-
1Academic Journal
المؤلفون: П. И. Миронов, Юрий Станиславович Александрович, А. В. Трембач, К. В. Пшениснов, А. У. Лекманов
المصدر: Вестник интенсивной терапии, Iss 3 (2024)
مصطلحات موضوعية: сепсис, дети, шкалы, прогноз выживаемости, Medical emergencies. Critical care. Intensive care. First aid, RC86-88.9
وصف الملف: electronic resource
-
2Academic Journal
المؤلفون: Е. Ю. Соловейчик, Ильдар Ильдусович Лутфарахманов, А. Р. Шакиров, П. И. Миронов, Д. А. Валишин
المصدر: Вестник интенсивной терапии, Iss 1 (2024)
مصطلحات موضوعية: COVID-19, ОРДС, пневмония, коморбидные заболевания, кортикостероиды, персонифицированный подход, Medical emergencies. Critical care. Intensive care. First aid, RC86-88.9
وصف الملف: electronic resource
-
3Academic Journal
المؤلفون: А. В. Трембач, Н. М. Бгане, И. А. Трембач, П. И. Миронов, Юрий Станиславович Александрович
المصدر: Вестник интенсивной терапии, Iss 1 (2024)
مصطلحات موضوعية: сепсис, шок, дети, шкалы, прогноз выживаемости, Medical emergencies. Critical care. Intensive care. First aid, RC86-88.9
وصف الملف: electronic resource
-
4Academic Journal
المؤلفون: Ильдар Ильдусович Лутфарахманов, Н. А. Здорик, С. Т. Лазарев, И. Р. Галеев, Е. Ю. Сырчин, А. Д. Лифанова, П. И. Миронов
المصدر: Вестник интенсивной терапии, Iss 3 (2021)
مصطلحات موضوعية: рак простаты, радикальная простатэктомия, роботическая система da Vinci S, осложнения, общая анестезия, Medical emergencies. Critical care. Intensive care. First aid, RC86-88.9
وصف الملف: electronic resource
-
5Academic Journal
المؤلفون: Ильдар Ильдусович Лутфарахманов, И. А. Мельникова, Е. Ю. Сырчин, В. Ф. Асадуллин, Ю. А. Корелов, П. И. Миронов
المصدر: Вестник интенсивной терапии, Iss 1 (2021)
مصطلحات موضوعية: рак простаты, робот-ассистированная простатэктомия, механика дыхания, газообмен, Medical emergencies. Critical care. Intensive care. First aid, RC86-88.9
وصف الملف: electronic resource
-
6Academic Journal
المؤلفون: P. I. Mironov, Yu. S. Aleksandrovich, R. G. Idrisova, E. D. Galimova, E. I. Gilmanova, R. Z. Bogdanova, П. И. Миронов, Ю. С. Александрович, Р. Г. Идрисова, Э. Д. Галимова, Э. И. Гильманова, Р. З. Богданова
المصدر: Messenger of ANESTHESIOLOGY AND RESUSCITATION; Том 21, № 2 (2024); 39-45 ; Вестник анестезиологии и реаниматологии; Том 21, № 2 (2024); 39-45 ; 2541-8653 ; 2078-5658
مصطلحات موضوعية: ограничение объема, infusion therapy, volume limitation, инфузионная терапия
وصف الملف: application/pdf
Relation: https://www.vair-journal.com/jour/article/view/963/702; Ведение новорожденных с респираторным дистресс-синдромом. Клинические рекомендации РАСПМ / под ред. академика РАН Н. Н. Володина. – М., 2016. – 48 с.; Идрисова Р. Г., Амирова В. Р., Миронов П. И., Лекманов А. У. Сравнительная оценка прогностической способности шкал nSOFA и NEOMOD у недоношенных новорожденных // Российский вестник детской хирургии, анестезиологии и реаниматологии. – 2022. – Т. 12, № 3. – С. 351–359. DOI:10.17816/psaic1278.10.17816/psaic1278.; Abbas S., Amy K. K. In preterm infants, does fluid restriction, as opposed to liberal fluid prescription, reduce the risk of important morbidities and mortality? // Paediatrics and Child Health Division. – 2019. – Vol. 55, №7. – P. 860–866. DOI:10.1111/jpc.14498.; Arjaans S., Fries M. W. F., Schoots M. H. et al. Clinical significance of early Pulmonary Hypertension in Preterm Infants // The Journal of Pediatrics. – 2022. – Vol. 251. – P. 74–81. DOI:10.1016/j.jpeds.2022.07.039.; Bell E. F., Acarregui M. J. Restricted versus liberal water intake for preventing morbidity and mortality in preterm infants // Cochrane Database Syst. Rev. – 2014. – Vol. 2014, № 2. – CD000503.; Diderholm B., Normann E., Ahlsson F. et al. The impact of restricted versus liberal early fluid volumes on plasma sodium, weight change, and short-term outcomes in extremely preterm infants // Nutrients. – 2022. – Vol. 14, № 4. – Р. 795. DOI:10.3390/nu14040795.; Ismail R., Murthy P., Abou Mehrem A. et al. Fluid handling and blood flow patterns in neonatal respiratory distress syndrome versus transient tachypnea: a pilot study // BMC Pediatrics. – 2021. – Vol. 21. – P. 541. DOI:10.1186/s12887-021-03025-z.; Kharrat A., Ripstein G., Baczynski M. et al. Validity of the vasoactive-inotropic score in preterm neonates receiving cardioactive therapies // Early Hum Dev. – 2022. – Vol. 173. – P. 351–357. DOI:10.1016/j.earlhumdev.2022.105657.; Sanfilippo F., Rosa V., Grasso C. et al. Echocardiographic parameters and mortality in pediatric sepsis: a systematic review and meta-analysis // Pediatr Crit Care Med. – 2021. – Vol. 22, № 3. – Р. 251–261. DOI:10.1097/PCC.0000000000002622.; Soullane S., Patel S., Claveau M. et al. Fluid status in the first 10 days of life and death/bronchopulmonary dysplasia among preterm infants // Pediatr. Res. – 2021. – Vol. 90. – P. 353–358.; Stroustrup A., Trasande L., Holzman I. R. Randomized controlled trial of restrictive fluid management in transient tachypnea of the newborn // J Pediatr. – 2012. – Vol. 160, № 1. – Р. 38–43.e1. DOI:10.1016/j.jpeds.2011.06.027.; Sweet D. G., Carnielli V. P., Greisen G. et al. European Consensus Guidelines on the management of respiratory distress syndrome: 2022 Update // Neonatology. – 2023. – Vol. 120, № 1. – P. 3–23. DOI:10.1159/000528914.; Wynn J. L., Mayampurath A., Carey K. et al. Validation of the neonatal sequential organ failure assessment score for prognosis in the neonatal intensive care unit // J Pediatr. – 2021. – Vol. 236, № 9. – P. 297–300. DOI:10.1016/j.jpeds.2021.05.037.; https://www.vair-journal.com/jour/article/view/963
-
7Academic Journal
المؤلفون: A. D. Lifanova, A. A. Grazhdankin, P. I. Mironov, I. I. Lutfarakhmanov, А. Д. Лифанова, А. А. Гражданкин, П. И. Миронов, И. И. Лутфарахманов
المصدر: Messenger of ANESTHESIOLOGY AND RESUSCITATION; Том 21, № 2 (2024); 18-26 ; Вестник анестезиологии и реаниматологии; Том 21, № 2 (2024); 18-26 ; 2541-8653 ; 2078-5658
مصطلحات موضوعية: ускоренная реабилитация, opioid-sparing analgesia, thoracic epidural anesthesia/analgesia, opioid consumption, enhanced rehabilitation, опиоид-сберегающее обезболивание, торакальная эпидуральная анестезия/анальгезия, потребление опиоидов
وصف الملف: application/pdf
Relation: https://www.vair-journal.com/jour/article/view/960/700; Abaza R., Kogan P., Martinez O. Narcotic avoidance after robotic radical cystectomy allows routine of only two-day hospital stay // Urology. – 2022. – Vol. 161. – P. 65–70. DOI:10.1016/j.urology.2021.10.049.; Aldrete J. A. The post-anesthesia recovery score revisited // J Clin Anesth. – 1995. – Vol. 7, № 1. – P. 89–91. DOI:10.1016/0952-8180(94)00001-k.; Anderson R., Saiers J. H., Abram S., Schlicht C. Accuracy in equianalgesic dosing conversion dilemmas // J Pain Symptom Manage. – 2001. – Vol. 21, № 5. – P. 397–406. DOI:10.1016/s0885-3924(01)00271-8.; Audenet F., Attalla K., Giordano M. et al. Prospective implementation of a nonopioid protocol for patients undergoing robot-assisted radical cystectomy with extracorporeal urinary diversion // Urol Oncol. – 2019. – Vol. 37, № 5. – P. 300.e17–300.e23. DOI:10.1016/j.urolonc.2019.02.002.; Beloeil H., Garot M., Lebuffe G. et al. Balanced opioid-free anesthesia with dexmedetomidine versus balanced anesthesia with remifentanil for major or intermediate noncardiac surgery // Anesthesiology. – 2021. – Vol. 134, № 4. – P. 541–551. DOI:10.1097/ALN.0000000000003725.; Bhatnagar M., Pruskowski J. Opioid Equivalency // StatPearls. Treasure Island (FL): StatPearls Publishing. – 2023. PMID: 30571023 https://pubmed.ncbi.nlm.nih.gov/30571023/.; Brandal D., Keller M. S., Lee C. et al. Impact of enhanced recovery after surgery and opioid-free anesthesia on opioid prescriptions at discharge from the hospital: a historical-prospective study // Anesth Analg. – 2017. – Vol. 125, № 5. – P. 1784–1792. DOI:10.1213/ANE.0000000000002510.; Brown E. N., Pavone K. J., Naranjo M. multimodal general anesthesia: theory and practice // Anesth Analg. – 2018. – Vol. 127, № 5. – P. 1246–1258. DOI:10.1213/ANE.0000000000003668.; Burkhard J. P., Jardot F., Furrer M. A. et al. Opioid-free anesthesia for open radical cystectomy is feasible and accelerates return of bowel function: a matched cohort study // J Clin Med. – 2023. – Vol. 12, № 11. – P. 3657. DOI:10.3390/jcm12113657.; Chen L., He W., Liu X. et al. Application of opioid-free general anesthesia for gynecological laparoscopic surgery under ERAS protocol: a non-inferiority randomized controlled trial // BMC Anesthesiol. – 2023. – Vol. 23, № 1. – P. 34. DOI:10.1186/s12871-023-01994-5.; Colvin L. A., Bull F., Hales T. G. Perioperative opioid analgesia-when is enough too much? A review of opioid-induced tolerance and hyperalgesia // Lancet. – 2019. – Vol. 393, № 10180. – P. 1558–1568. DOI:10.1016/S0140-6736(19)30430-1.; Demaegd L., Albersen M., Muilwijk T. et al. Comparison of postoperative complications of ileal conduits versus orthotopic neobladders // Transl Androl Urol. – 2020. – Vol. 9, № 6. – P. 2541–2554. DOI:10.21037/tau-20-713.; Furrer M. A., Huesler J., Fellmann A. et al. The Comprehensive complication index CCI: A proposed modification to optimize short-term complication reporting after cystectomy and urinary diversion // Urol Oncol. – 2019. – Vol. 37, № 4. – P. 291.e9–291.e18. DOI:10.1016/j.urolonc.2018.12.013.; Greenberg D., Kee J., Stevenson K. et al. Implementation of a Reduced Opioid Utilization Protocol for Radical Cystectomy // Bladder Cancer. – 2020. – Vol. 6. – P. 1–10. DOI:10.3233/BLC-190243.; Guay J., Nishimori M., Kopp S. L. Epidural local anesthetics versus opioid-based analgesic regimens for postoperative gastrointestinal paralysis, vomiting, and pain after abdominal surgery: a Cochrane Review // Anesth Analg. – 2016. – Vol. 123, № 6. – P. 1591–1602. DOI:10.1213/ANE.0000000000001628.; Koo K. C., Yoon Y. E., Chung B. H. et al. Analgesic opioid dose is an important indicator