يعرض 1 - 20 نتائج من 256 نتيجة بحث عن '"Ремоделирование сердца"', وقت الاستعلام: 0.79s تنقيح النتائج
  1. 1
    Academic Journal

    المصدر: Meditsinskiy sovet = Medical Council; № 16 (2024); 82-90 ; Медицинский Совет; № 16 (2024); 82-90 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/8615/7563; McCullough PA, Philbin EF, Spertus JA, Kaatz S, Sandberg KR, Weaver WD. Resource Utilization Among Congestive Heart Failure (REACH) Study. Confirmation of a heart failure epidemic: findings from the Resource Utilization Among Congestive Heart Failure (REACH) study. J Am Coll Cardiol. 2002;39(1):60–69. https://doi.org/10.1016/s0735-1097(01)01700-4.; Dunlay SM, Roger VL. Understanding the epidemic of heart failure: past, present, and future. Curr Heart Fail Rep. 2014;11(4):404–415. https://doi.org/10.1007/s11897-014-0220-x.; Roger VL. Epidemiology of heart failure. Circ Res. 2013;113(6):646–659. https://doi.org/10.1161/CIRCRESAHA.113.300268.; Поляков ДС, Фомин ИВ, Беленков ЮН, Мареев ВЮ, Агеев ФТ, Артемьева ЕГ и др. Хроническая сердечная недостаточность в Российской Федерации: что изменилось за 20 лет наблюдения? Результаты исследования ЭПОХА-ХСН. Кардиология. 2021;61(4):4–14. https://doi.org/10.18087/cardio.2021.4.n1628.; Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP et al. American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics-2019 Update: A Report from the American Heart Association. Circulation. 2019;139(10):e56–e528. https://doi.org/10.1161/CIR.0000000000000659.; Xanthakis V, Enserro DM, Larson MG, Wollert KC, Januzzi JL, Levy D et al. Prevalence, Neurohormonal Correlates, and Prognosis of Heart Failure Stages in the Community. JACC Heart Fail. 2016;4(10):808–815. https://doi.org/10.1016/j.jchf.2016.05.001.; Goldberg RJ, Spencer FA, Farmer C, Meyer TE, Pezzella S. Incidence and hospital death rates associated with heart failure: a community-wide perspective. Am J Med. 2005;118(7):728–734. https://doi.org/10.1016/j.amjmed.2005.04.013.; GBD 2013 Mortality and Causes of Death Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;385(9963):117–171. https://doi.org/10.1016/S0140-6736(14)61682-2.; Фомин ИВ, Беленков ЮН, Мареев ВЮ, Агеев ФТ, Бадин ЮВ, Галявич АС и др. Распространенность хронической сердечной недостаточности в Европейской части Российской Федерации. Данные ЭПОХА-ХСН. Сердечная недостаточность. 2006;7(1):4–7. Режим доступа: https://www.elibrary.ru/pwmman.; Moslehi J, Amgalan D, Kitsis RN. Grounding Cardio-Oncology in Basic and Clinical Science. Circulation. 2017;136(1):3–5. https://doi.org/10.1161/CIRCULATIONAHA.117.025393.; Плохова ЕВ, Дундуа ДП. Основные принципы профилактики и лечения кардиотоксичности на фоне химиотерапии у онкологических пациентов. Клиническая практика. 2019;10(1):31–41. https://doi.org/10.17816/clinpract10130–40.; Yeung DF, Boom NK, Guo H, Lee DS, Schultz SE, Tu JV. Trends in the incidence and outcomes of heart failure in Ontario, Canada: 1997 to 2007. CMAJ. 2012;184(14):E765-E773. https://doi.org/10.1503/cmaj.111958.; Levy D, Kenchaiah S, Larson MG, Benjamin EJ, Kupka MJ, Ho KK et al. Longterm trends in the incidence of and survival with heart failure. N Engl J Med. 2002;347(18):1397–1402. https://doi.org/10.1056/NEJMoa020265.; Roger VL, Weston SA, Redfield MM, Hellermann-Homan JP, Killian J, Yawn BP, Jacobsen SJ. Trends in heart failure incidence and survival in a community-based population. JAMA. 2004;292(3):344–350. https://doi.org/10.1001/jama.292.3.344.; Stewart S, MacIntyre K, MacLeod MM, Bailey AE, Capewell S, McMurray JJ. Trends in hospitalization for heart failure in Scotland, 1990–1996. An epidemic that has reached its peak? Eur Heart J. 2001;22(3):209–217. https://doi.org/10.1053/euhj.2000.2291.; Lucas C, Johnson W, Hamilton MA, Fonarow GC, Woo MA, Flavell CM et al. Freedom from congestion predicts good survival despite previous class IV symptoms of heart failure. Am Heart J. 2000;140(6):840–847. https://doi.org/10.1067/mhj.2000.110933.; Cohn JN, Johnson G, Ziesche S, Cobb F, Francis G, Tristani F et al. A comparison of enalapril with hydralazine-isosorbide dinitrate in the treatment of chronic congestive heart failure. N Engl J Med. 1991;325(5):303–310. https://doi.org/10.1056/NEJM199108013250502.; Setoguchi S, Stevenson LW, Schneeweiss S. Repeated hospitalizations predict mortality in the community population with heart failure. Am Heart J. 2007;154(2):260–266. https://doi.org/10.1016/j.ahj.2007.01.041.; Терещенко СН, Галявич АС, Агеев ФТ, Арутюнов ГП, Беграмбекова ЮЛ, Беленков ЮН и др. Хроническая сердечная недостаточность: клинические рекомендации. 2022. Режим доступа: https://cr.minzdrav.gov.ru/recomend/156_1.; Dimopoulos K, Salukhe TV, Coats AJ, Mayet J, Piepoli M, Francis DP. Metaanalyses of mortality and morbidity effects of an angiotensin receptor blocker in patients with chronic heart failure already receiving an ACE inhibitor (alone or with a beta-blocker). Int J Cardiol. 2004;93(2-3):105–111. https://doi.org/10.1016/j.ijcard.2003.10.001.; McMurray JJ, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR et al.; PARADIGM-HF Investigators and Committees. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014;371(11):993–1004. https://doi.org/10.1056/NEJMoa1409077.; Yamamoto T, Sano M. Deranged Myocardial Fatty Acid Metabolism in Heart Failure. Int J Mol Sci. 2022;23(2):996. https://doi.org/10.3390/ijms23020996.; Fragasso G. Deranged Cardiac Metabolism and the Pathogenesis of Heart Failure. Card Fail Rev. 2016;2(1):8–13. https://doi.org/10.15420/cfr.2016:5:2.; Bessman SP, Geiger PJ. Transport of energy in muscle: the phosphorylcreatine shuttle. Science. 1981;211(4481):448–452. https://doi.org/10.1126/science.6450446.; Ingwall JS, Weiss RG. Is the failing heart energy starved? On using chemical energy to support cardiac function. Circ Res. 2004;95(2):135–145. https://doi.org/10.1161/01.RES.0000137170.41939.d9.; Ye Y, Gong G, Ochiai K, Liu J, Zhang J. High-energy phosphate metabolism and creatine kinase in failing hearts: a new porcine model. Circulation. 2001;103(11):1570–1576. https://doi.org/10.1161/01.cir.103.11.1570.; Pool PE, Spann JFJr, Buccino RA, Sonnenblick EH, Braunwald E. Myocardial high energy phosphate stores in cardiac hypertrophy and heart failure. Circ Res. 1967;21(3):365–375. https://doi.org/10.1161/01.RES.21.3.365.; Neubauer S. The failing heart – an engine out of fuel. N Engl J Med. 2007;356(11):1140–1151. https://doi.org/10.1056/NEJMra063052.; Taegtmeyer H, Wilson CR, Razeghi P, Sharma S. Metabolic energetics and genetics in the heart. Ann N Y Acad Sci. 2005;1047:208–218. https://doi.org/10.1196/annals.1341.019.; Ingwall JS. Energy metabolism in heart failure and remodelling. Cardiovasc Res. 2009;81(3):412–419. https://doi.org/10.1093/cvr/cvn301.; Beer M, Seyfarth T, Sandstede J, Landschütz W, Lipke C, Köstler H et al. Absolute concentrations of high-energy phosphate metabolites in normal, hypertrophied, and failing human myocardium measured noninvasively with (31) P-SLOOP magnetic resonance spectroscopy. J Am Coll Cardiol. 2002;40(7):1267–1274. https://doi.org/10.1016/s0735-1097(02)02160-5.; Strumia E, Pelliccia F, D’Ambrosio G. Creatine phosphate: pharmacological and clinical perspectives. Adv Ther. 2012;29(2):99–123. https://doi.org/10.1007/s12325-011-0091-4.; Козлов ИА, Яворовский АГ. Экзогенный фосфокреатин как кардиопротектор в хирургии и интенсивной кардиологии. Аналитический обзор. Медицинский алфавит. 2018;1(9):18–27. Режим доступа: https://www.med-alphabet.com/jour/article/view/565/565.; Landoni G, Zangrillo A, Lomivorotov VV, Likhvantsev V, Ma J, De Simone F, Fominskiy E. Cardiac protection with phosphocreatine: a meta-analysis. Interact Cardiovasc Thorac Surg. 2016;23(4):637–646. https://doi.org/10.1093/icvts/ivw171.; Grazioli I, Melzi G, Strumia E. Multicenter controlled study of creatine phosphate in the treatment of heart failure. Curr Ther Res Clin Exp. 1992;52(2):271–280. https://doi.org/10.1016/S0011-393X(05)80478-3.; Grazioli I, Strumia E. Terapia con creatina fosfato nel paziente con insufficienza cardiac in fase discompenso. Gital Ric Clin Ter. 1989;10:39–45.; Симаков АА, Поляева ЛВ, Рязанова ЕИ. Пути оптимизации лечения больных хронической сердечной недостаточностью на фоне ишемической болезни сердца. Кардиология и сердечно-сосудистая хирургия. 2014;7(5):20–23. Режим доступа: https://www.mediasphera.ru/issues/kardiologiya-i-serdechno-sosudistaya-khirurgiya/2014/5/031996-6385201454.; Михин ВП, Николенко ТА, Громнацкий НИ. Эффективность креатинфосфата в составе комплексной терапии у больных с хронической сердечной недостаточностью, перенесших инфаркт миокарда с подъемом сегмента ST. Лечебное дело. 2020;(1):28–33. Режим доступа: https://ru.alfasigma.com/wp-content/uploads/2021/09/Mikhin.pdf.; Терещенко СН, Черемисина ИА, Сафиуллина АА. Возможности улучшения терапии хронической сердечной недостаточности по результатам многоцентрового наблюдательного исследования BYHEART. Терапевтический архив. 2022;94(4):517–523. https://doi.org/10.26442/00403660.2022.04.201450.; Мазин ПВ, Хафизьянова РФ, Мазин ВП, Краснова ВВ. Мета-анализ эффективности адъювантного применения фосфокреатина при лечении хронической сердечной недостаточности. Вятский медицинский вестник. 2022;4(76):92–99. https://doi.org/10.24412/2220-7880-2022-476-92-99.; Чазова ИЕ, Тюляндин СА, Виценя МВ, Овчинников АГ, Полтавская МГ, Гиляров МЮ и др. Руководство по диагностике, профилактике и лечению сердечно-сосудистых осложнений противоопухолевой терапии. Часть I. Системные гипертензии. 2017;14(3):6–20. https://doi.org/10.26442/2075-082X_14.3.6-20.; Mulrooney DA, Yeazel MW, Kawashima T, Mertens AC, Mitby P, Stovall M et al. Cardiac outcomes in a cohort of adult survivors of childhood and adolescent cancer: retrospective analysis of the Childhood Cancer Survivor Study cohort. BMJ. 2009;339:b4606. https://doi.org/10.1136/bmj.b4606.; Давыдов МИ (ред.). Протоколы клинических рекомендаций поддерживающей терапии в онкологии, 2022–2023. 6-е изд., перераб. и доп. М.: АБВ-пресс; 2022. 310 с.; Дербугов ВН, Потапов АЛ, Потиевская ВИ, Хмелевский ЯМ. Применение экзогенного фосфокреатина у пациентов пожилого и старческого возраста, оперируемых по поводу колоректального рака. Общая реаниматология. 2017;13(4):38–45. https://doi.org/10.15360/1813-9779-2017-4-38-45.; Заболотских ИБ, Баутин АЕ, Замятин МН, Лебединский КМ, Потиевская ВИ, Трембач НВ. Периоперационное ведение пациентов с хронической сердечной недостаточностью: методические рекомендации. 2020. Режим доступа: https://ru.alfasigma.com/wp-content/uploads/2021/09/Klinicheskierekomendatsii-Perioperatsionnoe-vedenie-patsientov-s-HSN.pdf.

  2. 2
    Academic Journal
  3. 3
    Academic Journal
  4. 4
    Academic Journal

    المساهمون: The study was financially supported by the Russian Science Foundation in the form of scientific project No. 22-15-00424, scientific grant "The role of activation of the WNT signaling cascade, the processes of its epigenetic regulation and immune-mediated inflammation in the progression of atherosclerosis and the possibility of influencing it by therapeutic neoangiogenesis in patients with stable ischemic heart disease.", Исследование выполнено при финансовой поддержке Российского научного фонда в виде научного проекта № 22-15-00424, научного гранта «Роль активации сигнального каскада WNT, процессов его эпигенетической регуляции и иммуноопосредованного воспаления в прогрессировании атеросклероза и возможности влияния на него методом терапевтического неоангиогенеза у пациентов со стабильной ишемической болезнью сердца».

    المصدر: Rational Pharmacotherapy in Cardiology; Vol 18, No 6 (2022); 630-637 ; Рациональная Фармакотерапия в Кардиологии; Vol 18, No 6 (2022); 630-637 ; 2225-3653 ; 1819-6446

    وصف الملف: application/pdf

    Relation: https://www.rpcardio.com/jour/article/view/2849/2376; The top 10 causes of death [cited 2022 Jan 12]. Available from: https://www.who.int/newsroom/fact-sheets/detail/the-top-10-causes-of-death.; Gibbs RA. The Human Genome Project changed everything. Nat Rev Genet. 2020;21(10):575-6. DOI:10.1038/s41576-020-0275-3.; Low EL, Baker AH, Bradshaw AC. TGFβ smooth muscle cells and coronary artery disease: a review. Cell Signal. 2019;53:90-101. DOI:10.1016/j.cellsig.2018.09.004; Hata A, Chen YG. TGF-β signaling from receptors to smads. Cold Spring Harb Perspect Biol. 2016;8(9):a022061. DOI:10.1101/cshperspect.a022061.; Morikawa M, Derynck R, Miyazono K. TGF-β and the TGF-β family: Context-dependent roles in cell and tissue physiology. Cold Spring Harb Perspect Biol. 2016;8(5):a021873. DOI:10.1101/cshperspect.a021873.; Dobaczewski M, Chen W, Frangogiannis NG. Transforming growth factor (TGF)-β signaling in cardiac remodeling. J Mol Cell Cardiol. 2011;51(4):600-6. DOI:10.1016/j.yjmcc.2010.10.033.; Wang JH, Zhao L, Pan X, et al. Hypoxia-stimulated cardiac fibroblast production of IL-6 promotes myocardial fibrosis via the TGF-β1 signaling pathway. Lab Investig [Internet]. 2016;96(8):839-52. DOI:10.1038/labinvest.2016.65.; Hu HH, Chen DQ, Wang YN, et al. New insights into TGF-β/Smad signaling in tissue fibrosis. Chem Biol Interact. 2018;292:76-83. DOI:10.1016/j.cbi.2018.07.008.; Knuuti J, Wijns W, Achenbach S, et al. 2019 ESC guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J. 2020;41(3):407-77. DOI:10.1093/eurheartj/ehz425.; Jespersen L, Hvelplund A, Abildstrøm SZ, et al. Stable angina pectoris with no obstructive coronary artery disease is associated with increased risks of major adverse cardiovascular events. Eur Heart J. 2012;33(6):734-44. DOI:10.1093/eurheartj/ehr331.; Safdar B, Spatz ES, Dreyer RP, et al. Presentation, clinical profile, and prognosis of young patients with myocardial infarction with nonobstructive coronary arteries (MINOCA): Results from the VIRGO study. J Am Heart Assoc. 2018;7(13):e009174. DOI:10.1161/JAHA.118.009174.; Faul F, Erdfelder E, Buchner A, Lang AG. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav Res Methods. 2009;41(4):1149-60. DOI:10.3758/BRM.41.4.1149.; Lang RM, Bierig M, Devereux RB, et al. Recommendations for chamber quantification. Eur J Echocardiogr. 2006;7(2):79-108. DOI:10.1016/j.euje.2005.12.014.; Grainger DJ, Kemp PR, Metcalfe JC, et al. The serum concentration of active transforming growth factor-beta is severely depressed in advanced atherosclerosis. Nat Med. 1995;1(1):74-9. DOI:10.1038/nm0195-74.; Erren M, Reinecke H, Junker R, et al. Systemic inflammatory parameters in patients with atherosclerosis of the coronary and peripheral arteries. Arterioscler Thromb Vasc Biol. 1999;19(10):2355-63. DOI:10.1161/01.atv.19.10.2355.; Wang XL, Liu SX, Wilcken DEL. Circulating transforming growth factor beta1 and coronary artery disease. Cardiovasc Res. 1997;34(2):404-10. DOI:10.1016/s0008-6363(97)00033-3.; van Dijk RA, Engels CC, Schaapherder AF, et al. Visualizing TGF-β and BMP signaling in human atherosclerosis: a histological evaluation based on Smad activation. Histol Histopathol. 2012;27(3):387- 96. DOI:10.14670/HH-27.387.; Grainger DJ. TGF-beta and atherosclerosis in man. Cardiovasc Res. 2007;74(2):213-22. DOI:10.1016/j.cardiores.2007.02.022.; Rodríguez-Vita J, Sánchez-Galán E, Santamaría B, et al. Essential role of TGF-β/Smad pathway on statin dependent vascular smooth muscle cell regulation. PLoS One. 2008;3(12):e3959. DOI:10.1371/journal.pone.0003959.; Lefer AM, Tsao P, Aoki N, Palladino MA. Mediation of cardioprotection by transforming growth factor-beta. Science.1990;249(4964):61-4. DOI:10.1126/science.2164258.; Border WA, Noble NA. Transformation growth factor β in tissue fibrosis. N Engl J Med. 1994;331(19):153-8. DOI:10.1056/NEJM199411103311907.; Kuwahara F, Kai H, Tokuda K, et al. Transforming growth factor-β function blocking prevents myocardial fibrosis and diastolic dysfunction in pressure-overloaded rats. Circulation. 2002;106(1):130- 5. DOI:10.1161/01.CIR.0000020689.12472.E0.; Li JM, Brooks G. Differential protein expression and subcellular distribution of TGFβ1, β2, and β3 in cardiomyocytes during pressure overload-induced hypertrophy. J Mol Cell Cardiol. 1997;29(8):2213- 24. DOI:10.1006/jmcc.1997.0457.; Bujak M, Ren G, Kweon HJ, et al. Essential role of Smad3 in infarct healing and in the pathogenesis of cardiac remodeling. Circulation. 2007;116(19):2127-38. DOI:10.1161/CIRCULATIONAHA.107.704197.; Xia Y, Lee K, Li N, D. et al. Characterization of the inflammatory and fibrotic response in a mouse model of cardiac pressure overload. Histochem Cell Biol. 2009;131(4):471-81. DOI:10.1007/s00418-008-0541-5.; Ali M, Girgis S, Hassan A, et al. Inflammation and coronary artery disease: From pathophysiology to Canakinumab Anti-Inflammatory Thrombosis Outcomes Study (CANTOS). Coron Artery Dis. 2018;29(5):429-37. DOI:10.1097/MCA.0000000000000625.; Nidorf SM, Fiolet ATL, Eikelboom JW, et al. The effect of low-dose colchicine in patients with stable coronary artery disease: The LoDoCo2 trial rationale, design, and baseline characteristics. Am Heart J. 2019;218:46-56. DOI:10.1016/j.ahj.2019.09.011.; Bagi Z, Feher A, Cassuto J, Microvascular responsiveness in obesity: Implications for therapeutic intervention. Br J Pharmacol. 2012;165(3):544-60. DOI:10.1111/j.1476-5381.2011.01606.x.; Pasqualetto MC, Tuttolomondo D, Cutruzzolà A, et al. Human coronary inflammation by computed tomography: Relationship with coronary microvascular dysfunction. Int J Cardiol. 2021;336:8-13. DOI:10.1016/j.ijcard.2021.05.040.; https://www.rpcardio.com/jour/article/view/2849

  5. 5
    Academic Journal

    المساهمون: The study was conducted within the framework of the state assignment, FSI topic No. 122020300043-1 “Molecular and cellular mechanisms of the development of cardiovascular diseases of ischemic and non-ischemic genesis. Fundamental aspects of realization of organoprotective effects of therapeutic interventions”., Исследование проведено в рамках госзадания, тема ФНИ № 122020300043-1 «Молекулярно-клеточные механизмы развития сердечно-сосудистых заболеваний ишемического и неишемического генеза. Фундаментальные аспекты реализации органопротективных эффектов лечебных вмешательств».

    المصدر: The Siberian Journal of Clinical and Experimental Medicine; Том 38, № 2 (2023); 104-113 ; Сибирский журнал клинической и экспериментальной медицины; Том 38, № 2 (2023); 104-113 ; 2713-265X ; 2713-2927

    وصف الملف: application/pdf

    Relation: https://www.sibjcem.ru/jour/article/view/1794/818; Szummer K., Wallentin L., Lindhagen L., Alfredsson J., Erlinge D., Held C. et al. Improved outcomes in patients with ST-elevation myocardial infarction during the last 20 years are related to implementation of evidence-based treatments: experiences from the SWEDEHEART registry 1995–2014. Eur. Heart J. 2017;38(41):3056–3065. DOI:10.1093/eurheartj/ehx515.; Westman P.C., Lipinski M.J., Luger D., Waksman R., Bonow R.O., Wu E. et al. Inflammation as a driver of adverse left ventricular remodeling after acute myocardial infarction. J. Am. Coll Cardiol. 2016;67(17):2050–2060. DOI:10.1016/j.jacc.2016.01.073.; Рябов В.В., Гомбожапова А.Э, Роговская Ю.В., Ребенкова М.С., Алексеева Я.В., Кжышковска Ю.Г. Воспаление как универсальное патогенетическое звено повреждения, репарации и регенерации при остром коронарном синдроме. От эксперимента к клинике. Кардиология. 2019;59(8S):15–23. DOI:10.18087/cardio.2668.; Алексеева Я.В., Вышлов Е.В, Павлюкова Е.Н., Усов В.Ю., Марков В.А., Рябов В.В. Влияние разных фенотипов микрососудистого повреждения миокарда на сократительную функцию левого желудочка у пациентов с инфарктом миокарда с подъемом сегмента ST. Кардиология. 2021;61(5):23–31. DOI:10.18087/cardio.2021.5.n1500.; Kologrivova I., Shtatolkina M., Suslova T., Ryabov V. Cells of the Immune System in Cardiac Remodeling: Main players in resolution of inflammation and repair after myocardial infarction. Front. Immunol. 2021;12:664457. DOI:10.3389/fimmu.2021.664457.; Ong S.-B., Hernandez-Resendiz S., Crespo-Avilan G.E., Mukhametshina R.T., Kwek X.Y., Cabrera-Fuentes H.A. et al. Inflammation following acute myocardial infarction: Multiple payers, dynamic roles, and novel therapeutic opportunities. Pharmacol. Ther. 2018;186:73–87. DOI:10.1016/j.pharmthera.2018.01.001.; Huang S., Frangogiannis N.G. Anti-inflammatory therapies in myocardial infarction: failures, hopes and challenges. Br. J. Pharmacol. 2018;175(9):1377–1400. DOI:10.1111/bph.14155.; Osmanchik P., Teringova E., Tousek P., Paulu P., Widimsky P. Prognostic value of TNF-related apoptosis inducing ligand (TRAIL) in acute coronary syndrome patients. PLoS One. 2013;8(2):e53860. DOI:10.1371/journal.pone.0053860.; Wang Y., Zhang H., Wang Z., Wei Y., Wang M., Liu M. et al. Blocking the death checkpoint protein TRAIL improves cardiac function after myocardial infarction in monkeys, pigs, and rats. Sci. Transl. Med. 2020;12(540):eaaw3172. DOI:10.1126/scitranslmed.aaw3172.; Anzai A., Choi J.L., He Sh., Fenn A.M., Nairz M., Rattik S. et al. The infarcted myocardium solicits GM-CSF for the detrimental oversupply of inflammatory leukocytes. J. Exp. Med. 2017;214(11):3293–3310. DOI:10.1084/jem.20170689.; Kellar R.S., Lancaster J.J., Thai H.M., Juneman E., Johnson N.M., Byrne H.G. et al. Antibody to granulocyte macrophage colony-stimulating factor reduces the number of activated tissue macrophages and improves left ventricular function after myocardial infarction in a rat coronary artery ligation model. J. Cardiovasc. Pharmacol. 2011;57(5):568–574. DOI:10.1097/FJC.0b013e318213258b.; Гусакова А.М., Суслова Т.Е, Рябов В.В., Керчева М.А. Использование мультиплексного анализа на платформе Luminex в комплексной оценке динамики сердечно-сосудистых биомаркеров у пациентов с острым инфарктом миокарда. Клиническая лабораторная диагностика. 2019;64(9).525–529. DOI:10.18821/0869-2084-2019-64-9-525-529.; Thygesen K., Alpert J.S., Jaffe A.S., Chaitman B.R., Bax J.J., Morrow D.A. et al. Fourth universal definition of myocardial infarction (2018). Eur. Heart J. 2019;40(3):237–269. DOI:10.1093/eurheartj/ehy462.; Reindl M., Reinstadler S.J., Tiller C., Feistritzer H.J., Kofler M., Brix A. et al. Prognosis-based definition of left ventricular remodeling after ST-elevation myocardial infarction. Eur. Radiol. 2019;29(5):2330–2339. DOI:10.1007/s00330-018-5875-3.; Berezin A.E., Berezin A.A. Adverse cardiac remodeling after acute myocardial infarction: old and new biomarkers. Dis. Markers. 2020:1215802. DOI:10.1155/2020/1215802.; Cremer P., Abbate A., Hudock K., McWilliams C., Mehta J., Chang S.Y. et al. Mavrilimumab in patients with severe COVID-19 pneumonia and systemic hyper inflammation (MASH-COVID): an investigator initiated, multicentre, double-blind, randomized, placebo-controlled trial. Lancet Rheumatol. 2021;3(6):e410–e418. DOI:10.1016/S2665-9913(21)00070-9.; Volpato S., Ferrucci L., Secchiero P., Corallini F., Zuliani G., Fellin R. et al. Association of tumor necrosis factor-related apoptosis-inducing ligand with total and cardiovascular mortality in older adults. Atherosclerosis. 2011;215(2):452–458. DOI:10.1016/j.atherosclerosis.2010.11.004.; Richter B., Koller L., Hohensinner P.J., Zorn G., Brekalo M., Berger R. et al. A multi-biomarker risk score improves prediction of long-term mortality in patients with advanced heart failure. Int. J. Cardiol. 2013;168(2):1251–1257. DOI:10.1016/j.ijcard.2012.11.052.; Lula J.F., Rocha M.O., Nunes M. do C., Ribeiro A.L., Teixeira M.M., Bahia M.T. et al. Plasma concentrations of tumor necrosis factor-alpha, tumor necrosis factor-related apoptosis-inducing ligand, and Fas Ligand/CD95L in patients with Chagas cardiomyopathy correlate with left ventricular dysfunction. Eur. J. Heart Fail. 2009;11(9):825–831. DOI:10.1093/eurjhf/hfp105.; Piseddu I., Rohrle N., Knott M.M.L., Moder S., Eiber S., Schnell K. et al. Constitutive expression of CCL22 is mediated by T cell-derived GM-CSF. J. Immunol. 2020;205(8):2056–2065. DOI:10.4049/jimmunol.2000004.; Safa A., Rashidinejad H.R., Khalili M., Dabiri S., Nemati M., Mohammadi M.M. et al. Higher circulating levels of chemokines CXCL10, CCL20 and CCL22 in patients with ischemic heart disease. Cytokine. 2016;83:147–157. DOI:10.1016/j.cyto.2016.04.006.; Noori F., Naeimi S., Zibaeenezhad M.J., Gharemirshamlu F.R. CCL22 and CCR4 gene polymorphisms in myocardial infarction: risk assessment of rs4359426 and rs2228428 in Iranian Population. Clin. Lab. 2018;64(6):907–913. DOI:10.7754/Clin.Lab.2018.171106.; Cuinet J., Garbagnati A., Rusca M., Yerly P., Schneider A.G., Kirsch M. et al. Cardiogenic shock elicits acute inflammation, delayed eosinophilia, and depletion of immune cells in most severe cases. Sci. Rep. 2020;10(1):7639. DOI:10.1038/s41598-020-64702-0.; Roy-O’Reilly M., Ritzel R.M., Conway S.E., Staff I., Fortunato G., McCullough L.D. CCL11 (Eotaxin-1) levels predict long-term functional outcomes in patients following ischemic stroke. Transl. Stroke Res. 2017;8(6):578–584. DOI:10.1007/s12975-017-0545-3.; Toor I.S., Rückerl D., Mair I., Ainsworth R., Meloni M., Spiroski A.M. et al. Eosinophil deficiency promotes aberrant repair and adverse remodeling following acute myocardial infarction. JACC Basic Transl. Sci. 2020;5(7):665–681. DOI:10.1016/j.jacbts.2020.05.005.; Mindur J.E., Swirski F.K. Growth factors as immunotherapeutic targets in cardiovascular disease. Arterioscler. Thromb. Vasc. Biol. 2019;39(7):1275–1287. DOI:10.1161/ATVBAHA.119.311994.; https://www.sibjcem.ru/jour/article/view/1794

  6. 6
    Academic Journal

    المساهمون: Авторы заявляют об отсутствии финансирования исследования.

    المصدر: Complex Issues of Cardiovascular Diseases; Том 12, № 3 (2023); 161-172 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 12, № 3 (2023); 161-172 ; 2587-9537 ; 2306-1278

    وصف الملف: application/pdf

    Relation: https://www.nii-kpssz.com/jour/article/view/1187/818; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1187/1158; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1187/1159; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1187/1160; Фомин И.В. Хроническая сердечная недостаточность в Российской Федерации: что сегодня мы знаем и что должны делать. Российский кардиологический журнал. 2016;(8):7-13. doi:10.15829/1560- 4071-2016-8-7-13; Arnardottir Е.S., Bjornsdottir E., Olafsdottir K.A., Benediktsdottir B., Gislason T. Obstructive sleep apnoea in the general population: highly prevalent but minimal symptoms. European Respiratory Journal. 2016;47:194-202. doi:10.1183/13993003.01148-2015.; Maedera M., Schochb O., Busera M. Ammann P., Rickli H. Obstructive sleep apnoea and heart failure. Cardiovascular Medicine. 2017;20:9-17. doi:10.4414/cvm.2017.00452.; Медведева Е.А., Коростовцева Л.С., Сазонова Ю.В., Бочкарёв М.В., Свиряев Ю.В., Конради А.О. Синдром обструктивного апноэ во сне при хронической сердечной недостаточности: взгляд кардиолога. Российский кардиологический журнал. 2018;1:78-82. doi:10.15829/1560-4071-2018-1-78-82.; Сукмарова З.Н., Литвин А.Ю., Чазова И.Е., Рогоза А.Н. Эффективность комплексной медикаментозной и CPAP-терапии у пациентов с артериальной гипертонией 2-3-й степени и тяжелой степенью синдрома обструктивного апноэ во время сна. Системные гипертензии. 2011;8(1):40. doi.org/10.26442/SG33110.; Baran R., Grimm D., Infanger M., Wehland M. The Effect of Continuous Positive Airway Pressure Therapy on Obstructive Sleep Apnea-Related Hypertension. Int J Mol Sci. 2021;22(5):2300. doi:10.3390/ijms22052300.; Bakker J.P, Weaver T.E, Parthasarathy S., Aloia M.S. Adherence to CPAP: What Should We Be Aiming For, and How Can We Get There. Chest. 2019;155(6):1272-1287. doi:10.1016/j.chest.2019.01.012.; Galderisi M., Cosyns B., Edvardsen T., Cardim N., Delgado V., Salvo G., Donal E., Sade L., Ernande L., Garbi M., Grapsa J., Hagendorff A., Kamp O., Magne J., Santoro C., Stefanidis A., Lancellotti P., Popescu B., Habib G. Standardization of adult transthoracic echocardiography reporting in agreement with recent chamber quantification, diastolic function, and heart valve disease recommendations: an expert consensus document of the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2017;18:1301–1310. doi:10.1093/ehjci/jex244.; Varghesea M., Sharmaa G., Shukla G. Setha S., Mishraa S., Guptab A., Bahl V. Longitudinal ventricular systolic dysfunction in patients with very severe obstructive sleep apnea: A case control study using speckle tracking imaging. Indian Heart J. 2017;69(3):305-310. doi:10.1016/j.ihj.2016.12.011.; Tadic M., Gherbesi E., Faggiano A., Sala C., Carugo S., Cuspidi C. Is myocardial strain an early marker of systolic dysfunction in obstructive sleep apnoea? Findings from a meta-analysis of echocardiographic studies J Hypertens. 2022;40(8):1461-1468. doi:10.1097/HJH.0000000000003199.; Гусева В.П., Рябиков А.Н., Воронина Е.В., Малютина С.К. Изменения продольной систолической функции левого желудочка в зависимости от артериальной гипертензии и эффективности ее контроля: популяционный анализ. Кардиология. 2020;60(7):36–43. doi:10.18087/cardio.2020.7.n932.; Бузунов Р.В., Пальман А.Д., Мельников А.Ю. Авербух В.М., Мадаева И.М., Куликов А.Н. Диагностика и лечение синдрома обструктивного апноэ сна у взрослых. Рекомендации Российского общества сомнологов. Эффективная фармакотерапия. 2018;35:34-45.; Nagueh S.F, Smiseth O.A, Appleton C.P. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 2016;17:1321–1360 doi:10.1016/j.echo.2016.01.011.; Хроническая сердечная недостаточность. Клинические рекомендации 2020. Российский кардиологический журнал. 2020;25(11):4083. doi:10.15829/1560-4071-2020-4083.; Yu L., Li H., Liu X., Fan J., Zhu Q., Li J., Jiang J., Wang J. Left ventricular remodeling and dysfunction in obstructive sleep apnea: Systematic review and meta-analysis. Herz. 2020;45(8):726-738. doi:10.1007/s00059-019-04850-w.; Sascău R., Zota I.M., Stătescu C., Boișteanu D., Roca M., Maștaleru A., Leon Constantin M.M., Vasilcu T.F., Gavril R.S., Mitu F. Review of Echocardiographic Findings in Patients with Obstructive Sleep Apnea. Can Respir J. 2018;2018:1206217. doi:10.1155/2018/1206217.; Vakili B., Okin P., Devereux R. Prognostic implications of left ventricular hypertrophy. Prog Cardiovasc Dis. 2018;61(5-6):446-455. doi:10.1016/j.pcad.2018.11.002.; Stampehl M., Mann D., Nguyen J. Cota F., Colmenares C., Dokainish H. Speckle strain echocardiography predicts outcome in patients with heart failure with both depressed and preserved left ventricular ejection fraction. Echocardiography. 2015;32:71–78. doi:10.1111/echo.12613.; Vecchis De R., Baldi C., Biase Di G. The relation between global longitudinal strain and serum natriuretic peptide is more strict than that found between the latter and left ventricular ejection fraction: a retrospective study in chronic heart failure. J Clin Med Res. 2015;7(12):979–988. doi:10.14740/jocmr2370w.; Gozdzik A., Marwick T., Przewlocka-Kosmala M., Jankowska E., Ponikowski P., Kosmala W. Comparison of left ventricular longitudinal systolic function parameters in the prediction of adverse outcome in heart failure with preserved ejection fraction. ESC Heart Fail. 2021;8(2):1531-1540. doi:10.1002/ehf2.13247.; Papanikolaou J., Ntalapascha M., Makris D., Koukoubani T., Tsolaki V., Zakynthinos G., Gourgoulianis K., Zakynthinos E. Affiliations expand. Diastolic dysfunction in men with severe obstructive sleep apnea syndrome but without cardiovascular or oxidative stress-related comorbidities. Ther Adv Respir Dis. 2019;13:1753466619880076. doi:10.1177/1753466619880076.; Leite A.R., Martinez D.M., Garcia-Rosa M.L, Macedo E., Lagoeiro A., Martins W., Vasques-Netto D. Santos C. Risk of Obstructive Sleep Apnea and Echocardiographic Parameters. Arq Bras Cardiol. 2019;113(6):1084-1089. doi:10.5935/abc.20190181.; Wan Q., Xiang G., Xing Y., Hao S., Shu X., Pan C., Li S. Left atrial dysfunction in patients with obstructive sleep apnea: a combined assessment by speckle tracking and real-time three-dimensional echocardiography. Ann Palliat Med. 2021;10(3):2668-2678. doi:10.21037/apm-20-1125.; Korcarz C., Peppard P., Young T., Chapman C., Hla K., Barnet J., Hagen E., Stein J. Effects of Obstructive Sleep Apnea and Obesity on Cardiac Remodeling: The Wisconsin Sleep Cohort Study. Sleep. 2016;39(6):1187-1195. doi:10.5665/sleep.5828.; Arnaud C., Bochaton T., Pepin J., Belaidi E. Obstructive sleep apnoea and cardiovascular consequences: Pathophysiological mechanisms. Arch Cardiovasc Dis. 2020;113(5):350-358. doi:10.1016/j.acvd.2020.01.003.; Haranczyk M., Konieczynska M., Płazak W. Influence of obstructive sleep apnea on right heart structure and function. Adv Respir Med. 2021;89(5):493-500. doi:10.5603/ARM.a2021.0095.; https://www.nii-kpssz.com/jour/article/view/1187

  7. 7
  8. 8
    Academic Journal

    المصدر: Complex Issues of Cardiovascular Diseases; Том 11, № 3 (2022); 152-161 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 11, № 3 (2022); 152-161 ; 2587-9537 ; 2306-1278

    وصف الملف: application/pdf

    Relation: https://www.nii-kpssz.com/jour/article/view/1170/704; Кузьмина О.К., Рутковская Н.В. Ремоделирование миокарда при поражениях клапанов сердца. Сибирское медицинское обозрение. 2017; 2(104): 5-14. doi:10.20333/2500136-2017-2-5-14; Humeres C., Frangogiannis N.G. Fibroblasts in the infarcted, remodeling, and failing heart. JACC Basic Transl Sci. 2019; 4(3): 449–467. doi:10.1016/j.jacbts.2019.02.006; Smith B., Thomson J., Crossland D., Spence M.S., Morgan G.J. UK multicenter experience using the gore septal occluder (GSO (TM)) for atrial septal defect closure in children and adults. Catheter. Cardiovasc. Interv. 2014; 83(4): 581–586. doi:10.1002/ccd.25216.; Qing M., Schumacher K., Heise R., Wöltje M., Vazquez-Jimenez J.F., Richter T., Arranda-Carrero M., Hess J., Bernuth G., Seghaye M-C. Intramyocardial synthesis of pro- and antiinflammatory cytokines in infants with congenital cardiac defects. JACC. 2003; 41(12): 2266–2274. doi:10.1016/s0735-1097(03)00477-7.; Fiszer R., Szkutnik M., Chodór B., Białkowski J. Spontaneous closure of a large atrial septal defect in an infant. Postepy Kardiol Interwencyjnej. 2014; 10(4): 264–266. doi:10.5114/pwki.2014.46768; Galea N., Grech V. Spontaneous closure of a large secundum atrial septal defect. Images Paediatr Cardiol. 2002; 4(3): 21–29.; Kim N.K., Su-Jin, J.Yo. Transcatheter Closure of Atrial Septal Defect: Does Age Matter? Korean Circ J. 2011; 41(11): 633–638. doi:10.4070/kcj.2011.41.11.633; De Meester P., Van De Bruaene A., Herijgers P., Voigt J-U., Vanhees L., Budts W. Increased pulmonary artery pressures during exercise are related to persistent tricuspid regurgitation after septal defect closure. Acta Cardiol. 2013; 68(4): 365–372. doi:10.1016/j.amjcard.2009.05.017; Шушпанников П.А., Тарасов Р.С. Транскатетерная коррекция дефектов межпредсердной перегородки у детей: фокус на ремоделирование сердца. Комплексные проблемы сердечно-сосудистых заболеваний. 2020; 9 (1): 82-91. doi:10.17802/2306-1278-2020-9-1-82-91; Клинические рекомендации по ведению детей с врожденными пороками сердца. Под ред. Л.А. Бокерия. М.: НЦССХ им. А.Н. Бакулева. 2014; 342 с. https://racvs.ru/custom/files/clinic/Nac_rec_VPS_deti.pdf; Bichell D.P., Geva T., Bacha E.A., Mayer J.E., Jonas R.A., del Nido P.J. Minimal access approach for the repair of atrial septal defect: the initial 135 patients. Ann. Thorac. Surg. 2000; 70(1). 115–118. doi:10.1016/s0003-4975(00)01251-0.; Shahrukh N. Bakar, Daniel J.P. Burns, Diamantouros P., Sridhar K., Kiaii B., Michael W. A. Chu. Clinical outcomes of a combined transcatheter and minimally invasive atrial septal defect repair program using a 'Heart Team' approach. Journal of Cardiothoracic Surgery. 2018; 13(11): 1-7. doi:10.1186/s13019-018-0701-1; Нечкина И.В., Соколов А.А., Ковалев И.А., Варваренко В.И., Кривощеков Е.В. Ремоделирование сердца у детей после эндоваскулярной и хирургической коррекции дефекта межпредсердной перегородки. Сибирский медицинский журнал. 2012, 27(3). 77-81.; Соколов А.А., Марцинкевич Г.И., Кривощеков Е.В., Варваренко В.И. Ремоделирование сердца при естественном лечении и при эндоваскуярной коррекции атриосептальных дефектов у детей. Российский педиатрический журнал. 2014; 4.; Шушпанников П.А., Тарасов Р.С., Сизова И.Н., Ганюков В.И. Возрастные аспекты ремоделирования сердца у детей после транскатетерной коррекции дефекта межпредсердной перегородки. Кардиология и сердечно-сосудистая хирургия. 2021; 14(1): 11-19. doi:10.17116/kardio20211401111; Kamphuis V.P., Nassif M., Man S.C., Swenne C.A., Kors J.A., Vink A.S., Ten Harkel A.D.J., Maan A.C., Mulder B.J.M., de Winter R.J., Blom N.A. Electrical remodeling after percutaneous atrial septal defect closure in pediatric and adult patients Int J Cardiol. 2019; 285: 32-39. doi:10.1016/j.ijcard.2019.02.020.; Knop M.T., Białkowski J., Szkutnik M., Fiszer R., Smerdziński S., Gałeczka M., Litwin L. Transcatheter closure of atrial septal defects type 2 in children under three years of age. Kardiologia Polska. 2018; 76(8): 1257–1262. doi:10.5603/KP.a2018.0113.; Шушпанников П.А., Халивопуло И.К., Шабаев И.Ф., Сизова И.Н., Омельченко А.Ю., Тарасов Р.С. Результаты эндоваскулярной и миниинвазивной коррекции и ремоделирование сердца у детей с дефектом межпредсердной перегородки. Комплексные проблемы сердечно-сосудистых заболеваний. 2022; 11(2): 151-161. doi:10.17802/2306-1278-2022-11-2-151-161; https://www.nii-kpssz.com/jour/article/view/1170

  9. 9
    Academic Journal

    المصدر: Complex Issues of Cardiovascular Diseases; Том 11, № 2 (2022); 151-161 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 11, № 2 (2022); 151-161 ; 2587-9537 ; 2306-1278

    وصف الملف: application/pdf

    Relation: https://www.nii-kpssz.com/jour/article/view/1099/680; Белоконь Н.А., Подзолков В.П. Врожденные пороки сердца. Москва. Медицина. 1991.; Nagendran J., Habib H.F., Kiaii B., A Chu M.W. Minimally invasive endoscopic repair of atrial septal defects via right minithoracotomy. Multimed Man Cardiothorac Surg. 2016; 2016. http://dx.doi.org/10.1093/mmcts/mmv042; Farooqi M., Stickley J., Dhillon R. Barron A.J., Stumper O., Jones T.J., Clift P.F., Brawn W.J. Trends in surgical and catheter interventions for isolated congenital shunt lesions in the UK and Ireland. Heart. 2019; 105(14):1103-1108. doi:10.1136/heartjnl-2018-314428.; De Meester P., Van De Bruaene A., Herijgers P., Voigt J-U., Vanhees L., Budts W. Increased pulmonary artery pressures during exercise are related to persistent tricuspid regurgitation after septal defect closure. Acta Cardiol. 2013; 68(4): 365–72. doi:10.1080/ac.68.4.2988889.; Kim N.K., Su-Jin, J.Yo. Transcatheter Closure of Atrial Septal Defect: Does Age Matter? Korean Circ J. 2011 Nov; 41(11): 633–638.; Клинические рекомендации по ведению детей с врожденными пороками сердца. Под ред. Бокерия Л.А. М.: НЦССХ им. А.Н. Бакулева; 2014: 342 с. https://racvs.ru/custom/files/clinic/Nac_rec_VPS_deti.pdf (2014); Siwińska A., Mroziński V., Górzna-Kamiska H., Pawelec-Wojtalik M., Wojtalik M., Bobkowski W., Zachwieja J., Maciejewski J. Echocardiographic parameters of left ventricular systolic and diastolic function in infants, children and adolescents before and after surgical correction of secundum atrial septal defect. Kardiol. Pol. 2002; 57(11): 422–34.; Кузьмина О.К., Рутковская Н.В. Ремоделирование миокарда при поражениях клапанов сердца. Сибирское медицинское обозрение. 2017; 2(104): 5-14. doi:10.20333/2500136-2017-2-5-14; Тулеутаев Р.М., Богачёв-Прокофьев А.В., Железнёв С.И., Афанасьев А.В. Обратное ремоделирование левых камер сердца после реконструкции митрального клапана при мезенхимальной дисплазии. Патология кровообращения и кардиохирургия. 2015, 19(1): 66–71. doi:10.21688/1681-3472-2015-1-66-71; Pawelec-Wojtalik M., Wojtalik M., Mrowczynski W., Surmacz R., Quereshi Sh.A. Comparison of cardiac function in children after surgical and Amplatzer occluder closure of secundum atrial septal defects. Eur. J. Cardiothorac. Surg. 2006. 29(1): 89–92. doi:10.1016/j.ejcts.2005.10.017; Нечкина И.В., Соколов А.А., Ковалев И.А., Варваренко В.И., Кривощеков Е.В. Ремоделирование сердца у детей после эндоваскулярной и хирургической коррекции дефекта межпредсердной перегородки. Сибирский медицинский журнал. 2012; 27 (3): 77-81.; Warnes C.A., Williams R.G., Bashore T.M., Child J.S., Connolly H.M., Dearani J.A., del Nido P., Fasules J.W., Graham T.P., Jr, Hijazi Z.M., Hunt S.A., King M.E., Landzberg M.J., Miner P.D., Radford M.J., Walsh E.P., Webb G.D., Smith S.C., Jr. Jacobs A.K., Adams C.D., Anderson J.L., Antman E.M., Buller C.E., Creager M.A., Ettinger S.M., Halperin J.L., Hunt S.A., Krumholz H.M., Kushner F.G., Lytle B.W., Nishimura R.A., Page R.L., Riegel B., Tarkington L.G., Yancy C.W. American College of Cardiology; American Heart Association Task Force on Practice Guidelines (Writing Committee to Develop Guidelines on the Management of Adults With Congenital Heart Disease); American Society of Echocardiography; Heart Rhythm Society; International Society for Adult Congenital Heart Disease; Society for Cardiovascular Angiography and Interventions; Society of Thoracic Surgeons. ACC/AHA 2008 guidelines for the management of adults with congenital heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Develop Guidelines on the Management of Adults With Congenital Heart Disease). Developed in Collaboration With the American Society of Echocardiography, Heart Rhythm Society, International Society for Adult Congenital Heart Disease, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2008; 52: e143–e263. doi:10.1016/j.jacc.2008.10.001.; Bichell D.P., Geva T., Bacha E.A., Mayer J.E., Jonas R.A., del Nido P.J. Minimal access approach for the repair of atrial septal defect: the initial 135 patients. Ann. Thorac. Surg. 2000; 70: 115–118. doi:10.1016/s0003-4975(00)01251-0; Bakar S.N., Burns D.J.P., Diamantouros P., Sridhar K., Kiaii B., Chu M.W.A. Clinical outcomes of a combined transcatheter and minimally invasive atrial septal defect repair program using a 'Heart Team' approach. J Cardiothorac Surg. 2018;13(1):11. doi:10.1186/s13019-018-0701-1.; Kodaira M., Kawamura A., Okamoto K., Kanazawa H., Minakata Y., Murata M., Shimizu H., Fukuda K. Comparison of Clinical Outcomes After Transcatheter vs. Minimally Invasive Cardiac Surgery Closure for Atrial Septal Defect. Circ J 2017; 81: 543-551. doi:10.1253/circj.CJ-16-0904.; King T.D., Mills N. L. Nonoperative closure of left-toright shunts. J. Thorac. Cardiovasc. Surg. 1976; 72(3); 371–377.; Hughes M.L., Maskell G., Goh T.H., Wilkinson J.L. Prospective comparison of costs and short term health outcomes of surgical versus device closure of atrial septal defect in children. Heart 2002; 88: 67–70. doi:10.1136/heart.88.1.67.; https://www.nii-kpssz.com/jour/article/view/1099

  10. 10
    Academic Journal

    المصدر: Acta Biomedica Scientifica; Том 7, № 2 (2022); 113-124 ; 2587-9596 ; 2541-9420

    وصف الملف: application/pdf

    Relation: https://www.actabiomedica.ru/jour/article/view/3427/2328; Virani SS, Alonso А, Benjamin EJ. Heart disease and stroke statistics-2020 update: A report from the American Heart Association. Circulation. 2020; 141(9): 139-596. doi:10.1161/CIR.0000000000000757; Shih J-Y, Chen Z-C, Chang H-Y. Risks of age and sex on clinical outcomes post myocardial infarction. Int J Cardiol Heart Vasc. 2019; 23: 100350. doi:10.1016/j.ijcha.2019.100350; Report on cardiovascular health and diseases in China 2019: An updated summary. Chinese Circulation Journal. 2020; 35(9): 833-854.; Timmis A, Townsend N, Gale CP. European Society of Cardiology: Cardiovascular disease statistics 2019. Eur Heart J. 2020; 41: 12-85. doi:10.1093/eurheartj/ehz859; Maglietta G, Ardissino М, Malagoli Tagliazucchi G. Longterm outcomes after early-onset myocardial infarction. J Am Coll Cardiol. 2019; 74(16): 2113-2115. doi:10.1016/j.jacc.2019.08.1000; Pfeffer MA. Survival after an experimental myocardial infarction: Beneficial effects of long-term therapy with captopril. Circulation. 1985; 2(72): 406-412.; Guo Y, Zhang C, Ye T, Chen X, Liu X, Chen X, et al. Pinocembrin ameliorates arrhythmias in rats with chronic ischaemic heart failure. Ann Med. 2021; 53(1): 830-840. doi:10.1080/07853890.2021.1927168; Wu Y, Liu H, Wang X. Cardioprotection of pharmacological postconditioning on myocardial ischemia/reperfusion injury. Life Sci. 2021; 264: 118628. doi:10.1016/j.lfs.2020.118628; Maida CD, Norrito RL, Daidone M. Neuroinflammatory mechanisms in ischemic stroke: Focus on cardioembolic stroke, background, and therapeutic approaches. Int J Mol Sci. 2020; 21(18): 6454. doi:10.3390/ijms21186454; Morton AB, Jacobsen NL, Segal SS. Functionalizing biomaterials to promote neurovascular regeneration following skeletal muscle injury. Am J Physiol Cell Physiol. 2021; 320(6): C1099-C1111. doi:10.1152/ajpcell.00501.2020; Gonçalves RC, Banfi A, Oliveira MB. Strategies for revascularization and promotion of angiogenesis in trauma and disease. Biomaterials. 2021; 269: 120628. doi:10.1016/j.biomaterials.2020.120628; László A, Lénárt L, Illésy L. The role of neurotrophins in psychopathology and cardiovascular diseases: Psychosomatic connections. J Neural Transm (Vienna). 2019; 126(3): 265-278. doi:10.1007/s00702-019-01973-6; Kotlega D, Zembron-Lacny A, Morawin B. Free fatty acids and their inflammatory derivatives affect BDNF in stroke patients. Mediators Inflamm. 2020; 2020: 6676247. doi:10.1155/2020/6676247; Jamali A, Shahrbanian S, Morteza Tayebi S. The effects of exercise training on the brain-derived neurotrophic factor (BDNF) in the patients with type 2 diabetes: A systematic review of the randomized controlled trials. J Diabetes Metab Disord. 2020; 19(1): 633-643. doi:10.1007/s40200-020-00529-w; Wang J, Amidfar M, Eyileten C. Nerve growth factor in metabolic complications and Alzheimer’s disease: Physiology and therapeutic potential. Biochim Biophys Acta Mol Basis Dis. 2020; 1866(10): 165858. doi:10.1016/j.bbadis.2020.165858; Xue Y, Liang H, Yang R. The role of pro- and mature neurotrophins in the depression. Behav Brain Res. 2021; 404: 113162. doi:10.1016/j.bbr.2021.113162; Hang PZ, Zhu H, Li PF. The emerging role of BDNF/TrkB signaling in cardiovascular diseases. Life (Basel). 2021; 11(1): 70. doi:10.3390/life11010070; Halloway S, Jung M, Yeh AY. An integrative review of brain-derived neurotrophic factor and serious cardiovascular conditions. Nurs Res. 2020; 69(5): 376-390. doi:10.1097/NNR.0000000000000454; Wise BL, Seidel MF, Lane NE. The evolution of nerve growth factor inhibition in clinical medicine. Nat Rev Rheumatol. 2021; 17(1): 34-46. doi:10.1038/s41584-020-00528-4; Pius-Sadowska E, Machaliński B. Pleiotropic activity of nerve growth factor in regulating cardiac functions and counteracting pathogenesis. ESC Heart Fail. 2021; 8(2): 974-987. doi:10.1002/ehf2.13138; Li R, Xu J, Rao Z. Facilitate angiogenesis and neurogenesis by growth factors integrated decellularized matrix hydrogel. Tissue Eng Part A. 2021; 27(11-12): 771-787. doi:10.1089/ten.TEA.2020.0227; Yan T, Zhang Z, Li D. NGF receptors and PI3K/AKT pathway involved in glucose fluctuation-induced damage to neurons and alpha-lipoic acid treatment. BMC Neuroscience. 2020; 21(1): 38. doi:10.1186/s12868-020-00588-y; Xu F, Na L, Li Y. Roles of the PI3K/AKT/mTOR signalling pathways in neurodegenerative diseases and tumours. Cell Biosci. 2020; 10: 54. doi:10.1186/s13578-020-00416-0; Baldassarro VA, Lorenzini L, Bighinati A. NGF and endogenous regeneration: From embryology toward therapies. Adv Exp Med Biol. 2021; 1331: 51-63. doi:10.1007/978-3-030-74046-7_5; Dahlström M, Nordvall G, Sundström E. Identification of amino acid residues of nerve growth factor important for neurite outgrowth in human dorsal root ganglion neurons. Eur J Neurosci. 2019; 50: 3487-3501. doi:10.1111/ejn.14513; Testa G, Cattaneo A, Capsoni S. Understanding pain perception through genetic painlessness diseases: The role of NGF and proNGF. Pharmacol Res. 2021; 169: 105662. doi:10.1016/j.phrs.2021.105662; Grassi G, Quarti-Trevano F, Esler MD. Sympathetic activation in congestive heart failure: An updated overview. Heart Fail Rev. 2021; 26(1): 173-182. doi:10.1007/s10741-019-09901-2; Ceci FM, Ferraguti G, Petrella C, Greco A, Tirassa P, Iannitelli A, et al. Nerve growth factor, stress and diseases. Curr Med Chem. 2021; 28(15): 2943-2959. doi:10.2174/0929867327999200818111654; Wang Y, Tan J, Yin J, Hu H, Shi Y, Wang Y, et al. Targeting blockade of nuclear factor-kappaB in the hypothalamus paraventricular nucleus to prevent cardiac sympathetic hyperinnervation post myocardial infarction. Neurosci Lett. 2019; 707: 134319. doi:10.1016/j.neulet.2019.134319; Oliveira ÍM, Silva Júnior ELD, Martins YO, Rocha HAL, Scanavacca MI, Gutierrez PS. Cardiac autonomic nervous system remodeling may play a role in atrial fibrillation: A study of the autonomic nervous system and myocardial receptors. Arq Bras Cardiol. 2021; 117(5): 999-1007. doi:10.36660/abc.20200725; Gussak G, Pfenniger A, Wren L, Gilani M, Zhang W, Yoo S, et al. Region-specific parasympathetic nerve remodeling in the left atrium contributes to creation of a vulnerable substrate for atrial fibrillation. JCI Insight. 2019; 4(20): e130532. doi:10.1172/jci.insight.130532; Yang M, Zhang S, Liang J, Tang Y, Wang X, Huang C, et al. Different effects of norepinephrine and nerve growth factor on atrial fibrillation vulnerability. J Cardiol. 2019; 74: 460-465. doi:10.1016/j.jjcc.2019.04.009; Wang Z, Li S, Lai H, Zhou L, Meng G, Wang M, et al. Interaction between endothelin-1 and left stellate ganglion activation: A potential mechanism of malignant ventricular arrhythmia during myocardial ischemia. Oxid Med Cell Longev. 2019; 2019: 6508328. doi:10.1155/2019/6508328; Jie X, Yang H, Wang K, Zhu ZF, Wang JP, Yang LG, et al. Apocynin prevents reduced myocardial nerve growth factor, contributing to amelioration of myocardial apoptosis and failure. Clin Exp Pharmacol Physiol. 2021; 48(5): 704-716. doi:10.1111/1440-1681.13465; Cheng XY, Chen C, He SF, Huang CX, Zhang L, Chen ZW, et al. Spinal NGF induces anti-intrathecal opioid-initiated cardioprotective effect via regulation of TRPV1 expression. Eur J Pharmacol. 2019; 844: 145-155. doi:10.1016/j.ejphar.2018.12.007; van der Bijl P, Abou R, Goedemans L, Gersh BJ, Holmes DR Jr, Ajmone Marsan N, et al. Left ventricular post-infarct remodeling: Implications for systolic function improvement and outcomes in the modern era. JACC Heart Fail. 2020; 8(2): 131-140. doi:10.1016/j.jchf.2019.08.014; Schuttler D, Clauss S, Weckbach LT, Brunner S. Molecular mechanisms of cardiac remodeling and regeneration in physical exercise. Cells. 2019; 8(10): 1128. doi:10.3390/cells8101128; Smit M, Coetzee AR, Lochner A. The pathophysiology of myocardial ischemia and perioperative myocardial infarction. J Cardiothorac Vasc Anesth. 2020; 34(9): 2501-2512. doi:10.1053/j.jvca.2019.10.00; Lin Y, Ding S, Chen Y, Xiang M, Xie Y. Cardiac adipose tissue contributes to cardiac repair: A review. Stem Cell Rev Rep. 2021; 17(4): 1137-1153. doi:10.1007/s12015-020-10097-4; Revelo X, Parthiban P, Chen C, Barrow F, Fredrickson G, Wang H, et al. Cardiac resident macrophages prevent fibrosis and stimulate angiogenesis. Circ Res. 2021; 129(12): 1086-1101. doi:10.1161/CIRCRESAHA.121.319737; Jenča D, Melenovský V, Stehlik J, Staněk V, Kettner J, Kautzner J, et al. Heart failure after myocardial infarction: Incidence and predictors. ESC Heart Fail. 2021; 8(1): 222-237. doi:10.1002/ehf2.13144; Yu TS, Ge LZ, Cao JM. Research advances in sympathetic remodeling after myocardial infarction and its significance in forensic science. Fa Yi Xue Za Zhi. 2019; 35(1): 68-73. doi:10.12116/j.issn.1004-5619.2019.01.013; Kosmas N, Manolis AS, Dagres N, Iliodromitis EK. Myocardial infarction or acute coronary syndrome with non-obstructive coronary arteries and sudden cardiac death: A missing connection. Europace. 2020; 22(9): 1303-1310. doi:10.1093/europace/euaa156; Lyu J, Wang M, Kang X, Xu H, Cao Z, Yu T, et al. Macrophagemediated regulation of catecholamines in sympathetic neural remodeling after myocardial infarction. Basic Res Cardiol. 2020; 115(5): 56. doi:10.1007/s00395-020-0813-3; Kytikova OY, Novgorodtseva TP, Antonyuk MV, Gvozdenko TA. The role of regulatory neuropeptides and neurotrophic factors in asthma pathophysiology. Russian Open Medical Journal. 2019; 8(4): e0402. doi:10.15275/rusomj.2019.0402; Cuello AC. Levi-Montalcini R. NGF metabolism in health and in the Alzheimer’s pathology. Adv Exp Med Biol. 2021; 1331: 119-144. doi:10.1007/978-3-030-74046-7_9; Paoletti F, Merzel F, Cassetta A, Ogris I, Covaceuszach S, Grdadolnik J, et al. Endogenous modulators of neurotrophin signaling: Landscape of the transient ATP-NGF interactions. Comput Struct Biotechnol J. 2021; 19: 2938-2949. doi:10.1016/j.csbj.2021.05.009; Yamashita N. NGF signaling in endosomes. Adv Exp Med Biol. 2021; 1331: 19-29. doi:10.1007/978-3-030-74046-7_3; Rowe CW, Dill T, Faulkner S, Gedye C, Paul JW, Tolosa JM, et al. The precursor for nerve growth factor (proNGF) in thyroid cancer lymph node metastases: Correlation with primary tumour and pathological variables. Int J Mol Sci. 2019; 20(5924). doi:10.3390/ijms20235924; Kendall A, Nyström S, Ekman S, Hultén LM, Lindahl A, Hansson E, et al. Nerve growth factor in the equine joint. Vet J. 2021; 267: 105579. doi:10.1016/j.tvjl.2020.105579; Liu Z, Wu H, Huang S. Role of NGF and its receptors in wound healing (Review). Exp Ther Med. 2021; 21(6): 599. doi:10.3892/etm.2021.10031; Seidel MF, Lane NE. The evolution of nerve growth factor inhibition in clinical medicine. Nat Rev Rheumatol. 2021; 17(1): 34-46. doi:10.1038/s41584-020-00528-4; Kang L, Andersen ND, Turek JW. Commentary: Connecting the dots: Coronary artery development as a combination of vasculogenesis and angiogenesis. J Thorac Cardiovasc Surg. 2021: S0022-5223(21)01224-1. doi:10.1016/j.jtcvs.2021.08.026; Wu X, Reboll MR, Korf-Klingebiel M, Wollert KC. Angiogenesis after acute myocardial infarction. Cardiovasc Res. 2021; 117(5): 1257-1273. doi:10.1093/cvr/cvaa287; Kurotsu S, Osakabe R, Isomi M, Tamura F, Sadahiro T, Muraoka N, et al. Distinct expression patterns of Flk1 and Flt1 in the coronary vascular system during development and after myocardial infarction. Biochem Biophys Res Commun. 2019; 495: 884-891. doi:10.1016/j.bbrc.2017.11.094; Ferraro B, Leoni G, Hinkel R, Ormanns S, Paulin N, Ortega-Gomez A, et al. Pro-angiogenic macrophage phenotype to promote myocardial repair. J Am Coll Cardiol. 2019; 73: 2990-3002. doi:10.1016/j.jacc.2019.03.503; Yang S, Cheng J, Man C, Jiang L, Long G, Zhao W, et al. Effects of exogenous nerve growth factor on the expression of BMP-9 and VEGF in the healing of rabbit mandible fracture with local nerve injury. J Orthop Surg Res. 2021; 16(1): 74. doi:10.1186/s13018-021-02220-z; Julian K, Prichard B, Raco J, Jain R, Jain R. A review of cardiac autonomics: From pathophysiology to therapy. Future Cardiol. 2022; 18(2): 125-133. doi:10.2217/fca-2021-0041; Kusayama T, Wan J, Yuan Y, Chen PS. Neural mechanisms and therapeutic opportunities for atrial fibrillation. Methodist Debakey Cardiovasc J. 2021; 17(1): 43-47. doi:10.14797/FVDN2224; Shah R, Assis F, Alugubelli N, Okada DR, Cardoso R, Shivkumar K, et al. Cardiac sympathetic denervation for refractory ventricular arrhythmias in patients with structural heart disease: A systematic review. Heart Rhythm. 2019; 16(10): 1499-1505. doi:10.1016/j.hrthm.2019.06.018; Aksu T, Gupta D, Pauza DH. Anatomy and physiology of intrinsic cardiac autonomic nervous system: Da Vinci anatomy card #2. JACC Case Rep. 2021; 3(4): 625-629. doi:10.1016/j.jaccas.2021.02.018; Moss A, Robbins S, Achanta S, Kuttippurathu L, Turick S, Nieves S, et al. A single cell transcriptomics map of paracrine networks in the intrinsic cardiac nervous system. iScience. 2021; 24(7): 102713. doi:10.1016/j.isci.2021.102713; Kotalczyk A, Mazurek M, Kalarus Z, Potpara TS, Lip GYH. Stroke prevention strategies in high-risk patients with atrial fibrillation. Nat Rev Cardiol. 2021; 18(4): 276-290. doi:10.1038/s41569-020-00459-3; Sethwala AM, Goh I, Amerena JV. Combating inflammation in cardiovascular disease. Heart Lung Circ. 2021; 30(2): 197-206. doi:10.1016/j.hlc.2020.09.003; Hutchings G, Kruszyna Ł, Nawrocki MJ, Strauss E, Bryl R, Spaczyńska J, et al. Molecular mechanisms associated with ROSdependent angiogenesis in lower extremity artery disease. Antioxidants (Basel). 2021; 10(5): 735. doi:10.3390/antiox10050735; Bostan MM, Stătescu C, Anghel L, Șerban IL, Cojocaru E, Sascău R. Post-myocardial infarction ventricular remodeling biomarkers – The key link between pathophysiology and clinic. Biomolecules. 2020; 10(11): 1587. doi:10.3390/biom10111587; Henning RJ. Cardiovascular exosomes and MicroRNAs in cardiovascular physiology and pathophysiology. J Cardiovasc Transl Res. 2021; 14(2): 195-212. doi:10.1007/s12265-020-10040-5; Hu Y, Xiong J, Wen H, Wei H, Zeng X. MiR-98-5p promotes ischemia/reperfusion-induced microvascular dysfunction by targeting NGF and is a potential biomarker for microvascular reperfusion. Microcirculation. 2021; 28(1): e12657. doi:10.1111/micc.12657; Zhao W, Zhao J, Rong J. Pharmacological modulation of cardiac remodeling after myocardial infarction. Oxid Med Cell Longev. 2020; 2020: 8815349. doi:10.1155/2020/8815349; Pentz R, Iulita MF. The NGF metabolic pathway: New opportunities for biomarker research and drug target discovery: NGF pathway biomarkers and drug targets. Adv Exp Med Biol. 2021; 1331: 31-48. doi:10.1007/978-3-030-74046-7_4; Gudasheva TA, Povarnina PY, Tarasiuk AV, Seredenin SB. Low-molecular mimetics of nerve growth factor and brain-derived neurotrophic factor: Design and pharmacological properties. Med Res Rev. 2020; 41(5): 2746-2774. doi:10.1002/med.21721; Luo W, Gong Y, Qiu F, Yuan Y, Jia W, Liu Z, et al. NGF nanoparticles enhance the potency of transplanted human umbilical cord mesenchymal stem cells for myocardial repair. Am J Physiol Heart Circ Physiol. 2021; 320(5): H1959-H1974. doi:10.1152/ajpheart.00855.2020; Saragovi HU, Galan A, Levin LA. Neuroprotection: Prosurvival and anti-neurotoxic mechanisms as therapeutic strategies in neurodegeneration. Front Cell Neurosci. 2019; 13: 231. doi:10.3389/fncel.2019.00231; Dobbin SJH, Petrie MC, Myles RC, Touyz RM, Lang NN. Cardiotoxic effects of angiogenesis inhibitors. Clin Sci (Lond). 2021; 135(1): 71-100. doi:10.1042/CS20200305; https://www.actabiomedica.ru/jour/article/view/3427

  11. 11
    Academic Journal

    المصدر: Zaporozhye мedical journal; Vol. 23 No. 4 (2021); 469 - 475 ; Запорожский медицинский журнал; Том 23 № 4 (2021); 469 - 475 ; Запорізький медичний журнал; Том 23 № 4 (2021); 469 - 475 ; 2310-1210 ; 2306-4145

    وصف الملف: application/pdf

  12. 12
    Academic Journal

    المصدر: Meditsinskiy sovet = Medical Council; № 21 (2020); 19-25 ; Медицинский Совет; № 21 (2020); 19-25 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/5962/5442; Чазова И.Е., Жернакова Ю.В., Ощепкова Е.В., Шальнова С.А., Яровая Е.Б., Конради А.О. и др. Распространенность факторов риска сердечно-сосудистых заболеваний в российской популяции больных артериальной гипертонией. Кардиология. 2014;54(10):4–12. doi:10.18565/cardio.2014.10.4-12.; Harvey A., Montezano A.C., Lopes R.A., Rios F., Touyz R.M. Vascular fibrosis in aging and hypertension: molecular mechanisms and clinical implications. Can J Cardiol. 2016;32(5):659–668. doi:10.1016/j.cjca.2016.02.070.; Coutinho T., Goel K., Corrêa de Sá D., Kragelund С., Kanaya A.M., Zeller M. et al. Central Obesity and Survival in Subjects With Coronary Artery Disease: A Systematic Review of the Literature and Collaborative Analysis With Individual Subject Data. J Am Coll Cardiol. 2011;57(19):1877–1886. doi: 0.1016/j.jacc.2010.11.058.; Shah R.V., Murthy V.L., Abbasi S.A., Blankstein R., Kwong R.Y., Goldfine A.B. et al. Visceral Adiposity and the Risk of Metabolic Syndrome Across Body Mass Index: the MESA study. JACC: Cardiovasc Imaging. 2014;7(12):1221–1235. doi:10.1016/j.jcmg.2014.07.017.; Куликов В.А. Фремингемское исследование сердца: 65 лет изучения атеросклероза. Вестник Витебского государственного медицинского университета. 2012;11(2):16–24. Режим доступа: https://elibrary.ru/item.asp?id=17880395.; Lim S., Meigs J.B. Ectopic fat and cardiometabolic and vascular risk. Int J Cardiol. 2013;169(3):166–176. doi: 0.1016/j.ijcard.2013.08.077.; Roberts C.K., Hevener A.L., Barnard R.J. Metabolic syndrome and insulin resistance: underlying causes and modification by exercise training. Comprehensive Physiology. 2013;3(1):1–58. doi:10.1002/cphy.c110062.; Piepoli M.F., Hoes A.W., Agewall S., Albus C., Brotons C., Catapano A.L. et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts) Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur Heart J. 2016;37(29):2315–2381. doi:10.1093/eurheartj/ehw106.; Бондарь В.Н. Артериальная гипертензия и метаболический синдром: особенности ремоделирования левого желудочка и диастолическая дисфункция. Актуальные проблемы современной медицины: Вестник Украинской медицинской стоматологической академии. 2016;16(1):77– 82. Режим доступа: https://elibrary.ru/item.asp?id=25666503.; Ryden L., Grant P.J., Anker S.D., Berne C., Cosentino F., Danchin N. et al. ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Diab Vasc Dis Res. 2014;11(3):133–73. doi:10.1177/1479164114525548.; Kaess B.M., Pedley A., Massaro J.M., Murabito J., Hoffmann U., Fox C.S. The ratio of visceral to subcutaneous fat, a metric of body fat distribution, is a unique correlate of cardiometabolic risk. Diabetologia. 2012;55(10):2622– 2630. doi:10.1007/s00125-012-2639-5.; Subbaramaiah K., Howe L.R., Bhardwaj P., Du B., Gravaghi C., Yantiss R.K. et al. Obesity Is Associated with Inflammation and Elevated Aromatase Expression in the Mouse Mammary Gland. Cancer Prevention Research. 2011;4(3):329–346. doi:10.1158/1940-6207.CAPR-10-0381.; Ganau A., Devereux R.B., Roman M.J., de Simone G., Pickering T.G., Saba P.S. et al. Patterns of left ventricular hypertrophy and geometric remodeling in essential hypertension. J Am Coll Cardiol. 1992;19(7):1550–1558. doi:10.1016/0735-1097(92)90617-v.; Tsioufis C., Kokkinos P., Macmanus C., Thomopoulos C., Faselis C., Doumas M. et al. Left ventricular hypertrophy as a determinant of renal outcome in patients with high cardiovascular risk. J Hypertens. 2010;28(11):2299–2308. doi:10.1097/HJH.0b013e32833d95fe.; Bautista-Niño P.K., Portilla-Fernandez E., Vaughan D.E., Jan Danser A.H., Roks A.J.M. DNA damage: a main determinant of vascular aging. Int J Mol Sci. 2016;17(5):748. doi:10.3390/ijms17050748.; Trayhurn P. Hypoxia and adipose tissue function and dysfunction in obesity. Physiol Rev. 2013;93(1):1–21. doi:10.1152/physrev.00017.2012.; Barton M., Prossnitz E.R. Emerging roles of GPER in diabetes and atherosclerosis. Trends Endocrinol Metab. 2015;26(4):185–192. doi:10.1016/j.tem.2015.02.003.; Копылов Ф.Ю., Иванов Г.Г., Дворников В.Е., Пивченко Н.А., Шумилов К.М. Гипертрофия левого желудочка: патогенез, диагностика и прогноз. Вестник Российского университета дружбы народов. Серия: Медицина. 2002;(3):106–130. Режим доступа: https://cyberleninka.ru/article/n/gipertrofiya-levogo-zheludochka-patogenez-diagnostika-iprognoz.; Rodriguez-Iturbe B., Pons H., Johnson R.J. Role of the immune system in hypertension. Physiol Rev. 2017;97(3):1127–1164. doi:10.1152/physrev.00031.2016.; Sakaue T., Suzuki J., Hamaguchi M., Suehiro C., Tanino A., Nagao T. et al. Perivascular adipose tissue angiotensin II type 1 receptor promotes vascular inflammation and aneurysm formation. Hypertension. 2017;70(4):780–789. doi:10.1161/HYPERTENSIONAHA.117.09512.; Fitzpatrick A.L., Kronmal R.A., Gardner J.P., Psaty B.M., Jenny N.S., Tracy R.P. et al. Leukocyte telomere length and cardiovascular disease in the cardiovascular health study. Am J Epidemiol. 2007;165(1):14–21. doi:10.1093/aje/kwj346.; Кобалава Ж.Д., Котовская Ю.В., Сафарова А.Ф., Моисеев В.С. Эхокардиографическая оценка фиброза миокарда у молодых мужчин с артериальной гипертонией и разными типами ремоделирования левого желудочка. Кардиология. 2011;51(2):34–39. Режим доступа: https://elibrary.ru/item.asp?id=16768664.; Полозова Э.И., Мамкина Н.Н. Особенности структурно-геометрической перестройки левого желудочка у больных с метаболическим синдромом и артериальной гипертензией. Ульяновский медико-биологический журнал. 2017;(4):26–32. Режим доступа: https://elibrary.ru/item.asp?id=32246730.; Сумеркина В.А., Головнева Е.С., Телешева Л.Ф. Маркеры дисфункции эндотелия и цитокиновый профиль у пациентов с метаболическим синдромом и абдоминальным ожирением. Клиническая лабораторная диагностика. 2016;61(7):408–412. doi:10.18821/0869-2084-2016-61-7-408-412.; Caillon A., Schiffrin E.L. Role of inflammation and immunity in hypertension: Recent epidemiological, laboratory, and clinical evidence. Curr Hypertens Rep. 2016;18(3):21. doi:10.1007/s11906-016-0628-7.; Kim D.H., Kim C., Ding E.L., Townsend M.K., Lipsitz L.A. Adiponectin levels and the risk of hypertension: a systematic review and meta-analysis. Hypertension. 2013;62(1):27–32. doi:10.1161/HYPERTENSIONAHA.113.01453.; Pandolfi J.B., Ferraro A.A., Sananez I., Gancedo M.C., Baz P., Billordo L.A. et al. ATP-Induced Inflammation Drives Tissue-Resident Th17 Cells in Metabolically Unhealthy Obesity. J Immunol. 2016;196(8):3287–3296. doi:10.4049/jimmunol.1502506.; Шарипова Г.Х., Саидова М.А., Жернакова Ю.В., Чазова И.Е. Влияние метаболического синдрома на поражение сердца у больных артериальной гипертонией. Альманах клинической медицины. 2015;1(1):102–110. doi:10.18786/2072-0505-2015-1-102-110.; Потехин Н.П., Саркисов К.А., Орлов Ф.А., Алаторцева И.А., Старовойтова И.М., Дроздова И.Н. Влияние абдоминального ожирения на ремоделирование миокарда левого желудочка у пациентов с артериальной гипертензией. Клиническая медицина. 2015;93(7):67–70. Режим доступа: https://elibrary.ru/item.asp?id=24086573.; Newton R., Priyadharshini B., Turka L.A. Immunometabolism of regulatory T cells. Nat Immunol. 2016;17(6):618–625. doi:10.1038/ni.3466.; Mian M.O., Barhoumi T., Briet M., Paradis P., Schiffrin E.L. Deficiency of t-regulatory cells exaggerates angiotensin II-induced microvascular injury by enhancing immune responses. J Hypertens. 2016;34(1):97–108. doi:10.1097/HJH.0000000000000761.; https://www.med-sovet.pro/jour/article/view/5962

  13. 13
    Academic Journal

    المصدر: The Siberian Journal of Clinical and Experimental Medicine; Том 36, № 2 (2021); 61-69 ; Сибирский журнал клинической и экспериментальной медицины; Том 36, № 2 (2021); 61-69 ; 2713-265X ; 2713-2927

    وصف الملف: application/pdf

    Relation: https://cardiotomsk.elpub.ru/jour/article/view/1192/619; Reinstadler S.J., Kronbichler A., Reindl M., Feistritzer H.J., Innerhofer V., Mayr A. et al. Acute kidney injury is associated with microvascular myocardial damage following myocardial infarction. Kidney Int. 2017;92(3):743–750. DOI:10.1016/j.kint.2017.02.016.; Kofman N., Margolis G., Gal-Oz A., Letourneau-Shesaf S., Keren G., Rozenbaum Z. et al. Long-term renal outcomes and mortality following renal injury among myocardial infarction patients treated by primary percutaneous intervention. Coron. Artery Dis. 2019;30(2):87–92. DOI:10.1097/MCA.0000000000000678.; Collet J.P., Thiele H., Barbato E., Barthélémy O., Bauersachs J., Bhatt D.L. et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur. Heart J. 2021;42(14):1289–1367. DOI:10.1093/eurheartj/ehaa575.; Gombozhapova A., Rogovskaya Y., Shurupov V., Rebenkova M., Kzhyshkowska J., Popov S.V. et al. Macrophage activation and polarization in post-infarction cardiac remodeling. J. Biomed. Sci. 2017;24(1):13. DOI:10.1186/s12929-017-0322-3.; Mosser D.M., Edwards J.P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 2008;8(12):958–969. DOI:10.1038/nri2448.; Mann D.L., McMurray J.J., Packer M., Swedberg K., Borer J.S., Colucci W.S. et al. Targeted anticytokine therapy in patients with chronic heart failure: Results of the Randomized Etanercept Worldwide Evaluation (RENEWAL). Circulation. 2004;109(13):1594–1602. DOI:10.1161/01.CIR.0000124490.27666.B2.; Fujiu K., Shibata M., Nakayama Y., Ogata F., Matsumoto S., Noshita K. et al. A heart-brain-kidney network controls adaptation to cardiac stress through tissue macrophage activation. Nat. Med. 2017;23(5):611–622. DOI:10.1038/nm.4326.; Nahrendorf M., Swirski F.K. Monocyte and macrophage heterogeneity in the heart. Circ. Res. 2013;112(12):1624–1633. DOI:10.1161/CIRCRESAHA.113.300890.; Wang C., Pei Y.Y., Ma Y.H., Ma X.L., Liu Z.W., Zhu J.H. et al. Risk factors for acute kidney injury in patients with acute myocardial infarc tion. Chin. Med. J. (Engl.). 2019;132(14):1660–1665. DOI:10.1097/CM9.0000000000000293.; Chalikias G., Serif L., Kikas P., Thomaidis A., Stakos D., Makrygiannis D. et al. Long-term impact of acute kidney injury on prognosis in patients with acute myocardial infarction. Int. J. Cardiol. 2019;283:48–54. DOI:10.1016/j.ijcard.2019.01.070.; Kaesler N., Babler A., Floege J., Kramann R. Cardiac remodeling in chronic kidney disease. Toxins (Basel). 2020;12(3):161. DOI:10.3390/toxins12030161.; Yusuf S., Pfeffer M.A., Swedberg K., Granger C.B., Held P., McMurray J.J. et al. Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: the CHARM-Preserved Trial. Lancet. 2003;362(9386):777–781. DOI:10.1016/S0140-6736(03)14285-7.; Salman I.M. Cardiovascular autonomic dysfunction in chronic kidney disease: A comprehensive review. Curr. Hypertens. Rep. 2015;17(8):59. DOI:10.1007/s11906-015-0571-z.; Silljé H.H.W., de Boer R.A. Heart failure: Macrophages take centre stage in the heart-brain431 kidney axis. Nat. Rev. Nephrol. 2017;13(7):388–390. DOI:10.1038/nrneph.2017.73.; Chen T., Cao Q., Wang Y., Harris D.C.H. M2 macrophages in kidney disease: Biology, therapies, and perspectives. Kidney Int. 2019;95(4):760–773. DOI:10.1016/j.kint.2018.10.041.; Huen S.C., Cantley L.G. Macrophages in renal injury and repair. Annu. Rev. Physiol. 2017;79:449–469. DOI:10.1146/annurev-physiol-022516-034219.; Kercheva M., Gusakova A.M., Ryabova T.R., Suslova T.E., Kzhyshkowska J., Ryabov V.V. Serum levels of bone morphogenetic proteins 2 and 4 in patients with acute myocardial infarction. Cells. 2020;9(10):2179. DOI:10.3390/cells9102179.; Wen Y., Crowley S.D. The varying roles of macrophages in kidney injury and repair. Curr. Opin. Nephrol. Hypertens. 2020;29(3):286–292. DOI:10.1097/MNH.0000000000000595.; Ginhoux F., Guilliams M. Tissue-resident macrophage ontogeny and homeostasis. Immunity. 2016;44(3):439–449. DOI:10.1016/j.immuni.2016.02.024.; Kercheva M., Ryabova T., Gusakova A., Suslova T.E., Ryabov V., Karpov R.S. Serum soluble ST2 and adverse left ventricular remodeling in patients with ST-segment elevation myocardial infarction. Clin. Med. Insights. Cardiol. 2019;13:1179546819842804. DOI:10.1177/1179546819842804.; Shirani J., Meera S., Dilsizian V. The cardiorenal axis: Myocardial perfusion, metabolism, and innervation. Curr. Cardiol. Rep. 2019;21(7):60. DOI:10.1007/s11886-019-1147-3.; Ikezumi Y., Kondoh T., Matsumoto Y., Kumagai N., Kaneko M., Hasegawa H. et al. Steroid treatment promotes an M2 anti-inflammatory macrophage phenotype in childhood lupus nephritis. Pediatr. Nephrol. 2021;36(2):349–359. DOI:10.1007/s00467-020-04734-w.; https://cardiotomsk.elpub.ru/jour/article/view/1192

  14. 14
    Academic Journal

    المصدر: Buletinul Academiei de Ştiinţe a Moldovei. Ştiinţe Medicale 65 (1) 178-190

    وصف الملف: application/pdf

    Relation: info:eu-repo/grantAgreement/EC/FP7/17185/EU/Alternative terapeutice noi de ameliorere a prognozei de lungă durată a pacienților cu insuficiență cardiacă cronică prin implementarea strategiilor chirurgicale, intervenționale și de recuperare peri/20.80009.8007.34; https://ibn.idsi.md/vizualizare_articol/115044; urn:issn:18570011

  15. 15
    Academic Journal

    المؤلفون: Hrebenyk, M. V., Bidovanets, L. Yu.

    المصدر: Bulletin of Scientific Research; No. 3 (2018); 26-29 ; Вестник научных исследований; № 3 (2018); 26-29 ; Вісник наукових досліджень; № 3 (2018); 26-29 ; 2415-8798 ; 1681-276X ; 10.11603/2415-8798.2018.3

    وصف الملف: application/pdf

  16. 16
    Academic Journal

    المؤلفون: Kuznetsova, L. P., Bogoslav, T. V.

    المصدر: Achievements of Clinical and Experimental Medicine; No. 1 (2019); 86-91 ; Достижения клинической и экспериментальной медицины; № 1 (2019); 86-91 ; Здобутки клінічної і експериментальної медицини; № 1 (2019); 86-91 ; 2415-8836 ; 1811-2471 ; 10.11603/1811-2471.2019.v0.i1

    وصف الملف: application/pdf

  17. 17
    Academic Journal

    المؤلفون: Didenko, D. V.

    المصدر: Achievements of Clinical and Experimental Medicine; No. 3 (2017) ; Достижения клинической и экспериментальной медицины; № 3 (2017) ; Здобутки клінічної і експериментальної медицини; № 3 (2017) ; 2415-8836 ; 1811-2471 ; 10.11603/1811-2471.2017.v1.i3

    وصف الملف: application/pdf

  18. 18
    Academic Journal

    المصدر: Achievements of Clinical and Experimental Medicine; No. 3 (2020); 165-172 ; Достижения клинической и экспериментальной медицины; № 3 (2020); 165-172 ; Здобутки клінічної і експериментальної медицини; № 3 (2020); 165-172 ; 2415-8836 ; 1811-2471 ; 10.11603/1811-2471.2020.v.i3

    وصف الملف: application/pdf

  19. 19
    Academic Journal
  20. 20
    Academic Journal