يعرض 1 - 20 نتائج من 338 نتيجة بحث عن '"СЕТЧАТКА"', وقت الاستعلام: 0.59s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Conference

    المساهمون: Губарев, Фёдор Александрович

    وصف الملف: application/pdf

    Relation: Молодежь и современные информационные технологии : сборник трудов XX Международной научно-практической конференции студентов, аспирантов и молодых учёных, 20-22 марта 2023 г., г. Томск; Мусса Авалдугубах. Автоматическое обнаружение экссудата в изображении сетчатки глаза / Мусса Авалдугубах; Томский политехнический университет, ИШХБМТ // Молодежь и современные информационные технологии : сборник трудов XX Международной научно-практической конференции студентов, аспирантов и молодых учёных, 20-22 марта 2023 г., г. Томск. — Томск : Изд-во ТПУ, 2023. — С. 102-104.; http://earchive.tpu.ru/handle/11683/77991

  3. 3
    Academic Journal

    المصدر: Ophthalmology in Russia; Том 20, № 4 (2023); 708-713 ; Офтальмология; Том 20, № 4 (2023); 708-713 ; 2500-0845 ; 1816-5095 ; 10.18008/1816-5095-2023-4

    وصف الملف: application/pdf

    Relation: https://www.ophthalmojournal.com/opht/article/view/2241/1167; Егоров, Е. А., Еричева В. П. Национальное руководство по глаукоме. М.: ГЭОТАР-Медиа, 2019. С. 3–8.; Tham YC, Li X, Wong TY. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014;(121):2081–2090. doi:10.1016/j.ophtha.2014.05.013.; Косакян С.М., Робустова О.В., Бессмертный А.М., Калинина О.М., Василенкова Л.В. Эффективность и безопасность комбинированной терапии первичной открытоугольной глаукомы. Вестник офтальмологии. 2020;136(5):96–102. doi:10.17116/oftalma202013605196.; Курышева Н.И., Арджевнишвили Т.Д., Трубилина А.В. Сравнительное исследование ретробульбарного и ретинального кровотока при первичной глаукоме и ее сочетании с ВМД. Новости глаукомы. 2017;1:69–72.; Страхов В.В., Ярцев А.В., Алексеев В.В., Климова О.Н., Казанова С.Ю., Воронин Н.А. Структурно-функциональные изменения слоев сетчатки при первичной глаукоме и возможные пути ретинопротекции. Вестник офтальмологии. 2019;135(2):70–82. doi:10.17116/oftalma201913502170.; Ying H, Yue BY. Optineurin: The autophagy connection. Exp Eye Res. 2016;(144):73–80. doi:10.1016/j.exer.2015.06.029.; Маркелова Е.В., Хохлова А.С., Кириенко А.В., Филина Н.В. Противовоспалительные цитокины и их роль в патогенезе первичной открытоугольной глаукомы. Медицинская иммунология. 2015;17(5):323.; Иванова Н.В., Кондратюк Г.И., Ляшенко Н.И. Структурно-функциональные изменения сетчатки при первичной открытоугольной глаукоме. Российский медицинский журнал. Клиническая офтальмология. 2015;2(15):61–64.; Матвеева Н.Ю., Калиниченко С.Г., Едранов С.С. Морфофункциональная характеристика ганглиозных клеток сетчатки и их состояние при открытоугольной форме глаукомы. Тихоокеанский медицинский журнал. 2015;3:6–10.; Зуева М.В. Динамика гибели ганглиозных клеток сетчатки при глаукоме и ее функциональные маркеры. Национальный журнал глаукома. 2016;1(15):70–85.; VanderWall KB, Lu B, Alfaro JS, Allsop AR, Carr AS, Wang S, Meyer JS. Differential susceptibility of retinal ganglion cell subtypes in acute and chronic models of injury and disease. Sci. Rep. 2020;10:17359. doi:10.1038/s41598-020-71460-6; Perge JA, Nivan JE, Mugnaini E, Balasubramanian V, Sterling P. Why do axons differ in caliber? J Neurosci 2012;32:626–638. doi:10.1523/jneurosci.4254-11.2012.; Morgan JE. Retina ganglion cell degeneration in glaucoma: an opportunity missed? A review. Clin Exp Ophthalmol 2012;40:364–368. doi:10.1111/j.14429071.2012.02789.x.; Della Santina L, Ou Y. Who’s lost first? Susceptibility of retinal ganglion cell types in experimental glaucoma. Exp. Eye Res. 2017;158:43–50. doi:10.1016/j.exer.2016.06.006.; Еричев В.П., Хачатрян Г.К., Хомчик О.В. Современные направления в изучении патогенеза первичной глаукомы. Вестник офтальмологии. 2021;137(5):268–274.; He J, Lu S, Chen L, Tam P, Zhang B, Leung C, Pang C, Tham C, Chu W. Coding Region Mutation Screening in Optineurin in Chinese Normal-Tension Glaucoma Patients. Dis Markers. 2019;5820537. doi:10.1155/2019/5820537.; Chen M, Yu X, Xu J, Ma J, Chen X, Chen B, Gu Y, Wang K. Association of gene polymorphisms with primary open-angle glaucoma: a systematic rewiew and metaanalysis. Investig Ophthalmol Vis Sci. 2019;60(4):1105–1121. doi:10.1167/iovs.1825922.; Романенко И.А. Генетика глаукомы. Военно-медицинский журнал. 2009;6:46–50.; Calkins DJ. Critical pathogenic events underlying progression of neurodegeneration in glaucoma. Prog Retin Eye Res. 2012;31:702–719. doi:10.1016/j.preteyeress.2012.07.001.; Jung H, Kim SY, Canbakis Cecen FS, Cho Y, Kwon SK. Dysfunction of Mitochondrial Ca(2+) Regulatory Machineries in Brain Aging and Neurodegenerative Diseases. Front. Cell Dev. Biol. 2020;8:599792. doi:10.3389/fcell.2020.599792.; Ito YA, Di Polo A. Mitochondrial dynamics, transport, and quality control: A bottleneck for retinal ganglion cell viability in optic neuropathies. Mitochondrion. 2017;36:186–192. doi:10.1016/j.mito.2017.08.014.; Reeves TM, Smith TL, Williamson JC, Phillips LL. Unmyelinated axons show selective rostrocaudal pathology in the corpus callosum after traumatic brain injury. J Neuropathol Exp Neurol 2012;71:198–210. doi:10.1097/nen.0b013e3182482590.; Varnazza S, Tirendi S, Bassi AM, Traverso CE, Sacca SC. Neuroinflammation in primary Open-Angle Glaucoma. Journal of Clinical Medicine. 2020;9(10):3172. doi:10.3390/jcm9103172.; Tsai T, Grotegut P, Reinehr S, Joachim SC. Role of Heart Shock Proteins in Glaucoma. International Journal of Molecular Sciences. 2019;20(20):5160. doi:10.3390/ijms20205160.; Егоров Е.А., Корелина В.Е., Чередниченко Д.В., Газизова И.Р. Роль нейровоспаления в патогенезе глаукомной оптической нейропатии. Клиническая офтальмология. 2022;22(2):116–121.; Fernandez-Albarral JA, Salobrar-Garcia E, Martinez-Paramo R. Retinal glial changes in Alzheimer’s disease — A rewiew. J Ophtalm. 2019;12(3):198–207. doi:10.1016/j.optom.2018.07.001.; Должиков А.А., Победа А.С., Шевченко О.А. Морфофункциональные изменения сетчатки при моделировании глаукомного процесса у крыс. Научные результаты биомедицинских исследований. 2020;6(4):503–514. doi:10.18413/2658-6533-2020-6-4-0-6.; Van Hook MJ, Monaco C, Bierlein ER, Smith JC. Neuronal and Synaptic Plasticity in the Visual Thalamus in Mouse Models of Glaucoma. Front. Cell. Neurosci. 2021;14:626056. doi:10.3389/fncel.2020.626056.; El-Danaf R, Huberman AD. Characteristic patterns of dendritic remodeling in early-stage glaucoma: evidence from genetically identified retinal ganglion cell types. J Neurosci 2015;35(6):2329–2343. doi:10.1523/jneurosci.1419-14.2015.; Berry RH, Qu J, John SW, Howell GR, Jakobs TC. Synapse loss and dendrite remodeling in a mouse model of glaucoma. PLoS One 2015;10(12):e0144341. doi:10.1371/journal.pone.0144341. eCollection 2015.; Chen Q, Huang S, Ma Q, Lin H, Pan M, Liu X, Lu F, Shen M. Ultra-high resolution profiles of macular intra-retinal layer thicknesses and associations with visual field defects in primary open angle glaucoma. Sci Rep. 2017;7:41100. doi:10.1038/srep41100.; Курышева Н.И., Киселева Т.Н., Арджевнишвили Т.Д. и др. Хориоидея при глаукоме: результаты исследования методом оптической когерентной томографии. Глаукома. 2013;10(3-2):73–82. doi:10.18008/18165095-2013-4-26-31.; Zhang X, Dastiridou A, Francis BA. Baseline Fourier-Domain OCT Structural Risk Factors for Visual Field Progression in the Advanced Imaging for Glaucoma Study. Am J Ophthalmol. 2016;172:94–103. doi:10.1016/j.ajo.2016.09.015.; Weinreb NR, Bowd C, Moghimi S, Tafreshi A, Rausch S, Zangwill LM. Ophthalmic Diagnostic Imaging: Glaucoma. High Resolution Imaging in Microscopy and Ophthalmology: New Frontiers in Biomedical Optics [Internet]. 2019. doi:10.1007/9783-030-16638-0_5.; Курышева Н.И. Роль нарушений ретинальной микроиркуляции в прогрессировании глаукомной оптиконейропатии. Вестник офтальмологии. 2020;136(4):57–65.; Kurysheva N.I., Maslova E.V., Zolnikova I.V., Fomin A.V., Lagutin M.B. A comparative study of structural, functional and circulatory parameters in glaucoma diagnostics. PLoS ONE;2018:13(8).; Kurysheva N.I. Does OCT Angiography of Macula Play a Role in Glaucoma Diagnostics? Ophthalmol Open J. 2016;2(1):1–11. doi:10.17140/OOJ-2-107.; Kurysheva NI, Shatalova EO. Parafoveal vessel Density Dropout May Predict Glaucoma Progression in The Long-Term Follow Up. Journal of Ophthalmology and Research. 2022:5:150–166.; Kurysheva NI, Ryabova TY, Shlapak VN. Heart rate variability: the comparison between high tension and normal tension glaucoma. EPMA Journal. 2018;9:35–45. doi:10.1007/s13167-017-0124-4.; Глазко Н.Г., Егоров А.Е. Анализ состояния микроциркуляторного русла центральной зоны сетчатки у больных глаукомой при проведении нейроретинопротекторной терапии. Клиническая офтальмология. 2021;1(21):3–8. doi:10.32364/2311-7729-2021-21-1-3-8.; Aghaei Fard M, Ritch R. Optical coherence tomography angiography in glaucoma. Ann Transl Med. 2020;8(18):1204. doi:10.21037/atm-20-2828.; Kim JS, Kim YK, Baek SU. Topographic correlation between macular superficial microvessel density and ganglion cell-inner plexiform layer thickness in glaucomasuspect and early normal-tension glaucoma. Br J Ophthalmol. 2020;104(1):104–109. doi:10.1136/bjophthalmol-2018-313732.; Hou H, Moghimi S, Zangwill LL. Macula Vessel Density and Thikness in Early Primary Open-Angle Glaucoma. Am J Ophthalmol. 2019;199:120–132. doi:10.1016/j.ajo.2018.11.012.; Курышева Н.И., Маслова Е.В., Трубилина А.В. Снижение перипапиллярного кровотока как фактор развития и прогрессирования первичной открытоугольной глаукомы. Российский офтальмологический журнал. 2016;3:34–41.; Жукова С.И., Юрьева Т.И., Помкина И.В., Грищук А.С. Особенности хориоретинального кровотока у больных с открытоугольной глаукомой. Сибирский научный медицинский журнал. 2018;38(5):38–44.; Жукова С.И., Юрьева Т.Н., Микова О.И., Самсонов Д.Ю., Григорьева А.В., Пятова Ю.С. ОКТ-ангиография в оценке хориоретинального кровотока при колебании внутриглазного давления у больных первичной открытоугольной глаукомой. Клиническая офтальмология. 2016;16(3):98–103.; Pelligrini M, Vagge A, Ferro Desideri LF, et al. Optical Coherence Tomography Angiography in Neurodegenerative disorders. J Clin Med. 2020;9(6):1706. doi:10.3390/jcm9061706.; Бгатова Н.П., Обанина Н.А., Еремина А.В., Трунов А.Н., Черных В.В. Структура сосудистого русла и интерстиция сетчатки глаза человека при терминальной стадии первичной открытоугольной глаукомы. Российский офтальмологический журнал. 2022;15(2):121–128. doi:10.21516/2072-0076-2022-15-2-supplement-121-128.; Shiihara H, Terasaki H, Sonoda S. Objective evaluation of size and shape of superficial foveal avascular zone in normal subjects by optical coherence tomography angiography. Sci rep. 2018;8(1):10143. doi:10.1038/s41598-018-28530-7.; Kwon G, Сhoi G, Shin GW. Alterations of the Foveal Avascular Zone Measured by Optical Coherence Tomography Angiography in Glaucoma Patients with Central Visual Field Defects. Invest Ophthalmol with Sci. 2017;58(3):1637–1645. doi:10.1167/iovs.16-21079.; https://www.ophthalmojournal.com/opht/article/view/2241

  4. 4
    Academic Journal

    المصدر: Medical Immunology (Russia); Том 25, № 3 (2023); 631-636 ; Медицинская иммунология; Том 25, № 3 (2023); 631-636 ; 2313-741X ; 1563-0625

    وصف الملف: application/pdf

    Relation: https://www.mimmun.ru/mimmun/article/view/2780/1701; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2780/11610; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2780/11611; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2780/11612; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2780/11613; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2780/11614; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2780/11615; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2780/11616; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2780/11617; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2780/11618; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2780/12156; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2780/12158; Balatskaya N.V., Petrov S.Yu., Kotelin V.I. Factors of innate immunity in the pathogenesis of glaucoma and optic neuropathy. Immunopathology, Allergology, Infectology, 2021, Vol. 1, pp. 29-38. (In Russ.); Burguillos M.A., Deierborg T., Kavanagh E., Persson A., Hajji N., Garcia-Quintanilla A., Cano J., Brundin P., Englund E., Venero J.L., Joseph B. Caspase signalling controls microglia activation and neurotoxicity. Nature, 2011, Vol. 472, no. 7343, pp. 319-324.; Celkova L., Doyle S. L., Campbell M. NLRP3 inflammasome and pathobiology in AMD. J. Clin. Med., 2015, Vol. 4, pp. 172-192.; Cuenca N., Fernández-Sánchez L., Campello L., Maneu V., de la Villa P., Lax P., Pinilla I. Cellular responses following retinal injuries and therapeutic approaches for neurodegenerative diseases. Prog. Retin. Eye Res., 2014, Vol. 43, pp. 17-75.; Glezer I., Simard A.R., Rivest S. Neuroprotective role of the innate immune system by microglia. Neuroscience, 2007, Vol. 147, no. 4, pp. 867-883.; Gonzalez H., Elgueta D., Montoya A., Pacheco R. Neuroimmune regulation of microglial activity involved in neuroinflammation and neurodegenerative diseases. J. Neuroimmunol., 2014, Vol. 274, no. 1-2, pp. 1-13.; Karlstetter M., Scholz R., Rutar M., Wong W.T., Provis J.M., Langmann T. Retinal microglia: just bystander or target for therapy? Prog. Retin. Eye Res., 2015, Vol. 45, pp. 30-57.; Kauppinen A., Paterno J.J., Blasiak J., Kaarniranta K. Inflammation and its role in age-related macular degeneration. Cell. Mol. Life Sci., 2016, Vol. 73, pp. 1765-1786.; Krishnaswamy J.K., Chu T., Eisenbarth S.C. Beyond pattern recognition: NOD-like receptors in dendritic cells. Trends Immunol., 2013, Vol. 34, no. 5, pp. 224-233.; Luo C., Yang X., Kain A.D., Powell D.W., Kuehn M.H., Tezel G. Glaucomatous tissue stress and the regulation of immune response through glial Toll-like receptor signaling. Investig. Ophthalmol. Vis. Sci., 2010, Vol. 51, no. 11, pp. 5697-5707.; Martinez F.O., Helming L., Gordon S. Alternative activation of macrophages: an immunologic functional perspective. Annu Rev. Immunol., 2009, Vol. 27, pp. 451-483.; Mitchell P., Liew G., Gopinath B., Wong T.Y. Age-related macular degeneration. Lancet, 2018, Vol. 392, pp. 1147-1159.; Neroeva N.V., Neroev V.V., Ilyukhin P.A., Karmokova A.G., Losanova O.A., Ryabina M.V., Maybogin A.M. Modeling the atrophy of retinal pigment epithelium. Russian Ophthalmological Journal, 2020, Vol. 13, no. 4, pp. 58-63. (In Russ.); Yu C., Roubeix C., Sennlaub F., Saban D.R. Microglia versus monocytes: distinct roles in degenerative diseases of the retina. Trends Neurosci., 2020, Vol. 43, pp. 433-449.; Zhang Y., Xu Y., Sun Q., Xue S., Guan H., Ji M. Activation of P2X7R- NLRP3 pathway in Retinal microglia contribute to Retinal Ganglion Cells death in chronic ocular hypertension (COH). Exp. Eye Res., 2019, Vol. 188, 107771. doi:10.1016/j.exer.2019.107771.; https://www.mimmun.ru/mimmun/article/view/2780

  5. 5
    Academic Journal

    المساهمون: The research was funded by Russian Science Foundation, project number 21-15-00047., Работа выполнена при финансовой поддержке Российского научного фонда (проект №21-15- 00047). Эксперименты проведены с соблюдением этических норм работы с животными, установленных в Директивой 2010/63/ЕС Европейского парламента и Совета европейского союза от 22 сентября 2010 г., и одобрены Комиссией по биоэтике института цитологии и генетики Российской академии наук (Протокол №85/1 от 18.06.2021).

    المصدر: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; Том 78, № 3 (2023); 205-212 ; Вестник Московского университета. Серия 16. Биология; Том 78, № 3 (2023); 205-212 ; 0137-0952

    وصف الملف: application/pdf

    Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/1262/634; Fields M.A., Del Priore L.V., Adelman R.A., Rizzolo L.J. Interactions of the choroid, Bruch’s membrane, retinal pigment epithelium, and neurosensory retina collaborate to form the outer blood-retinal-barrier. Prog. Retin. Eye Res. 2020;76:100803.; Campbell M., Humphries P. The blood-retina barrier: tight junctions and barrier modulation. Adv. Exp. Med. Biol. 2012;763:70–84.; Naylor A., Hopkins A., Hudson N., Campbell M. Tight junctions of the outer blood retina barrier. Int. J. Mol. Sci. 2019;21(1):211.; Díaz-Coránguez M., Ramos C., Antonetti D.A. The inner blood-retinal barrier: сellular basis and development. Vision Res. 2017;139:123–137.; Vermette D., Hu P., Canarie M.F., Funaro M., Glover J., Pierce R.W. Tight junction structure, function, and assessment in the critically ill: a systematic review. Intensive Care Med. Exp. 2018;6(1):37.; O’Leary F., Campbell M. The blood-retina barrier in health and disease. FEBS J. 2023;290(4):878–891.; Фурсова А.Ж., Дербенева А.С., Васильева М.А., Никулич И.Ф., Тарасов М.С., Гамза Ю.А., Чубарь Н.В., Гусаревич О.Г., Дмитриева Е.И., Кожевникова О.С., Колосова Н.Г., Елизарова А.А. Новые данные о патогенетических механизмах развития возрастной макулярной дегенерации. Вестн. офтальмол. 2022;138(2):120–130.; Kozhevnikova O.S., Fursova A.Z., Derbeneva A.S., Nikulich I.F., Tarasov M.S., Devyatkin V.A., Rumyantseva Y.V., Telegina D.V., Kolosova N.G. Association between polymorphisms in CFH, ARMS2, CFI, and C3 Genes and response to anti-VEGF treatment in neovascular age-related macular degeneration. Biomedicines. 2022;10(7):1658.; Kozhevnikova O.S., Telegina D.V., Tyumentsev M.A., Kolosova N.G. Disruptions of Autophagy in the rat retina with age during the development of age-related-maculardegeneration-like Retinopathy. Int. J. Mol. Sci. 2019;20(19):4804.; Kozhevnikova O.S., Telegina D.V., Devyatkin V.A., Kolosova N.G. Involvement of the autophagic pathway in the progression of AMD-like retinopathy in senescence-accelerated OXYS rats. Biogerontology. 2018;19(3):223–235.; Telegina D.V., Kozhevnikova O.S., Bayborodin S.I., Kolosova N.G. Contributions of age-related alterations of the retinal pigment epithelium and of glia to the AMD-like pathology in OXYS rats. Sci. Rep. 2017;7(1):41533.; Kolosova N.G., Kozhevnikova O.S., Muraleva N.A., Rudnitskaya E.A., Rumyantseva Y.V., Stefanova N.A., Telegina D.V., Tyumentsev M.A., Fursova A.Zh. SkQ1 as a Tool for controlling accelerated senescence program: experiments with OXYS rats. Biochemistry (Mosc.). 2022;87(12):1552–1562.; Kelley K.A. Transport of mouse lines by shipment of live embryos. Methods enzymology. Guide to techniques in mouse development, part A: Mice, embryos, and cells, 2nd edition, vol. 476. Eds. P.M. Wassarman and P.M. Soriano. Academic Press; 2010:25–36.; Goldim M.P. de S., Della Giustina A., Petronilho F. Using Evans blue dye to determine blood-brain barrier integrity in rodents. Curr. Protoc. Immunol. 2019;126(1):e83.; Kim Y., Lee S., Zhang H., Lee S., Kim H., Kim Y., Won M.H., Kim Y.M., Kwon Y.G. CLEC14A deficiency exacerbates neuronal loss by increasing blood-brain barrier permeability and inflammation. J. Neuroinflammation. 2020;17(1):48.; Perfusion of Mouse – Bridges Lab Protocols [Электронный ресурс]. URL: http://bridgeslab.sph.umich.edu/protocols/index.php?title=Perfusion_of_Mouse&mobileaction=toggle_view_mobile (дата обращения: 17.01.2023).; Wang H.L., Lai T.W. Optimization of Evans blue quantitation in limited rat tissue samples. Sci. Rep. 2014;4(1):6588.; Kozhevnikova O.S., Korbolina E.E., Ershov N.I., Kolosova N.G. Rat retinal transcriptome: effects of aging and AMD-like retinopathy. Cell Cycle. 2013;12(11):1745–1761.; Telegina D.V., Korbolina E.E., Ershov N.I., Kolosova N.G., Kozhevnikova O.S. Identification of functional networks associated with cell death in the retina of OXYS rats during the development of retinopathy. Cell Cycle. 2015;14(22):3544–3556.; Cunha-Vaz J. The blood-retinal barrier in the management of retinal disease: EURETINA award lecture. Ophthalmologica. 2017;237(1):1–10.; Ivanova E., Alam N.M., Prusky G.T., Sagdullaev B.T. Blood-retina barrier failure and vision loss in neuron-specific degeneration. JCI Insight. 2019;4(8):e126747.; Shu D.Y., Butcher E., Saint-Geniez M. EMT and EndMT: Emerging roles in age-related macular degeneration. Int. J. Mol. Sci. 2020;21(12):4271.; Telegina D.V., Kozhevnikova O.S., Fursova A.Z., Kolosova N.G. Autophagy as a target for the retinoprotective effects of the mitochondria-targeted antioxidant SkQ1. Biochemistry (Mosc.). 2020;85(12):1640–1649.; Rizzolo L.J. Development and role of tight junctions in the retinal pigment epithelium. Int. Rev. Cytol. 2007;258:195–234.; Rizzolo L.J., Peng S., Luo Y., Xiao W. Integration of tight junctions and claudins with the barrier functions of the retinal pigment epithelium. Prog. Retin. Eye Res. 2011;30(5):296–323.; Markovets A.M., Saprunova V.B., Zhdankina A.A., Fursova A.Zh., Bakeeva L.E., Kolosova N.G. Alterations of retinal pigment epithelium cause AMD-like retinopathy in senescence-accelerated OXYS rats. Aging (Albany N.Y.). 2010;3(1):44–54.; Xu Q., Qaum T., Adamis A.P. Sensitive bloodretinal barrier breakdown quantitation using Evans blue. Invest. Ophthalmol. Vis. Sci. 2001;42(3):789–794.; Kozhevnikova O.S., Fursova A.Z., Markovets A.M., Telegina D.V., Muraleva N.A., Kolosova N.G. VEGF and PEDF levels in the rat retina: effects of aging and AMD-like retinopathy. Adv. Gerontol. 2018;31(3):339–344. 29. Barber A.J., Antonetti D.A., Gardner T.W. Altered expression of retinal occludin and glial fibrillary acidic protein in experimental diabetes. The Penn State Retina Research Group. Invest. Ophthalmol. Vis. Sci. 2000;41(11):3561–3568.; Liu X., Dreffs A., Díaz-Coránguez M., Runkle E.A., Gardner T.W., Chiodo V.A., Hauswirth W.W., Antonetti D.A. Occludin S490 phosphorylation regulates vascular endothelial growth factor-induced retinal neovascularization. Am. J. Pathol. 2016;186(9):2486–2499.; Edwards M.M., McLeod D.S., Bhutto I.A., Grebe R., Duffy M., Lutty G.A. Subretinal glial membranes in eyes with geographic atrophy. Invest. Ophthalmol. Vis. Sci. 2017;58(3):1352–1367.; Cho C., Wang Y., Smallwood P. M., Williams J., Nathans J. Dlg1 activates beta-catenin signaling to regulate retinal angiogenesis and the blood-retina and blood-brain barriers. eLife. 2019;8:e45542.; Zhang S., Li X., Liu W., Zhang X., Huang L., Li S., Yang M., Zhao P., Yang J., Fei P., Zhu X., Yang Z. Wholeexome sequencing identified DLG1 as a candidate gene for familial exudative vitreoretinopathy. Genet. Test Mol. Biomarkers. 2021;25(5):309–316.; https://vestnik-bio-msu.elpub.ru/jour/article/view/1262

  6. 6
    Academic Journal
  7. 7
  8. 8
    Academic Journal

    المساهمون: Работа частично выполнена в рамках проектов БРФФИ Ф20РА-014 и Ф21ПАКГ-001.

    المصدر: «System analysis and applied information science»; № 4 (2021); 25-38 ; «Системный анализ и прикладная информатика»; № 4 (2021); 25-38 ; 2414-0481 ; 2309-4923 ; 10.21122/2309-4923-2021-4

    وصف الملف: application/pdf

    Relation: https://sapi.bntu.by/jour/article/view/535/410; Diabetes – Statistics & Facts [Электронный ресурс]. – Режим доступа: https://www.statista.com/topics/1723/diabetes/#dossierKeyfigures. – Дата доступа: 03.11.2021.; Tilahun M., et al. Prevalence of Diabetic retinopathy and its associated factors among diabetic patients at Debre Markos referral hospital, Northwest Ethiopia, 2019: hospital-based cross-sectional study, Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy. – 2020. – Vol.13. – pp.2179.; Krause J., et al. Grader variability and the importance of reference standards for evaluating machine learning models for diabetic retinopathy, Ophthalmology, 2018, Vol.125, No.8, pp.1264–1272.; Manohar P., Mallikarjun S. Holi comparative study of methods for fundus mask generation, International Journal of Advanced Science and Technology, 2020, Vol. 29, No. 3, pp. 9642–9653.; Gagnon L., et al. Procedure to detect anatomical structures in optical fundus images, SPIE Conf. on Medical imaging, 2001, Vol. 4322, pp. 1218–1225.; Youssif A.A. H.A. R., Ghalwash A. Z., Ghoneim A.A. S.A. R., Optic disc detection from normalized digital fundus images by means of a vessels’ direction matched filter, IEEE Transactions on Medical Imaging, 2007, Vol.27, No.1, pp.11–18. doi:10.1109/TMI.2007.900326.; Niemeijer M., et al. Fast detection of the optic disc and fovea in color fundus photographs, Medical Image Analysis, 2009, 13(6): 859–870. doi:10.1016/j.media.2009.08.003.; DRIMDB – Database for quality testing of retinal images [Электронный ресурс]. – Режим доступа: https://academictorrents.com/details/99811ba62918f8e73791d21be29dcc 372d660. – Дата доступа: 09.09.2021.; Khan S. M., et al. A global review of publicly available datasets for ophthalmological imaging: barriers to access, usability, and generalisability, The Lancet Digital Health, 2021, Vol.3, No.1, pp.e51-e66. doi:10.1016/S2589– 7500(20)30240–5.; Ter Haar F. Automatic localization of the optic disc in digital colour images of the human retina, Utrecht University. 2005, MS thesis, 83p.; Hashim F.A., Salem N. M., Seddik A. F. Preprocessing of color retinal fundus images, 2nd Int. Japan-Egypt Conference on Electronics, Communications and Computers, 2013 Dec 17, pp. 190–193. doi:10.1109/JEC-ECC.2013.6766410.; Otsu N. A threshold selection method from gray-level histograms, IEEE Transactions on Systems, Man, and Cybernetics, 1979, Vol.9, No.1, pp.:62–66.; Aibinu A. M., Salami M. J.E., Shafie A.A. Retina fundus image mask generation using pseudo parametric modeling technique, IIUM Engineering Journal, 2010, Vol.11, No.2, pp.163–177.; База изображений EyePACS [Электронный ресурс]. – Режим доступа: http://www.eyepacs.com/. – Дата доступа: 03.11.2021.; Pertuz S., Puig D., Garcia M.A. Analysis of focus measure operators for shape-from-focus. Pattern Recognition. – 2013. – 46(5). – P. 1415–1432. doi:10.1016/j.patcog.2012.11.011; Голуб, Ю. И. Исследование локальных оценок контраста цифровых изображений при отсутствии эталона / Ю. И. Голуб, Ф. В. Старовойтов // Системный анализ и прикладная информатика. – 2019. – № 2 (22). – C. 4–11.; Голуб, Ю. И. Сравнительный анализ безэталонных оценок резкости цифровых изображений / Ю. И. Голуб, Ф. В. Старовойтов, В. В. Старовойтов // Доклады Белорусского государственного университета информатики и радиоэлектроники. – 2019. – № 7 (125). – С. 113–120.; Zhai, G. Perceptual image quality assessment: a survey / G. Zhai, X. Min // Science China Information Sciences. – 2020. – V. 63. – № 11. – P. 83–135.; Gvozden, G. Blind image sharpness assessment based on local contrast map statistics / G. Gvozden, S. Grgic, M. Grgic // Journal of Visual Communication and Image Representation. – 2018. – 50. – P. 145–158. doi:10.1016/j.jvcir.2017.11.017.; Narvekar N. D., Karam L. J. A no-reference perceptual image sharpness metric based on a cumulative probability of blur detection, Int. Workshop on Quality of Multimedia Experience. – 2009. – P. 87–91. doi:10.1109/QOMEX.2009.5246972.; https://sapi.bntu.by/jour/article/view/535

  9. 9
    Academic Journal

    المصدر: Ophthalmology in Russia; Том 19, № 3 (2022); 532-540 ; Офтальмология; Том 19, № 3 (2022); 532-540 ; 2500-0845 ; 1816-5095 ; 10.18008/1816-5095-2022-3

    وصف الملف: application/pdf

    Relation: https://www.ophthalmojournal.com/opht/article/view/1917/1010; Quigley H.A., Broman A.T. The number of people with glaucoma worldwide in 2010 and 2020. Br. J. Ophthalmol. 2006;90:262–267. DOI:10.1136/bjo.2005.081224; Pascolini D., Mariotti S.P. Global estimates of visual impairment: 2010. Br J Ophthalmol. 2012;96:614–618. DOI:10.1136/bjophthalmol-2011-300539; Tham Y.-Ch., Li X., Wong T.Y., Quigley H.A., Aung T., Cheng Ch-Y. Global Prevalence of Glaucoma and Projections of Glaucoma Burden through 2040. A Systematic Review and Meta-Analysis. Ophthalmology. 2014;121(11):2081–2090. DOI:10.1016/j.ophtha.2014.05.013; Quigley H.A. Neuronal death in glaucoma. Prog Retin Eye Res 1999;18:39–57. DOI:10.1016/s1350-9462(98)00014-7; Yucel Y., Gupta N. Glaucoma of the brain: a disease model for the study of transsynaptic neural degeneration. Prog Brain Res. 2008;173:465–478. DOI:10.1016/S0079-6123(08)01132-1; Sommer A. Intraocular pressure and glaucoma. Am. J. Ophthalmol. 1989;107:186– 188. DOI:10.1016/0002-9394(89)90221-3; Peters D., Bengtsson B., Heijl A. Factors associated with lifetime risk of open-angle glaucoma blindness. Acta Ophthalmol. 2014;92:421–425. DOI:10.1111/aos.12203; Сollaborative normal-tension glaucoma study group. The effectiveness of intraocular pressure reduction in the treatment of normal-tension glaucoma. Am. J. Ophthalmol. 1998;126:498–505. DOI:10.1016/s0002-9394(98)00272-4; Williams P.A., Thirgood R.A., Oliphant H., Frizzati A., Littlewood E., Votruba M., Good M.A., Williams J., Morgan J.E. Retinal ganglion cell dendritic degeneration in a mouse model of Alzheimer’s disease. Neurobiol. Aging. 2013;34(7):1799–1806. DOI:10.1016/j.neurobiolaging.2013.01.006; Blanks J.C., Schmidt S.Y., Torigoe Y., Porrello K.V., Hinton D.R., Blanks R.H. Retinal pathology in Alzheimer’s disease. II. Regional neuron loss and glial changes in GCL. Neurobiol. Aging. 1996;17:385–395. DOI:10.1016/0197-4580(96)00009-7; Johnson L.V., Leitner W.P., Rivest A.J., Staples M.K., Radeke M.J., Anderson D.H. The Alzheimer’s A beta-peptide is deposited at sites of complement activation in pathologic deposits associated with aging and age-related macular degeneration. Proc Natl Acad Sci USA. 2002;99:11830–11835. DOI:10.1073/pnas.192203399; Wostyn P., Audenaert K., De Deyn P.P. Alzheimer’s disease: cerebral glaucoma? Medical Hypotheses. 2010;74(6):973–977. DOI:10.1016/j.mehy.2009.12.019; Koronyo-Hamaoui M., Koronyo Y., Ljubimov A.V., Miller C.A., Ko M.K., Black K.L., Schwartz M., Farkas D.L. Identification of amyloid plaques in retinas from Alzheimer’s patients and noninvasive in vivo optical imaging of retinal plaques in a mouse model. Neuroimage. 2011;54,204–217. DOI:10.1016/j.neuroimage.2010.06.020; Curcio C.A., Drucker D.N. Retinal ganglion cells in Alzheimer’s disease and aging. Ann. Neurol. 1993;33:248–257. DOI:10.1002/ana.410330305; Paquet C., Boissonnot M., Roger F., Dighiero P., Gil R., Hugon J. Abnormal retinal thickness in patients with mild cognitive impairment and Alzheimer’s disease. Neurosci. Lett. 2007;420:97–99. DOI:10.1016/j.neulet.2007.02.090; Боголепова А.Н., Махнович Е.В., Журавлева А.Н. Коморбидность болезни Альцгеймера и геронтоофтальмологических заболеваний. Журнал неврологии и психиатрии имени С.С. Корсакова. 2019;119(9):17–22. DOI:10.17116/jnevro201911909117; Guo L., Salt T.E., Luong V., Wood N., Cheung W., Maass A., Ferrari G., Russo-Marie F., Sillito A.M., Cheetham M.E., Moss S.E., Fitzke F.W., Cordeiro M.F. Targeting amyloid-beta in glaucoma treatment. Proc. Natl. Acad. Sci. U.S.A. 2007;104:13444– 13449. DOI:10.1073/pnas.0703707104; No authors listed. The advanced glaucoma intervention study (AGIS): 7. the relationship between control of intraocular pressure and visual field deterioration. Am. J. Ophthalmol. 2000;130:429–440. DOI:10.1016/s0002-9394(00)00538-9; Della Santina L., Inman D.M., Lupien C.B., Horner P.J., Wong R.O. Differential progression of structural and functional alterations in distinct retinal ganglion cell types in a mouse model of glaucoma. J. Neurosci. 2013;33:17444–17457. DOI:10.1523/JNEUROSCI.5461-12.2013; El-Danaf R.N., Huberman A.D. Characteristic patterns of dendritic remodeling in early-stage glaucoma: evidence from genetically identified retinal ganglion cell types. J Neurosci. 2015;35(6):2329–2343. DOI:10.1523/JNEUROSCI.1419-14.2015; Sabharwal J., Seilheimer R.L., Tao X., Cowan C.S., Frankfort B.J., Wu S.M. Elevated IOP alters the space–time profiles in the center and surround of both ON and OFF RGCs in mouse. Proc Natl Acad Sci U.S.A. 2017;114:8859–8864. DOI:10.1073/pnas.1706994114; Della Santina L., Ou Y. Who’s lost first? Susceptibility of retinal ganglion cell types in experimental glaucoma. Exp. Eye Res. 2017;158:43–50. DOI:10.1016/j.exer.2016.06.006; Tao X., Sabharwal J., Seilheimer R.L., Wu S.M., Frankfort B.J. Mild Intraocular Pressure Elevation in Mice Reveals Distinct Retinal Ganglion Cell Functional Thresholds and Pressure-Dependent Properties. J. Neurosci. 2019;39(10):1881–1891. DOI:10.1523/JNEUROSCI.2085-18.2019; Son J.L., Soto I., Oglesby E., Lopez-Roca T., Pease M. E., Quigley H.A., MarchArmstrong N. Glaucomatous optic nerve injury involves early astrocyte reactivity and late oligodendrocyte loss. Glia. 2010;58(7):780–789. DOI:10.1002/glia.20962; Guo L., Salt T.E., Maass A., Luong V., Moss S.E., Fitzke F.W., Cordeiro M.F. Assessment of neuroprotective effects of glutamate modulation on glaucomarelated retinal ganglion cell apoptosis in vivo. Invest. Ophthalmol. Vis. Sci. 2006;47:626–633. DOI:10.1167/iovs.05-0754; Sladek A.L., Nawy S. Ocular Hypertension Drives Remodeling of AMPA Receptors in Select Populations of Retinal Ganglion Cells. Front. Synaptic Neurosci. 2020;12:30. Published 2020 Jul 24. DOI:10.3389/fnsyn.2020.00030; Farlow M.R. NMDA receptor antagonists: a new therapeutic approach for Alzheimer’s disease. Geriatrics. 2004;59:22–27.; Prati F., Cavalli A., Bolognesi M.L. Navigating the chemical space of multitargetdirected ligands: from hybrids tofragments in Alzheimer’s disease. Molecules. 2016;21(4): Article 466. 12 p. DOI:10.3390/molecules21040466; Loffler K.U., Edward D.P., Tso M.O. Immunoreactivity against tau, amyloid precursor protein, and beta-amyloid in the human retina. Invest. Ophthalmol. Visual. Sci. 1995;36:24–31.; Salt T.E., Nizari S., Cordeiro M.F., Russ H., Danysz W. Effect of the Ab Aggregation Modulator MRZ-99030 on Retinal Damage in an Animal Model of Glaucoma. Neurotox Res. 2014;26:440–446. DOI:10.1007/s12640-014-9488-6; Morquette J.B., Di Polo A. Dendritic and synaptic protection: is it enough to save the retinal ganglion cell body and axon? J. Neuroophthalmol. 2008;28:144–154. DOI:10.1097/wno.0b013e318177edf0; Klunk W.E., Engler H., Nordberg A., Wang Y., Blomqvist G., Holt D.P., Bergstrom M., Savitcheva I., Huang G.F., Estrada S., Ausen B., Debnath M.L., Barletta J., Price J.C., Sandell J., Lopresti B.J., Wall A., Koivisto P., Antoni G., Mathis C.A., Langstrom B. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann. Neurol. 2004;55:306–319. DOI:10.1002/ana.20009; McEvoy L.K., Brewer J.B. Quantitative structural MRI for early detection of Alzheimer’s disease. Expert Rev. Neurother. 2010;10:1675–1688. DOI:10.1586/ern.10.162; Selkoe D.J. Alzheimer’s disease is a synaptic failure. Science. 2002;298:789–791. DOI:10.1126/science.1074069; Cordeiro M.F., Guo L., Coxon K.M., Duggan J., Nizari S., Normando E.M., Sensi S.L., Sillito A.M., Fitzke F.W., Salt T.E., Moss S.E. Imaging multiple phases of neurodegeneration: a novel approach to assessing cell. Cell Death Dis. 2010;1:3. DOI:10.1038/cddis.2009.3; Koronyo Y., Salumbides B.C., Black K.L., Koronyo-Hamaoui M. Alzheimer’s disease in the retina: imaging retinal aß plaques for early diagnosis and therapy assessment. Neurodegener. Dis. 2012;10:285–293. DOI:10.1159/000335154. Epub 2012 Feb 10.; Morgan J.E., Datta A.V., Erichsen J.T., Albon J., Boulton M.E. Retinal ganglion cell remodelling in experimental glaucoma. Adv Exp Med Biol. 2006;572:397–402. DOI:10.1007/0-387-32442-9_56; Weber A.J., Kaufman P.L., Hubbard W.C. Morphology of single ganglion cells in the glaucomatous primate retina. Invest. Ophthalmol. Vis. Sci. 1998;39:2304–2320.; Williams P.A., Piechota M., von Ruhland C., Taylor E., Morgan J.E., Votruba M. Opa1 is essential for retinal ganglion cell synaptic architecture and connectivity. Brain. 2012;135:493–505. DOI:10.1093/brain/awr330; Scheff S.W., Price D.A., Schmitt F.A., Mufson E.J. Hippocampal synaptic loss in early Alzheimer’s disease and mild cognitive impairment. Neurobiol. Aging. 2006;27:1372–1384. DOI:10.1016/j.neurobiolaging.2005.09.012. Epub 2005 Nov 9.; Beckers A., Moons L. Dendritic shrinkage after injury: a cellular killer or a necessity for axonal regeneration? Neural Regen Res. 2019;14(8):1313–1316. DOI:10.4103/1673-5374.253505; O’Brien J., Bloomfield S.A. Plasticity of Retinal Gap Junctions: Roles in Synaptic Physiology and Disease. Ann. Rev. Vis. Sci. 2018;4:79–100. DOI:10.1146/annurevvision-091517-034133; Dutescu R.M., Li Q.X., Crowston J., Masters C.L., Baird P.N., Culvenor J.G. Amyloid precursor protein processing and retinal pathology in mouse models of Alzheimer’s disease. Graefes. Arch. Clin. Exp. Ophthalmol. 2009;247:1213–1221. DOI:10.1007/s00417-009-1060-3; Lee V., Rekhi E., Hoh Kam J., Jeffery G. Vitamin D rejuvenates aging eyes by reducing inflammation, clearing amyloid beta. Neurobiol. Aging. 2012;33:2382–2389. DOI:10.1016/j.neurobiolaging.2011.12.002; Ohno-Matsui K. Parallel findings in age-related macular degeneration and Alzheimer’s disease. Prog. Retin. Eye Res. 2011;30:217–238. DOI:10.1016/j.preteyeres.2011.02.004; Osborne N.N. Pathogenesis of ganglion “cell death” in glaucoma and neuroprotection: focus on ganglion cell axonal mitochondria. Prog. Brain Res. 2008;173:339– 352. DOI:10.1016/S0079-6123(08)01124-2; Wang L., Dong J., Cull G., Fortune B., Cioffi G.A. Varicosities of intraretinal ganglion cell axons in human and nonhuman primates. Invest. Ophthalmol. Vis. Sci. 2003;44:2–9. DOI:10.1167/iovs.02-0333; Calkins M.J., Manczak M., Mao P., Shirendeb U., Reddy P.H. Impaired mitochondrial biogenesis, defective axonal transport of mitochondria. Hum. Mol. Genet. 2011;20:4515–4529. DOI:10.1093/hmg/ddr381. Epub 2011 Aug 25.; McAllister A.K. Neurotrophins and neuronal differentiation in the central nervous system. Cellular and Molecular Life Sciences (CMLS). 2001;58(8):1054–1060. DOI:10.1007/PL00000920; Зуева М.В. Созревание и пластичность зрительной системы: нейрогенез, синаптогенез и миелиногенез. I. Сетчатка и ретино-геникулятные проекции. Вестник офтальмологии. 2012;128(3):37–41.; McAllister A.K. Cellular and Molecular Mechanisms of Dendrite Growth. Cerebral Cortex. 2020; Nov. 10(10):963–973. DOI:10.1093/cercor/10.10.963; Francardo V., Schmitz Y., Sulzer D., Cenci M.A. Neuroprotection and neurorestoration as experimental therapeutics for Parkinson’s disease. Exp. Neurol. 2017;298:137–147. DOI:10.1016/j.expneurol.2017.10.001; Gidday J.M. Adaptive Plasticity in the Retina: Protection against acute injury and neurodegenerative disease by conditioning stimuli. Conditioning Medicine. 2018;1(2):85–97.; Franceschi C., Garagnani P., Morsiani C., Conte M., Santoro A., Grignolio A., Monti D., Capri M., Salvioli S. The Continuum of Aging and Age-Related Diseases: Common Mechanisms but Different Rates. Front. Med., 12 March 2018, DOI:10.3389/fmed.2018.00061; Morgan J.E. Retina ganglion cell degeneration in glaucoma: an opportunity missed? A review. Clin. Exp. Ophthalmol. 2012;40:364–368. DOI:10.1111/j.14429071.2012.02789.x; Ly T., Gupta N., Weinreb R.N., Kaufman P.L., Yucel Y.H. Dendrite plasticity in the lateral geniculate nucleus in primate glaucoma. Vis. Res. 2011;51(2):243–250. DOI:10.1016/j.visres.2010.08.003; Kalesnykas G., Oglesby E.N., Zack D.J., Cone F.E., Steinhart M.R., Tian J., Pease M.E., Quigley H.A. Retinal ganglion cell morphology after optic nerve crush and experimental glaucoma. Invest Ophthalmol Vis Sci. 2012;53(7):3847–3857. Published 2012 Jun 22. DOI:10.1167/iovs.12-9712; Agostinone J., Alarcon-Martinez L., Gamlin C., Yu W.Q., Wong R.O.L., Di Polo A. Insulin signalling promotes dendrite and synapse regeneration and restores circuit function after axonal injury. Brain. 2018;141:1963–1980. DOI:10.1093/brain/awy142; Beckers A., Van Dyck A., Bollaerts I., Van Houcke J., Lefevere E., Andries L., Agostinone J., Van Hove I., Di Polo A., Lemmens K., Moons L. An antagonistic axon-dendrite interplay enables efficient neuronal repair in the adult Zebrafish central nervous system. Mol Neurobiol. 2018 56(5):3175–3192. DOI:10.1007/s12035-018-1292-5; Chung S.H., Awal M.R., Shay J., McLoed M.M., Mazur E., Gabel C.V. Novel DLKindependent neuronal regeneration in Caenorhabditis elegans shares links with activity-dependent ectopic outgrowth. Proc Natl Acad Sci U.S.A. 2016;113:E2852– 2860. DOI:10.1093/brain/awy142; Han S.M., Baig H.S., Hammarlund M. Mitochondria localize to injured axons to support regeneration. Neuron. 2016;92:1308–1323. DOI:10.1016/j.neuron.2016.11.025; Mar F.M., Simoes A.R., Leite S., Morgado M.M., Santos T.E., Rodrigo I.S., Teixeira C.A., Misgeld T., Sousa M.M. CNS axons globally increase axonal transport after peripheral conditioning. J Neurosci. 2014;34:5965–5970. DOI:10.1523/JNEUROSCI.4680-13.2014; Cai Q., Sheng Z.H. Mitochondrial transport and docking in axons. Exp Neurol. 2009;218:257–267. DOI:10.1016/j.expneurol.2009.03.024; Drummond E.S., Rodger J., Penrose M., Robertson D., Hu Y., Harvey A.R. Effects of intravitreal injection of a Rho-GTPase inhibitor (BA-210), or CNTF combined with an analogue of cAMP, on the dendritic morphology of regenerating retinal ganglion cells. Restor Neurol Neurosci. 2014;32:391–402. DOI:10.3233/RNN-130360; McAllister A.K., Katz L.C., Lo D.C. Neurotrophin regulation of cortical dendritic growth requires activity. Neuron. 1996;17:1057–1064. DOI:10.1016/s08966273(00)80239-1; Lom B., Cohen-Cory S. Brain-derived neurotrophic factor differentially regulates retinal ganglion cell dendritic and axonal arborization in vivo. J. Neurosci. 1999;19:9928–9938. DOI:10.1523/JNEUROSCI.19-22-09928; Rauskolb S., Zagrebelsky M., Dreznjak A., Deogracias R., Matsumoto T., Wiese S., Erne B., Sendtner M., Schaeren-Wiemers N., Korte M., Barde Y-A. Global deprivation of brain-derived neurotrophic factor in the CNS reveals an area-specific requirement for dendritic growth. J. Neurosci. 2010;30:1739–1749. DOI:10.1523/JNEUROSCI.5100-09.2010; Di Polo A., Aigner L.J., Dunn R.J., Bray G.M., Aguayo A.J. Prolonged delivery of brain-derived neurotrophic factor by adenovirus-infected Muller cells temporarily rescues injured retinal ganglion cells. Proc. Natl. Acad. Sci. USA. 1998;95:3978– 3983. DOI:10.1073/pnas.95.7.3978; Weber A.J., Harman C.D. BDNF preserves the dendritic morphology of alpha and beta ganglion cells in the cat retina after optic nerve injury. Invest. Ophth. Vis. Sci. 2008;49:2456–2463. DOI:10.1167/iovs.07-1325; Rodger J., Drummond E.S., Hellstrom M., Robertson D., Harvey A.R. Long-term gene therapy causes transgene-specific changes in the morphology of regenenerating retinal ganglion cells. PLoS One. 2012;7:e31061. DOI:10.1371/journal.pone.0031061; Binley K.E., Ng W.S., Barde Y.-A., Song B., Morgan J.E. Brain-derived neurotrophic factor prevents dendritic retraction of adult mouse retinal ganglion cells. Eur. J. Neurosci. 2016;44:2028–2039. DOI:10.1111/ejn.13295; https://www.ophthalmojournal.com/opht/article/view/1917

  10. 10
    Academic Journal

    Relation: Ретинопротекторный эффект 3-гидрокси-6-метил-2-этилпиридин-N-ацетилтаурината при NMDA-опосредованной эксайтотоксичности в сетчатке / С.С. Черняева [и др.] // Экспериментальная и клиническая фармакология. - 2022. - Т.85, №11.-С. 3-8. - Doi:10.30906/0869-2092-2022-85-11-3-8. - Библиогр.: с. 7.; http://dspace.bsu.edu.ru/handle/123456789/54515

  11. 11
    Academic Journal
  12. 12
    Academic Journal

    المصدر: Ophthalmology in Russia; Том 18, № 1 (2021); 110-116 ; Офтальмология; Том 18, № 1 (2021); 110-116 ; 2500-0845 ; 1816-5095 ; 10.18008/1816-5095-2021-1

    وصف الملف: application/pdf

    Relation: https://www.ophthalmojournal.com/opht/article/view/1443/805; Зольникова И.В., Шамшинова А.М. Мультифокальная электроретинография: происхождение и клиническое значение. Вестник офтальмологии. 2005;121(3):47–50.; Lai T.Y., Chan W.M., Lai R.Y., Ngai J.W., Li H., Lam D.S. The clinical applications of multifocal electroretinography: a systematic review. Surv. Ophthalmol. 2007;52:61– 96. DOI:10.1016/j.survophthal.2006.10.005; Ball S., Petry H. Noninvasive assessment of retinal function in rats using multifocal electoretinography. Investig Ophthalmol Vis Sci. 2000;41:610–617.; Gjörloff K.W., Andréasson S., Ghosh F. mfERG in normal and lesioned rabbit retina. Graefe’s Arch Clin Exp Ophthalmol. 2006;244:83–89. DOI:10.1007/s00417-005-0019-2; Hood D.C., Bearse M.A. Jr., Sutter E.E., Viswanathan S., Frishman L.J. The optic nerve head component of the monkey’s (Macaca mulatto) multifocal electroretinogram (mfERG). Vis. Res. 2001;41:2029–2041. DOI:10.1016/S0042-6989(01)00010-4; Kyhn M.V., Kiilgaard J.F., Scherfig E., Prause J.U. The spatial resolution of the porcine multifocal electroretinogram for detection of laser-induced retinal lesions. Acta Ophthalmol. 2008; 86(7):786–793. DOI:10.1111/j.1600-0420.2007.01020.x; Jain A.T., Blumenkranz M.S., Paulus Y., Wiltberger M.W., Andersen D.E., Huie P., Palanker D. Effect of pulse duration on size and character of the lesion in retinal photocoagulation. Arch. Ophthalmol. 2008;126(1):78–85.; Hood D.C., Bach M., Briqell M., Keating D., Kondo M., Lyons J.S. ISCEV standard for clinical multifocal electroretinography (mfERG) (2011 edition). Doc. Ophthalmol. 2012; 124(1):1–13. DOI:10.1007/s10633-011-9296-8; Famiglietti E.V., Sharpe S.J. Regional topography of rod and immunocytochemically characterized “blue” and “green” cone photoreceptors in rabbit retina. Vis Neurosci. 1995;12:1151–1175.; Williams D.L. The Rabbit Eye. In Williams D.L., ed. Ophthalmology of Exotic Pets. 1st edition. Blackwell Publishing Ltd; 2012:15–55. DOI:10.1002/9781118709627.ch04; Greenstein V.C., Holopigian K., Hood D.C., Seiple W., Carr R.E. The nature and extent of retinal dysfunction associated with diabetic macular edema. Invest Ophthalmol Vis Sci. 2000;41(11):3643–3654.; Raz D., Perlman I., Percicot C.L., Lambrou G.N., Ofri R. Functional damage to inner and outer retinal cells in experimental glaucoma. Invest. Ophthalmol. Vis. Sci. 2003;44:3675–3684. DOI:10.1167/iovs.02-1236; Kim H.D., Han J.W., Ohn Y-H., Brinkmann R., Park T.K. Functional evaluation using multifocal electroretinogram after selective retina therapy with a microsecond-pulsed laser. Invest. Ophthalmol. Vis. Sci. 2015;56:122–131. DOI:10.1167/iovs.14-15132; https://www.ophthalmojournal.com/opht/article/view/1443

  13. 13
    Academic Journal

    المصدر: Ophthalmology in Russia; Том 18, № 2 (2021); 198-207 ; Офтальмология; Том 18, № 2 (2021); 198-207 ; 2500-0845 ; 1816-5095 ; 10.18008/1816-5095-2021-2

    وصف الملف: application/pdf

    Relation: https://www.ophthalmojournal.com/opht/article/view/1533/818; Quigley H.A., Broman A.T. The number of people with glaucoma worldwide in 2010 and 2020. Br. J. Ophthalmol. 2006;90:262–267. DOI:10.1136/bjo.2005.081224; Pascolini D., Mariotti S.P. Global estimates of visual impairment: 2010. Br J Ophthalmol. 2012;96:614–618. DOI:10.1136/bjophthalmol-2011-300539; Tham Y.-Ch., Li X., Wong T.Y., Quigley H.A., Aung T., Cheng Ch-Y. Global Prevalence of Glaucoma and Projections of Glaucoma Burden through 2040. A Systematic Review and Meta-Analysis. Ophthalmology. 2014;121(11):2081–2090. DOI:10.1016/j.ophtha.2014.05.013; Quigley H.A. Neuronal death in glaucoma. Prog Retin Eye Res. 1999;18:39–57. DOI:10.1016/s1350-9462(98)00014-7; Yucel Y., Gupta N. Glaucoma of the brain: a disease model for the study of transsynaptic neural degeneration. Prog Brain Res. 2008;173:465–478. DOI:10.1016/S00796123(08)01132-1; Sommer A. Intraocular pressure and glaucoma. Am. J. Ophthalmol. 1989;107:186– 188. DOI:10.1016/0002-9394(89)90221-3; Peters D., Bengtsson B., Heijl A. Factors associated with lifetime risk of open-angle glaucoma blindness. Acta Ophthalmol. 2014;92:421–425. DOI:10.1111/aos.12203; No authors listed The effectiveness of intraocular pressure reduction in the treatment of normal-tension glaucoma: collaborative normal-tension glaucoma study group. Am. J. Ophthalmol. 1998;126:498–505. DOI:10.1016/s0002-9394(98)00272-4; Williams P.A., Thirgood R.A., Oliphant H., Frizzati A., Littlewood E., Votruba M., Good M.A., Williams J., Morgan J.E. Retinal ganglion cell dendritic degeneration in a mouse model of Alzheimer’s disease. Neurobiol. Aging. 2013;34(7):1799–1806. DOI:10.1016/j.neurobiolaging.2013.01.006; Blanks J.C., Schmidt S.Y., Torigoe Y., Porrello K.V., Hinton D.R., Blanks R.H. Retinal pathology in Alzheimer’s disease. II. Regional neuron loss and glial changes in GCL. Neurobiol. Aging. 1996;17:385–395. DOI:10.1016/0197-4580(96)00009-7; Johnson L.V., Leitner W.P., Rivest A.J., Staples M.K., Radeke M.J., Anderson D.H. The Alzheimer’s A beta-peptide is deposited at sites of complement activation in pathologic deposits associated with aging and age-related macular degeneration. Proc Natl Acad Sci USA. 2002;99:11830–11835. DOI:10.1073/pnas.192203399; Wostyn P., Audenaert K., De Deyn P.P. Alzheimer’s disease: cerebral glaucoma? Medical Hypotheses. 2010;74(6):973–977. DOI:10.1016/j.mehy.2009.12.019; Koronyo-Hamaoui M., Koronyo Y., Ljubimov A.V., Miller C.A., Ko M.K., Black K.L., Schwartz M., Farkas D.L. Identification of amyloid plaques in retinas from Alzheimer’s patients and noninvasive in vivo optical imaging of retinal plaques in a mouse model. Neuroimage. 2011;54,204–217. DOI:10.1016/j.neuroimage.2010.06.020; Curcio C.A., Drucker D.N. Retinal ganglion cells in Alzheimer’s disease and aging. Ann. Neurol. 1993;33:248–257. DOI:10.1002/ana.410330305; Paquet C., Boissonnot M., Roger F., Dighiero P., Gil R., Hugon J. Abnormal retinal thickness in patients with mild cognitive impairment and Alzheimer’s disease. Neurosci. Lett. 2007;420:97–99. DOI:10.1016/j.neulet.2007.02.090; Боголепова А.Н., Махнович Е.В., Журавлева А.Н. Коморбидность болезни Альцгеймера и геронтоофтальмологических заболеваний. Журнал неврологии и психиатрии имени С.С. Корсакова. 2019;119(9):17–22. DOI:10.17116/jnevro201911909117; Guo L., Salt T.E., Luong V., Wood N., Cheung W., Maass A., Ferrari G., Russo-Marie F., Sillito A.M., Cheetham M.E., Moss S.E., Fitzke F.W., Cordeiro M.F. Targeting amyloid-beta in glaucoma treatment. Proc. Natl. Acad. Sci. U.S.A. 2007;104:13444– 13449. DOI:10.1073/pnas.0703707104; The AGIS Investigator. The advanced glaucoma intervention study (AGIS): 7. the relationship between control of intraocular pressure and visual field deterioration. Am. J. Ophthalmol. 2000;130:429–440. DOI:10.1016/s0002-9394(00)00538-9; Della Santina L., Inman D.M., Lupien C.B., Horner P.J., Wong R.O. Differential progression of structural and functional alterations in distinct retinal ganglion cell types in a mouse model of glaucoma. J. Neurosci. 2013;33:17444–17457. DOI:10.1523/JNEUROSCI.5461-12.2013; El-Danaf R.N., Huberman A.D. Characteristic patterns of dendritic remodeling in early-stage glaucoma: evidence from genetically identified retinal ganglion cell types. J Neurosci. 2015;35(6):2329–2343. DOI:10.1523/JNEUROSCI.1419-14.2015; Sabharwal J., Seilheimer R.L., Tao X., Cowan C.S., Frankfort B.J., Wu S.M. Elevated IOP alters the space–time profiles in the center and surround of both ON and OFF RGCs in mouse. Proc Natl Acad Sci U.S.A. 2017;114:8859–8864. DOI:10.1073/pnas.1706994114; Della Santina L., Ou Y. Who’s lost first? Susceptibility of retinal ganglion cell types in experimental glaucoma. Exp. Eye Res. 2017;158:43–50. DOI:10.1016/j.exer.2016.06.006; Tao X., Sabharwal J., Seilheimer R.L., Wu S.M., Frankfort B.J. Mild Intraocular Pressure Elevation in Mice Reveals Distinct Retinal Ganglion Cell Functional Thresholds and Pressure-Dependent Properties. J. Neurosci. 2019;39(10):1881–1891. DOI:10.1523/JNEUROSCI.2085-18.2019; Son J.L., Soto I., Oglesby E., Lopez-Roca T., Pease M. E., Quigley H.A., MarchArmstrong N. Glaucomatous optic nerve injury involves early astrocyte reactivity and late oligodendrocyte loss. Glia. 2010;58(7):780–789. DOI:10.1002/glia.20962; Guo L., Salt T.E., Maass A., Luong V., Moss S.E., Fitzke F.W., Cordeiro M.F. Assessment of neuroprotective effects of glutamate modulation on glaucoma-related retinal ganglion cell apoptosis in vivo. Invest. Ophthalmol. Vis. Sci. 2006;47:626–633. DOI:10.1167/iovs.05-0754; Sladek A.L., Nawy S. Ocular Hypertension Drives Remodeling of AMPA Receptors in Select Populations of Retinal Ganglion Cells. Front. Synaptic Neurosci. 2020;12:30. Published 2020 Jul 24. DOI:10.3389/fnsyn.2020.00030; Farlow M.R. NMDA receptor antagonists: a new therapeutic approach for Alzheimer’s disease. Geriatrics. 2004;59:22–27.; Prati F., Cavalli A., Bolognesi M.L. Navigating the chemical space of multitargetdirected ligands: from hybrids tofragments in Alzheimer’s disease. Molecules. 2016;21(4):Article 466, 12 p. DOI:10.3390/molecules21040466; Loffler K.U., Edward D.P., Tso M.O. Immunoreactivity against tau, amyloid precursor protein, and beta-amyloid in the human retina. Invest. Ophthalmol. Visual. Sci. 1995;36:24–31.; Salt T.E., Nizari S., Cordeiro M.F., Russ H., Danysz W. Effect of the Ab Aggregation Modulator MRZ-99030 on Retinal Damage in an Animal Model of Glaucoma. Neurotox Res. 2014;26:440–446. DOI:10.1007/s12640-014-9488-6; Астахов Ю.С., Бутин Е.В., Морозова Н.В., Соколов В.О., Флоренцева С.С. Опыт применения «Ретиналамина» в лечении глаукомной нейрооптикопатии и возрастной макулярной дегенерации. Офтальмологические ведомости. 2013;6(2):45–49.; Morquette J.B., Di Polo A. Dendritic and synaptic protection: is it enough to save the retinal ganglion cell body and axon? J. Neuroophthalmol. 2008;28:144–154. DOI:10.1097/wno.0b013e318177edf0; Klunk W.E., Engler H., Nordberg A., Wang Y., Blomqvist G., Holt D.P., Bergstrom M., Savitcheva I., Huang G.F., Estrada S., Ausen B., Debnath M.L., Barletta J., Price J.C., Sandell J., Lopresti B.J., Wall A., Koivisto P., Antoni G., Mathis C.A., Langstrom B. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann. Neurol. 2004;55:306–319. DOI:10.1002/ana.20009; McEvoy L.K., Brewer J.B. Quantitative structural MRI for early detection of Alzheimer’s disease. Expert Rev. Neurother. 2010;10:1675–1688. DOI:10.1586/ern.10.162 35. Selkoe D.J. Alzheimer’s disease is a synaptic failure. Science. 2002;298:789–791. DOI:10.1126/science.1074069; Cordeiro M.F., Guo L., Coxon K.M., Duggan J., Nizari S., Normando E.M., Sensi S.L., Sillito A.M., Fitzke F.W., Salt T.E., Moss S.E. Imaging multiple phases of neurodegeneration: a novel approach to assessing cell. Cell Death Dis. 2010;1:3. DOI:10.1038/cddis.2009.3; Koronyo Y., Salumbides B.C., Black K.L., Koronyo-Hamaoui M. Alzheimer’s disease in the retina: imaging retinal aß plaques for early diagnosis and therapy assessment. Neurodegener. Dis. 2012;10:285–293. DOI:10.1159/000335154; Morgan J.E., Datta A.V., Erichsen J.T., Albon J., Boulton M.E. Retinal ganglion cell remodelling in experimental glaucoma. Adv Exp Med Biol. 2006;572:397–402. DOI:10.1007/0-387-32442-9_56; Weber A.J., Kaufman P.L., Hubbard W.C. Morphology of single ganglion cells in the glaucomatous primate retina. Invest. Ophthalmol. Vis. Sci. 1998;39:2304–2320.; Williams P.A., Piechota M., von Ruhland C., Taylor E., Morgan J.E., Votruba M. Opa1 is essential for retinal ganglion cell synaptic architecture and connectivity. Brain. 2012;135:493–505. DOI:10.1093/brain/awr330; Scheff S.W., Price D.A., Schmitt F.A., Mufson E.J. Hippocampal synaptic loss in early Alzheimer’s disease and mild cognitive impairment. Neurobiol. Aging. 2006;27:1372–1384. DOI:10.1016/j.neurobiolaging.2005.09.012. Epub 2005 Nov 9.; Beckers A., Moons L. Dendritic shrinkage after injury: a cellular killer or a necessity for axonal regeneration? Neural Regen Res. 2019;14(8):1313–1316. DOI:10.4103/1673-5374.253505; O’Brien J., Bloomfield S.A. Plasticity of Retinal Gap Junctions: Roles in Synaptic Physiology and Disease. Ann. Rev. Vis. Sci. 2018;4:79–100. DOI:10.1146/annurevvision-091517-034133; Dutescu R.M., Li Q.X., Crowston J., Masters C.L., Baird P.N., Culvenor J.G. Amyloid precursor protein processing and retinal pathology in mouse models of Alzheimer’s disease. Graefes. Arch. Clin. Exp. Ophthalmol. 2009;247:1213–1221. DOI:10.1007/s00417-009-1060-3; Lee V., Rekhi E., Hoh Kam J., Jeffery G. Vitamin D rejuvenates aging eyes by reducing inflammation, clearing amyloid beta. Neurobiol. Aging. 2012;33:2382–2389. DOI:10.1016/j.neurobiolaging.2011.12.002; Ohno-Matsui K. Parallel findings in age-related macular degeneration and Alzheimer’s disease. Prog. Retin. Eye Res. 2011;30:217–238. DOI:10.1016/j.preteyeres.2011.02.004; Osborne N.N. Pathogenesis of ganglion “cell death” in glaucoma and neuroprotection: focus on ganglion cell axonal mitochondria. Prog. Brain Res. 2008;173:339– 352. DOI:10.1016/S0079-6123(08)01124-2; Wang L., Dong J., Cull G., Fortune B., Cioffi G.A. Varicosities of intraretinal ganglion cell axons in human and nonhuman primates. Invest. Ophthalmol. Vis. Sci. 2003;44:2–9. DOI:10.1167/iovs.02-0333; Calkins M.J., Manczak M., Mao P., Shirendeb U., Reddy P.H. Impaired mitochondrial biogenesis, defective axonal transport of mitochondria. Hum. Mol. Genet. 2011;20:4515–4529. DOI:10.1093/hmg/ddr381; McAllister A.K. Neurotrophins and neuronal differentiation in the central nervous system. Cellular and Molecular Life Sciences (CMLS). 2001;58(8):1054–1060. DOI:10.1007/PL00000920; Зуева М.В. Созревание и пластичность зрительной системы: нейрогенез, синаптогенез и миелиногенез. I. Сетчатка и ретино-геникулятные проекции. Вестник офтальмологии. 2012;128(3):37–41.; McAllister A.K. Cellular and Molecular Mechanisms of Dendrite Growth. Cerebral Cortex. 2020;10(10):963–973. DOI:10.1093/cercor/10.10.963; Francardo V., Schmitz Y., Sulzer D., Cenci M.A. Neuroprotection and neurorestoration as experimental therapeutics for Parkinson’s disease. Exp. Neurol. 2017;298:137–147. DOI:10.1016/j.expneurol.2017.10.001; Gidday J.M. Adaptive Plasticity in the Retina: Protection against acute injury and neurodegenerative disease by conditioning stimuli. Conditioning Medicine. 2018;1(2):85–97.; Franceschi C., Garagnani P., Morsiani C., Conte M., Santoro A., Grignolio A., Monti D., Capri M., Salvioli S. The Continuum of Aging and Age-Related Diseases: Common Mechanisms but Different Rates. Front. Med., 12 March 2018, DOI:10.3389/fmed.2018.00061; Jakobs T.C., Libby R.T., Ben Y., John S.W., Masland R.H. Retinal ganglion cell degeneration is topological but not cell type specific in DBA/2J mice. J. Cell Biol. 2005;171:313–325. DOI:10.1083/jcb.200506099; Morgan J.E. Retina ganglion cell degeneration in glaucoma: an opportunity missed? A review. Clin. Exp. Ophthalmol. 2012;40:364–368. DOI:10.1111/j.14429071.2012.02789.x; Ly T., Gupta N., Weinreb R.N., Kaufman P.L., Yucel Y.H. Dendrite plasticity in the lateral geniculate nucleus in primate glaucoma. Vis. Res. 2011;51(2):243–250. DOI:10.1016/j.visres.2010.08.003; Kalesnykas G., Oglesby E.N., Zack D.J., Cone F.E., Steinhart M.R., Tian J., Pease M.E., Quigley H.A. Retinal ganglion cell morphology after optic nerve crush and experimental glaucoma. Invest Ophthalmol Vis Sci. 2012;53(7):3847–3857. DOI:10.1167/iovs.12-9712; Agostinone J., Alarcon-Martinez L., Gamlin C., Yu W.Q., Wong R.O.L., Di Polo A. Insulin signalling promotes dendrite and synapse regeneration and restores circuit function after axonal injury. Brain. 2018;141:1963–1980. DOI:10.1093/brain/awy142; Beckers A., Van Dyck A., Bollaerts I., Van Houcke J., Lefevere E., Andries L., Agostinone J., Van Hove I., Di Polo A., Lemmens K., Moons L. An antagonistic axondendrite interplay enables efficient neuronal repair in the adult Zebrafish central nervous system. Mol Neurobiol. 2018 56(5):3175–3192. DOI:10.1007/s12035-0181292-5; Chung S.H., Awal M.R., Shay J., McLoed M.M., Mazur E., Gabel C.V. Novel DLKindependent neuronal regeneration in Caenorhabditis elegans shares links with activity-dependent ectopic outgrowth. Proc Natl Acad Sci 2016;113:E2852–2860. DOI:10.1093/brain/awy142; Han S.M., Baig H.S., Hammarlund M. Mitochondria localize to injured axons to support regeneration. Neuron. 2016;92:1308–1323. DOI:10.1016/j.neuron.2016.11.025; Mar F.M., Simoes A.R., Leite S., Morgado M.M., Santos T.E., Rodrigo I.S., Teixeira C.A., Misgeld T., Sousa M.M. CNS axons globally increase axonal transport after peripheral conditioning. J Neurosci. 2014;34:5965–5970. DOI:10.1523/JNEU ROSCI.4680-13.2014; Cai Q., Sheng Z.H. Mitochondrial transport and docking in axons. Exp Neurol. 2009;218:257–267. DOI:10.1016/j.expneurol.2009.03.024; Drummond E.S., Rodger J., Penrose M., Robertson D., Hu Y., Harvey A.R. Effects of intravitreal injection of a Rho-GTPase inhibitor (BA-210), or CNTF combined with an analogue of cAMP, on the dendritic morphology of regenerating retinal ganglion cells. Restor Neurol Neurosci. 2014;32:391–402. DOI:10.3233/RNN-130360; McAllister A.K., Katz L.C., Lo D.C. Neurotrophin regulation of cortical dendritic growth requires activity. Neuron. 1996;17:1057–1064. DOI:10.1016/s08966273(00)80239-1; Lom B., Cohen-Cory S. Brain-derived neurotrophic factor differentially regulates retinal ganglion cell dendritic and axonal arborization in vivo. J. Neurosci. 1999;19:9928–9938. DOI:10.1523/JNEUROSCI.19-22-09928; Rauskolb S., Zagrebelsky M., Dreznjak A., Deogracias R., Matsumoto T., Wiese S., Erne B., Sendtner M., Schaeren-Wiemers N., Korte M., Barde Y-A. Global deprivation of brain-derived neurotrophic factor in the CNS reveals an area-specific requirement for dendritic growth. J. Neurosci. 2010;30:1739–1749. DOI:10.1523/JNEUROSCI.5100-09.2010; Di Polo A., Aigner L.J., Dunn R.J., Bray G.M., Aguayo A.J. Prolonged delivery of brain-derived neurotrophic factor by adenovirus-infected Muller cells temporarily rescues injured retinal ganglion cells. Proc. Natl. Acad. Sci. 1998;95:3978–3983. DOI:10.1073/pnas.95.7.3978; Weber A.J., Harman C.D. BDNF preserves the dendritic morphology of alpha and beta ganglion cells in the cat retina after optic nerve injury. Invest. Ophth. Vis. Sci. 2008;49:2456–2463. DOI:10.1167/iovs.07-1325; Rodger J., Drummond E.S., Hellstrom M., Robertson D., Harvey A.R. Long-term gene therapy causes transgene-specific changes in the morphology of regenenerating retinal ganglion cells. PLoS One. 2012;7:e31061. DOI:10.1371/journal.pone.0031061; Binley K.E., Ng W.S., Barde Y.-A., Song B., Morgan J.E. Brain-derived neurotrophic factor prevents dendritic retraction of adult mouse retinal ganglion cells. Eur. J. Neurosci. 2016;44:2028–2039. DOI:10.1111/ejn.13295; https://www.ophthalmojournal.com/opht/article/view/1533

  14. 14
    Academic Journal

    المصدر: Ophthalmology in Russia; Том 18, № 2 (2021); 181-187 ; Офтальмология; Том 18, № 2 (2021); 181-187 ; 2500-0845 ; 1816-5095 ; 10.18008/1816-5095-2021-2

    وصف الملف: application/pdf

    Relation: https://www.ophthalmojournal.com/opht/article/view/1529/816; Zylberman P. 1918 lurks in everybody’s mind. The “Spanish” flu and us. Med Sci (Paris). 2006 Aug-Sep;22(8–9):767–770. DOI:10.1051/medsci/20062289767; Zhong Y., Wang K., Zhu Y., Lyu D., Yao K. COVID-19 and the Eye. J Infect. 2020 Aug;81(2):e122–e123. DOI:10.1016/j.jinf.2020.05.054; Al-Sharif E., Strianese D., AlMadhi N.H., D’Aponte A., dell’Omo R., Di Benedetto R., Costagliola C. Ocular tropism of coronavirus (CoVs): a comparison of the interaction between the animal-to-human transmitted coronaviruses (SARSCoV-1, SARS-CoV-2, MERS-CoV, CoV-229E, NL63, OC43, HKU1) and the eye. Int Ophthalmol. 2021 Jan;41(1):349–362. DOI:10.1007/s10792-020-01575-2; Ye Y., Song Y., Yan M., et al. Novel coronavirus pneumonia combined with viral conjunctivitis: three cases report. Zhonghua Yan Ke Za Zhi. 2020;38:242–247.; Willcox M.D., Walsh K., Nichols J.J., Morgan P.B., Jones LW. The ocular surface, coronaviruses and COVID-19. Clin Exp Optom. 2020 Jul;103(4):418–424. DOI:10.1111/cxo.13088; Zhou P., Yang X.L., Wang X.G., Hu B., Zhang L., Zhang W. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–273. DOI:10.1038/s41586-020-2012-7; He J., Tao H., Yan Y., Huang S.Y., Xiao Y. Molecular Mechanism of Evolution and Human Infection with SARS-CoV-2. Vi-ruses. 2020;12(4):428. DOI:10.3390/v12040428; Шатунова П.О., Быков А.С., Свитич О.А., Зверев В.В. Ангиотензинпревращающий фермент 2. Подходы к патогенетической терапии COVID-19. 2020;97(4):339– 345. DOI:10.36233/0372-9311-2020-97-4-6; Chuan-bin Sun, Yue-ye Wang, Geng-hao Liu, Zhe Liu. Role of the Eye in Transmitting Human Coronavirus: What We Know and What We Do Not Know. Front Public Health. 2020;8:155. Published online 2020 Apr 24. DOI:10.3389/fpubh.2020.00155; Lin L., Yan S., Xin P. Expression of SARS coronavirus S protein functional receptor‐ angiotensin‐converting enzyme 2 in human cornea and conjunctiva. Chin Ophthalmic Res. 2004;22:561–564. DOI:10.1038/s41433-020-0939-4; Sun Y., Liu L., Pan X. Mechanisms of the action between the SARS‐Cov S440 protein and the ACE2 receptor in eyes. Int J Ophthalmol. 2006;6:783–786.; Onufriichuk O.N., Gazizova I.R., Malyugin B.E., Kuroyedov A.V. Coronavirus Infection (COVID-19): Ophthalmic Problems. Literature Review. Fyodorov Journal of Ophthalmic Surgery = Oftal’mokhirurgiya. 2020;(3):70–79 (In Russ.). DOI:10.25276/0235-4160-2020-3-70-79; World Health Organization Update 27 — One Month Into the Global SARS Outbreak: Status of the Outbreak and Lessons for the Immediate Future. (2003). Available online at: https://www.who.int/csr/sars/archive/2003_04_11/en/; Xia J., Tong J., Liu M., Shen Y., Guo D. Evaluation of coronavirus in tears and conjunctival secretions of patients with SARS-CoV-2 infection. J Med Virol. 2020;92(6):589–594. DOI:10.1002/jmv.25725; Трубилин В.Н, Полунина Е.Г., Анджелова Д.В., Куренков В.В., Капкова С.Г., Чиненова К.В., Коновалов М.Е., Пожарицкий М.Д. Современные представления об этиологии синдрома сухого глаза. 2019;16(2):236–243. DOI:10.18008/1816-5095-2019-2-236-243; Robbins S.G., Detrick B., Hooks J.J. Retinopathy following intravitreal injection of mice with MHV strain JHM. Adv Exp Med Biol. 1990;276:519–524. DOI:10.1007/978-1-4684-5823-7_72; Robbins S.G., Detrick B., Hooks J.J. Ocular tropisms of murine coronavirus (strain JHM) after inoculation by various routes. Invest Ophthalmol Vis Sci. 1991;32(6):1883–1893. DOI:10.1007/s10792-020-01575-2; Neri P., Pichi F. COVID-19 and the eye immunity: lesson learned from the past and possible new therapeutic insights. Int Ophthalmol. 2020 May;40(5):1057–1060. DOI:10.1007/s10792-020-01389-2; Marinho P.M., Marcos A.A.A., Romano A.C., Nascimento H., Belfort R. Jr. Retinal findings in patients with COVID-19. Lancet. 2020 May 23;395(10237):1610. DOI:10.1016/S0140-6736(20)31014-X; Ortiz-Egea J.M., Ruiz-Medrano J., Ruiz-Moreno J.M, Retinal imaging study diagnoses in COVID-19: a case report, Journal of Medical Case Reports volume 15, Article number: 15 (2021), DOI:10.1186/s13256-020-02620-5; Walinjkar J.A., Makhija S.C., Sharma H.R., Morekar S.R., Natarajan S. Central retinal vein occlusion with COVID-19 infection as the presumptive etiology Indian J Ophthalmol. 2020 Nov;68(11):2572–2574. DOI:10.4103/ijo. IJO_2575_20; Gaba W.H., Ahmed D., Al Nuaimi R.K., Dhanhani A.A., Eatamadi H. Bilateral Central Retinal Vein Occlusion in a 40-Year-Old Man with Severe Coronavirus Disease 2019 (COVID-19) Pneumonia. Am J Case Rep. 2020 Oct 29;21:e927691. DOI:10.12659/AJCR.927691; Invernizzi A., Pellegrini M., Messenio D., Cereda M., Olivieri P., Brambilla A.M., Staurenghi G. Impending Central Retinal Vein Occlusion in a Patient with Coronavirus Disease 2019 (COVID-19). Ocul Immunol Inflamm. 2020 Nov 16;28(8):1290– 1292. DOI:10.1080/09273948.2020.1807023; Gascon P., Briantais A., Bertrand E., Ramtohul P., Comet A., Beylerian M. Covid19-Associated Retinopathy: A Case Report:Ocul Immunol Inflamm, 2020 Nov 16;28(8):1293–1297. DOI:10.1080/09273948.2020.1825751; https://www.ophthalmojournal.com/opht/article/view/1529

  15. 15
    Academic Journal

    المصدر: Ophthalmology in Russia; Том 18, № 3 (2021); 399-407 ; Офтальмология; Том 18, № 3 (2021); 399-407 ; 2500-0845 ; 1816-5095 ; 10.18008/1816-5095-2021-3

    وصف الملف: application/pdf

    Relation: https://www.ophthalmojournal.com/opht/article/view/1591/845; Сидоренко Е.И., Асташева И.Б. Ретинопатия недоношенных как проблема современной офтальмологии. Российская педиатрическая офтальмология. 2007;4:4–5.; Катаргина Л.А., Коголева Л.В. Ретинопатия недоношенных. Под ред. В.В. Нероева. М.: ГЭОТАР-Медиа; 2009:27–61.; Федоров А.А. Пренатальное развитие сосудов сетчатой оболочки глаза. Вестник офтальмологии. 2003;4:59–63.; Yang C.M., Liu K.R., Chen M.S. Ocular fundus eхamination in premature infants. J Formos Med Assoc. 1991;90(5):480–486.; Yokoi T., Yokoi T., Kobayashi Y. Risk factors for recurrent fibrovascular proliferation in aggressive posterior retinopathy of prematurity after early vitreous surgery. Am. J. Ophthalmol. 2010;150(1):10–15. DOI:10.1016/j.ajo.2010.02.005; Hellström A., Engström E., Hård AL, Postnatal serum insulin-like growth factor I deficiency is associated with retinopathy of prematurity and other complications of premature birth. Pediatrics. 2003;112(5):1016–1020.; Катаргина Л.А., Слепова А.С., Скрипец П.П. Гуморальный иммунный ответ на S-антиген сетчатки у недоношенных детей и его роль в развитии и течении ретинопатии недоношенных. Вестник офтальмологии. 2003;119(1):20–22.; Holmstron G., Broberger U., Thomassen P. Neonatal risk factor in retinopathy of prematurity- a population-based study. Acta Ophthalmol Scand. 1998;76:204–207.; Seiberth V., Lindercamp O. Risk factor in retinopathy of prematurity. Br. J Ophthalmol. 2000;214:131–135.; International Committee for the Classification of the Late Stages of ROP. An International Classification of Retinopathy of Prematurity. Arch. Ophthalmol. 1984;102:1130–1134.; International Committee for the Classification of the Late Stages of ROP. An International Classification of Retinopathy of Prematurity II. The Classification of retinal detachment. Arch. Ophthalmol. 1987;105:906–912.; Терещенко А.В., Белый Ю.А., Трифаненкова И.Г. Рабочая классификация ранних стадий ретинопатии недоношенных. Офтальмохирургия. 2008;1:32–34.; The International Classification of Retinopathy of Prematurity Revisited. Arch. Ophthalmol. 2005;123(7):991–999. DOI:10.1001/archopht.123.7.991; Hitter H.M., Rhodes L.M., McPerson. Anterior segment abnormalities in cicatricial retinopathy of prematurity. Ophthalmology. 1979;86:803–816.; Федеральные клинические рекомендации «Диагностика, мониторинг и лечение активной фазы ретинопатии недоношенных» (Национальный протокол). Российская педиатрическая офтальмология. 2015;1:54–60.; Chiang M.F., Keenan J.D., Starren J. Accuracy and reliability of remote retinopathy of prematurity diagnosis. Arch. Ophthalmol. 2006;124:322–327. DOI:10.1001/archopht.124.3.322; Мосин И.М. Оптическая когерентная томография. В кн. Клиническая физиология зрения. Под ред. А.М. Шамшиновой. М.: МБН: 2006;785–858.; Hammer D.X., Iftimia N.V., Ferguson R.D. Foveal Fine Structure in retinopathy of prematurity: an adaptive optics Fourier domain optical coherence tomography study. Invest Ophthalmol. Vis. Sci. 2008;49(5):2061–2070. DOI:10.1167/iovs.07-1228; Mets M.B., Smith V.C., Pocorny J. Postnatal retinal development as measured by the electroretinogram in preterm infants. Documenta Ophthalmologica. 1995;90:111–127.; Асташева И.Б., Кан И.Г., Дегтярев Д.Н. Особенности развития и течения ретинопатии недоношенных при использовании новых подходов к респираторной терапии на этапе первичной реанимации новорожденных. Вестник Оренбургского государственного университета 2014;173(12):17–19.; Асташева И.Б., Сидоренко Е.И., Аксенова И.И. Лазеркоагуляция в лечении различных форм ретинопатии недоношенных. Вестник офтальмологии. 2005;121(2):31–34.; Lira R.P., Calheiros A.B., Barbosa M.M. Efficacy and safety of green laser photocoagulation for threshold retinopathy of prematurity. Arg. Bras. Ophthalmol. 2008;71(1):49–51.; Chung E.J., Kim J.H., Ahn H.S. Combination of laser photocoagulation and intravitreal bevacizumab (Avastin) for aggressive zone I retinopathy of prematurity. Graefes Arch Clin Exp Ophthalmol. 2007;245(11):1727–1730. DOI:10.1007/s00417007-0661-y; Dorta P., Kychenthal A. Treatment of type 1 retinopathy of prematurity with intravitreal bevacizumab (Avastin). Retina. 2010;30(4 Suppl):24–31. DOI:10.1097/IAE.0b013e3181ca1457; Gaynon M.W. Rethinking STOP-ROP: is it worthwhile trying to modulate excessive VEGF levels in prethreshold ROP eyes by systemic intervention? A review of the role of oxygen, light adaptation state, and anemia in prethreshold ROP. Retina. 2006;26(7 Suppl.):18–23. DOI:10.1097/01.iae.0000244292.86627.1e; Баранов А.В. Хирургическое лечение поздних стадий ретинопатии недоношенных — последний шанс видеть. Сообщение 2. Анализ функциональных результатов. Вестник офтальмологии. 2012;128(4):19–25.; Teed R.G., Saunders R.A. Retinopathy of prematurity in extremely premature infants. J.AAPOS. 2009;13(4):370–373.; Ковалевская И.С. Особенности диагностики и лечения косоглазия у детей с ретинопатией недоношенных. Российская педиатрическая офтальмология. 2014;4:24.; Пальчик А.Б., Федорова Л.А., Понятишин А.Е. Неврология недоношенных детей. М.: МЕДпресс-информ, 2010;31–45.; https://www.ophthalmojournal.com/opht/article/view/1591

  16. 16
    Academic Journal

    المصدر: Neurology, Neuropsychiatry, Psychosomatics; Vol 13, No 6 (2021); 55-61 ; Неврология, нейропсихиатрия, психосоматика; Vol 13, No 6 (2021); 55-61 ; 2310-1342 ; 2074-2711 ; 10.14412/2074-2711-2021-6

    وصف الملف: application/pdf

    Relation: https://nnp.ima-press.net/nnp/article/view/1705/1340; Jaffe GJ, Caprioli J. Optical coherence tomography to detect and manage retinal disease and glaucoma. Am J Ophthalmol. 2004 Jan;137(1):156-69. doi:10.1016/s0002-9394(03)00792-x; Huang D, Swanson EA, Lin CP, et al. Optical coherence tomography. Science. 1991 Nov 22;254(5035):1178-81. doi:10.1126/science.1957169; Aumann S, Donner S, Fischer J, et al. Optical Coherence Tomography (OCT): Principle and Technical Realization. 2019 Aug 14. In: Bille JF, editor. High Resolution Imaging in Microscopy and Ophthalmology: New Frontiers in Biomedical Optics [Internet]. Cham (CH): Springer; 2019. Chapter 3. doi:10.1007/978-3-030-16638-0_3; Ghasemi N, Razavi S, Nikzad E. Multiple Sclerosis: Pathogenesis, Symptoms, Diagnoses and Cell-Based Therapy. Cell Journal. 2017 Apr-Jun;19(1):1-10. doi:10.22074/cellj.2016.4867. Epub 2016 Dec 21.; Бисага ГН. Рассеянный склероз: от морфологии к патогенезу. Санкт-Петербург; 2015. 104 с.; Beecham AH, Patsopoulos NA, Xifara DK, et al. International Multiple Sclerosis Genetics Consortium (IMSGC). Analysis of immunerelated loci identifies 48 new susceptibility variants for multiple sclerosis. Nat Genet. 2013 Nov;45(11):1353-60. doi:10.1038/ng.2770.Epub 2013 Sep 29.; Шмидт ТЕ, Яхно НН. Рассеянный склероз: руководство для врачей. Москва: МЕДпресс-информ; 2017. 280 с.; Compston A, McDonald I, Noseworthy J, et al. McAlpine's Multiple Sclerosis: 4th ed. Elsevier; 2006. 982 p.; Britze J, Frederiksen JL. Optical coherence tomography in multiple sclerosis. Eye (Lond). 2018 May;32(5):884-8. doi:10.1038/s41433-017-0010-2. Epub 2018 Feb 2.; Lassmann H. Multiple Sclerosis Pathology. Cold Spring Harb Perspect Med. 2018 Mar 1;8(3):a028936. doi:10.1101/cshperspect.a028936; Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an Expanded Disability Status Scale (EDSS). Neurology. 1983 Nov;33(11):1444-52. doi:10.1212/wnl.33.11.1444; Roxburgh RHSR, Seaman SR, Masterman T, et al. Multiple sclerosis severityscore: using disability and disease duration to rate disease severity. Neurology. 2005 Apr 12;64(7):1144-51. doi:10.1212/01.WNL.0000156155.19270.F8; Шпак АА. Новая номенклатура оптической когерентной томографии. Офтальмохирургия. 2015;(3):80-2.; Lumbroso B, Rispoli M. Practical handbook of OCT. 1st ed. New Delhi: Jaypee Brothers; 2012. P. 1-83.; Pandit L. No Evidence of Disease Activity (NEDA) in Multiple Sclerosis – Shifting the Goal Posts. Ann Indian Acad Neurol. 2019 JulSep;22(3):261-3. doi:10.4103/aian.AIAN_159_19; Kappos L, De Stefano N, Freedman MS, et al. Inclusion of brain volume loss in a revised measure of 'no evidence of disease activity' (NEDA-4) in relapsing-remitting multiple sclerosis. Mult Scler. 2016 Sep;22(10):1297-305. doi:10.1177/1352458515616701. Epub 2015 Nov 19.; Афанасьев ЮИ, Юрина НА, редакторы. Гистология: Учебник. 5-е изд., перераб. и доп. Москва: Медицина; 2002. 744 с.; Ноздрачев АД, Баженов ЮИ, Баранникова ИА и др. Начала физиологии: Учебник для вузов. Под ред. акад. АД Ноздрачева. Санкт-Петербург: Лань; 2001. 1088 с.; Pulicken M, Gordon-Lipkin E, Balcer LJ, et al. Optical coherence tomography and disease subtype in multiple sclerosis. Neurology. 007 Nov 27;69(22):2085-92. doi:10.1212/01.wnl.0000294876.49861.dc; Oberwahrenbrock T, Schippling S, Ringelstein M, et al. Retinal damage in multiple sclerosis disease subtypes measured by highresolution optical coherence tomography. Mult Scler Int. 2012;2012:530305. doi:10.1155/2012/530305. Epub 2012 Jul 25.; Costello F, Hodge W, Pan YI, et al. Differences in retinal nerve fiber layer atrophy between multiple sclerosis subtypes. J Neurol Sci. 2009 Jun 15;281(1-2):74-9. doi:10.1016/j.jns.2009.02.354. Epub 2009 Mar 20.; Petzold A, Balcer LJ, Calabresi PA, et al. ERN-EYE IMSVISUAL. Retinal layer segmentation in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurol. 2017 Oct;16(10):797-812. doi:10.1016/S1474-4422(17)30278-8. Epub 2017 Sep 12.; Pietroboni AM, Carandini T, Dell'Arti L, et al. Evidence of retinal anterograde neurodegeneration in the very early stages of multiple sclerosis: a longitudinal OCT study. Neurol Sci. 2020 Nov;41(11):3175-83. doi:10.1007/s10072-020-04431-4. Epub 2020 Apr 30.; https://nnp.ima-press.net/nnp/article/view/1705

  17. 17
    Academic Journal

    المصدر: Medical Immunology (Russia); Том 23, № 4 (2021); 813-818 ; Медицинская иммунология; Том 23, № 4 (2021); 813-818 ; 2313-741X ; 1563-0625

    وصف الملف: application/pdf

    Relation: https://www.mimmun.ru/mimmun/article/view/2422/1439; Abe T., Sugano E., Saigo Y., Tamai M. Interleukin-1beta and barrier function of retinal pigment epithelial cells (ARPE-19): Abberant expression of junctional complex molecules. Investigative. Ophthalmol. Vis. Sci., 2003, Vol. 44, pp. 4097-4104.; Bian Z.M., Elner S.H., Yoshida A., Kinkel S.L., Su J., Elner V.M. Activation of p38, ERK1/2 and NIK pathways is required for IL-1beta and TNF-alpha-indused chemokine expression in human retinal pigment epithelial cells. Exp. Eye Res., 2001, Vol. 73, no. 1, pp. 111-121.; Chew E.Y., Clemons T.E., Argon E., Sperduto R.D., Sangiovanni J.P., Kurinij N., Davis M.D. Age-related eye disease study research group. Long-term effects of vitamins C and E, beta-carotene, and zinc on age-related macular degeneration: AREDS report no. 35. Ophthalmology, 2013, Vol. 120, pp. 1604-1611.; Cunha-Vaz J., Bernardes R., Lobo C. Blood-retinal barrier. Eur. J. Ophthalmol., 2011, Vol. 21, no. 6, pp. 3-9.; Gregerson D.S., Heuss N.D., Lew K.L., McPherson S.W., Ferring D.A. Interaction of retinal-pigmented epithelial cells and CD4 T cells leads to T-cell anergy. Invest. Ophthalmol. Vis. Sci., 2007, Vol. 48, no. 10, pp. 4654-4663.; Kauppinen A., Niskanen H., Suuronen T., Kinnunen K., Salminen A., Kaarniranta K. Oxidative stress activates NLRP3 inflammasomes in ARPE-19 cells – implications for age-related macular degeneration (AMD). Immunol. Lett., 2012, Vol. 147, no. 1-2, pp. 29-33.; Kerur N., Hirano Y., Tarallo V., Fowler B.J., Bastos-Carvalho A., Yasuma T., Yasuma R., Kim Y., Hinton D.R., Kirschning C.J., Gelfand B.D., Ambati J. TLR-independent and P2X7-dependent signaling mediate Alu RNAinduced NLRP3 inflammasome activation in geographic atrophy. Invest. Ophthalmol. Vis. Sci., 2013, Vol. 54, no. 12, pp. 7395-7401.; Luheshi N.M., Kovács K.J., Lopez-Castejon G., Brough D., Denes A. Interleukin-1α expression precedes IL-1β after ischemic brain injury and is localised to areas of focal neuronal loss and penumbral tissues. J. Neuroinflammation, 2011, Vol. 8, 186. doi:10.1186/1742-2094-8-186.; Oner A. Stem cell treatmentin retinal diseases: recen developments. Turk. J. Ophthalmol., 2018, Vol. 48, no. 1, pp. 33-38.; Sparrow J.R., Hicks D., Hamel C.P. The retinal pigment epithelium in health and disease. Curr. Mol. Med., 2010, Vol. 10, no. 9, pp. 802-823.; Sugita S. Role of ocular pigment epithelial cells in immune privilege. Arch. Immunol. Ther. Exp., 2009, Vol. 57, no. 4, pp. 263-268.; Tseng W.A., Then T., Kinnunen K., Lashkari K., Gregory M.S., d’Amore P.A., Ksander B.R. NLRP3 inflamasome activation in retinal pigment epithelial cells by lysosomal destabilization: Implication for age-related macular degeneration. Invest. Ophthalmol. Vis. Sci., 2013, Vol. 54, no. 1, pp. 110-120.; Whitcup S.M., Sodhi A., Atkinson J.P., Holers V.M., Sinha D., Rohrer B., Dick A.D. The role of the immune response in age-related macular degeneration. Int. J. Inflam., 2013, 348092. doi:10.1155/2013/348092.; https://www.mimmun.ru/mimmun/article/view/2422

  18. 18
    Academic Journal

    المصدر: National Journal glaucoma; Том 20, № 2 (2021); 3-13 ; Национальный журнал Глаукома; Том 20, № 2 (2021); 3-13 ; 2311-6862 ; 2078-4104

    وصف الملف: application/pdf

    Relation: https://www.glaucomajournal.ru/jour/article/view/325/328; Jia Y., Wei E., Wang X. et al. Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology. 2014; 121(7):1322–1332.; Xu H., Deng G., Jiang C., Kong X., Yu J., Sun X. Microcirculatory responses to hyperoxia in macular and peripapillary regions. Invest Ophthalmol Vis Sci. 016; 57(10):4464-4468.; Pechauer A.D., Yali Jia, Liang Liu et al. Optical coherence tomography angiography of peripapillary retinal blood flow response to hyperoxia. Invest Ophthalmol Vis Sci.2015; 56(5):3287–3291.; Van Melkebeke L., Barbosa-Breda J., Huygens M., Stalmans I. Optical coherence tomography angiography in glaucoma: a review. Ophthalmic Res.2018; 60(3):139–151.; Venugopal J.P., Rao H.L., Weinreb R.N. et al. Repeatability of vessel density measurements of optical coherence tomography angiography in normal and glaucoma eyes. Br J Ophthalmol.2018; 102(3):352–357.; Manalastas P.I.C., Zangwill L.M., Saunders L.J. et al. Reproducibility of optical coherence tomography angiography macular and optic nerve head vascular density in glaucoma and healthy eyes. J Glaucoma. 2017; 26(10):851–859.; Newman A., Andrew N., Casson R. Review of the association between retinal microvascular characteristics and eye disease. Clin Exp Ophthalmol.2018; 46(5):531–552.; Spaide R.F., Klancnik J.M., Cooney M.J. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol.2015; 133(1):45–50.; Hagag A.M., Gao S.S., Jia Y., Huang D. Optical coherence tomography angiography: Technical principles and clinical applications in ophthalmology. Taiwan J Ophthalmol. 2017; 7(3):115–129.; Guidoboni G., Harris A., Cassani S., Arciero J. et al. Intraocular pressure, blood pressure, and retinal blood flow autoregulation: a mathematical model to clarify their relationship and clinical relevance. Invest Ophthalmol Vis Sci.2014; 29;55(7):4105–4118.; Prada D., Harris A., Guidoboni G., Siesky B., Huang A.M., Arciero J. Autoregulation and neurovascular coupling in the optic nerve head. Surv Ophthalmol.2016; 61(2):164–186.; Жукова С.И. ОКТ и ОКТА: случаи клинической практики. Атлас с интерактивным контентом и приложения дополненной реаль-ности OCT-angio. М.: Апрель; 2019. 187 с.; Курышева Н.И., Царегородцева М.А., Рябова Т.Я., Шлапак В.Н. Перфузионное давление и первичная сосудистая дисрегуляция у больных глаукомой нормального давления. РМЖ Клиническая офтальмология.2011; 1:9–10.; Щуко А.Г., Юрьева Т.Н., Чекмарева Л.Т., Малышев В.В. Глаукома и патология радужки. М.: 2009. 165 c.; Курышева Н.И. Сосудистая теория патогенеза глаукомной опти-конейропатии: обоснование с позиций анатомии и физиологии глазного кровотока. Часть 1. Национальный журнал глаукома. 2017; 16(3):90–97.; Wentz S., Seizys C., Guidoboni G., Arciero J.C. et al. The role of blood flow in glaucoma. Glaucoma Res Clin Advances.2002; 21:359–393.; Quigley H., Addicks E. Optic nerve damage in human glaucoma. The sit of injury and susceptibility to damage. Arch Ophthalmol. 1981; 99(4):635–649.; Hayreh S.S. Ischemic optic neuropathies. Springer; 2011. 456 p.; Федоров С.Н. Общая сосудистая патология и открытоугольная глаукома (Допплерографические данные). Вопросы патогенеза и лечения глаукомы.М.; 1981: 59-63.; Курышева Н.И. ОКТ-ангиография и ее роль в исследовании рети-нальной микроциркуляции при глаукоме. Часть 2. Национальный журнал глаукома. 2018; 11(3):95–100.; Yu P.K., Cringle S.J., Yu D.Y. Correlation between the radial peripapillary capillaries and the retinal nerve fibre layer in the normal human retina. Exp Eye Res.2014; 129:83–92; Yu P.K., Balaratnasingam C., Xu J. et al. Label-free density measurements of radial peripapillary capillaries in the human retina. PLoS One. 2015; 10:e0135151.; Falavarjani K.G., Shenazandi H., Naseri D. et al. Foveal avascular zone and vessel density in healthy subjects: an optical coherence tomography angiography study. J Ophthalmic Vis Res.2018; 13(3):260-265.; Liu L., Jia Y., Takusagawa H.L. et al. Optical coherence tomography angiography of the peripapillary retina in glaucoma. JAMA Ophthalmol.2015; 133(9):1045–1052.; Wang X., Jiang C., Ko T. et al. Correlation between optic disc perfusion and glaucomatous severity in patients with open-angle glaucoma: an optical coherence tomography angiography study. Graefes Arch Clin Exp Ophthalmol.2015; 253(9):1557–1564.; Yarmohammadi A., Zangwill L.M., Diniz-Filho A. et al. Optical coherence tomography angiography vessel density in healthy, glaucoma suspect, and glaucoma eyes. Invest Ophthalmol Vis Sci. 2016; 57(9):451–460.; Mase T., Ishibazawa A., Nagaoka T., Yokota H., Yoshida A. Radial peripapillary capillary network visualized using wide-field montage optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2016; 57(9):504–514.; Европейское руководство и терминология по глаукоме. М.: Офтальмология; 2019. 197 c.; Kim M., Kim S. Association between choroidal thickness and ocular perfusion pressure in young, healthy subjects: enhanced depth imaging optical coherence tomography study. Invest Ophthalmol Vis Sci. 2012; 53(12):7710–7717.; Курышева Н.И., Арджевнишвили Т.Д., Фомин А.В. Хориоидея при глаукоме. Национальный журнал глаукома.2014; 13(1):60-67.; https://www.glaucomajournal.ru/jour/article/view/325

  19. 19
    Academic Journal
  20. 20
    Academic Journal

    Relation: Кузьминых, Е.С. Анализ и сравнение биометрических способов идентификации личности человека / Е.С. Кузьминых, М.А. Маслова // Научный результат. Сер. Информационные технологии. - 2021. - Т. 6. № 4. - С. 13-19. - Doi:10.18413/2518-1092-2021-6-4-0-2. - Библиогр.: с. 18.; http://dspace.bsu.edu.ru/handle/123456789/47504