of postoperative ileus following radical cystectomy with ileal conduit: experience in the robotic surgery era // Yonsei Med J. – 2014. – Vol. 55, № 5. – P. 1359–1365. DOI:10.3349/ymj.2014.55.5.1359.; Lavand’homme P., Estebe J. P. Opioid-free anesthesia: a different regard to anesthesia practice // Curr Opin Anaesthesiol. – 2018. – Vol. 31, № 5. – P. 556–561. DOI:10.1097/ACO.0000000000000632.; Manning M. W., Whittle J., Fuller M. et al. A multidisciplinary opioid-reduction pathway for robotic prostatectomy: outcomes at year one // Perioper Med (Lond). – 2023. – Vol. 12, № 1. – P. 43. DOI:10.1186/s13741-023-00331-1.; Mieszczański P., Górniewski G., Ziemiański P. et al. Comparison between multimodal and intraoperative opioid free anesthesia for laparoscopic sleeve gastrectomy: a prospective, randomized study // Sci Rep. – 2023. – Vol. 13, № 1. – P. 12677. DOI:10.1038/s41598-023-39856-2.; Nelson G., Bakkum-Gamez J., Kalogera E. et al. Guidelines for perioperative care in gynecologic/oncology: Enhanced Recovery After Surgery (ERAS) Society recommendations – 2019 update // Int J Gynecol Cancer. – 2019. – Vol. 29, № 4. – P. 651–668. DOI:10.1136/ijgc-2019-000356.; Olausson A., Svensson C. J., Andréll P. et al. Total opioid-free general anaesthesia can improve postoperative outcomes after surgery, without evidence of adverse effects on patient safety and pain management: A systematic review and meta-analysis // Acta Anaesthesiol Scand. – 2022. – Vol. 66, № 2. – P. 170–185. DOI:10.1111/aas.13994.; Pfail J. L., Garden E. B., Gul Z. et al. Implementation of a nonopioid protocol following robot-assisted radical cystectomy with intracorporeal urinary diversion // Urol Oncol. – 2021. – Vol. 39, № 7. – P. 436.e9–436.e16. DOI:10.1016/j.urolonc.2021.01.002.; Salomé A., Harkouk H., Fletcher D. et al. Opioid-free anesthesia benefit-risk balance: a systematic review and meta-analysis of randomized controlled trials // J Clin Med. – 2021. – Vol. 10, № 10. – P. 2069. DOI:10.3390/jcm10102069.; Scott M. J., McEvoy M. D., Gordon D. B. et al. Perioperative Quality Initiative (POQI) I Workgroup. American Society for Enhanced Recovery (ASER) and Perioperative Quality Initiative (POQI) Joint Consensus Statement on optimal analgesia within an enhanced recovery pathway for colorectal surgery: part 2-From PACU to the transition home // Perioper Med (Lond). – 2017. – Vol. 6. – P. 7. DOI:10.1186/s13741-017-0063-6.; Soffin E. M., Wetmore D. S., Beckman J. D. et al. Opioid-free anesthesia within an enhanced recovery after surgery pathway for minimally invasive lumbar spine surgery: a retrospective matched cohort study // Neurosurg Focus. – 2019. – Vol. 46, № 4. – P. E8. DOI:10.3171/2019.1.FOCUS18645.; Treillet E., Laurent S., Hadjiat Y. Practical management of opioid rotation and equianalgesia // J Pain Res. – 2018. – Vol. 11. – P. 2587–2601. DOI:10.2147/JPR.S170269.; Veyckemans F. Opioid-free anaesthesia: Still a debate? // Eur J Anaesthesiol. – 2019. – Vol. 36, № 4. – P. 245–246. DOI:10.1097/EJA.0000000000000964.; Walsh M., Devereaux P. J., Garg A. X. et al. Relationship between intraoperative mean arterial pressure and clinical outcomes after noncardiac surgery: toward an empirical definition of hypotension // Anesthesiology. – 2013. – Vol. 119, № 3. – P. 507–515. DOI:10.1097/ALN.0b013e3182a10e26.; Xu W., Daneshmand S., Bazargani S. T. et al. Postoperative pain management after radical cystectomy: comparing traditional versus enhanced recovery protocol pathway // J Urol. – 2015. – Vol. 194, № 5. – P. 1209–1213. DOI:10.1016/j.juro.2015.05.083.; https://www.vair-journal.com/jour/article/view/960
-
8Academic Journal
المؤلفون: V. I. Sakharov, P. I. Mironov, A. A. Tсandekov, V. A. Rudnov, В. И. Сахаров, П. И. Миронов, А. А. Цандеков, В. А. Руднов
المصدر: Messenger of ANESTHESIOLOGY AND RESUSCITATION; Том 20, № 6 (2023); 12-18 ; Вестник анестезиологии и реаниматологии; Том 20, № 6 (2023); 12-18 ; 2541-8653 ; 2078-5658
مصطلحات موضوعية: прогноз исхода, Klebsiella pneumoniae, prognosis of outcome, Klebsiella pneumonia
وصف الملف: application/pdf
Relation: https://www.vair-journal.com/jour/article/view/894/672; Интенсивная терапия. Национальное руководство / под ред. Б. Р. Гельфанда, И. Б. Заболотских. – Т. 1. – М.: ГЭОТАР, 2019. – 928 с.; Захаренков И. А., Рачина С. А., Дехнич Н. Н. Этиология тяжелой внебольничной пневмонии у взрослых: результаты первого российского многоцентрового исследования // Терапевтический архив. – 2020. – Т. 1. – С. 36–42. DOI:10.26442/00403660.2020.01.; Сахаров В. И., Миронов П. И., Руслякова И. А., Руднов В. А. Проблемы оценки тяжести состояния пожилых пациентов с внебольничной пневмонией, вызванной Klebsiella Pneumoniae // Вестник анестезиологии и реаниматологии. – 2020. – Т. 17, № 6. – С. 45–53. DOI:10.21292/2078-5658-2020-17-6-45-53.; Ahnert P., Creutz P., Horn K. Sequential organ failure assessment score is an excellent operationalization of disease severity of adult patients with hospitalized community acquired pneumonia–results from the prospective observational PROGRESS study // Critical Care. – 2019. – Vol. 23, № 1. – P. 110. DOI:10.1186/s13054-019-2316-x.; Bahlis L. F., Diogo L. P., Fuchs S. C. Charlson Comorbidity Index and other predictors of in-hospital mortality among adults with community-acquired pneumonia // Jornal Brasileiro de Pneumologia. – 2021. – Vol. 47, № 1. – P. e20200257. DOI:10.36416/1806-3756/e20200257.; Brownstein J. S., Rader B., Astley С. М. et al. Advances in artificial intelligence for infectious-disease surveillance // N Engl. J Med. – 2023. – Vol. 388. – P. 1597–1607. DOI:10.1056/NEJMra2119215.; Cilloniz C., Torres A. Host-targeted approaches to sepsis due to community-acquired pneumonia // EBioMedicine. – 2022. – Vol. 86. – P. 104335. DOI:10.1016/j.ebiom.2022.104335.; Fernandes L., Arora A. S., Mesquita A. M. Role of semi-quantitative serum procalcitonin in assessing prognosis of community acquired bacterial pneumonia compared to PORT PSI, CURB-65 and CRB-65 // Journal of clinical and diagnostic research: JCDR. – 2015. – Vol. 9. – P. 1–7. DOI:10.7860/JCDR/2015/12468.6147.; Knaus W. A., Marks R. D. New phenotypes for sepsis: the promise and problem of applying machine learning and artificial intelligence in clinical research // JАМА. – 2019. – Vol. 321, № 20. – P. 1981–1982. DOI:10.1001/jama.2019.5794.; Martin-Loeches I., Torres A., Nagavci B. et al. ERS/ESICM/ESCMID/ALAT guidelines for the management of severe community-acquired pneumonia // Intensive Care Med. – 2023. – Vol. 49. – P. 615–632. DOI:10.1007/s00134-023-07033-8.; Metlay J. P., Waterer G. W., Long A. C. et al. Diagnosis and treatment of adults with community-acquired pneumonia // Am J Respir Crit Care Med. – 2019. – Vol. 2007. – P. e45–e67. DOI:10.1164/rccm.201908-1581ST.; Navon-Venezia S., Kondratyeva K., Carattoli A. Klebsiella pneumoniae: a major worldwide source and shuttle for antibiotic resistance // FEMS microbiology reviews. – 2017. – Vol. 41, № 3. – P. 252–275. DOI:10.1093/femsre/fux013.; Quintairos A., Pilcher, D. Salluh J. I. F. ICU scoring systems // Intensive Care Med. – 2023. – Vol. 49. – P. 223–225. DOI:10.1007/s00134-022-06914-8.; Ravindranath M., Raju C. Validity of pneumonia severity index/pneumonia outcome research trial and Curb-65 severity scoring systems in community acquired pneumonia in Indian setting // Indian J Chest Dis Allied Sci. – 2016. – Vol. 3. – P. 338–344. DOI:10.18203/2349-3933.; Seymour C. W., Kennedy J. N., Wang S. et al. Derivation, validation, and potential treatment implications of novel clinical phenotypes for sepsis // JАМА. – 2019. – Vol. 321, № 20. – P. 2003–2017. DOI:10.1001/jama.2019.5791.; Smit J. M., Krijthe J. H., van Bommel J. et al. Causal inference using observational intensive care unit data: a systematic review and recommendations for future practice // Medrxiv. – 2022. URL: https://www.medrxiv.org/content/10.1101/2022.10.29.22281684v1.article-info (accessed: 10.10.23). DOI:10.1101/2022.10.29.22281684.; Torres A., Perumal T. M., Henao R. Challenges in severe community-acquired pneumonia: a point-of-view review // Intensive care medicine. – 2019. – Vol. 45, № 2. – P. 159–171. DOI:10.1007/s00134-019-05519-y.; van de Sande D., van Genderen M. E., Huiskens J. et al. Moving from bytes to bedside: a systematic review on the use of artifcial intelligence in the intensive care unit // Intensive Care Med. – 2021. – Vol. 47, № 7. – P. 750–760. DOI:10.1007/s00134-021-06446-7.; Zhang Y., Khalid S., Jiang L. Diagnostic and predictive performance of biomarkers in patients with sepsis in an intensive care unit // Journal of International Medical Research. – 2019. –Vol. 47, № 1. – P. 44–58. DOI:10.1177/0300060518793791.; https://www.vair-journal.com/jour/article/view/894
-
9Academic Journal
المؤلفون: P. I. Mironov, N. N. Mingazov, R. R. Valiev, A. U. Lekmanov, D. O. Ivanov, П. И. Миронов, Н. Н. Мингазов, Р. Р. Валиев, А. У. Лекманов, Д. О. Иванов
المصدر: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 67, № 5 (2022); 48-54 ; Российский вестник перинатологии и педиатрии; Том 67, № 5 (2022); 48-54 ; 2500-2228 ; 1027-4065
مصطلحات موضوعية: предикторы, arterial hypotension, gene polymorphism, predictors, артериальная гипотензия, полиморфизм генов
وصف الملف: application/pdf
Relation: https://www.ped-perinatology.ru/jour/article/view/1700/1283; Perak A.M., Lancki N., Kuang A., Labarthe D.R., Allen N.B., Shah S.H. HAPO Follow-Up Study Cooperative Research Group. Associations of maternal cardiovascular health in pregnancy with offspring cardiovascular health in early adolescence. JAMA 2021; 325(7): 658-668. DOI:10.1001/jama.2021.0247; Руководство по перинатологии. Под ред. Д.О.Иванова. СПб: Информ-Навигатор, 2015; 1216.; Crump C., Howell E.A., Stroustrup A., McLaughlin M.A., Sundquist J., Sundquist K. Association of Preterm Birth With Risk of Ischemic Heart Disease in Adulthood JAMA Pediatr 2020; 76(1): 57-67. DOI:10.1001/jamapediatrics.2019.1327; Risnes K., Bilsteen J.F., Brown P., Pulakka A., Andersen A.-M.N., Opdahl S. Mortality among young adults born preterm and early term in 4 Nordic nations. JAMA Netw Open 2021; 4(1): e2032779 DOI:10.1001/jamanetworkopen.2020.32779; Göpel W., Mirja М., Rabe H., Borgmann J., Rausch Т.К., Faust K. Genetic background of high blood pressure is associated with reduced mortality in premature neonates. Arch Dis Child Fetal Neonatal Ed 2020; 105: F184-F189. DOI:10.1136/archdischild-2019-317131; Faust K., Härtel C., Preuß M., Rabe Н., Roll С., Emeis М. Short-term outcome of very-low-birth weight infants with arterial hypotension in the first 24 h of life. Arch Dis Child Fetal Neonatal Ed 2015; 100: F388-F392. DOI:10.1136/archdischild-2014-306483; Петри А., Сэбин К. Наглядная статистика в медицине. М.: ГЭОТАР-Медиа, 2003; 144.; Кребс Дж., Голдшейн Э., Килпатрик С. Гены по Льюину. M.: Лаборатория Знаний, 2020; 920.; Muñoz M., Pong-Wong R., Canela-Xandri O., Rawlik K., Chris S., Haley C.S., Tenesa A. Evaluating the contribution of genetics and familial shared environment to common disease using the UK Biobank. Nat Genet 2016; 48: 980-983. DOI:10.1038/ng.3618; https://www.ped-perinatology.ru/jour/article/view/1700
-
10Academic Journal
المؤلفون: Yu. S. Аleksandrovich, D. V. Prometnoy, P. I. Mironov, K. V. Pshenisnov, P. E. Anchutin, E. D. Teplyakova, Ю. С. Александрович, Д. В. Прометной, П. И. Миронов, К. В. Пшениснов, П. Е. Анчутин, Е. Д. Теплякова
المصدر: Messenger of ANESTHESIOLOGY AND RESUSCITATION; Том 18, № 4 (2021); 29-36 ; Вестник анестезиологии и реаниматологии; Том 18, № 4 (2021); 29-36 ; 2541-8653 ; 2078-5658
مصطلحات موضوعية: предикторы, children, severe course, outcome, mortality, predictors, дети, тяжелое течение, исход, летальный исход
وصف الملف: application/pdf
Relation: https://www.vair-journal.com/jour/article/view/550/501; Александрович Ю. С., Алексеева Е. И., Бакрадзе М. Д. и др. Особенности клинических проявлений и лечение заболевания, вызванного новой коронавивусной инфекцией (COVID-19) у детей // Педиатрическая фармакология. - 2020. - Т. 17, № 3. - С. 187-212. doi: https://doi.org/10.15690/pf.v17i3.2123.; Мамаев А. Н., Кудлай Д. А. Статистические методы в медицине. - М.: Практическая медицина, 2021. - 136 с.; Пшениснов К. В., Александрович Ю. С., Казиахмедов В. А. и др. Новая коронавивусная инфекция у детей с сопутствующими заболеваниями: шанс на выздоровление есть всегда // Журнал инфектологии. - 2020. - Т. 12, № 3. - С. 80-89. doi: https://doi.org/10.22625/2072-6732-2020-12-3-80-89.; Bousquet J., Zuberbier T., Anto J. M., Iaccarino G., Czarlewski W., Anto A., Haahtela T., Akdis C. A., Blain H., Canonica G. W., Cardona V., Cruz A. A., Illario M., Ivancevich J. C., Jutel M., Klimek L., Kuna P., Laune D., Larenas-Linnemann D., Mullol J. et al. Is diet partly responsible for differences in covid-19 death rates between and within countries? // Clin. Translat. Allergy. - 2020. - Vol. 10, № 1. - Р. 16. doi.org/10.1186/s13601-020-00323-0.; Chao J. Y., Derespina K. R., Herold B. C. et al. Clinical characteristics and outcomes of hospitalized and critically ill children and adolescents with coronavirus disease 2019 at a tertiary care medical center in New York City // J. Pediatr. - 2020. - Vol. 223. - P 14-19.e2. doi:10.1016/j.jpeds.2020.05.006.; Dong Y., Mo X., Hu Y. et al. Epidemiological characteristics of 2143 pediatric patients with 2019 coronavirus disease in China // Pediatrics. - 2020. - Vol. 58, № 4. - P. 712-713. doi:10.1542/peds.2020-0702.; Graff K., Smith C., Silveira L. et al. Risk factors for severe COVID-19 in children // Pediatr. Infect. Dis. J. 2021. - Vol. 40, № 4. - Р. e137-e145. doi:10.1097/INF.0000000000003043.; Kabarriti R., Brodin N. P., Maron M. I. et al. Association of race and ethnicity with comorbidities and survival among patients with COVID-19 at an urban medical center in New York // JAMA Network Open. - 2020. - Vol. 3, № 9. - Р. e2019795. doi:10.1001/jamanetworkopen.2020.19795.; Kompaniyets L., Agathis N. T., Nelson J. M. et al Underlying Medical Conditions Associated W ith Severe COVID-19 Illness Among Children // JAMA Network Open. - 2021. - Vol 4, № 6. - Р e2111182. doi:10.1001/jamanetworkopen.2021.11182.; Raith E. P., Udy A. A., Bailey M. et al. Prognostic accuracy of the SOFA score, SIRS criteria, and qSOFA score for in-hospital mortality among adults with suspected infection admitted to the intensive care unit // JAMA. - 2017. -Vol. 317, № 3. - P. 290-300. doi:10.1001/jama.2016.20328.; Raschke R. A., Agarwal S., Rangan P. et al. Discriminant accuracy of the sofa score for determining the probable m ortality of patients with COVID-19 pneumonia requiring mechanical ventilation // JAMA. - 2021. - Vol. 325, № 14. - P. 1469-1470. doi:10.1001/jama.2021.1545.; Shekerdemian L. S., Mahmood N. R., Wolfe K. K. et al. International COVID-19 PICU Collaborative. Characteristics and outcomes of children with coronavirus disease 2019 (COVID-19) infection admitted to US and Canadian pediatric intensive care units // JAMA Pediatr. - 2020. - Vol. 174, № 9. - P. 868-873. doi:10.1001/jamapediatrics.2020.1948.; Tsankov B. K., Allaire J. M., Irvine M. A. et al. Severe COVID-19 infection and pediatric comorbidities: a systematic review and meta-analysis // Int. J. Infect. Dis. - 2021. - Vol. 103. - P. 246-256. doi:10.1016/j.ijid.2020.11.163.; Wu Z., McGoogan J. M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention // JAMA. - 2020. - Vol. 323, № 13. - P 1239-1242. doi:10.1001/jama.2020.2648.; Yang X., Yu Y., Xu J. et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study // Lancet Respir. Med. - 2020. - Vol. 8, № 5. - P. 475-481. doi:10.1016/S2213-2600(20)30079-5.; https://www.vair-journal.com/jour/article/view/550
-
11Academic Journal
المؤلفون: I. I. Lutfarakhmanov, I. R. Galeev, A. D. Lifanova, Р. I. Mironov, И. И. Лутфарахманов, И. Р. Галеев, А. Д. Лифанова, П. И. Миронов
المصدر: Messenger of ANESTHESIOLOGY AND RESUSCITATION; Том 18, № 1 (2021); 75-83 ; Вестник анестезиологии и реаниматологии; Том 18, № 1 (2021); 75-83 ; 2541-8653 ; 2078-5658
مصطلحات موضوعية: общая анестезия, robot-assisted radical prostatectomy, Trendelenburg position, intraocular pressure, general anesthesia, робот-ассистированная радикальная простатэктомия, положение Тренделенбурга, внутриглазное давление
وصف الملف: application/pdf
Relation: https://www.vair-journal.com/jour/article/view/500/470; Лутфарахманов И. И., Лазарев С. Т., Здорик Н. А. Оценка частоты диспепсических расстройств при тотальной внутривенной анестезии прoпoфoлoм после рoбoт-aссистирoвaннoй радикальной простатэктомии // Креативная хирургия и онкология. – 2018. – Т. 8, № 2. – С. 130–135.; Awad H., Santilli S., Ohr M. et al. The effects of steep Trendelenburg positioning on intraocular pressure during robotic radical prostatectomy // Anesth. Analg. – 2009. – Vol. 109, № 2. – P. 473–478. https://doi.org/10.1213/ane.0b013e3181a9098f.; Blecha S., Harth M., Schlachetzki F. et al. Changes in intraocular pressure and optic nerve sheath diameter in patients undergoing robotic-assisted laparoscopic prostatectomy in steep 45° Trendelenburg position // BMC Anesthesiol. – 2017. – Vol. 17, № 1. – Р. 40. https://doi.org/10.1186/s12871-017-0333-3.; Chalmers D., Cusano A., Haddock P. et al. Are preexisting retinal and central nervous system-related comorbidities risk factors for complications following robotic-assisted laparoscopic prostatectomy? // Int. Braz. J. Urol. – 2015. – Vol. 41, № 4. – P. 661–668. https://doi.org/10.1590/S1677-5538.IBJU.2014.0464.; Danic M. J., Chow M., Alexander G. et al. Anesthesia considerations for robotic-assisted laparoscopic prostatectomy: a review of 1,500 cases // J. Robot. Surg. – 2007. – Vol. 1, № 2. – P. 119–123. https://doi.org/10.1007/s11701-007-0024-z.; Demasi C. L., Porpiglia F., Tempia A. et al. Ocular blood flow in steep Trendelenburg positioning during robotic-assisted radical prostatectomy // Eur. J. Ophthal. – 2017. – Vol. – 28, № 3. – P. 333–338. https://doi.org/10.5301/ejo.5001061.; Gainsburg D. M. Anesthetic concerns for robotic-assisted laparoscopic radical prostatectomy // Minerva Anestesiol. – 2012. – Vol. 78, № 5. – P. 596–604.; Gkegkes I., Karydis A., Tyritzis S. et al. Ocular complications in robotic surgery // Int. J. Med. Robot. – 2014. – Vol. 11, № 3. – P. 269–274. https://doi.org/10.1002/rcs.1632.; Goepfert C. E., Ifune C., Tempelhoff R. Ischemic optic neuropathy: Are we any further? // Curr. Opin. Anaesthesiol. – 2010. – Vol. 23, № 5. – P. 582–587. https://doi.org/10.1097/ACO.0b013e32833e15d0.; Hewer C. L. The physiology and complications of the Trendelenburg position // Can. Med. Assoc. J. – 1956. – Vol. 74, № 4. – P. 285–288. PMC1824068.; Hirooka K., Ukegawa K., Nitta E. et al. The effect of steep Trendelenburg positioning on retinal structure and function during robotic-assisted laparoscopic procedures // J. Ophthalmol. – 2018. – Vol. 2018. – 1027397. https://doi.org/10.1155/2018/1027397.; Hoshikawa Y., Tsutsumi N., Ohkoshi K. et al. The effect of steep Trendelenburg positioning on intraocular pressure and visual function during robotic-assisted radical prostatectomy // Br. J. Ophthalmol. – 2014. – Vol. 98, № 3. – P. 305–308. https://doi.org/10.1136/bjophthalmol-2013-303536.; Joo J., Koh H., Lee K. et al. Effects of systemic administration of dexmedetomidine on intraocular pressure and ocular perfusion pressure during laparoscopic surgery in a steep Trendelenburg position: prospective, randomized, double-blinded study // J. Korean. Med. Sci. – 2016. – Vol. 31, № 6. – P. 989–996. http://doi.org/10.3346/ jkms.2016.31.6.989.; Kim N. Y., Jang W. S., Choi Y. D. et al. Comparison of biochemical recurrence after robot-assisted laparoscopic radical prostatectomy with volatile and total intravenous anesthesia // Int. J. Med. Sci. – 2020. – Vol. 17, № 4. – P. 449–456. http://doi.org/ 10.7150/ijms.40958.; Kim N. Y., Yoo Y. C., Park H. J. et al. The effect of dexmedetomidine on intraocular pressure increase in patients during robot-assisted laparoscopic radical prostatectomy in the steep Trendelenburg position // J. Endourol. – 2015. – Vol. 29, № 3. – P. 310–316. https://doi.org/10.1089/end.2014.0381.; Kitamura S., Takechi K., Nishihara T. et al. Effect of dexmedetomidine on intraocular pressure in patients undergoing robot-assisted laparoscopic radical prostatectomy under total intravenous anesthesia: A randomized, double blinded placebo controlled clinical trial // J. Clin. Anesth. – 2018. – Vol. 49. – P. 30–35. https://doi.org/10.1016/j.jclinane.2018.06.006.; Kitamura S., Takechi K., Yasuhira A. et al. Changes in intraocular pressure in patients with glaucoma during robotic-assisted laparoscopic radical prostatectomy // J. Japan Soc. Clin. Anesth. – 2017. – Vol. 37, № 7. – P. 743–747. https://doi.org/10.2199/jjsca.37.743.; Lee L. A., Roth S., Posner K. L. et al. The American Society of Anesthesiologists Postoperative Visual Loss Registry: analysis of 93 spine cases with postoperative visual loss // Anesthesiology. – 2006. – Vol. 105, № 4. – P. 652–659. https://doi.org/10.1097/00000542-200610000-00007.; Lee L. A., Stoelting R. K. APSF-sponsored conference on perioperative visual loss develops consensus conclusions // APSF Newsl. – 2013. – № 27. – P. 52–53.; Lee L. A. Visual loss, venous congestion and robotic prostatectomies // ASA Newsl. – 2011. – № 75. – P. 26–27.; Mathew D. J., Greene R. A., Mahsood Y. J. et al. Preoperative brimonidine tartrate 0.2% does not prevent an intraocular pressure rise during prostatectomy in steep Trendelenburg position // J. Glaucoma. – 2018. – Vol. 27, № 11. – P. 965–970. https://doi.org/10.1097/IJG.0000000000001047.; Mizrahi H., Hugkulstone C. E., Vyakarnam P. et al. Bilateral ischaemic optic neuropathy following laparoscopic proctocolectomy: a case report // Ann. R. Coll. Surg. Engl. – 2011. – Vol. 93, № 5. – Р. e53–e54. https://doi.org/10.1308/147870811X582828.; Mizumoto K., Gosho M., Iwaki M. et al. Ocular parameters before and after steep Trendelenburg positioning for robotic-assisted laparoscopic radical prostatectomy // Clin. Ophthalmol. – 2017. – Vol. 11. – P. 1643–1650. https://doi.org/10.2147/OPTH.S139874.; Molloy B., Cong X. Perioperative dorzolamide-timolol intervention for rising intraocular pressure during steep Trendelenburg positioned surgery // AANA J. – 2014. – Vol. 82, № 3. – P. 203–211. PMID: 25109158.; Molloy B. L. Implications for postoperative visual loss: steep Trendelenburg position and effects on intraocular pressure // AANA J. – 2011. – Vol. 79, № 2. – P. 115–121. PMID: 21560974.; Mondzelewski T. J., Schmitz J. W., Christman M. S. et al. Intraocular pressure during robotic-assisted laparoscopic procedures utilizing steep trendelenburg positioning // J. Glaucoma. – 2015. – Vol. 24, № 6. – P. 399–404. https://doi.org/10.1097/IJG.0000000000000302.; Nishikawa M., Watanabe H., Kurahashi T. Effects of 25- and 30-degree Trendelenburg positions on intraocular pressure changes during robot-assisted radical prostatectomy // Prostate Int. – 2017. – Vol. 5, № 4. – P. 135–138. https://doi.org/10.1016/j.prnil.2017.03.008.; Ozcan A. A., Ulas B. Ischemic optic neuropathy in robotic‐assisted gynaecologic surgery: A case report // J. Obstet. Gynaecol. Res. – 2019. – Vol. 45, № 3. – P. 748–750. https://doi.org/10.1111/jog.13877.; Ozcan M. F., Akbulut Z., Gurdal C. et al. Does steep Trendelenburg positioning effect the ocular hemodynamics and intraocular pressure in patients undergoing robotic cystectomy and robotic prostatectomy? // Int. Urol. Nephrol. – 2017. – Vol. 49, № 1. – P. 55–60. https://doi.org/10.1007/s11255-016-1449-y.; Patel V. R., Palmer K. J., Coughlin G. et al. Robot-assisted laparoscopic radical prostatectomy: perioperative outcomes of 1500 cases // J. Endourol. – 2008. – Vol. 22, № 10. – P. 2299–2305. https://doi.org/10.1089/end.2008.9711.; Pinkney T. D., King A. J., Walter C. et al. Raised intraocular pressure (IOP) and perioperative visual loss in laparoscopic colorectal surgery: a catastrophe waiting to happen? A systematic review of evidence from other surgical specialities // Tech. Coloproctol. – 2012. – Vol. 16, № 5. – P. 331–335. https://doi.org/10.1007/s10151-012-0879-5.; Raz O., Boesel T. W., Arianayagam M. et al. The effect of the modified Z Trendelenburg position on intraocular pressure during robotic assisted laparoscopic radical prostatectomy: a randomized, controlled study // J. Urol. – 2015. – Vol. 193, № 4. – P. 1213–1219. https://doi.org/10.1016/j.juro.2014.10.094.; Taketani Y., Mayama C., Suzuki N. et al. Transient but significant visual field defects after robot-assisted laparoscopic radical prostatectomy in deep Trendelenburg position // PLoS One. – 2015. – Vol. 10, № 4. – e0123361. https://doi.org/10.1371/journal.pone.0123361.e0123361.; The Postoperative Visual Loss Study Group. Risk factors associated with ischemic optic neuropathy and spinal fusion surgery // Anesthesiology. – 2012. – Vol. 116, № 1. – P. 15–24. https://doi.org/ 10.1097/ALN.0b013e31823d012a.; Tosh P., Krishnankutty S. V., Rajan S. et al. Does restrictive fluid strategy during robotic pelvic surgeries obtund intraoperative rise in intraocular pressure? // Anesth. Essays. Res. – 2018. – Vol. 12, № 1. – P. 155–158. https://doi.org/10.4103/aer.AER_144_17.; Weber E., Colyer M., Lesser R., Subramanian P. Posterior ischemic optic neuropathy after minimally invasive prostatectomy // J. Neuroophthalmol. – 2007. – Vol. 27, № 4. – P. 285–287. https://doi.org/10.1097/WNO.0b013e31815b9f67.; Yonekura H., Hirate H., Sobue K. Comparison of anesthetic management and outcomes of robot-assisted vs pure laparoscopic radical prostatectomy // J. Clin. Anesth. – 2016. – Vol. 35. – P. 281–286. https://doi.org/10.1016/j.jclinane.2016.08.014.; Yoo Y. C., Bai S. J., Lee K. Y. et al. Total intravenous anesthesia with propofol reduces postoperative nausea and vomiting in patients undergoing robot-assisted laparoscopic radical prostatectomy: a prospective randomized trial // Yonsei Med. J. – 2012. – Vol. 53, № 6. – P. 1197–1202. https://doi.org/10.3349/ymj.2012.53.6.1197.; Yoo Y. C., Kim N. Y., Shin S. et al. The intraocular pressure under deep versus moderate neuromuscular blockade during low-pressure robot assisted laparoscopic radical prostatectomy in a randomized trial // PLoS One. – 2015. – Vol. 10, № 8. – e0135412. https://doi.org/10.1371/journal.pone.0135412.; Yoo Y. C., Shin S., Choi E. K. et al. Increase in intraocular pressure is less with propofol than with sevoflurane during laparoscopic surgery in the steep Trendelenburg position // Can. J. Anaesth. – 2014. – Vol. 61, № 4. – P. 322–329. https://doi.org/10.1007/s12630-014-0112-2.; You A. H., Song Y., Kim D. H. et al. Effects of positive end-expiratory pressure on intraocular pressure and optic nerve sheath diameter in robot-assisted laparoscopic radical prostatectomy: A randomized, clinical trial // Medicine (Baltimore). – 2019. – Vol. 98, № 14. – e15051. https://doi.org/10.1097/MD.0000000000015051.; https://www.vair-journal.com/jour/article/view/500
-
12Academic Journal
المؤلفون: P. I. Mironov, N. N. Mingazov, R. R. Valiev, А. U. Lekmanov, П. И. Миронов, Н. Н. Мингазов, Р. Р. Валиев, А. У. Лекманов
المصدر: Messenger of ANESTHESIOLOGY AND RESUSCITATION; Том 18, № 5 (2021); 62-68 ; Вестник анестезиологии и реаниматологии; Том 18, № 5 (2021); 62-68 ; 2541-8653 ; 2078-5658
مصطلحات موضوعية: гены предрасположенности к гипергликемии, extremely low body weight, hyperglycemia control, genes predisposing to hyperglycemia, экстремально низкая масса тела, контроль гипергликемии
وصف الملف: application/pdf
Relation: https://www.vair-journal.com/jour/article/view/580/515; Кребс Дж., Голдшейн Э., Килпатрик С. Гены по Льюину. ‒ М.: Лаборатория Знаний, 2020. ‒ 920 с.; Руководство по перинатологии / под ред. Иванова Д. О. ‒ СПб.: Информ-Навигатор, 2015. – 1216 с.; Agus M., Wypij D., Hirshberg V. M. et al. Tight glycemic control in critically ill children // New Engl. J. Med. ‒ 2017. ‒ Vol. 376. ‒ Р. e48 341. doi:10.1056/NEJMc1703642.; Hays S. P., Smith E. O., Sunehag A. L. Hyperglycemia is a risk factor for early death and morbidity in extremely low birth-weight infants // Pediatrics. ‒ 2006. – Vol. 118, № 5. ‒ Р. 1811–1818. doi:10.1542/peds.2006-0628.; Katsanis S. H., Katsanis N. Molecular genetic testing and the future of clinical genomics // Nat. Rev. Genet. ‒ 2013. – Vol. 14. ‒ P. 415–426. doi:10.1038/nrg3493.; Longas A. F., Labarta J. I., Mayayo E. Children born small for gestational age: multidisciplinary approach // Pediatr. Endocrinol. Rev. ‒ 2009. ‒ Vol. 6, № 3. ‒ P. 324‒325. PMID:19404229.; Morgan C. The potential risks and benefits of insulin treatment in hyperglycaemic preterm neonates // Early Hum. Dev. ‒ 2015. ‒ Vol. 91. ‒ P. 655‒659. doi:10.1016/j.earlhumdev.2015.08.011.; Nobili V., Alisi A., Panera N. Low birth and catch up growth associated with metabolic syndrome: a ten year systematic review // Aqostoni Pediatr. Endocrinol. Rev. – 2008. ‒ Vol. 6, № 2. ‒ P. 241‒247. PMID: 19202511.; Ogilvy-Stuart A. L., Beardsall K. Management of hyperglycaemia in the preterm infant // Arch. Dis. Child Fetal. Neonatal. Ed. – 2010. – Vol. 95, № 2. ‒ Р. F126– F131. doi:10.1136/adc.2008.154716.; Ramel S., Rao R. Hyperglycemia in extremely preterm infants // Neoreviews. ‒ 2020. ‒ Vol. 21, № 2. ‒ Р. e89‒e97. doi:10.1542/neo.21-2-e89.; Weiss S. L., Peters M. J., Alhazzani W. et al. Surviving sepsis campaign international guidelines for the management of septic shock and sepsis-associated organ dysfunction in children // Pediatr. Crit. Care Med. ‒ 2020. ‒ Vol. 21, № 2. – Р. e52–e106. doi:10.1097/PCC.0000000000002198; https://www.vair-journal.com/jour/article/view/580
-
13Academic Journal
المؤلفون: Yu. S. Аleksandrovich, D. V. Prometnoy, P. I. Mironov, K. V. Pshenisnov, P. E. Аnchutin, А. V. Vasilenok, S. N. Nezabudkin, Ю. С. Александрович, Д. В. Прометной, П. И. Миронов, К. В. Пшениснов, П. Е. Анчутин, А. В. Василенок, С. Н. Незабудкин
المصدر: Messenger of ANESTHESIOLOGY AND RESUSCITATION; Том 18, № 6 (2021); 7-14 ; Вестник анестезиологии и реаниматологии; Том 18, № 6 (2021); 7-14 ; 2541-8653 ; 2078-5658
مصطلحات موضوعية: анализ, children, severe course, intensive care, analysis, дети, тяжелое течение, интенсивная терапия
وصف الملف: application/pdf
Relation: https://www.vair-journal.com/jour/article/view/593/520; Александрович Ю. С., Алексеева Е. И., Бакрадзе М. Д. и др. Особенности клинических проявлений и лечение заболевания, вызванного новой коронавирусной инфекцией (COVID-19) у детей (версия 2) // Педиатрическая фармакология. – 2020. – Т. 17, № 3. – С. 187–212. doi. org/10.15690/pf.v17i3.2123.; Александрович Ю. С., Прометной Д. В., Миронов П. И. и др. Предикторы летального исхода новой коронавирусной инфекции COVID-19 у детей // Вестник анестезиологии и реаниматологии. – 2021. – Т. 18, № 4. – С. 29–36. doi.org/10.21292/2078-5658-2021-18-4-29-36.; Гудима Г. О., Хаитов Р. М., Кудлай Д. А., Хаитов М. Р. Молекулярно-иммунологические аспекты диагностики, профилактики и лечения коронавирусной инфекции // Иммунология. ‒ 2021. ‒ Т. 42, № 3. ‒ С. 198–210. DOI: https://doi.org/10.33029/0206-4952-2021-42-3-198-210.; Пшениснов К. В., Александрович Ю. С., Казиахмедов В. А. и др. Новая коронавирусная инфекция у детей с сопутствующими заболеваниями: шанс на выздоровление есть всегда // Журнал инфектологии. – 2020. – Т. 12, № 3. – С. 80–89. doi.org/10.22625/2072-6732-2020-12-3-80-89.; Ames S. G., Davis B. S., Marin J. R. et al. Emergency department pediatric readiness and mortality in critically ill children // Pediatrics. – 2019. – Vol. 144, № 3. – Р. e20190568. doi.org:10.1542/peds.2019-0568.; Castagnoli R, Votto M., Licari A. et al. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in children and adolescents. A systematic review // JAMA Pediatr. – 2020. – Vol. 174, № 9. – P. 882–889. doi.org:10.1001/jamapediatrics.2020.1467.; Chaudhuri D., Sasaki K., Karkar A. et al. Corticosteroids in COVID-19 and non-COVID-19 ARDS: a systematic review and meta-analysis // Intens. Care Med. – 2021. – Vol. 47, № 5. – P. 521–537. doi.org/10.1007/s00134-021-06394-2.; Khateeb J., Li Y., Zhang H. Emerging SARS-CoV-2 variants of concern and potential intervention approaches // Crit. Care – 2021. – Vol. 25. – P. 244. doi. org/10.1186/s13054-021-03662-x.; Kompaniyets L., Agathis N. T., Nelson J. M. et al. Underlying medical conditions associated with severe COVID-19 illness among children // JAMA Network Open. – 2021. – Vol. 4, № 6. – Р. e2111182. doi. org: 10.1001/jamanetworkopen.2021.11182.; Phua J., Weng L., Ling L. et al. Intensive care management of coronavirus disease 2019 (COVID-19): challenges and recommendations // Lancet Respir. Med. – 2020. – Vol. 8, № 5. – P. 506–517. doi.org:10.1016/S2213-2600(20)30161-2.; Shekerdemian L. S., Mahmood N. R., Wolfe K. K. et al. International COVID-19 PICU Collaborative. Characteristics and outcomes of children with coronavirus disease 2019 (COVID-19) infection admitted to US and Canadian pediatric intensive care units // JAMA Pediatr. – 2020. – Vol. 174, № 9. – P. 868–873. doi. org: 10.1001/jamapediatrics.2020.1948.; Tripathi S., Gist K. M., Bjornstad E. C. et al. Society of Critical Care Medicine Discovery Viral Infection and Respiratory Illness Universal Study (VIRUS): COVID-19 Registry Investigator Group. Coronavirus Disease 2019-Associated PICU Admissions: A Report from the Society of Critical Care Medicine Discovery Network Viral Infection and Respiratory Illness Universal Study Registry // Pediatr. Crit. Care – 2021. – Vol. 22, № 7. – P. 603–615. doi. org:10.1097/pcc.0000000000002760.; Tsankov B. K., Allaire J. M., Irvine M. A. et al. Severe COVID-19 infection and pediatric comorbidities: a systematic review and meta-analysis // Int. J. Infect. Dis. – 2021. – Vol. 103. – P. 246‒256. doi.org:10.1016/j.ijid.2020.11.163.; WHO Rapid Evidence Appraisal for COVID-19 Therapies (REACT) Working Group, Sterne J. A. C., Murthy S. et al. Association between administration of systemic corticosteroids and mortality among critically ill patients with COVID-19: a meta-analysis // JAMA. – 2020. – Vol. 324, № 13. – P. 1330–1341. doi.org/10.1001/jama.2020.17023.; World Health Organization. Clinical management of severe acute respiratory infection when COVID-19 is suspected. Interim guidance. Version 1.2, 13 March 2020. https://www.who.int/publications-detail/clinical-management-of-severeacute-respiratoryinfection-when-novel-coronavirus-(ncov)-infection-is-suspected.; Wu Z., McGoogan J. M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention // JAMA. – 2020. – Vol. 323, № 13. – P. 1239–1242. htpp/doi.org:10.1001/jama.2020.2648.; Ye Z., Wang Y., Colunga-Lozano L. E. et al. Efficacy and safety of corticosteroids in COVID-19 based on evidence for COVID-19, other coronavirus infections, infuenza, community-acquired pneumonia and acute respiratory distress syndrome: a systematic review and meta-analysis // CMAJ. – 2020. – Vol. 192, № 27. – Р. E756–E767. https://doi.org/10.1503/cmaj.200645.; https://www.vair-journal.com/jour/article/view/593
-
14Academic Journal
المؤلفون: V. I. Sakharov, P. I. Mironov, I. A. Ruslyakova, V. A. Rudnov, В. И. Сахаров, П. И. Миронов, И. А. Руслякова, В. А. Руднов
المصدر: Messenger of ANESTHESIOLOGY AND RESUSCITATION; Том 17, № 6 (2020); 45-53 ; Вестник анестезиологии и реаниматологии; Том 17, № 6 (2020); 45-53 ; 2541-8653 ; 2078-5658
مصطلحات موضوعية: дискриминационная способность шкал, Klebsiella pneumoniae, differentiating ability of scales
وصف الملف: application/pdf
Relation: https://www.vair-journal.com/jour/article/view/480/457; Агафонова О. В., Гриценко Т. А., Богданова Ю. В. и др. Поликлиническая терапия: Учебник / под ред. Д. И. Давыдкина, Ю. В. Щукина. – 2-е изд., перераб. и доп. – М.: ГЭОТАР-Медиа, 2020. – 840 с.; Анганова Е. В., Ветохина А. В., Распопина Л. А. Состояние антибиотикорезистентности Klebsiella pneumoniae // Журнал микробиологии, эпидемиологии и иммунобиологии. – 2017. – № 5. – С. 70‒77. doi.org/10.36233/0372-9311-2017-5-70-77.; Дрозд А. В., Руднов В. А., Гусев Е. Ю. Закономерности формирования системной воспалительной реакции при внебольничной пневмонии // Уральский медицинский журнал. – 2007. – № 6. – С. 27–31.; Захаренков И. А., Рачина С. А., Дехнич Н. Н. Этиология тяжелой внебольничной пневмонии у взрослых: результаты первого российского многоцентрового исследования // Терапевтический архив. – 2020. – Т. 1. – С. 36–42. doi:10.26442/00403660.2020.01.000491.; Интенсивная терапия. Национальное руководство / Под ред. Б. Р. Гельфанда, И. Б. Заболотских. – 2019 «ГЭОТАР» – 928 с.; Козлова Н. С., Баранцевич Н. Е., Баранцевич Е. П. Чувствительность к антибиотикам штаммов Klebsiella pneumoniae, выделенных в многопрофильном стационаре // Инфекция и иммунитет. – 2018. – Т. 8, № 1. doi:10.15789/2220-7619-2018-1-79-84.; Кочетова Е. В. Комплексная оценка больных хронической обструктивной болезнью легких с помощью многокомпонентного индекса Ado и индекса коморбидности Charlson // Медицинский совет. – 2018. – № 12. – С. 182–184. doi:10.21518/2079-701X-2018-12-182-184.; Руднов В. А., Фесенко А. А., Дрозд А. В. Сравнительная оценка информационной значимости шкал тяжести состояния больных с внебольничной пневмонией, госпитализированных в ОРИТ // Клиническая микробиология и антимикробная химиотерапия. – 2007. – № 4. – С. 330–336.; Фесенко О. В., Синопальников А. И. Тяжелая внебольничная пневмония и шкалы оценки прогноза // Практическая пульмонология. – 2014. – № 2. – С. 20–26.; Чучалин А. Г., Синкопальников А. И., Козлов Р. С. Клинические рекомендации по диагностике, лечению и профилактике тяжелой внебольничной пневмонии у взрослых // Клиническая микробиология и антимикробная химиотерапия. – 2015. – Т. 17, № 2. – С. 84–126.; Ahnert P., Creutz P., Horn K. Sequential organ failure assessment score is an excellent operationalization of disease severity of adult patients with hospitalized community acquired pneumonia-results from the prospective observational PROGRESS study // Crit. Care. – 2019. – Vol. 23, № 1. – P. 110. doi:10.1186/s13054-019-2316-x.; Dombrovskiy V. Y., Martin A. A., Sunderram J. Rapid increase in hospitalization and mortality rates for severe sepsis in the United States: a trend analysis from 1993 to 2003 // Crit. Care Med. – 2007. – Vol. 35, № 5. – P. 1244–1250. doi:10.1097 / 01.CCM.0000261890.41311.E9.; Esper A. M., Moss M., Lewis C. A. The role of infection and comorbidity: Factors that influence disparities in sepsis // Crit. Care Med. – 2006. – Vol. 34, № 10. – P. 2576. doi:10.1097 / 01.CCM.0000239114.50519.0E.; Feldman C., Alanee S., Yu V. L. Severity of illness scoring systems in patients with bacteraemic pneumococcal pneumonia: implications for the intensive care unit care // Clin. Microbiol. Infect. – 2009. – Vol. 15, № 9. – P. 850–857. doi:10.1111/j.1469-0691.2009.02901.x.; Fernandes L., Arora A. S., Mesquita A. M. Role of semi-quantitative serum procalcitonin in assessing prognosis of community acquired bacterial pneumonia compared to PORT PSI, CURB-65 and CRB-65 // J. Clin. Diagnostic Res.: JCDR. – 2015. – Vol. 9, № 7. – P. 1. doi:10.7860 / JCDR / 2015 / 12468.6147.; Gomez H., Zarbock A., Murugan R. Sepsis-Induced AKI // Sepsis. – Humana Press, Cham. – 2017. – Vol. 1. – P. 127–142. doi:10.1007/978-3-319-48470-9_8.; Ibrahim A. I. Bacterial etiology of community acquired pneumonia and their antimicrobial susceptibility in patients admitted to alshaab teaching hospital // Sudan Med. Labor. J. – 2018. – Vol. 6, № 1. – P. 76–85.; Innocenti F. Tozzi C., Donnini Ch. et al. SOFA score in septic patients: incremental prognostic value over age, comorbidities, and parameters of sepsis severity // Intern. Emerg. Med. – 2018. – Vol. 13, № 3. – P. 405–412. doi:10.1007/s11739-017-1629-5.; Kell D. B., Pretorius E. To what extent are the terminal stages of sepsis, septic shock, systemic inflammatory response syndrome, and multiple organ dysfunction syndrome actually driven by a prion/amyloid form of fibrin? // Seminars in thrombosis and hemostasis. – Thieme Medical Publishers. – 2018. – Vol. 44, № 3. – P. 224–238. doi:10.1055 / s-0037-1604108.; Metlay J. P., Waterer G. W., Long A. C. et al. Diagnosis and treatment of adults with community-acquired pneumonia // Am. J. Respir. Crit. Care Med. – 2019. – Vol. 200, № 7. – Р. e45–e67. doi:10.1164/rccm.201908-1581ST.; Murphy L. S., Wickersham N., McNeil J. B. Endothelial glycocalyx degradation is more severe in patients with non-pulmonary sepsis compared to pulmonary sepsis and associates with risk of ARDS and other organ dysfunction // Ann. Intens. Care. – 2017. – Vol. 7, № 1. – P. 102. doi:10.1186/s13613-017-0325-y.; Navon-Venezia S., Kondratyeva K., Carattoli A. Klebsiella pneumoniae: a major worldwide source and shuttle for antibiotic resistance // FEMS Microbiol. Rev. – 2017. – Vol. 41, № 3. – P. 252–275. doi.org/10.1093/femsre/fux013.; Olson G., Andrew M. D. Diagnosis and treatment of adults with community-acquired pneumonia // JAMA. ‒ 2020. – Vol. 323, № 9. – P. 885–886. doi:10.1001/jama.2019.21118.; Ravindranath M., Raju C. Validity of pneumonia severity index/pneumonia outcome research trial and Curb-65 severity scoring systems in community acquired pneumonia in Indian setting // Indian. J. Chest Dis. Allied. Sci. – 2016. – Vol. 3. – P. 338–344. doi:10.18203/2349-3933.; Rhodes A., Sukennik P., Menichetti D. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016 // Intens. Care Med. – 2017. – Vol. 43, № 3. – P. 304–377. doi:10.1007/s00134-017-4683-6.; Sweeney T. E., Khatri P. Benchmarking Sepsis Gene Expression Diagnostics Using Public Data // Crit. Care Med. ‒ 2017. ‒ № 45. ‒ Р. 1–10. DOI:10.1097/CCM.0000000000002021; Sweeney T. E., Perumal T. M., Henao R. et al. Mortality prediction in sepsis via gene expression analysis: a community approach // bioRxiv. – 2016. – Vol. 19. – doi: http://dx.doi.org/10.1101/095489.; Torres A., Perumal T. M., Henao R. Challenges in severe community-acquired pneumonia: a point-of-view review // Intens. Care Med. – 2019. – Vol. 45, № 2. – P. 159–171. doi:10.1007/s00134-019-05519-y.; Van Oers J. A. H., Nijsten M. W., de Jong E. Why would procalcitonin perform better in patients with a SOFA-score less than 8? // Intern. J. Infect. Dis. – 2019. – Vol. 89. – P. 185–186. doi:10.1016/j.ijid.2019.09.027.; https://www.vair-journal.com/jour/article/view/480
-
15Academic Journal
المؤلفون: A. U. Lekmanov, P. I. Mironov, А. У. Лекманов, П. И. Миронов
المصدر: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 65, № 3 (2020); 131-137 ; Российский вестник перинатологии и педиатрии; Том 65, № 3 (2020); 131-137 ; 2500-2228 ; 1027-4065 ; 10.21508/1027-4065-2020-65-3
مصطلحات موضوعية: оценка тяжести состояния, children, diagnostics, assessment of the severity of the state, сепсис, диагностика
وصف الملف: application/pdf
Relation: https://www.ped-perinatology.ru/jour/article/view/1161/944; Rudd K.E., Johnson S.C., Agesa K.M., Shackelford K.A., Tsoi D., Kievlan D.R. et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study. Lancet 2020; 395: 200–211. DOI:10.1016/ S0140-6736(19)32989-7; Bone R.C., Balk R.A., Cerra F.B., Dellinger R.P., Fein A.M., Knaus W.A. et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest 1992; 101(6): 1644–1655.; Vincent J.L., Martin G., Levy M. qSOFA does not replace SIRS in the definition of sepsis. Critical Care 2016; 20(1): 210. DOI 10.1186/s13054-016-1389; Sprung C.L., Sakr Y., Vincent J.L., Le Gall J.R., Reinhart K., Ranieri V.M. et al. An evaluation of systemic inflammatory response syndrome signs in the Sepsis Occurrence in Acutely ill Patients (SOAP) study. Intensive Care Med 2006; 32: 421–427. DOI:10.1007/s00134-005-0039-8; Dulhunty J.M., Lipman J., Finfer S. Does severe non-infectious SIRS differ from severe sepsis? Results from a multi-centre Australian and New Zealand intensive care unit study. Intensive Care Med 2008; 34(9): 1654–1661. DOI:10.1007/s00134-008-1160-2.2008;34:1654–61; Churpek M.M., Zadravecz F.J., Winslow C., Howell M.D., Edelson D.P. Incidence and Prognostic Value of the Systemic Inflammatory Response Syndrome and Organ Dysfunctions in Ward Patients Am J Respir Crit Care Med 2015; 192: 958–964. DOI:10.1164/rccm.201502-0275OC; Singer M., Deutschman C.S., Seymour C.W., Shankar-Hari M., Annane D., Bauer M. et al. The third international consensus definitions for sepsis and septic shock (Sepsis‑3). JAMA 2016; 315: 801–810. DOI:10.1001/jama.2016.0287; Goldstein B., Giroir B., Randolph A. International pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics. Pediatr Crit Care Med 2005; 6(01): 2–8. DOI:10.1097/01.PCC.0000149131.72248.E6; Raymond S.L., Lopez M.C., Baker H.V., Larson S.D., Efron P.A., Sweeney T.E. et al. Unique transcriptomic response to sepsis is observed among patients of different age groups. PLoS ONE 2017; 12(9): e0184159. DOI:10.1371/journal.pone.0184159; de Souza D.C., Machado F.R. Epidemiology of Pediatric Septic Shock. J Pediatr Intensive Care 2019; 8(1): 3–10. DOI:10.1055/s-0038-1676634; Scott H.F., Deakyne S.J., Woods J.M., Bajaj L. The prevalence and diagnostic utility of systemic inflammatory response syndrome vital signs in a pediatric emergency department. Acad Emerg Med 2015; 22: 381–389. DOI: 10,1111 / acem.12610; Agyeman P.K., Schlapbach L.J., Giannoni E., Stocker M., Posfay-Barbe K., Heininger U. et al. Epidemiology of blood culture-proven bacterial sepsis in children in Switzerland: a population-based cohort study. Lancet Child Adolesc Health 2017; 1: 124–133. DOI:10.1016/S2352-4642(17)30010-X; Schlapbach L.J., Straney L., Bellomo R., MacLaren G., Pilcher D. Prognostic accuracy of age-adapted SOFA, SIRS, PELOD-2, and qSOFA for in-hospital mortality among children with suspected infection admitted to the intensive care unit. Int Care Med 2018; 44: 179–188. DOI:10.1007/s00134-017-5021-8; Schlapbach L. J., Kissoon N. Defining pediatric sepsis. JAMA Pediatr 2018; 172: 312–314. DOI:10.1001 / jamapediatrics.2017.5208; Davis A.L.; Carcillo J.A., Aneja R.K., Deymann A.J., Lin J.C., Nguyen T.C. et al. American College of Critical Care Medicine Clinical practice parameters for hemodynamic support of pediatric and neonatal septic shock. Crit Care Med 2017; 45: 1061–1093. DOI:10.1097/CCM.00do00000000002425; Balamuth F., Weiss S.L., Neuman M.I., Scott H., Brady P.W., Paul R. et al. Pediatric severe sepsis in U.S. children’s hospitals. Pediatr Crit Care Med 2014; 15(09): 798–805. DOI:10.1097/PCC.0000000000000225; Weiss S.L., Fitzgerald J.C., Pappachan J., Wheeler D., Jaramillo- Bustamante J.C., Salloo A. et al. Sepsis Prevalence, Outcomes, and Therapies (SPROUT) Study Investigators and Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) Network. Global epidemiology of pediatric severe sepsis: the sepsis prevalence, outcomes, and therapies study. Am J Respir Crit Care Med 2015; 191(10): 1147–115. DOI:10.1164 / rccm.201412-2323OC; Killien E.Y., Farris R.W.D., Watson R.S., Dervan L.A., Zimmerman J.J. Health-Related Quality of Life Among Survivors of Pediatric Sepsis. Pediatr Crit Care Med 2019; 20: 501–509. DOI:10.1097/PCC.0000000000001886; Boeddha N., Schlapbach N., Driessen G., Herberg J., Rivero- Calle I., Cebey-López M. Mortality and morbidity in community- acquired sepsis in European pediatric intensive care units: a prospective cohort study from the European Childhood Life-threatening Infectious Disease Study (EUCLIDS). Critical Care 2018; 22: 143. DOI:10.1186/s13054-018-2052-7; Leclerc F., Duhamel A., Deken V., Grandbastien B., Leteurtre S., Biarent D. et al. Can the pediatric logistic organ dysfunction- 2 score on day 1 be used in clinical criteria for sepsis in children? Pediatr Crit Care Med 2017; 18: 758–763. DOI:10.1097/PCC.0000000000001182; Matics T.J., Pinto N.P., Sanchez-Pinto L.N. Association of Organ Dysfunction Scoresand Functional Outcomes Following Pediatric Critical Illness. Pediatr Crit Care Med 2019; 20: 722–727. DOI:10.1097/PCC.0000000000001999; Dewi R., Somasetia D.H., Risan N.A. Procalcitonin, C-Reactive Protein and its Correlation with Severity Based on Pediatric Logistic OrganDysfunction-2 (PELOD-2) Score in Pediatric Sepsis. Am J Epidemiol Infect Dis 2016; 4(3): 64–67. DOI:10.12691/ajeid-4-3-3; Scott H.F., Brou L., Deakyne S.J., Kempe A., Fairclough D.L., Bajaj L. Association between early lactate levels and 30-day mortality in clinically suspected sepsis in children. JAMA Pediatr 2017; 171(3): 249–255. DOI: 10,1001 / jamapediatrics.2017.1598; Лекманов А.У., Миронов П.И., Руднов В.А., Кулабухов В.В. Современные дефиниции и принципы интенсивной терапии сепсиса у детей. Вестник анестезиологии и реаниматологии 2018; 15(4): 60-68. DOI:10.21292/2078-5658-2018-15-4-61-69; https://www.ped-perinatology.ru/jour/article/view/1161
-
16Academic Journal
المؤلفون: G. A. Kudinava, P. I. Mironov, A. U. Lekmanov, Г. А. Кудинова, П. И. Миронов, А. У. Лекманов
المصدر: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 65, № 5 (2020); 37-41 ; Российский вестник перинатологии и педиатрии; Том 65, № 5 (2020); 37-41 ; 2500-2228 ; 1027-4065 ; 10.21508/1027-4065-2020-65-5
مصطلحات موضوعية: валидность, severity of the condition, pSOFA and PELOD 2 scales, validity, тяжесть состояния, шкалы pSOFA, PELOD 2
وصف الملف: application/pdf
Relation: https://www.ped-perinatology.ru/jour/article/view/1233/978; Pinto N.P., Rhinesmith E.W., Kim T.Y., Ladner P.H., Pollack M.M. Long-term function after pediatric critical illness: Results from the survivor outcomes study. Pe-diatr Crit Care Med 2017; 18: e122-e130 doi:10.1097/PCC.0000000000001070.; Pollack M.M., Holubkov R, Funai T., Amy C., John B.T., Kathleen M. et al. Eunice Kennedy Shriver National Institute of Child Health and Human Development Collaborative Pediatric Critical Care Research Network: Pediatric intensive care outcomes: Development of new morbidities during pediatric critical care. Pediatr Crit Care Med 2014; 15: 821—827. DOI:10.1097/PCC.0000000000000250; Pollack M.M., Holubkov R, Funai T., Amy C., John B.T., Kathleen M. et al. Eunice Kennedy Shriver National Institute of Child Health and Human Development Collaborative Pediatric Critical Care Research Network: Simultaneous prediction of new morbidity, mortality, and survival without new morbidity from pediatric intensive care: A new paradigm for outcomes assessment. Crit Care Med 2015; 43: 1699—1709. DOI:10.1097/CCM.0000000000001081; Ferreira A.M., Sakr Y. Organ dysfunction: General approach, epidemiology, and organ failure scores. Semin Respir Crit Care Med 2011; 32: 543-551. DOI:10.1055/s-0031-1287862; Leteurtre S, Duhamel A., Salleron J., Grandbastien B., Lacroix J., Leclerc F. Groupe Francophone de Reanimation et d’Urgences Pediatriques (GFRUP): PELOD-2: An update of the PEdiatric logistic organ dysfunction score. Crit Care Med 2013; 41: 1761-1773. DOI:10.1097/CCM.0b013e-31828a2bbd; Matics T.J., Sanchez-Pinto L.N. Adaptation and validation of a pediatric sequential organ failure assessment score and evaluation of the Sepsis-3 definitions in critically ill children. JAMA Pediatr 2017; 171: e172352. DOI:10.1001/jamapedi-atrics.2017.2352; Leteurtre S., Martinot A., Duhamel A., Gauvin F, Grandbastien B., Nam T.V. et al. Development of a pediatric multiple organ dysfunction score: Use of two strategies. Med Decis Making 1999; 19: 399-410. DOI:10.1177/0272989X9901900408; Azoulay E., Vincent J.L., Angus D.C., Arabi Y.M., Brochard L., Brett S.J., Citerio G. et al. Recovery after critical illness: Putting the puzzle together-a consensus of 29. Crit Care 2017; 21: 296. DOI:10.1186/s13054-017-1887-7; Schlapbach L.J., Straney L, Bellomo R., MacLaren G., Pilcher D. Prognostic accuracy of age-adapted SOFA, SIRS, PELOD-2, and qSOFA for in-hospital mortality among children with suspected infection admitted to the intensive care unit. Intensive Care Med 2018; 44: 179-188. DOI:10.1007/s00134-017-5021-8; Schlapbach L.J., Kissoon N. Defining pediatric sepsis. JAMA Pediatr 2018; 172: 312-314. DOI:10.1001/jamapediat-rics.2017.5208; Kawasaki T., Shime N., Straney L., Bellomo R., MacLaren G., Pilcher D. et al. Paediatric sequential organ failure assessment score (pSOFA): a plea for the world-wide collaboration for consensus. Intensive Care Med 2018; 44(6): 995-997. DOI:10.1007/s00134-018-5188-7; Matics T.J., Pinto N.P., L. Sanchez-Pinto N. Association of Organ Dysfunction Scores and Functional Outcomes Following Pediatric Critical Illness Pediatr Crit Care Med 2019; 20(8): 722-727. DOI:10.1097/PCC.0000000000001999; Leteurtre S., Martinot A., Duhamel A., Proulx F., Grandbastien B., Cotting J. et al. Validation of the paediatric logistic organ dysfunction (PELOD) score. Prospective, observation, multicenter study. Lancet 2003; 362: 192. DOI:10.1016/S0140-6736(03)13908-6; TyppoK., Watson R.S., Bennett T.D., FarrisR.W.D. Outcomes of Day 1 Multiple Organ Dysfunction Syndrome in the PICU. Pediatr Crit Care Med 2019; 20: 914-922. DOI:10.1097/PCC.0000000000002044; Хаертынов Х.С, Анохин В.А., Халиуллина С.В. Любин С.А., Донцова Н.В, Королева П.В. и др. Клинико-эпидемиологические особенности и органная дисфункция при неонатальном сепсисе. Российский вестник перинатологии и педиатрии 2019; 64(5): 176-182. DOI:10.21508/1027-4065-2019-64-5-176-182; Hsu H. E., Abanyie F., Agus M.S.D., Balamuth F., Brady P.W., Brilli R.G. et al. A National Approach to Pediatric Sepsis Surveillance. PEDIATRICS 2019; 144 (6): e20191790. DOI:10.1542/peds.2019-1790; https://www.ped-perinatology.ru/jour/article/view/1233
-
17Academic Journal
المؤلفون: P. I. Mironov, E. Z. Il'ina, T. V. Saubanova, A. A. Greshilov, П. И. Миронов, Э. З. Ильина, Т. В. Саубанова, А. А. Грешилов
المصدر: Messenger of ANESTHESIOLOGY AND RESUSCITATION; Том 16, № 4 (2019); 19-23 ; Вестник анестезиологии и реаниматологии; Том 16, № 4 (2019); 19-23 ; 2541-8653 ; 2078-5658
مصطلحات موضوعية: факторы риска, gestational age, respiratory failure, risk factors, гестационный возраст, дыхательная недостаточность
وصف الملف: application/pdf
Relation: https://www.vair-journal.com/jour/article/view/352/368; Акушерство: Национальное руководство / под. ред. Э. К. Айламазяна, В. И. Кулакова, В. Е. Радзинского и др. ‒ М: ГЭОТАР-Медиа, 2009. ‒ 1200 с.; Баринов С. В., Биндюк А. В., Ралко В. В. и др. К вопросу о родоразрешении беременных с рубцом на матке // Российский вестник акушера-гинеколога. ‒ 2015. ‒ Т. 15, № 4. ‒ С. 29‒33.; Маслянюк Н. А., Евсюкова И. И. Плановое кесарево сечение и риск дыхательных расстройств у доношенных новорожденных детей // Журнал акушерства и женских болезней. ‒ 2015.‒ № 4.‒ С. 49‒56.; Неонатология. Национальное руководство / под ред. акад. РАН Н. Н. Володина. ‒ М.: ГЕОТАР-Медиа, 2008. ‒ 749 с.; Руководство по перинатологии / под ред. Иванова Д. О. ‒ СПб.:Информ-Навигатор, 2015. – 1216 с.; Huff K., Rose R. S., Engle W. A. Late Preterm Infants Morbidities, Mortality, and Management Recommendations // Pediatr. Clin. N. Amer. ‒ 2019. ‒ Vol. 66. ‒ P. 387‒402.; Glover A. V., Battarbee A. N., Gyamfi-Bannerman C. et al. Adverse outcomes of late preterm infants according to route of delivery // Am. J. Obstetr. Gynecol. ‒ 2018. ‒ Vol. 218, № 1. – P. 354.; Poulain P. Obstetrical management of women with previous caesarean section // Gynecol. Obstet. Fertil. ‒ 2010. ‒ Vol. 38, № 1. ‒ P. 48‒57.; https://www.vair-journal.com/jour/article/view/352
-
18Academic Journal
المؤلفون: A. U. Lekmanov, P. I. Mironov, V. A. Rudnov, V. V. Kulabukhov, А. У. Лекманов, П. И. Миронов, В. А. Руднов, В. В. Кулабухов
المصدر: Messenger of ANESTHESIOLOGY AND RESUSCITATION; Том 15, № 4 (2018); 61-69 ; Вестник анестезиологии и реаниматологии; Том 15, № 4 (2018); 61-69 ; 2541-8653 ; 2078-5658
مصطلحات موضوعية: оценка тяжести состояния, children, diagnostics, assessment of the severity of the state, дети, диагностика
وصف الملف: application/pdf
Relation: https://www.vair-journal.com/jour/article/view/269/295; Лекманов А. У., Азовский Д. К., Пилютик С. Ф. и др. Коррекция гемодинамики у детей с тяжелыми травматическими повреждениями на основе транспульмональной термодилюции // Анестезиол. и реаниматол. ‒ 2011. ‒ № 1. ‒ С. 32‒36.; Семенова Ж. Б., Мельников А. В., Лекманов А. У. и др. Рекомендации по лечению детей с черепно-мозговой травмой // Рос. вестник детской хирургии, анестезиологии и реаниматологии. ‒ 2016. ‒ № 2. ‒ С. 112−181.; Agyeman P. K. A., Schlapbach L. J., Giannoni E. et al Epidemiology of blood culture-proven bacterial sepsis in children in Switzerland: a population-based cohort study // Lancet Child Adolesc Health. – 2017. – Vol. 1. – P. 124–133.; Balamuth F., Weiss S. L., Fitzgerald J. C. et al. Protocolized treatment is associated with decreased organ dysfunction in pediatric severe sepsis // Pediatr. Crit. Care Med. – 2016. – Vol. 17. – P. 817–822.; Berlot G., Vassallo M. C., Busetto N. et al. Relationship between the timing of administration of IgM and IgA enriched immunoglobulins in patients with severe sepsis and septic shock and the outcome: A retrospective analysis // J. Crit. Care. – 2012. – Vol. 27. – P. 167–171.; Brown S. G. A. Fluid resuscitation for people with sepsis: it’s time to challenge our basic assumptions // BMJ. – 2014. – Vol. 349. – P. 4611.; Carcillo J. A., Davis A. L., Zaritsky A. Role of early fluid resuscitation in pediatric septic shock // JAMA. – 1991. – Vol. 266. – P. 1242–1245.; Capasso L., Borrelli C. A., Parrella C. et al. Are IgM-enriched immunoglobulins an effective adjuvant in septic VLBW infants? // Ital. J. Pediatrics. – 2013.–Vol. 39. – P. 63.; Davis A. L. American College of Critical Care Medicine Clinical practice parameters for hemodynamic support of pediatric and neonatal septic shock // Crit. Care Med. – 2017. – Vol. 45. – P. 1061–1093.; Emrath E. T., Fortenberry J. D., Travers C. et al. Resuscitation with balanced fluids is associated with improved survival in pediatric severe sepsis // Crit. Care Med. – 2017. – Vol. 45. – P. 1177–1183.; Fisher E. C. Clinical spectrum of shock in the pediatric emergencydepartment. // Pediatric Emergency Care. – 2010. – Vol. 26. – P. 622–625.; Ford N., Hargreaves S., Shanks L. Mortality after fluid bolus in children withshock due to sepsis or severe infection: a SR and MA // PLoS One. – 2012. – Vol. 7. – Р. e43953.; Glassford N. J., Bellomo R. Albumin administration in sepsis: the case for and against // ICU Management. – 2017. – Vol. 17. – P. 36–43.; Goldstein B., Giroir B., Randolph A. et al. International pediatric sepsis consensus conference: Definitions for sepsis and organ dysfunction in pediatrics // Pediatr. Crit. Care Med. – 2005. – Vol. 6. – P. 2–8.; Gorgis N., Asselin J. M., Fontana C. et al. Evaluation of the association of early elevated lactate with outcomes in children with severe sepsis or septic shock // PediatrEmerg Care. – 2017. – (epab). doi:10.1097/PEC.000000000000102, https://www.ncbi.nlm.nih.gov/pubmed/28072671; Han Y. Y., Carcillo J. A., Dragotta M. A. et al. Early reversal of pediatric–neonatal septic shock by community physicians is associated with improved outcome // Pediatrics. – 2003. – Vol. 112. – P. 793–799.; Haque K. N., Zaidi M. H., Bahakim H. IgM-enriched intravenous immunoglobulin therapy in neonatal sepsis // Am. J. Dis. Child. – 1988. – Vol. 142. – P. 1293–1296.; Inwald D. P., Butt W., Tasker R. C. Fluid resuscitation of shock in children: what, whence and whither? // Int. Care Med. – 2015. – Vol. 41. – P. 1457–1459.; Kawasaki T., Shime N. Straney L. et al. Paediatric sequential organ failure assessment score (pSOFA): a plea for the world-wide collaboration for consensus // Int. Care Med. – 2018. – (epab) https://doi.org/10.1007/s00134–018–5188–7; Kissoon N., Carcillo J. A., Espinosa V. et al. World Federation of Pediatric Intensive Care and Critical Care Societies: Global Sepsis Initiative // Pediatr. Crit. Care Med. – 2011. – Vol. 12. – P. 494–503.; Kola E., Çelaj E., Bakalli I. et al. Efficacy of an IgM preparation in the treatment of patients with sepsis: a double-blind randomized clinical trial in a pediatric intensive care unit (Original research) // SEEJPH. – 2014. URL: researchgate.net/profile/Kola_Elmira; Larsen G. Y., Mecham N., Greenberg R. An emergency department septic shock protocol and care guideline for children initiated at triage // Pediatrics. – 2011. – Vol. 127. – P. 1585–1592.; Leclerc F., Duhamel A., Deken V. et al. Can the pediatric logisticorgan dysfunction-2 score on day 1 be used in clinical criteria for sepsis inchildren? // Pediatr. Crit. Care Med. – 2017. – Vol. 18. – P. 758–763.; Masutani S., Senzaki H., Ishido H. et al. Vasopressin in the tretment of vasodilatory shock in children // Pediatr. Inf. – 2005. – Vol. 47. – P. 132–136.; Matics T. J., Sanchez-Pinto L. N. Adaptation and validation of a pediatric sequential organ failure assessment score and evaluation of the Sepsis-3 definitions in critically ill children // JAMA Pediatr. – 2017. – Vol. 171. – P. e172352; Medeiros D. N., Ferranti J. F., Delgado A. F. et al. Colloids for the initial management of severe sepsis and septic shock in pediatric patients: A systematic review colloids for the initial management of severe sepsis and septic shock in pediatric patients: A systematic review // Pediatr. Emerg Care. – 2015. – Vol. 31. – P. 11–16. http://www.ncbi.nlm.nih.gov/pubmed/?term=de%20Carvalho%20WB%5BAuthor%5D&cauthor=true&cauthor_uid=26535507.; Myburgh J., Finfer S. Causes of death after fluid bolus resuscitation: new insights from FEAST // BMC Med. – 2013. – Vol. 11. – P. 67.; Norrby-Teglund A., Haque K. N., Hammarstrom L. A. Intravenous polyclonal IgM-enriched immunoglobulin therapy in sepsis: a review of clinical efficacy in relation to microbiological aetiology and severity of sepsis // J. Intern. Med. – 2006. – Vol. 260. – P. 509–516.; Opiyo N., Molyneux E., Sinclair D. et al. Immediate fluid management of children with severe febrile illness and signs of impaired circulation in low-income settings: a contextualized SR // BMJ Open. – 2014. – Vol. 4. – Р. e004934.; Paul R., Melendez E., Stack A. et al. Improving adherence to PALS septic shock guidelines // Pediatrics. ‒ 2014. – Vol. 133. – Р. e1358–e1366.; Paul R., Neuman М., Monuteaux М. et al. Adherence to PALS sepsis guidelines and hospital length of stay // Pediatrics. – 2012. – Vol. 130. – P. 273–280.; Russell M. J., Kanthimathinathan H. K. Is there an optimum duration of fluid bolus in pediatric septic shock? A Critical appraisal of fluid bolus over 15–20 versus 5–10 minutes each in the first hour of resuscitation in children with septic shock // Pediatr. Crit. Care Med. – 2018. – Vol. 19. – P. 369–371.; Santschi М., Leclerc F. Management of children with sepsis and septic shock: a survey among pediatric intensivists of the Réseau Mère-Enfant de la Francophonie // Ann. Int. Care. – 2013. – Vol. 3. – P. 7–14.; Schlapbach L. J., Straney L., Bellomo R. et al. Prognostic accuracy of age-adapted SOFA, SIRS, PELOD-2, and qSOFA for in-hospital mortality among children with suspected infection admitted to the intensive care unit // Int. Care Med. – 2018. – Vol. 44. – P. 179–188.; Schlapbach L. J., Kissoon N. Defining pediatric sepsis // JAMA Pediatr. – 2018. – Vol. 172. – P. 312–314.; Schlapbach L. J., MacLaren G., Festa M. et al. Prediction of pediatric sepsis mortality within 1h of intensive care admission // Int. Care Med. – 2017. – Vol. 43. – P. 1085–1096.; Scott H. F., Deakyne S. J., Woods J. M. et al. The prevalence and diagnostic utility of systemic inflammatory response syndrome vital signs in a pediatric emergency department // Acad. Emerg. Med. – 2015. – Vol. 22. – P. 381–389.; Singer M., Deutschman C. S., Seymour C. W. et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) // JAMA. – 2016. – Vol. 315. – P. 801–8101.; van Paridon B. M., Cathy S., Guerra G. G. et al. Alberta Sepsis Network Timing of antibiotics, volume, and vasoactive infusions in children with sepsis admitted to intensive care // Crit. Care. – 2015. – Vol. 19. – P. 293.; Weiss S. L., Deutschman C. S. Are septic children really just “septic little adults”? // Int. Care Med. – 2018. – Vol. 44. – P. 392–394.; Weiss S., Fitzgerald J.C., Maffei F.A. et al. SPROUT Pediatric Severe Sepsis Study American // J. Respir. Crit. Care Medicine. – 2015. – Vol. 191. – P. 1147–1157.; Weiss S. L., Fitzgerald J. C., Balamuth F. et al. Delayed antimicrobial therapy increases mortality and organ dysfunction duration in pediatric sepsis // Crit. Care Med. – 2014. – Vol. 42. – P. 2409–2417.; Weiss S. L., Peters M. J. Focus on paediatrics: 2017 // Int. Care Med. – 2018. – https://doi.org/10.1007/s00134-017-5025-4; https://www.vair-journal.com/jour/article/view/269
-
19Academic Journal
المؤلفون: P. I. Mironov, A. U. Lekmanov, П. И. Миронов, А. У. Лекманов
المصدر: Messenger of ANESTHESIOLOGY AND RESUSCITATION; Том 14, № 3 (2017); 35-43 ; Вестник анестезиологии и реаниматологии; Том 14, № 3 (2017); 35-43 ; 2541-8653 ; 2078-5658
مصطلحات موضوعية: оценка тяжести состояния, sepsis, genomics, severity score, сепсис, геномика
وصف الملف: application/pdf
Relation: https://www.vair-journal.com/jour/article/view/159/197; Abraham E. New definitions for sepsis and septic shock: continuing evolution but with much still to be done // JAMA. – 2016. – Vol. 315. – P. 757–759.; Almansa R., Heredia-Rodríguez M., Gomez-Sanchez E. et al. Transcriptomic correlates of organ failure extent in sepsis // J. Infect. – 2015. – Vol. 70, № 4. – P. 445–456.; Bagshaw S. M., McDermid R. C. The role of frailty in outcomes from critical illness // Curr. Opin. Crit. Care. – 2013. – Vol. 19, № 5. – Р. 496–503.; Bermejo-Martin J. F., Tamayo E., Andaluz-Ojeda D. et al. Characterising Systemic Immune Dysfunction Syndrome (SIDS) to fill in the gaps of SEPSIS-2 and SEPSIS-3 definitions // Chest 2017(Accepted).; Buchman T. G., Billiar T. R., Elster E. et al. Precision medicine for critical illness and injury // Crit. Care Med. – 2016. – Vol. 44. – P. 1635–1638.; Chan I. S., Ginsburg G. S. Personalized medicine: progress and promise // Ann. Rev. Genomics Hum. Genet. – 2011. – Vol. 12. – P. 217–244.; Cohen J., Vincent J. L., Adhikari N. K. et al. Sepsis: A roadmap for future research // Lancet Infect. Dis. – 2015. – Vol. 15. – P. 581–614.; Collins F. S., Varmus H. A new initiative on precision medicine // New Engl. J. Med. – 2015. – Vol. 372. – P. 793–795.; Cong L., Ran F. A., Cox D. et al. Multiplex genome engineering using CRISPR/Cas systems // Science. – 2013.–Vol. 339. – P. 819–823.; Cuenca A. G., Gentile L. F., Lopez M. C. et al. Development of a genomic metric that can be rapidly used to predict clinical outcome in severely injured trauma patients // Crit. Care Med. – 2013. – Vol. 41, № 5. – P. 1175–1185.; Davenport E. E., Burnham K. L., Radhakrishnan J. et al. Genomic landscape of the individual host response and outcomes in sepsis: a prospective cohort study // Lancet Respir. Med. – 2016. – Vol. 4, № 4. – P. 259–271.; Delano M. J., Ward P. A. Sepsis-induced immune dysfunction: can immune therapies reduce mortality? // J. Clin. Invest. – 2016. – Vol. 126, № 1. – P. 23–31.; Ferrer R., Martin-Loeches I., Phillips G. et al. Empiric antibiotic treatment reduces mortality in severe sepsis and septic shock from the first hour: Results from a guideline-based performance improvement program // Crit. Care Med. – 2014. – Vol. 42. – P. 1749–1755.; Gaj T., Gersbach Ch. A., Barbas C. F. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering // Trends in Biotechnology. – 2013. – Vol. 31, № 7. – P. 397–404.; Gattinoi L., Tonetti T., Quintel M. Improved survival in critically ill patients: are large RCTs more useful then personalized medicine? We are not shure // Intens. Care Med. – 2016. – Vol. 42, № 11. – P. 1781–1783.; Goodman D. M., Livingston E. H. Genomic Medicine // JAMA. – 2013. – Vol. 309, № 14. – P. 1544.; Knaus W. A., Zimmerman J. E., Wagner D. P. et al. APACHE-acute physiology and chronic health evaluation: a physiologically based classification system // Crit. Care Med. – 1981.– Vol. 9, № 8. – P. 591–597.; Knox D. B., Lanspa M. J., Kuttler K. G. et al. Phenotypic clusters within sepsisassociated multiple organ dysfunction syndrome // Intens. Care Med. – 2015. – Vol. 41. – P. 814–822.; Lander E. S., Linton L. M., Birren B. et al. Initial sequencing and analysis of the human genome // Nature – 2001. – Vol. 409. – P. 860–921.; Laxminarayan R., Duse A., Wattal C. et al: Antibiotic resistance-the need for global solutions // Lancet Infect. Dis. – 2013. – Vol. 13. – P. 1057–1058.; Leentjens J., Kox M., van der Hoeven J. G. et al. Immunotherapy for the adjunctive treatment of sepsis: from immunosuppression to immunostimulation. Time for a paradigm change? // Am. J. Respir. Crit. Care Med. – 2013. – Vol. 187, № 12. – P. 1287–1293.; Li R., Fang L., Tan Sh. Type I CRISPR-Cas targets endogenous genes and regulates virulence to evade mammalian host immunity // Cell. Research. – 2016. – Vol. 26. – P. 1273–1287.; Liang P., Xu Y., Zhang X. et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes // Protein Cell. – 2015. – Vol. 6, № 5.– P. 363–372.; Maslove D. M., Wong H. R. Gene expression profiling in sepsis: timing, tissue, and translational considerations // Trends Mol. