre, double-blind, phase 3 randomised controlled trial. Lancet Oncol. 2016 Apr; 17(4): 425–439. doi:10.1016/S1470-2045(15)00613-0.; FoundationOne CDx-P170019 FDA [Internet]. URL: https://www.fda.gov/medical-devices/recently-approved-devices/foundationonecdx-p170019. (cited: 21.01.2020).; https://www.siboncoj.ru/jour/article/view/1540
-
13Academic Journal
المؤلفون: I. V. Stepanov, S. R. Altybaev, N. V. Krakhmal, K. V. Rachkovsky, D. A. Sorokin, S. G. Afanasyev, S. V. Vtorushin, M. V. Zavyalova, И. В. Степанов, С. Р. Алтыбаев, Н. В. Крахмаль, К. В. Рачковский, Д. А. Сорокин, С. Г. Афанасьев, С. В. Вторушин, М. В. Завьялова
المصدر: Siberian journal of oncology; Том 16, № 3 (2017); 46-51 ; Сибирский онкологический журнал; Том 16, № 3 (2017); 46-51 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2017-16-3
مصطلحات موضوعية: лимфогенное метастазирование, expression, CD34, VEGFR, angiogenesis, lymphogenous metastasis, экспрессия, ангиогенез
وصف الملف: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/540/442; Ferlay J., Soerjomataram I., Dikshit R., Eser S., Mathers C., Rebelo M., Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Intern J Cancer. 2015; 136 (5): E359–E386.; Афанасьев С.Г., Добродеев А.Ю. Циторедуктивные операции (Нужно ли удалять первичную опухоль? Где предел разумной циторедукции? Практическая онкология. 2014; 15 (2): 93–100.; Goel S., Duda D.G., Xu L., Munn L.L., Boucher Y., Fukumura D., Jain R.K. Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev. 2011 Jul; 91 (3): 1071–121. doi:10.1152/ physrev.00038.2010.; Oklu R., Walker T.G., Wicky S., Hesketh R.J. Angiogenesis and current antiangiogenic strategies for the treatment of cancer. J Vasc Interv Radiol. 2010 Dec; 21 (12): 1791–805. doi:10.1016/j.jvir.2010.08.009.; Marioni G., Staffiery A., Manzato E., Ralli G., Lionello M., Giacomelli L., Prosenikliev V., Marchese-Ragona R., Busnardo A., Bolzetta F., Blandamura S. A higher CD105-assessed microvessel density and vorse prognosis in elderly patients with laryngeal carcinoma. Arch Otolaryngol Head Neck Surg. 2011 Feb; 137 (2): 175–80. doi:10.1001/ archoto.2010.244.; Neri D., Bicknell R. The Discovery and Characterisation of Tumour Endothelial Markers. Vascular Disruptive Agents for the Treatment of Cancer. Springer New York, 2010; 31–48.; Seon B.K., Haba A., Matsuno F., Takahashi N., Tsujie M., She X., Harada N., Uneda S., Tsujie T., Toi H., Tsai H., Haruta Y. Endoglin-targeted cancer therapy. Curr Drug Deliv. 2011; 8 (1): 135–143.; Martins S.F., Reis R.M., Rodrigues A.M., Baltazar F., Longatto A. Role of endoglin and VEGF family expression in colorectal cancer prognosis and anti-angiogenic therapies. World J Clin Oncol. 2011; 2 (6): 272–80. doi:10.5306/wjco.v2.i6.272.; Kimura Y., Morohashi S., Yoshizawa T., Suzuki T., Morohashi H., Sakamoto Y., Hakamada K. Clinicopathological significance of vascular endothelial growth factor, thymidine phosphorylase and microvessel density in colorectal cancer. Mol Med Rep. 2016 Feb; 13 (2): 1551–7. doi:10.3892/mmr.2015.4687; Arimoto A., Uehara K., Tsuzuki T., Aiba T., Ebata T., Nagino M. Role of bevacizumab in neoadjuvant chemotherapy and its influence on microvessel density in rectal cancer. Int J Clin Oncol. 2015 Oct; 20 (5): 935–42. doi:10.1007/s10147-015-0818-3.; Svagzdys S., Lesauskaite V., Pavalkis D., Nedzelskienė I., Pranys D., Tamelis A. Microvessel density as new prognostic marker after radiotherapy in rectal cancer. BMC Cancer. 2009; 9: 95. doi:10.1186/1471- 2407-9-95.; Luengo-Gil G., González-Billalabeitia E., Chaves-Benito A., García Martínez E., García Garre E., Vicente V., Ayala de la Peña F. Effects of conventional neoadjuvant chemotherapy for breast cancer on tumor angiogenesis. Breast Cancer Res Treat. 2015 Jun; 151 (3): 577–87.; Ajili F., Kacem M., Tounsi H., Darouiche A., Enayfer E., Chebi M., Manai M., Boubaker S. Prognostic impact of angiogenesis in nonmuscle invasive bladder cancer as defined by microvessel density after immunohistochemical staining for CD34. Ultrastruct Pathol. 2012 Oct; 36 (5): 336–42.; https://www.siboncoj.ru/jour/article/view/540
-
14Academic Journal
المؤلفون: I. V. Stepanov, S. R. Altybaev, N. V. Krakhmal, К. V. Rachkovsky, D. A. Sorokin, S. G. Afanasyev, S. V. Vtorushin, М. V. Zavyalova, И. В. Степанов, С. Р. Алтыбаев, Н. В. Крахмаль, К. В. Рачковский, Д. А. Сорокин, С. Г. Афанасьев, С. В. Вторушин, М. В. Завьялова
المصدر: Siberian journal of oncology; Том 16, № 2 (2017); 42-49 ; Сибирский онкологический журнал; Том 16, № 2 (2017); 42-49 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2017-16-2
مصطلحات موضوعية: лимфогенное метастазирование, expression, receptor, epidermal growth factor, lymphnodes metastasis, экспрессия, рецептор, эпидермальный фактор роста
وصف الملف: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/518/425; Корытова Л.И. Непосредственные результаты комбинированной терапии местных рецидивов рака прямой кишки. Вопросы онкологии. 2015; 61 (1): 52–56.; Lescut N., Lepinoy A., Schipman B., Cerda T., Guimas V., Bednarek C., Bosset J.F. Preoperative chemoradiotherapy for rectal cancer: experience from one centre. Cancer Radiother. 2015; 19 (2): 98–105. doi:10.1016/j.canrad.2014.11.011.; Бердов Б.А. Комбинированное лечение больных с местнораспространенным раком прямой кишки. Вопросы онкологии. 2014; 4: 497–503.; Han W., Lo H.W. Landscape of EGFR signaling network in human cancers: biology and herapeutic response in relation to receptor subcellular locations. Cancer Lett. 2012 May 28; 318 (2): 124–34. doi:10.1016/j.canlet.2012.01.011.; Minder P., Zajac E., Quigley J.P., Deryugina E.I. EGFR Regulates the Development and Microarchitecture of Intratumoral Angiogenic Vasculature Capable of Sustaining Cancer Cell Intravasation. Neoplasia. 2015 Aug; 17 (8): 634–49. doi:10.1016/j.neo.2015.08.002.; Citri A., Yarden Y. EGF-ERBB signalling: towards the systems level. Nat Rev Mol Cell Biol. 2006 Jul; 7 (7): 505–16.; Van Emburgh B.O., Sartore-Bianchi A., Di Nicolantonio F., Siena S., Bardelli A. Acquired resistance to EGFR-targeted therapies in colorectal cancer. Mol Oncol. 2014 Sep 12; 8 (6): 1084–94. doi:10.1016/j.molonc.2014.05.003.; Jeong W.J., Cha P.H., Choi K.Y. Strategies to overcome resistance to epidermal growth factor receptor monoclonal antibody therapy in metastatic colorectal cancer. World J Gastroenterol. 2014 Aug 7; 20 (29): 9862–71. doi:10.3748/wjg.v20.i29.9862.; Rego R.L., Foster N.R., Smyrk T.C., Le M., O’Connell M.J., Sargent D.J., Windschitl H., Sinicrope F.A. Prognostic effect of activated EGFR expression in human colon carcinomas: comparison with EGFR status. Br J Cancer. 2010 Jan 5; 102 (1): 165–72. doi:10.1038/sj.bjc.6605473.; Giralt J., de las Heras M., Cerezo L., Eraso A., Hermosilla E., Velez D., Benavente S. The expression of epidermal growth factor receptor results in a worse prognosis for patients with rectal cancer treated with preoperative radiotherapy: a multicenter, retrospective analysis. Radiother Oncol. 2005 Feb; 74 (2): 101–8.; Ohashi K., Maruvka Y.E., Michor F., Pao W. Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor–Resistant Disease. J Clin Oncol. 2013 Mar 10; 31 (8): 1070–80. doi:10.1200/JCO.2012.43.3912.; Richter I., Dvořák J., Urbanec M., Bluml A., Čermáková E., Bartoš J., Petera J. The prognostic significance of tumor epidermal growth factor receptor (EGFR) expression change after neoadjuvant chemoradiation in patients with rectal adenocarcinoma. Contemp Oncol (Pozn). 2015; 19 (1): 48–53. doi:10.5114/wo.2015.50013.; Du C., Zhao J., Xue W., Dou F., Gu J. Prognostic value of microsatellite instability in sporadic locally advanced rectal cancer following neoadjuvant radiotherapy. Histopathology. 2013 Apr; 62 (5): 723–30. doi:10.1111/his.12069.; McCollum A.D., Kocs D.M., Chadha P., Monticelli M.A., Boyd T.E., Fain J.D., Thummala A. Randomized phase II trial of preoperative chemoradiotherapy with or without cetuximab in locally advanced rectal adenocarcinoma. J. Clin. Oncol. 2014; 32 (suppl 3): abstr 537.; Ott K., Blank S., Becker K., Langer R., Weichert W., Roth W., Sisic L., Stange A., Jäger D., Büchler M., Siewert J.R., Lordick F. Factors predicting prognosis and recurrence in patients with esophago-gastric adenocarcinoma and histopathological response with less than 10% residual tumor. Langenbecks Arch Surg. 2013 Feb; 398 (2): 239–49. doi:10.1007/s00423-012-1039-0.; Kim S.Y., Shim E.K., Yeo H.Y., Baek J.Y., Hong Y.S., Kim D.Y., Kim T.W., Kim J.H., Im S.A., Jung K.H., Chang H.J. KRAS mutation status and clinical outcome of preoperative chemoradiation with cetuximab in locally advanced rectal cancer: a pooled analysis of 2 phase II trials. Int J Radiat Oncol Biol Phys. 2013 Jan 1; 85 (1): 201–7. doi:10.1016/j.ijrobp.2012.03.048.; Kurt A., Yanar F., Asoglu O., Balik E., Olgac V., Karanlik H., Kucuk S.T., Ademoglu E., Yegen G., Bugra D. Low Mmp 9 and VEGF levels predict good oncologic outcome in mid and low rectal cancer patients with neoadjuvant Chemoradiation. BMC Clin Pathol. 2012 Dec 31; 12: 27. doi:10.1186/1472-6890-12-27.; Yasuda H., Tanaka K., Saigusa S., Toiyama Y., Koike Y., Okugawa Y., Kusunoki M. Elevated CD133, but not VEGF or EGFR, as a predictive marker of distant recurrence after preoperative chemoradiotherapy in rectal cancer. Oncol Rep. 2009 Oct; 22 (4): 709–17.; Hainsworth J.D., Waterhouse D.M., Penley W.C., Shipley D.L., Thompson D.S., Webb C.D., Anthony Greco F. Sorafenib and everolimus in advanced clear cell renal carcinoma: a phase I/II trial of the SCRI Oncology Research Consortium. Cancer Invest. 2013 Jun; 31 (5): 323–9. doi:10.3109/07357907.2013.789900.; Ng K., Tabernero J., Hwang J., Bajetta E., Sharma S., Del Prete S.A., Arrowsmith E.R., Ryan D.P., Sedova M., Jin J., Malek K., Fuchs C.S. Phase II study of everolimus in patients with metastatic colorectal adenocarcinoma previously treated with bevacizumab-, fluoropyrimidine-, oxaliplatin-, and irinotecan-based regimens. Clin Cancer Res. 2013; 19: 3987–3995.; Bardelli A., Siena S. Molecular mechanisms of resistance to cetuximab and panitumumab in colorectal cancer. J Clin Oncol. 2010 Mar 1; 28 (7): 1254–61. doi:10.1200/JCO.2009.24.6116.; Van Cutsem E., Köhne C.H., Láng I., Folprecht G., Nowacki M.P., Cascinu S., Shchepotin I., Maurel J., Cunningham D., Tejpar S., Schlichting M., Zubel A., Celik I., Rougier P., Ciardiello F. Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: updated analysis of overall survival according to tumor KRAS and BRAF mutation status. J Clin Oncol. 2011 May 20; 29 (15): 2011–9. doi:10.1200/JCO.2010.33.5091.; Усова А.В., Фролова И.Г., Афанасьев С.Г., Тарасова А.С. Возможности МРТ в диагностике и оценке эффективности лечения рака прямой кишки. Сибирский онкологический журнал. 2012; 5: 74–80.; https://www.siboncoj.ru/jour/article/view/518
-
15Academic Journal
المؤلفون: S. V. Vtorushin, D. V. Vasilchenko, К. Y. Khristenko, N. V. Krakhmal, I. V. Stepanov, М. V. Zavyalova, E. M. Slonimskaya, S. V. Patalyak, С. В. Вторушин, Д. В. Васильченко, К. Ю. Христенко, Н. В. Крахмаль, И. В. Степанов, М. В. Завьялова, Е. М. Слонимская, С. В. Паталяк
المصدر: Siberian journal of oncology; Том 16, № 5 (2017); 42-47 ; Сибирский онкологический журнал; Том 16, № 5 (2017); 42-47 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2017-16-5
مصطلحات موضوعية: лекарственная устойчивость, transcription factor GATA3, lymph node metastasis, prognosis, drug resistance, транскрипционный фактор GATA3, лимфогенное метастазирование, прогноз
وصف الملف: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/612/474; Каприн А.Д., Старинский В.В., Петрова Г.В. Злокачественные новообразования в России в 2015 году (заболеваемость и смертность) М., 2017. 250.; Cimino-Mathews A., Subhawong A.P., Illei P.B., Sharma R., Halushka M.K., Vang R., Fetting J.H., Park B.H., Argani P. GATA3 expression in breast carcinoma: utility in triple-negative, sarcomatoid, and metastatic carcinomas. Hum Pathol. 2013 Jul; 44 (7): 1341–9. doi:10.1016/j.humpath.2012.11.003.; Byrne D.J., Deb S., Takano E.A., Fox S.B. GATA3 expression in triple-negative breast cancers. Histopathology. 2017 Jul; 71 (1): 63–71. doi:10.1111/his.13187.; Deftereos G., Sanguino Ramirez A.M., Silverman J.F., Krishnamurti U. GATA3 immunohistochemistry expression in histologic subtypes of primary breast carcinoma and metastatic breast carcinoma cytology. Am J Surg Pathol. 2015 Sep; 39 (9): 1282–9. doi:10.1097/ PAS.0000000000000505.; Gonzalez R.S., Wang J., Kraus T., Sullivan H., Adams A.L., Cohen C. GATA-3 expression in male and female breast cancers: comparison of clinicopathologic parameters and prognostic relevance. Hum Pathol. 2013 Jun; 44 (6): 1065–70. doi:10.1016/j.humpath.2012.09.010.; Yoon N.K., Maresh E.L., Shen D., Elshimali Y., Apple S., Horvath S., Mah V., Bose S., Chia D., Chang H.R., Goodglick L. Higher levels of GATA3 predict better survival in women with breast cancer. Hum Pathol. 2010 Dec; 41 (12): 1794–801. doi:10.1016/j.humpath.2010.06.010.; Mehra R., Varambally S., Ding L., Shen R., Sabel M.S., Ghosh D., Chinnaiyan A.M., Kleer C.G. Identification of GATA3 as a Breast Cancer Prognostic Marker by Global Gene Expression Meta-analysis. Cancer Res. 2005 Dec 15; 65 (24): 11259–64.; Shahi P., Wang C.Y., Chou J., Hagerling C., Gonzalez Velozo H., Ruderisch A., Yu Y., Lai M.D., Werb Z. GATA3 targets semaphorin 3B in mammary epithelial cells to suppress breast cancer progression and metastasis. Oncogene. 2017 Oct 5; 36 (40): 5567–75. doi:10.1038/ onc.2017.165.; Tkocz D., Crawford N.T., Buckley N.E., Berry F.B., Kennedy R.D., Gorski J.J., Harkin D.P., Mullan P.B. BRCA1 and GATA3 corepress FOXC1 to inhibit the pathogenesis of basal-like breast cancers. Oncogene. 2012 Aug 9; 31 (32): 3667–78. doi:10.1038/onc.2011.531.; Cohen H., Ben-Hamo R., Gidoni M., Yitzhaki I., Kozol R., Zilberberg A., Efroni S. Shift in GATA3 functions, and GATA3 mutations, control progression and clinical presentation in breast cancer. Breast Cancer Res. 2014 Nov 20; 16 (6): 464. doi:10.1186/s13058-014-0464-0.; Hoch R.V., Thompson D.A., Baker R.J., Weigel R.J. GATA-3 is expressed in association with estrogen receptor in breast cancer. Int J Cancer. 1999 Apr 20; 84 (2): 122–8.; https://www.siboncoj.ru/jour/article/view/612
-
16Academic Journal
المؤلفون: S. V. Vtorushin, N. V. Bezgodova, A. A. Pleshkunov, С. В. Вторушин, Н. В. Безгодова, А. А. Плешкунов
المصدر: Siberian journal of oncology; Том 16, № 1 (2017); 82-90 ; Сибирский онкологический журнал; Том 16, № 1 (2017); 82-90 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2017-16-1
مصطلحات موضوعية: молекулярно-биологические маркеры прогноза, molecular biological prognostic markers
وصف الملف: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/496/416; Чиссов В.И., Старинский В.В., Петрова Г.В. Злокачественные новообразования в России в 2013 году (заболеваемость и смертность). М., 2014; 250.; Siegel R., Naishadham D., Jemal A. Cancer Statistics 2013 CA Cancer J Clin. 2013 Jan; 63 (1): 11–30. doi:10.3322/caac.21166.; Cross D.S., Ritter M., Reding D.J. Historical prostate cancer screening and treatment outcomes from a single institution. Clin Med Res. 2012 Aug; 10 (3): 97–105. doi:10.3121/cmr.2011.1042.; Thompson I.M., Pauler D.K., Goodman P.J., Tangen C.M., Lucia M.S., Parnes H.L., Minasian L.M., Ford L.G., Lippman S.M., Crawford E.D., Crowley J.J., Coltman C.A. Jr. Prevalence of prostate cancer among men with a prostate-specific antigen level < or =4.0 ng per milliliter. N Engl J Med. 2004 May 27; 350 (22): 2239–46.; Cheng L., Koch M.O., Juliar B.E., Daggy J.K., Foster R.S., Bihrle R., Gardner T.A. The Combined percentage of Gleason patterns 4 and 5 is the best predictor of cancer progression after radical prostatectomy. J Clin Oncol. 2005 May 1; 23 (13): 2911–7.; Poncet N., Guillaume J., Mouchiroud G. Epidermal growth factor receptor trans-activation is implicated in IL-6-induced proliferation and ERK1/2 activation in non-transformed prostate epithelial cells. Cell Signal. 2011 Mar; 23 (3): 572–8. doi:10.1016/j.cellsig.2010.11.009.; Guo Y., Xu F., Lu T., Duan Z., Zhang Z. Interleukin-6 signaling pathway in targeted therapy for cancer. Cancer Treat Rev. 2012 Nov; 38 (7): 904–10. doi:10.1016/j.ctrv.2012.04.007.; Nguyen D.P., Li J., Tewari A.K. Inflammation and prostate cancer: the role of interleukin-6. BJU Int. 2014 Jun; 113 (6): 986–92. doi:10.1111/ bju.12452.; Reis S.T., Timoszczuk L.S., Pontes-Junior J., Viana N., Silva I.A., Dip N., Srougi M., Leite K.R. The role of micro RNAs let7c, 100 and 218 expression and their target RAS, C-MYC, BUB1, RB, SMARCA5, LAMB3 and Ki-67 in prostate cancer. Clinics (Sao Paulo). 2013 May; 68 (5): 652–7. doi:10.6061/clinics/2013(05)12.; Lee S.O., Pinder E., Chun J.Y., Lou W., Sun M., Gao A.C. Interleukin-4 stimulates androgen-independent growth in LNCaP human prostate cancer cells. Prostate. 2008 Jan 1; 68 (1): 85–91. doi:10.1002/pros.20691.; Todaro M., Lombardo Y., Francipane M.G., Alea M.P., Cammareri P., Iovino F., Di Stefano A.B., Di Bernardo C., Agrusa A., Condorelli G., Walczak H., Stassi G. Apoptosis resistance in epithelial tumors is mediated by tumor-cell-derived interleukin-4. Cell Death Differ. 2008 Apr; 15 (4): 762–72. doi:10.1038/sj.cdd.4402305.; Takeshi U., Sadar M.D., Suzuki H., Akakura K., Sakamoto S., Shimbo M., Suyama T., Imamoto T., Komiya A., Yukio N., Ichikawa T. Interleukin-4 in patients with prostate cancer Anticancer Res. 2005 NovDec; 25 (6C): 4595–8.; Paner G.P., Luthringer D.J., Amin M.B. Best practice in diagnostic immunohistochemistry: prostate carcinoma and its mimics in needle core biopsies. Arch Pathol Lab Med. 2008 Sep; 132 (9): 1388–96. doi:10.1043/1543-2165(2008)132[1388:BPIDIP]2.0.CO;2.; Ma Z., Tsuchiya N., Yuasa T., Huang M., Obara T., Narita S., Horikawa Y., Tsuruta H., Saito M., Satoh S., Ogawa O., Habuchi T. Clinical significance of polymorphism and expression of chromogranin-A and endothelin-1 in prostate cancer. J Urol. 2010 Sep; 184 (3): 1182–8. doi:10.1016/j.juro.2010.04.063; Hong S.K. Kallikreins as Biomarkers for Prostate Cancer. Biomed Res Int. 2014; 2014: 526341. doi:10.1155/2014/526341.; Sardana G., Dowell B., Diamandis E.P. Emerging biomarkers for the diagnosis and prognosis of prostate cancer. Clin Chem. 2008 Dec; 54 (12): 1951–60. doi:10.1373/clinchem.2008.110668.; McCabe N.P., Angwafo F.F. III, Zaher A., Selman S.H., Kouinche A., Jankun J. Expression of soluble urokinase plasminogen activator receptor may be related to outcome in prostate cancer patients. Oncol Rep. 2000 Jul-Aug; 7 (4): 879–82.; Shariat S.F., Roehrborn C.G., McConnell J.D., Park S., Alam N., Wheeler T.M., Slawin K.M. Association of the circulating levels of the urokinase system of plasminogen activation with the presence of prostate cancer and invasion, progression, and metastasis. J. Clin. Oncol. 2007; 25: 349–355. doi:10.1200/JCO.2006.05.6853.; Endl E., Gerdes J. The Ki-67 protein: fascinating forms and an unknown function. Exp Cell Res. 2000 Jun 15; 257 (2): 231–7. doi:10.1006/excr.2000.4888.; Tollefson M.K., Karnes R.J., Kwon E.D., Lohse C.M., Rangel L.J., Mynderse L.A., Cheville J.C., Sebo T.J. Prostate Cancer Ki-67 (MIB-1) Expression, Perineural Invasion, and Gleason Score as Biopsy-Based Predictors of Prostate Cancer Mortality: The Mayo Model. Mayo Clin Proc. 2014 Mar; 89 (3): 308–18. doi:10.1016/j.mayocp.2013.12.001.; Miyake H., Muramaki M., Kurahashi T., Takenaka A., Fujisawa M. Expression of potential molecular markers in prostate cancer: correlation with clinicopathological outcomes in patients undergoing radical prostatectomy. Urol Oncol. 2010 Mar-Apr; 28 (2): 145–51. doi:10.1016/j. urolonc.2008.08.001.; Adams J.M., Cory S. Bcl-2-regulated apoptosis: mechanism and therapeutic potential. Curr. Opin. Immunol. 2007; 19: 488–96. doi:10.1016/j.coi.2007.05.004.; Zhou M., Aydin H., Kanane H., Epstein J.I. How often does alphamethylacyl-CoA-racemase contribute to resolving an atypical diagnosis on prostate needle biopsy beyond that provided by basal cell markers? Am. J. Surg. Pathol. 2004; 28: 239–243.; Vergis R., Corbishley C.M., Thomas K., Horwich A., Huddart R., Khoo V., Eeles R., Sydes M.R., Cooper C.S., Dearnaley D., Parker C. Expression of Bcl-2, p53, and MDM2 in localized prostate cancer with respect to the outcome of radical radiotherapy dose escalation. Int J Radiat Oncol Biol Phys. 2010 Sep 1; 78 (1): 35–41. doi:10.1016/j. ijrobp.2009.07.1728.; Rennebeck G., Martelli M., Kyprianou N. Anoikis and survival connections in the tumor microenvironment: is there a role is prostate cancer metastasis. Cancer Res. 2005 Dec 15; 65 (24): 11230–5.; Kuefer R., Hofer M.D., Zorn C.S., Engel O., Volkmer B.G., JuarezBrito M.A., Eggel M., Gschwend J.E., Rubin M.A., Day M.L. Assessment of a fragment of e-cadherin as a serum biomarker with predictive value for prostate cancer. Br J Cancer. 2005 Jun 6; 92 (11): 2018–23. doi:10.1038/ sj.bjc.6602599.; Uetsuki H., Tsunemori H., Taoka R., Haba R., Ishikawa M., Kakehi Y. Expression of a novel biomarker, EPCA, in adenocarcinomas and precancerous lesions in the prostate. J Urol. 2005 Aug; 174 (2): 514–8. doi:10.1097/01.ju.0000165154.41159.b1.; Dhir R., Vietmeier B., Arlotti J., Acquafondata M., Landsittel D., Masterson R., Getzenberg R.H. Early identification of individuals with prostate cancer in negative biopsies. J Urol. 2004 Apr; 171 (4): 1419–23. doi:10.1097/01.ju.0000116545.94813.27.; Hansel D.E., DeMarzo A.M., Platz E.A., Jadallah S., Hicks J., Epstein J.I., Partin A.W., Netto G.J. Early prostate cancer antigen expression in predicting presence of prostate cancer in men with histologically negative biopsies. J Urol. 2007 May; 177 (5): 1736–40. doi:10.1016/j. juro.2007.01.013.; Leman E.S., Cannon G.W., Trock B.J., Sokoll L.J., Chan D.W., Mangold L., Partin A.W., Getzenberg R.H. EPCA-2: a highly specific serum marker for prostate cancer. Urology. 2007 Apr; 69 (4): 714–20.; Ramirez M.L., Nelson E.C., Evans C.P. Beyond prostate-specific antigen: alternate serum markers. Prostate Cancer Prostatic Dis. 2008; 11 (3): 216–29. doi:10.1038/pcan.2008.2.; Han K.R., Seligson D.B., Liu X., Horvath S., Shintaku P.I., Thomas G.V., Said J.W., Reiter R.E. Prostate stem cell antigen expression is associated with Gleason score, seminal vesicle invasion and capsular invasion in prostate cancer. J Urol. 2004 Mar; 171 (3): 1117–21. doi:10.1097/01. ju.0000109982.60619.93.; Gu Z., Thomas G., Yamashiro J., Shintaku I.P., Dorey F., Raitano A., Witte O.N., Said J.W., Loda M., Reiter R.E. Prostate stem cell antigen (PSCA) expression increases with high Gleason score, advanced stage and bone metastasis in prostate cancer. Oncogene. 2000 Mar 2; 19 (10): 1288–96. doi:10.1038/sj.onc.1203426.; Lloyd M.D., Darley D.J., Wierzbicki A.S., Threadgill M.D. Alphamethylacyl-CoA racemase – an ‘obscure’ metabolic enzyme takes centre stage. FEBS J. 2008 Mar; 275 (6): 1089–102. doi:10.1111/j.1742- 4658.2008.06290.x.; Gologan A., Bastacky S., McHale T., Yu J., Cai C., MonzonBordonaba F., Dhir R. Age-associated changes in alpha-methyl CoA racemase (AMACR) expression in nonneoplastic prostatic tissues. Am J Surg Pathol. 2005 Nov; 29 (11): 1435–41.; Cardillo M.R., Gentile V., Ceccariello A., Giacomelli L., Messinetti S., Di Silverio F. Can p503s, p504s and p510s gene expression in peripheral-blood be useful as a marker of prostatic cancer? BMC Cancer. 2005; 5: 111. doi:10.1186/1471-2407-5-111.; Ouyang B., Leung Y.K., Wang V., Chung E., Levin L., Bracken B., Cheng L., Ho S.M. Alpha-Methylacyl-CoA racemase spliced variants and their expression in normal and malignant prostate tissues. Urology. 2011 Jan; 77 (1): 249.e1–7. doi:10.1016/j.urology.2010.08.005.; Deshmukh D., Qiu Y. Role of PARP-1 in prostate cancer. Am J Clin Exp Urol. 2015 Apr 25; 3 (1): 1–12.; Wacker D.A., Ruhl D.D., Balagamwala E.H., Hope K.M., Zhang T., Kraus W.L. The DNA binding and catalytic domains of poly(ADP-ribose) polymerase-1 cooperate in the regulation of chromatin structure and transcription. Mol Cell Biol. 2007 Nov; 27 (21): 7475–85. doi:10.1128/ MCB.01314-07.; Peralta-Leal A., Rodríguez-Vargas J.M., Aguilar-Quesada R., Rodríguez M.I., Linares J.L., de Almodóvar M.R., Oliver F.J. PARP inhibitors: new partners in the therapy of cancer and inflammatory diseases. Free Radic Biol Med. 2009 Jul 1; 47 (1): 13–26. doi:10.1016/j. freeradbiomed.2009.04.008.; Kumar-Sinha C., Tomlins S.A., Chinnaiyan A.M. Recurrent gene fusions in prostate cancer. Nat Rev Cancer. 2008 Jul; 8 (7): 497–511. doi:10.1038/nrc2402.; Mwamukonda K., Chen Y., Ravindranath L., Furusato B., Hu Y., Sterbis J., Osborn D., Rosner I., Sesterhenn I.A., McLeod D.G., Srivastava S., Petrovics G. Quantitative expression of TMPRSS2 transcript in prostate tumor cells reflects TMPRSS2-ERG fusion status. Prostate Cancer Prostatic Dis. 2010 Mar; 13 (1): 47–51. doi:10.1038/pcan.2009.28.; Tomlins S.A., Rhodes D.R., Perner S., Dhanasekaran S.M., Mehra R., Sun X.W., Varambally S., Cao X., Tchinda J., Kuefer R., Lee C., Montie J.E., Shah R.B., Pienta K.J., Rubin M.A., Chinnaiyan A.M. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science. 2005 Oct 28; 310 (5748): 644–8. doi:10.1126/science.1117679.; Demichelis F., Fall K., Perner S., Andrén O., Schmidt F., Setlur S.R., Hoshida Y., Mosquera J.M., Pawitan Y., Lee C., Adami H.O., Mucci L.A., Kantoff P.W., Andersson S.O., Chinnaiyan A.M., Johansson J.E., Rubin M.A. TMPRSS2:ERG gene fusion associated with lethal prostate cancer in a watchful waiting cohort. Oncogene. 2007 Jul 5; 26 (31): 4596–9. doi:10.1038/sj.onc.1210237.; Chia J.Y., Gajewski J.E., Xiao Y., Zhu H.J., Cheng H.C. Unique biochemical properties of the protein tyrosine phosphatase activity of PTEN-demonstration of different active site structural requirements for phosphopeptide and phospholipid phosphatase activities of PTEN. Biochim Biophys Acta. 2010 Sep; 1804 (9): 1785–95. doi:10.1016/j. bbapap.2010.05.009.; Hessels D., Schalken J.A. Urinary biomarkers for prostate cancer: a review. Asian J Androl. 2013 May; 15 (3): 333–9. doi:10.1038/ aja.2013.6.; Liu L., Yoon J.H., Dammann R., Pfeifer G.P. Frequent hypermethylation of the RASSF1A gene in prostate cancer. Oncogene. 2002 Oct 3; 21 (44): 6835–40. doi:10.1038/sj.onc.1205814.; Kawamoto K., Okino S.T., Place R.F., Urakami S., Hirata H., Kikuno N., Kawakami T., Tanaka Y., Pookot D., Chen Z., Majid S., Enokida H., Nakagawa M., Dahiya R. Epigenetic modifications of RASSF1A gene through chromatin remodeling in prostate cancer. Clin Cancer Res. 2007 May 1; 13 (9): 2541–8. doi:10.1158/1078-0432.CCR-06-2225.; An G., Ng A.Y., Meka C.S., Luo G., Bright S.P., Cazares L., Wright G.L. Jr., Veltri R.W. Cloning and characterization of UROC28, a novel gene overexpressed in prostate, breast, and bladder cancers. Cancer Res. 2000 Dec 15; 60 (24): 7014–20.; Pan T., Wu R., Liu B., Wen H., Tu Z., Guo J., Yang J., Shen G. PBOV1 promotes prostate cancer proliferation by promoting G1/S transition. Onco Targets Ther. 2016 Feb 16; 9: 787–95. doi:10.2147/OTT. S92682.; Samusik N., Krukovskaya L., Meln I., Shilov E., Kozlov A. PBOV1 Is a Human De Novo Gene with Tumor-Specific Expression That Is Associated with a Positive Clinical Outcome of Cancer. PLoS One. 2013; 8 (2): e56162. doi:10.1371/journal.pone.0056162.; Lenka G., Weng W.H., Chuang C.K., Ng K.F., Pang S.T. Aberrant expression of the PRAC gene in prostate cancer. Int J Oncol. 2013 Dec; 43 (6): 1960–6. doi:10.3892/ijo.2013.2117.; Norris J.D., Chang C.Y., Wittmann B.M., Kunder R.S., Cui H., Fan D., Joseph J.D., McDonnell D.P. The homeodomain protein HOXB13 regulates the cellular response to androgens. Mol Cell. 2009 Nov 13; 36 (3): 405–16. doi:10.1016/j.molcel.2009.10.020.; Zabalza C.V., Meike A.M., Burdelski C., Wilczak W., Wittmer C., Kraft S., Krech T., Steurer S., Koop C., Hube-Magg C., Graefen M., Heinzer H., Minner S., Simon R., Sauter G., Schlomm T., Tsourlakis M.C. HOXB13 overexpression is an independent predictor of early PSA recurrence in prostate cancer treated by radical prostatectomy. Oncotarget. 2015 May 20; 6 (14): 12822–34. doi:10.18632/oncotarget.3431.; Peng X., Guo W., Liu T., Wang X., Tu X., Xiong D., Chen S., Lai Y., Du H., Chen G., Liu G., Tang Y., Huang S., Zou X. Identification of miRs- 143 and -145 that is associated with bone metastasis of prostate cancer and involved in the regulation of EMT. PLoS One. 2011; 6 (5): e20341. doi:10.1371/journal.pone.0020341.; Li L., Ittmann M.M., Ayala G., Tsai M.J., Amato R.J., Wheeler T.M., Miles B.J., Kadmon D., Thompson T.C. The emerging role of the PI3KAkt pathway in prostate cancer progression. Prostate Cancer Prostatic Dis. 2005; 8(2): 108–18. doi:10.1038/sj.pcan.4500776.; Carnero A., Blanco-Aparicio C., Renner O., Link W., Leal J.F. The PTEN/PI3K/AKT signalling pathway in cancer, therapeutic implications. Curr Cancer Drug Targets. 2008 May; 8 (3): 187–98.; Chaux A., Peskoe S.B., Gonzalez-Roibon N., Schultz L., Albadine R., Hicks J., De Marzo A.M., Platz E.A., Netto G.J. Loss of PTEN expression is associated with increased risk of recurrence after prostatectomy for clinically localized prostate cancer. Mod Pathol. 2012 Nov; 25 (11): 1543–9. doi:10.1038/modpathol.2012.104.; Choucair K., Ejdelman J., Brimo F., Aprikian A., Chevalier S., Lapointe J. PTEN genomic deletion predicts prostate cancer recurrence and is associated with low AR expression and transcriptional activity. BMC Cancer. 2012 Nov 22; 12: 543. doi:10.1186/1471-2407-12-543.; Suh S.O., Chen Y., Zaman M.S., Hirata H., Yamamura S., Shahryari V., Liu J., Tabatabai Z.L., Kakar S., Deng G., Tanaka Y., Dahiya R. MicroRNA-145 is regulated by DNA methylation and p53 gene mutation in prostate cancer. Carcinogenesis. 2011 May; 32 (5): 772–8. doi:10.1093/ carcin/bgr036.; Schubert M., Spahn M., Kneitz S., Scholz C.J., Joniau S., Stroebel P., Riedmiller H., Kneitz B. Distinct microRNA expression profile in prostate cancer patients with early clinical failure and the impact of let-7 as prognostic marker in high-risk prostate cancer. PLoS One. 2013 Jun 14; 8 (6): e65064. doi:10.1371/journal.pone.0065064.; Гервас П.А., Литвяков Н.В., Попова Н.О., Добродеев А.Ю., Тарасова А.С., Юмов Е.Л., Иванова Ф.Г., Черемисина О.В., Афанасьев С.Г., Гольдберг В.Е., Чердынцева Н.В. Проблемы и перспективы совершенствования молекулярно-генетической диагностики для назначения таргетных препаратов в онкологии. Сибирский онкологический журнал. 2014; 2: 46–55.; https://www.siboncoj.ru/jour/article/view/496
-
17Academic Journal
المؤلفون: E. A. Fesik, N. V. Krakhmal, M. V. Zavyalova, E. M. Slonimskaya, S. V. Vtoryshin, V. M. Perelmuter, Е. А. Фесик, Н. В. Крахмаль, М. В. Завьялова, Е. М. Слонимская, С. В. Вторушин, В. М. Перельмутер
المصدر: Siberian journal of oncology; № 6 (2014); 40-44 ; Сибирский онкологический журнал; № 6 (2014); 40-44 ; 2312-3168 ; 1814-4861 ; undefined
مصطلحات موضوعية: гематогенное метастазирование, morphology, hematogenous metastasis, морфология
وصف الملف: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/285/287; Завьялова М.В., Шведова М.В., Перельмутер В.М., Слонимская Е.М., Вторушин С.В., Телегина Н.С., Савенкова О.В. Клинико-морфологические особенности билатерального инвазивного протокового рака молочных желез // Сибирский онкологический журнал. 2010. № 6. С. 17–21.; Перельмутер В.М., Манских В.Н. Прениша как отсутствующее звено концепции метастатических ниш, объясняющее избирательное метастазирование злокачественных опухолей и форму метастатической болезни // Биохимия. 2012. Т. 77, № 1. С. 130–139.; Щедрин Д.Е. Билатеральный рак молочной железы (эпидемиологические аспекты) // Вопросы онкологии. 2013. №. 3. С. 393–396.; Diaz R., Munarriz B., Santaballa A., Palomar L., Montalar J. Synchronous and metachronous bilateral breast cancer: a long-term single-institution experience // Med. Oncol. 2012. Vol. 29 (1). P. 16–24. doi:10.1007/s12032-010-9785-8.; Drukker C.A., Bueno-de-Mesquita J.M., Retèl V.P., van Harten W.H., van Tinteren H., Wesseling J., Roumen R.M., Knauer M., van ‘t Veer L.J., Sonke G.S., Rutgers E.J., van de Vijver M.J., Linn S.C. A prospective evaluation of a breast cancer prognosis signature in the observational RASTER study // Int. J. Cancer. 2013. Vol. 133 (4). P. 929–936. doi:10.1002/ijc.28082.; Friedl P., Locker J., Sahai E., Segall J.E. Classifying collective cancer cell invasion // Nat. Cell Biol. 2012. Vol. 14. P. 777–783. doi:10.1038/ncb2548.; Londero A.P., Bernardi S., Bertozzi S., Angione V., Gentile G., Dri C., Minucci A., Caponnetto F., Petri R. Synchronous and metachronous breast malignancies: A cross-sectional retrospective study and review of the literature // Biomed. Res. Int. 2014; 2014: 250727. doi:10.1155/2014/250727.; Patsialou A., Wang Y., Lin J., Whitney K., Goswami S., Kenny P.A., Condeelis J.S. Selective gene-expression profiling of migratory tumor cells in vivo predicts clinical outcome in breast cancer patients // Breast Cancer Res. 2012. Vol. 14 (5). R. 139. doi:10.1186/bcr3344.; Sola M., Margeli M., Castellan E., Julian J.F., Rull M., Gubern J.M., Mariscal A., Barnadas A., Fraile M. Prognostic value of hematogenous dissemination and biological profile of the tumor in early breast cancer patients: A prospective observational study // BMC Cancer. 2011. Vol. 11. P. 252–259. doi:10.1186/1471-2407-11-252.; https://www.siboncoj.ru/jour/article/view/285; undefined
-
18Academic Journal
المؤلفون: M. V. Zavyalova, N. S. Telegina, S. V. Vtorushin, V. M. Perelmuter, E. M. Slonimskaya, E. V. Denisov, N. V. Cherdyntseva, S. V. Patalyak, М. А. Завьялова, Н. С. Телегина, С. В. Вторушин, В. М. Перельмутер, Е. М. Слонимская, Е. В. Денисов, Н. В. Чердынцева, С. В. Паталяк
المصدر: Siberian journal of oncology; № 1 (2013); 38-41 ; Сибирский онкологический журнал; № 1 (2013); 38-41 ; 2312-3168 ; 1814-4861 ; undefined
مصطلحات موضوعية: гематогенное метастазирование, luminal A subtype, lymphogenic metastasis, hematogenous metastasis, люминальный А тип, лимфогенное метастазирование
وصف الملف: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/47/49; Кулигина Е.Ш. Эпидемиологические и молекулярные аспекты рака молочной железы // Практическая онкология. 2010. Т. 11, № 4. С. 203–216.; Перельмутер В.М., Завьялова М.В., Вторушин С.В. и др. Взаимосвязь морфологической гетерогенности инфильтрирующего протокового рака молочной железы с различными формами опухолевой прогрессии // Сибирский онкологический журнал. 2007. № 3 (23). С. 58–64.; Parker J.S., Mullins M., Cheang M.C. et al. Supervised risk predictor of breast cancer based on intrinsic subtypes // J. Clin. Oncol. 2009. Vol. 27 (8). P. 1160–1167.; Perou C.M., Sorlie T., Eisen M.B. et al. Molecular portraits of human breast tumours // Nature. 2000. Vol. 406 (6797). Р. 747–752.; Weigelt B., Mackay A., A’hern R. et al. Breast cancer molecular profiling with single sample predictors: a retrospective analysis // Lancet Oncol. 2010. Vol. 11 (4). P. 339–349.; Zavyalova M.V., Perelmuter V.M., Vtorushin S.V. et al. The presence of alveolar structures in invasive ductal NOS breast carcinoma is associated with lymph node metastasis // Diagn. Cytopathol. 2013. Vol. 41 (3). P. 279–282.; https://www.siboncoj.ru/jour/article/view/47; undefined
-
19Academic Journal
المؤلفون: G. Ts. Dambaev, M. M. Solovyev, S. V. Vtorushin, V. V. Skidanenko, O. A. Fatyushina, Yu. F. Bykova, Г. Ц. Дамбаев, М. М. Соловьев, С. В. Вторушин, В. В. Скиданенко, О. А. Фатюшина, Ю. Ф. Быкова
المصدر: Siberian journal of oncology; № 3 (2013); 82-85 ; Сибирский онкологический журнал; № 3 (2013); 82-85 ; 2312-3168 ; 1814-4861 ; undefined
مصطلحات موضوعية: злокачественные опухоли тонкой кишки
وصف الملف: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/137/139; Войцеховский В.В., Хаустов А.Ф., Пивник А.В. Опухоли тонкой кишки как причина хронической железодефицитной анемии // Терапевтический архив. 2011. № 10. С. 11–18.; Иванова Е.В., Федоров Е.Д., Юдин О.И. и др. Роль энтероскопии в диагностике опухолей и предопухолевых заболеваний тонкой кишки // Российский журнал гастроэнтерологии, гепатологии, колопроктологии. 2011. № 5. С. 66–74.; Соколов В.В., Павлов П.В., Чиссов В.И. и др. Методы реканализации при стенозирующем раке пищевода, желудка и 12- перстной кишки (Обзор литературы) // Сибирский онкологический журнал. 2012. № 5 (53). С. 64–73. Рис. 1. Макропрепарат. Подвздошная кишка с опухолевидным образованием, суживающим просвет кишки в виде «кольца» (указана стрелкой) Рис. 2. Макропрепарат на разрезе. Циркулярная опухоль, полностью обтурирующая просвет тонкой кишки Рис. 3. Микрофото. Аденокарцинома тонкой кишки умеренной степени дифференцировки, представленная железистоподобными и криброзными структурами. Окраска гематоксилином и эозином, × 100 Рис. 4. Микрофото. Инвазия опухолевыми железами мышечного слоя стенки тонкой кишки. Окраска гематоксилином и эозином, × 100; Яицкий Н.А., Седов В.М. Опухоли кишечника. СПб.: АНТ-М, 1995. 376 с.; Atlas of Gastroenterology, 4th Edition / Ed. T. Yamada. Blackwell Publishing Ltd., 2009.; Chow J.S., Chen C.C., Ahsan H. et al. A population-based study of the incidence of malignant small-bowel tumors: SEER 1973-1990 // Int. J. Epidemiol. 1996. Vol. 25. Р. 722–728.; DiSario J.A., Burt R.W., Vargas H. et al. Small bowel cancer: epidemiological and clinical characteristics from a population-based registry // Am. J. Gastroenterol. 1994. Vol. 89. Р. 699–701.; North J.H., Pack M.S. Malignant tumors of the small intestine: a review of 144 cases // Am. Surg. 2000. Vol. 66. Р. 46–51.; Pan S.Y., Morrison H. Epidemiology of cancer of the small intestine // World J. Gastrointest. Oncol. 2011. Vol. 15. Р. 33–42.; Pashayan N., Lepage C., Rachet B. et al. Survival trends for small intestinal cancer in England and Wales, 1971–1990: national populationbased study // Br. J. Cancer. 2006. Vol. 95 (9). Р. 1296–1300.; https://www.siboncoj.ru/jour/article/view/137; undefined
-
20Academic Journal
المؤلفون: S. V. Vtorushin, V. M. Perelmuter, M. V. Zavyalova, V. R. Latypov, O. Yu. Borodin, D. V. Davydov, С. В. Вторушин, В. М. Перельмутер, М. В. Завьялова, В. Р. Латыпов, О. Ю. Бородин, Д. В. давыдов
المصدر: Siberian journal of oncology; № 4 (2013); 74-77 ; Сибирский онкологический журнал; № 4 (2013); 74-77 ; 2312-3168 ; 1814-4861 ; undefined
مصطلحات موضوعية: диагностика, diagnostics
وصف الملف: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/195/197; Смирнова Г.Ф., Кириченко А.Д., Фетисова Т.И. и др. Редкий случай диссеминированного перитонеального лейомиоматоза // Сибирский онкологический журнал. 2010. № 1 (37). С. 85–87.; Fukunaga M., Mistuda A., Shibuya K. et al. Retroperitoneal lymphangioleiomyomatosis associated with endosalpingiosis // APMIS. 2007. Vol. 115. P. 1460–1465.; Hancock E., Tomkins S., Sampson J. et al. Lymphangioleiomyomatosis and tuberous sclerosis // Respir. Med. 2002. Vol. 96. P. 7–13.; Jaiswal V.R., Baird J., Fleming J. et al. Localized retroperitoneal lymphangioleiomyomatosis mimicking malignancy. A case report and review of the literature // Arch. Pathol. Lab. Med. 2003. Vol. 127 (7). P. 879–882.; Kebria M., Black D., Borelli C. et al. Primary retroperitoneal lymphangioleiomyomatosis in a postmenopausal woman: a case report and review of the literature // Int. J. Gynecol. Cancer. 2007. Vol. 17. P. 528–532.; Lee H.J., Park H.S., Kim Y.J. et al. Retroperitoneal lymphangioleiomyomatosis: sonography, computed tomography, magnetic resonance imaging, and positron emission tomography with pathologic correlation // J. Ultrasound. Med. 2010. Vol. 29 (12). P. 1837–1841.; Maruyama H., Ohbayashi C., Hino O. et al. Pathogenesis of multifocal micronodular pneumocyte hyperplasia and lymphangioleiomyomatosis in tuberous sclerosis and association with tuberous sclerosis genes TSC1 and TSC2 // Pathol. Int. 2001. Vol. 51. P. 585–594.; Matsui K., Tatsuguchi A., Valencia J. et al. Extrapulmonary lymphangioleiomyomatosis (LAM): clinicopathologic features in 22 cases // Hum. Pathol. 2000. Vol. 31. P. 1242–1248.; Matsui K., Travis W.D., Gonzalez R. et al. Association of lymphangioleiomyomatosis (LAM) with endosalpingiosis in the retroperitoneal lymph nodes: report of two cases // Int. J. Surg. Pathol. 2001. Vol. 9. P. 155–162.; Sullivan E.J. Lymphangioleiomyomatosis: a review // Chest. 1998. Vol. 114. P. 1689–1703.; https://www.siboncoj.ru/jour/article/view/195; undefined