-
1Academic Journal
المؤلفون: L. V. Pisarenko, S. A. Gumenyuk, V. I. Potapov, Л. В. Писаренко, С. А. Гуменюк, В. И. Потапов
المصدر: Russian Sklifosovsky Journal "Emergency Medical Care"; Том 13, № 3 (2024); 501-513 ; Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь»; Том 13, № 3 (2024); 501-513 ; 2541-8017 ; 2223-9022
مصطلحات موضوعية: экстренная и неотложная медицинская помощь, drones, pre-hospital stage, search and rescue operations, emergency and emergency medical care, беспилотники, дроны, догоспитальный этап, поисково-спасательные операции
وصف الملف: application/pdf
Relation: https://www.jnmp.ru/jour/article/view/1939/1493; Приказ Министерства здравоохранения РФ от 20 июня 2013 г. № 388н «Об утверждении Порядка оказания скорой, в том числе скорой специализированной, медицинской помощи» (с изменениями и дополнениями) URL: https://base.garant.ru/70438200/?ysclid=lnq0f3wlm0816266597 [Дата обращения 20.08.2024]; Шарипов А.М., Сафаров З.Ф. Проблемы современной догоспитальной помощи и медицины катастроф. Вестник национального детского медицинского центра (Узбекистан). 2022;(2):91–95.; Комплексное наблюдение условий жизни населения. Итоги наблюдения. Статистические таблицы. Росстат. 2018. Таблицы 34.1-Получение скорой медицинской помощи; 34.1.1-Получение скорой медицинской помощи лицами старше трудоспособного возраста. URL: https://rosstat.gov.ru/free_doc/new_site/KOUZ18/index.html [Дата обращения 20.08.2024]; Колесников А.В., Бреусов А.В., Шичанин В.В., Бреусов Р.А. Удовлетворенность населения региона качеством работы службы скорой медицинской помощи. Вестник Российского университета дружбы народов. Серия: Медицина. 2017;21(1):109–116. https://doi.org/10.22363/2313-0245-2017-21-1-109-116; Nimilan V, Manohar G, Sudha R, Pearley S. Drone-aid: An aerial medical assistance. International Journal of Innovative Technology and Exploring Engineering (IJITEE). 2019;8(11 Suppl):1288–1292. https://doi.org/10.35940/ijitee.K1260.09811S19; Pulsiri N, Vatananan-Thesenvilz R. Drones in Emergency Medical Services: A Systematic Literature Review with Bibliometric Analysis. International Journal of Innovation and Technology Management. 2021;18(4):2097001. https://doi.org/10.1142/S0219877020970019; Коннова Л.А., Бончук Г.И. Об истории беспилотных летательных аппаратов и перспективах их использования в практике спасательных работ. Российские беспилотники. 2018. URL: https://russiandrone.ru/publications/ob-istorii-bespilotnykh-letatelnykh-apparatov-i-perspektivakh-ikh-ispolzovaniya-v-praktike-spasateln/ [Дата обращения 20.08.2024]; Schaller A-A, Vatananan-Thesenvitz R, Pulsiri N, Schaller A-M. The Rise of digital business models: An Analysis of the knowledge base. In: 2019 Portland International Conference on Management of Engineering and Technology (PICMET), (Portland, 25-29 August 2019). Portland, OR, USA;2019. pp. 609-621. https://doi.org/10.23919/picmet.2019.8893696; Mairaj A, Baba A, Javaid A. Application specific drone simulators; Recent advances and challenges. Simulation Modelling Practice and Theory. 2019;94(4):100–117. https://doi.org/10.1016/j.simpat.2019.01.004; Rosser JB Jr, Parker BC, Vignesh V. Medical Applications of Drones for Disaster Relief: A Review of the Literature. Surg Technol Int. 2018;33:17–22. PMID: 30384393; Rosser JC Jr, Vignesh V, Terwilliger BA, Parker BC. Surgical and Medical Applications of Drones: A Comprehensive Review. JSLS. 2018;22(3):e2018.00018. PMID: 30356360 https://doi.org/10.4293/JSLS.2018.00018; Johnson AM, Cunningham CJ, Arnold E, Rosamond WD, Zègre-Hemsey JK. Impact of Using Drones in Emergency Medicine: What Does the Future Hold? Open Access Emerg Med. 2021;13:487–498. PMID: 34815722 https://doi.org/10.2147/OAEM.S247020 eCollection 2021.; Straubinger A, Michelmann J, Biehle T. Business model options for passenger urban air mobility. CEAS Aeronaut J. 2021;12(2):361–380. PMID: 33868510 https://doi.org/10.1007/s13272-021-00514-w; Ferrão IG, Espes D, Dezan C, Branco KR. Security and Safety Concerns in Air Taxis: A Systematic Literature Review. Sensors (Basel). 2022;22(18):6875. PMID: 36146224 https://doi.org/10.3390/s22186875; Ploetner KO, Al Haddad C, Antoniou C, Frank F, Fu M, Kabel S, et al. Long-term application potential of urban air mobility complementing public transport: an upper Bavaria example. CEAS Aeronaut J. 2020;11(4):991–1007. PMID: 33403052 https://doi.org/10.1007/s13272-020-00468-5; Feldhoff E, Soares Roque G. Determining infrastructure requirements for an air taxi service at Cologne Bonn Airport. CEAS Aeronaut J. 2021;12(4):821–833. PMID: 34466167 https://doi.org/10.1007/s13272-021-00544-4; Birrell S, Payre W, Zdanowicz K, Herriotts P. Urban air mobility infrastructure design: Using virtual reality to capture user experience within the world’s first urban airport. Appl Ergon. 2022;105:103843. PMID: 35810501 https://doi.org/10.1016/j.apergo.2022.103843; Rajendran S, Pagel E. Recommendations for emerging air taxi network operations based on online review analysis of helicopter services. Heliyon. 2020;6(12):e05581. PMID: 33305048 https://doi.org/10.1016/j.heliyon.2020.e05581 eCollection 2020 Dec.; Li T, Hu H. Development of the Use of Unmanned Aerial Vehicles (UAVs) in Emergency Rescue in China. Risk Manag Healthc Policy. 2021;14:4293–4299. PMID: 34703340 https://doi.org/10.2147/RMHP.S323727 eCollection 2021.; Mohd Daud SMS, Mohd Yusof MYP, Heo CC, Khoo LS, Chainchel Singh MK, Mahmood MS, et al. Applications of drone in disaster management: A scoping review. Sci Justice. 2022;62(1):30–42. PMID: 35033326 https://doi.org/10.1016/j.scijus.2021.11.002; Gross RJ. Complete evolution and history of drones: from 1800s to 2022. Available at: https://www.propelrc.com/history-of-drones/ [Accessed 20.08.2024]; Oh D, Han J. Smart Search System of Autonomous Flight UAVs for Disaster Rescue. Sensors (Basel). 2021;21(20):6810. PMID: 34696023 https://doi.org/10.3390/s21206810; Seguin C, Blaquière G, Loundou A, Michelet P, Markarian T. Unmanned aerial vehicles (drones) to prevent drowning. Resuscitation. 2018;127:63–67. PMID: 29653153 https://doi.org/10.1016/j.resuscitation.2018.04.005; Kim ML, Pevzner LD, Temkin IO. Development of automatic system for Unmanned Aerial Vehicle (UAV) motion control for mine conditions. Mining Science and Technology (Russia). 2021;6(3):203–210. https://doi.org/10.17073/2500-0632-2021-3-203-210; Karaca Y, Cicek M, Tatli O, Sahin A, Pasli S, Beser MF, et al. The potential use of unmanned aircraft systems (drones) in mountain search and rescue operations. Am J Emerg Med. 2018;36(4):583–588. PMID: 28928001 https://doi.org/10.1016/j.ajem.2017.09.025; Cappello TD, Masè M, Falla M, Regli IB, Mejia-Aguilar A, Mayrgündter S, et al. Drones reduce the treatment-free interval in search and rescue operations with telemedical support – A randomized controlled trial. Am J Emerg Med. 2023;66:40–44. PMID: 36680868 https://doi.org/10.1016/j.ajem.2023.01.020; van Veelen MJ, Voegele A, Rauch S, Kaufmann M, Brugger H, Strapazzon G. COVID-19 Pandemic in Mountainous Areas: Impact, Mitigation Strategies, and New Technologies in Search and Rescue Operations. High Alt Med Biol. 2021;22(3):335–341. PMID: 34319777 https://doi.org/10.1089/ham.2020.0216; Braun J, Gertz SD, Furer A, Bader T, Frenkel H, Chen J, et al. The promising future of drones in prehospital medical care and its application to battlefield medicine. J Trauma Acute Care Surg. 2019;87(1S Suppl 1):S28–S34. PMID: 31246903 https://doi.org/10.1097/TA.0000000000002221; Yamazaki Y, Premachandra C, Perea CJ. Audio-Processing-Based human detection at disaster sites with unmanned aerial vehicle. IEEE Access. 2020;8:101398–101405. https://doi.org/10.1109/ACCESS.2020.2998776; Al-Naji A, Perera AG, Mohammed SL, Chahl J. Life Signs Detector Using a Drone in Disaster Zones. Remote Sensing. 2019;11(20):2441. https://doi.org/10.3390/rs11202441; Lygouras E, Santavas N, Taitzoglou A, Tarchanidis K, Mitropoulos A, Gasteratos A. Unsupervised Human Detection with an Embedded Vision System on a Fully Autonomous UAV for Search and Rescue Operations. Sensors (Basel). 2019;19(16):3542. PMID: 31416131 https://doi.org/10.3390/s19163542; Handford C, Reeves F, Parker P. Prospective use of unmanned aerial vehicles for military medical evacuation in future conflicts. J R Army Med Corps. 2018;164(4):293–296. PMID: 29523753 https://doi.org/10.1136/jramc-2017-000890; Lu J, Wang X, Chen L, Sun X, Li R, Zhong W, et al. Unmanned aerial vehicle based intelligent triage system in mass-casualty incidents using 5G and artificial intelligence. World J Emerg Med. 2023;14(4):273–279. PMID: 37425090 https://doi.org/10.5847/wjem.j.1920-8642.2023.066; Jain T, Sibley A, Stryhn H, Hublouc I. Comparison of unmanned aerial vehicle technology-assisted triage versus, standard practice in triaging casualties by paramedic students in a mass-casualty incident scenario. Prehosp Disaster Med. 2018;33(4):375–380. PMID: 30001765 https://doi.org/10.1017/S1049023X18000559; Meshcheryakov RV, Trefilov PM, Chekhov AV, Diane SAK, Rusakov KD, Lesiv EA, et al. An application of swarm of quadcopters for searching operations. IFAC-PapersOnLine. 2019;52(25):14–18. https://doi.org/10.1016/j.ifacol.2019.12.438; Alotaibi ET, Alqefari SS, Koubaa A. LSAR: Multi-UAV collaboration for search and rescue missions. IEEE Acces. 2019;7:55817–55832. https://doi.org/10.1109/ACCESS.2019.2912306; Abrahamsen HB. A remotely piloted aircraft system in major incident management: concept and pilot, feasibility study. BMC Emerg Med. 2015;15:12. https://doi.org/10.1186/s12873-015-0036-3; Roberts NB, Ager A, Leith T, Lott I, Mason-Maready M, Nix T, et al. Current summary of the evidence in drone-based emergency medical services care. Resusc Plus. 2023;13:100347. PMID: 36654723 https://doi.org/10.1016/j.resplu.2022.100347 eCollection 2023 Mar.; Bogle B, Rosamond WD, Snyder KT, Zègre-Hemsey JK. The case for drone-assisted emergency response to cardiac arrest: an optimized statewide deployment approach. N C Med J. 2019;80(4):204–212. PMID: 31278178 https://doi.org/10.18043/ncm.80.4.204; Banerjee P, Ganti L, Stead TG, Vera AE, Vittone R, Pepe PE. Every one-minute delay in EMS on-scene resuscitation after out-of-hospital pediatric cardiac arrest lowers ROSC by 5%. Resusc Plus. 2021;5:100062. PMID: 34223334 https://doi.org/10.1016/j.resplu.2020.100062 eCollection 2021 Mar.; Lim JCL, Loh N, Lam HH, Lee JW, Liu N, Yeo JW, et al. The Role of Drones in Out-of-Hospital Cardiac Arrest: A Scoping Review. J Clin Med. 2022;11(19):5744. PMID: 36233610 https://doi.org/10.3390/jcm11195744; Cheskes S, McLeod SL, Nolan M, Snobelen P, Vaillancourt C, Brooks SC, et al. Improving Access to Automated External Defibrillators in Rural and Remote Settings: A Drone Delivery Feasibility Study. J Am Heart Assoc. 2020;9(14):e016687. PMID: 32627636 https://doi.org/10.1161/JAHA.120.016687; Ryan JP. The feasibility of medical unmanned aerial systems in suburban areas. Am J Emerg Med. 2021;50:532–545. PMID: 34543836 https://doi.org/10.1016/j.ajem.2021.08.064; Robakowska M, Ślęzak D, Żuratyński P, Tyrańska-Fobke A, Robakowski P, Prędkiewicz P, et al. Possibilities of Using UAVs in Pre-Hospital Security for Medical Emergencies. Int J Environ Res Public Health. 2022;19(17):10754. PMID: 36078469 https://doi.org/10.3390/ijerph191710754; Mao R, Du B, Sun D, Kong N. Optimizing a UAV-based emergency medical service network for trauma injury patients. In: IEEE 15th International Conference on Automation Science and Engineering (CASE), (Vancouver, BC, Canada, 22-26 August 2019). Vancouver; 2019. p. 721–726. https://doi.org/10.1109/COASE.2019.8843138; Fischer P, Rohrer U, Nürnberger P, Manninger M, Scherr D, von Lewinski D, et al. Automated external defibrillator delivery bydrone in mountainous regions to support basic life support – A simulation study. Resusc Plus. 2023;14:100384. PMID: 37091925 https://doi.org/10.1016/j.resplu.2023.100384 eCollection 2023 Jun.; Homier V, Brouard D, Nolan M, Roy M-A, Pelletier P, McDonald M, et al. Drone versus ground delivery of simulated blood products to an urban trauma center: The Montreal Medi-Drone pilot study. J Trauma Acute Care Surg. 2020;90(3):515–521. PMID: 33017356 https://doi.org/10.1097/TA.0000000000002961; Scalea JR, Restaino S, Scassero M, Blankenship G, Bartlett ST, Wereley N. An Initial Investigation of Unmanned Aircraft Systems (UAS) and Real-Time Organ Status Measurement for Transporting Human Organs. IEEE J Transl Eng Health Med. 2018;6:4000107. PMID: 30464862 https://doi.org/10.1109/JTEHM.2018.2875704 еCollection 2018.; Yakushiji K, Fujita H, Murata M, Hiroi N, Hamabe Y, Yakushiji F. Short-range transportation using unmanned aerial vehicles (UAVs) during disasters in Japan. Drones. 2020;4(4):68. https://doi.org/10.3390/drones4040068; Kumar A, Sharma K, Singh H, Naugriya SG, Gill SS, Buyya R. A drone-based networked system and methods for combating coronavirus disease (COVID-19) pandemic. Future Gener Comput Syst. 2021;115:1–19. PMID: 32895585 https://doi.org/10.1016/j.future.2020.08.046; Tejativaddbana P, Suriyawongpaisal W, Kasemsup V, Suksaroj T. The roles of village health volunteers: COVID-19 prevention and control in Thailand. Asia Pacific Journal of Health Management. 2020;15(3):18–22. https://doi.org/10.24083/apjhm.v15i3.477; Chamola V, Hassija V, Gupta V, Guizani M. A comprehensive review of the COVID-19 pandemic and the role of IoT, drones, AI, blockchain, and 5G in managing its impact. IEEE Access. 2020;8:90225-90265. https://doi.org/10.1109/ACCESS.2020.2992341; Kotlinski M, Calkowska JK. U-Space and UTM Deployment as an Opportunity for More Complex UAV Operations Including UAV Medical Transport. J Intell Robot Syst. 2022;106(1):12. PMID: 36039343 https://doi.org/10.1007/s10846-022-01681-6; Vatananan-Thesenvitz R, Schaller A-A, Shannon RA. Bibbometric review of the knowledge base for innovation in sustainable development. Sustainability. 2019;11(20):5783–5805. https://doi.org/10.3390/su11205783; Boedecker H. The 2021 Drone Regulation-What is new? What is planned? Drone Market 2021. URL: https://droneii.com/the-2021-drone-regulation-what-is-new-what-is-planned; Lin CF, Lin TJ, Liao WS, Lan H, Lin JY, Chin CH, et al. Solar power can substantially prolong maximum achievable airtime of quadcopler drones. Adv Sci (Weinh). 2020;7(20):2001497. PMID: 33101858 https://doi.org/10.1002/adv.202001497 eCollection 2020 Oct.; Basheer AA. Advances in the smart materials applications in the aerospace industries. Aircraft Engineering and Aerospace Technology. 2020;92(7):1027–1035. https://doi.org/10.1108/aeat-02-2020-0040; Фаттахов М.Р., Киреев А.В., Клещ В.С. Рынок беспилотных авиационных систем в России: состояние и особенности функционирования в макроэкономических условиях 2022 года. Вопросы инновационной экономики. 2022;12(4):2507–2528. https://doi.org/10.18334/vinec.12.4.116912; https://www.jnmp.ru/jour/article/view/1939
-
2Academic Journal
المؤلفون: R. E. Filyavin, V. N. Lykhin, S. A. Gumenyuk, G. A. Smetanin, Р. Э. Филявин, В. Н. Лыхин, С. А. Гуменюк, Г. А. Сметанин
المساهمون: The study had no sponsorship, Исследование не имеет спонсорской поддержки
المصدر: Russian Sklifosovsky Journal "Emergency Medical Care"; Том 13, № 2 (2024); 295-298 ; Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь»; Том 13, № 2 (2024); 295-298 ; 2541-8017 ; 2223-9022
مصطلحات موضوعية: догоспитальный этап, ultrasound examinations, video laryngoscopy, evacuation, triage, prehospital stage, ультразвуковые исследования, видеоларингоскопия, эвакуация, сортировка
وصف الملف: application/pdf
Relation: https://www.jnmp.ru/jour/article/view/1894/1468; Проценко Д.Н., Родионов Е.П., Логвинов Ю.И. Практическая ультрасонография. Национальное руководство для врачей. Москва: ГЭОТАР-Медиа; 2022. с. 50–250.; Hernandez C, Shuler K, Hannan H, Sonyika C, Likourezos A, Marshall J. C.A.U.S.E.: Cardiac arrest ultra-sound exam – A better approach to managing patients in primary non-arrhythmogenic cardiac arrest! Resuscitation. 2007;76(2):198–206. PMID: 17822831 doi:10.1016/j.resuscitation.2007.06.033; Advocacy for Emergency Department Ultrasonographic Privilege and Practice. Ann Emerg Med. 2017;70(6):938. PMID: 29157703 doi:10.1016/j.annemergmed.2017.08.019; Kennedy Hall M, Coffey EC, Herbst M, Liu R, Pare JR, Taylor AR, et al. The “5Es” of Emergency Physician–performed Focused Cardiac Ultrasound: A Protocol for Rapid Identification of Effusion, Ejection, Equality, Exit, and Entrance. Acad Emerg Med. 2015;22(5):583–593. PMID: 25903585 doi:10.1111/acem.12652; Bouhemad B, Mojoli F, Nowobilski N, Hussain A, Rouquette I, Guinot PG, et al. Use of combined cardiac and lung ultrasound to predict weaning failure in elderly, high-risk cardiac patients: a pilot study. Intensive Care Med. 2020;46(3):475–484. PMID: 31915837 doi:10.1007/s00134-019-05902-9; Морозов С.П., Проценко Д.Н., Сметанина С.В. Лучевая диагностика коронавирусной болезни (COVID-19): организация, методология, интерпретация результатов : методические рекомендации ДЗМ № 14. Москва;2021. С. 26–27.; Lichtenstein D. Lung Ultrasound in the Critically Ill. J Med Ultrasound. 2009;17(3):125–142.; Díaz-Gómez JL, Mayo PH, Koenig SJ. Point-of-Care Ultrasonography. N Engl J Med. 2021;385(17):1593–1602. PMID: 34670045 doi:10.1056/NEJMra1916062; Mantuani D, Frazee BW, Fahimi J, Nagdev A. Point-of-Care Multi-Organ Ultrasound Improves Diagnostic Accuracy in Adults Presenting to the Emergency Department with Acute Dyspnea. West J Emerg Med. 2016;17(1):46–53. PMID: 26823930 doi:10.5811/westjem.2015.11.28525; Butts C. The Speed of Sound ‘Triple Scan’ for Dyspneic Patients Improves Diagnostic Accuracy. Emerg Med News. 2017;39(4):23. doi:10.1097/01.EEM.0000515685.67918.f7; Krackov R, Rizzolo D. Real-time ultrasound-guided thoracentesis. JAAPA. 2017; 30(4):32–37. PMID: 28350729 doi:10.1097/01.JAA.0000508210.40675.09; Walley PE, Walley KR, Goodgame B, Punjabi V, Sirounis D. A practical approach to goal-directed echocardiography in the critical care setting. Crit Care. 2014;18(6):681. PMID: 25672460 doi:10.1186/s13054-014-0681-z; https://www.jnmp.ru/jour/article/view/1894
-
3Academic Journal
المؤلفون: A. M. Shchikota, I. V. Pogonchenkova, E. A. Turova, M. A. Rassulova, S. A. Gumenyuk, А. М. Щикота, И. В. Погонченкова, Е. А. Турова, М. А. Рассулова, С. А. Гуменюк
المصدر: PULMONOLOGIYA; Том 30, № 5 (2020); 599-608 ; Пульмонология; Том 30, № 5 (2020); 599-608 ; 2541-9617 ; 0869-0189 ; 10.18093/0869-0189-2020-30-5
مصطلحات موضوعية: курение, Chronic Obstructive Lung Disease, SARS-CoV-2, smoking, хроническая обструктивная болезнь легких
وصف الملف: application/pdf
Relation: https://journal.pulmonology.ru/pulm/article/view/2165/1770; https://journal.pulmonology.ru/pulm/article/view/2165/1784; Погонченкова И.В., Задионченко В.С. Пульмоногенная гипертензия и системное воспаление. Кардиология. 2012; (6): 51.; Leung J.M., Yang C.X., Tam A. et al. ACE-2 expression in the small airway epithelia of smokers and COPD patients: implications for COVID-19. Eur. Respir. J. 2020; 55 (5): 2000688. DOI:10.1183/13993003.00688-2020.; Russo P., Bonassi S., Giacconi R. et al. COVID-19 and smoking: is nicotine the hidden link? Eur. Respir. J. 2020; 55 (6): 2001116. DOI:10.1183/13993003.01116-2020.; Leung J.M., Yang C.X., Sin D.D. COVID-19 and nicotine as a mediator of ACE-2. Eur. Respir. J. 2020; 55 (6): 2001261. DOI:10.1183/13993003.01261-2020.; Saheb Sharif-Askari N., Saheb Sharif-Askari F., Alabed M. et al. Airways expression of SARS-CoV-2 receptor, АПФ-2, and TMPRSS2 is lower in children than adults and increases with smoking and COPD. Version 2. Mol. Ther. Methods Clin. Dev. 2020; 18: 1–6. DOI:10.1016/j.omtm.2020.05.013.; Zhang J.J., Dong X., Cao Y.Y. et al. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy. 2020; 75 (7): 1730–1741. DOI:10.1111/all.14238.; Guan W.J., Ni Z.Y., Hu Y. et al. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 2020; 382 (18): 1708–1720. DOI:10.1056/NEJMoa2002032.; Emami A., Javanmardi F., Pirbonyeh N., Akbari A. Prevalence of underlying diseases in hospitalized patients with COVID-19: a systematic review and meta-analysis. Arch. Acad. Emerg. Med. 2020; 8 (1): e35.; Goyal P., Choi J.J., Pinheiro L.C. et al. Clinical characteristics of COVID-19 in New York city: Multicenter study. N. Engl. J. Med. 2020; 382 (24): 2372–2374. DOI:10.1056/NEJMc2010419.; Rossato M., Russo L., Mazzocut S. et al. Current smoking is not associated with COVID-19. Eur. Respir. J. 2020; 55 (6): 2001290. DOI:10.1183/13993003.01290-2020.; Lupia T., Scabini S., Mornese Pinna S. et al. 2019 novel coronavirus (2019-nCoV) outbreak: A new challenge. J. Glob. Antimicrob. Resist. 2020; 21: 22–27. DOI:10.1016/j.jgar.2020.02.021.; Lian J., Jin X., Hao S. et al. Analysis of epidemiological and clinical features in older patients with corona virus disease 2019 (COVID-19) out of Wuhan. Clin. Infect. Dis. 2020; 71 (15): 740–747. DOI:10.1093/cid/ciaa242.; Polverino F. Cigarette smoking and COVID-19: A complex interaction. Am. J. Respir. Crit. Care Med. 2020; 202 (3): 471–472. DOI:10.1164/rccm.202005-1646LE.; Farsalinos K., Angelopoulou A., Alexandris N., Poulas K. COVID-19 and the nicotinic cholinergic system. Eur. Respir. J. 2020; 56 (1): 2001589. DOI:10.1183/13993003.01589-2020.; Leung J.M., Yang C.X., Sin D.D. Reply to: “Current smoking is not associated with COVID-19”. Eur. Respir. J. 2020; 55 (6): 2001340. DOI:10.1183/13993003.01340-2020.; Lippi G., Henry B.M. Chronic obstructive pulmonary disease is associated with severe coronavirus disease 2019 (COVID-19). Respir. Med. 2020; 167: 105941. DOI:10.1016/j.rmed.2020.105941.; Wang B., Li R., Lu Z., Huang Y. Does comorbidity increase the risk of patients with COVID-19: evidence from meta-analysis. Aging (Albany NY). 2020; 12 (7): 6049–6057. DOI:10.18632/aging.103000.; Guan W.J., Liang W.H., Zhao Y. et al. Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis. Eur. Respir. J. 2020; 55 (5): 2000547. DOI:10.1183/13993003.00547-2020.; Jain V., Yuan J.M. Predictive symptoms and comorbidities for severe COVID-19 and intensive care unit admission: a systematic review and meta-analysis. Int. J. Public. Health. 2020; 65 (5): 533–546. DOI:10.1007/s00038-02001390-7.; Somani S., Richter F., Fuster V. et al. Characterization of patients who return to hospital following discharge from hospitalization for COVID-19. medRxiv [Preprint. Posted: 2020, May 22]. DOI:10.1101/2020.05.17.20104604.; Shi S., Qin M., Cai Y. et al. Characteristics and clinical significance of myocardial injury in patients with severe coronavirus disease 2019. Eur. Heart. J. 2020; 41 (22): 20702079. DOI:10.1093/eurheartj/ehaa408.; Parohan M., Yaghoubi S., Seraji A. et al. Risk factors for mortality in patients with Coronavirus disease 2019 (COVID-19) infection: a systematic review and meta-analysis of observational studies. Aging Male. 2020, Jun. 8. DOI:10.1080/13685538.2020.1774748.; Zhao Q., Meng M., Kumar R. et al. The impact of COPD and smoking history on the severity of COVID-19: A systemic review and meta-analysis. J. Med. Virol. 2020; 92 (10): 1915–1921. DOI:10.1002/jmv.25889.; Li J., He X., Yuanyuan et al. Meta-analysis investigating the relationship between clinical features, outcomes, and severity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pneumonia. Am. J. Infect. Control. [Preprint. Posted: 2020, Jun. 12]. DOI:10.1016/j.ajic.2020.06.008.; Liu W., Tao Z.W., Wang L. et al. Analysis of factors associated with disease outcomes in hospitalized patients with 2019 novel coronavirus disease. Chin. Med. J. (Engl.). 2020; 133 (9): 1032–1038. DOI:10.1097/CM9.0000000000000775.; Cen Y., Chen X., Shen Y. et al. Risk factors for disease progression in mild to moderate COVID-19 patients – a multi-center observational study. Clin. Microbiol. Infect. 2020; 26 (9): 1242–1247. DOI:10.1016/j.cmi.2020.05.041.; Wang L., He W., Yu X. et al. Coronavirus disease 2019 in elderly patients: Characteristics and prognostic factors based on 4-week follow-up. J. Infect. 2020; 80 (6): 639–645. DOI:10.1016/j.jinf.2020.03.019.; Higham A., Singh D. Increased ACE2 expression in the bronchial epithelium of COPD patients who are overweight. Obesity (Silver Spring). 2020; 28 (9): 1586–1589. DOI:10.1002/oby.22907.; Luo J., Rizvi H., Preeshagul I.R. et al. COVID-19 in patients with lung cancer. Ann. Oncol. 2020; 31 (10): 13861396. DOI:10.1016/j.annonc.2020.06.007.; Tal-Singer R., Crapo J.D. COPD at the time of COVID-19: A COPD foundation perspective. Chronic Obstr. Pulm. Dis. 2020; 7 (2): 73–75. DOI:10.15326/jcopdf.7.2.2020.0149.; Daccord C., Touilloux B., Von Garnier C. [Asthma and COPD management during the COVID-19 pandemic]. Rev. Med. Suisse. 2020; 16 (692): 933–938 (in French).; Meyers M.H. A case of COVID-19 infection: Chief symptom, diarrhea. Am. Fam. Physician. 2020; 101 (10): 580.; Dong X., Cao Y.Y., Lu X.X. et al. Eleven faces of coronavirus disease 2019. Allergy. 2020; 75 (7): 1699–1709. DOI:10.1111/all.14289.; Salehi S., Abedi A., Radmard A.R. et al. Chest computed tomography manifestation of coronavirus disease 2019 (COVID-19) in patients with cardiothoracic conditions. J. Thorac. Imaging. 2020; 35 (4): W90–96. DOI:10.1097/RTI.0000000000000531.; Miwa M., Nakajima M., Goto H. Peripheral “Swiss Cheese” appearance in a COVID-19 patient with chronic obstructive pulmonary disease. Am. J. Trop. Med. Hyg. 2020; 103 (2): 546. DOI:10.4269/ajtmh.20-0605.; Global Initiative for Chronic Obstructive Lung Disease. GOLD COVID-19 Guidance. Available at: https://goldcopd.org/gold-covid-19-guidance/; Bhutani M., Hernandez P., Bourbeau J. et al. Key highlights of the Canadian Thoracic Society’s position statement on the optimization of COPD management during the COVID19 pandemic. Chest. 2020; 158 (3): 869–872. DOI:10.1016/j.chest.2020.05.530.; Deslée G., Zysman M., Burgel P.R. et al. Chronic obstructive pulmonary disease and the COVID-19 pandemic: Reciprocal challenges. Respir. Med. Res. 2020; 78: 100764. DOI:10.1016/j.resmer.2020.100764.; Attaway A., Hatipoğlu U. Management of patients with COPD during the COVID-19 pandemic. Cleve. Clin. J. Med. [Preprint. Posted: 2020, Jul. 17]. DOI:10.3949/ccjm.87a.ccc007.; Edler C., Schröder A.S., Aepfelbacher M. et al. Dying with SARS-CoV-2 infection-an autopsy study of the first consecutive 80 cases in Hamburg, Germany. Int. J. Legal. Med. 2020; 134 (4): 1275–1284. DOI:10.1007/s00414-02002317-w.; Børvik T., Brækkan S.K., Enga K. et al. COPD and risk of venous thromboembolism and mortality in a general population. Eur. Respir. J. 2016; 47 (2): 473–481. DOI:10.1183/13993003.00402-2015.; Latham S., Sullivan J., Williams S., Eakin M.N. Maintaining emotional well-being during the COVID-19 pandemic: A resource for your patients. Chronic Obstr. Pulm. Dis. 2020; 7 (2): 76–78. DOI:10.15326/jcopdf.7.2.2020.0150.; Halpin D.M.G., Singh D., Hadfield R.M. Inhaled corticosteroids and COVID-19: a systematic review and clinical perspective. Eur. Respir. J. 2020; 55 (5): 2001009. DOI:10.1183/13993003.01009-2020.; Iwabuchi K., Yoshie K., Kurakami Y. et al. [COVID-19 three cases improved with inhaled ciclesonide in the early to middle stages of pneumonia]. Available at: www.kansensho.or.jp/uploads/files/topics/2019ncov/covid19_casereport_200310.pdf (in Chinese).; Yang I.A., Clarke M.S., Sim E.H. et al. Inhaled corticosteroids for stable chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 2012; (7): CD002991. DOI:10.1002/14651858.CD002991.pub3.; Lipworth B., Chan R., Lipworth S., Rui Wen Kuo C. Weathering the cytokine storm in susceptible patients with severe SARS-CoV-2 infection. J. Allergy Clin. Immunol. Pract. 2020; 8 (6): 1798–1801. DOI:10.1016/j.jaip.2020.04.014.; Singanayagam A., Glanville N., Cuthbertson L. et al. Inhaled corticosteroid suppression of cathelicidin drives dysbiosis and bacterial infection in chronic obstructive pulmonary disease. Sci. Transl. Med. 2019; 11 (507): eaav3879. DOI:10.1126/scitranslmed.aav3879.; Tal-Singer R., Yawn B.P., Wise R. et al. The COPD foundation coronavirus disease 2019 international medical experts survey: results. Chronic Obstr. Pulm. Dis. 2020; 7 (3): 139–146. DOI:10.15326/jcopdf.7.3.2020.0164.; Matsuyama S., Kawase M., Nao N. et al. The inhaled corticosteroid ciclesonide blocks coronavirus RNA replication by targeting viral NSP15. bioRxiv [Preprint. Posted: 2020, Mar. 12]. DOI:10.1101/2020.03.11.987016.; Suda K., Tsuruta M., Eom J. et al. Acute lung injury induces cardiovascular dysfunction: effects of IL-6 and budesonide/formoterol. Am. J. Respir. Cell. Mol. Biol. 2011; 45 (3): 510–516. DOI:10.1165/rcmb.2010-0169OC.; Bridgewood C., Damiani G., Sharif K. et al. Rationale for evaluating PDE4 inhibition for mitigating against severe inflammation in COVID-19 pneumonia and beyond. Isr. Med. Assoc. J. 2020; 22 (6): 335–339.; Yen B.L., Yen M.L., Wang L.T. Current status of mesenchymal stem cell therapy for immune/inflammatory lung disorders: Gleaning insights for possible use in COVID-19. Stem Cells Transl. Med. 2020; 9 (10): 1163–1173. DOI:10.1002/sctm.20-0186.; https://journal.pulmonology.ru/pulm/article/view/2165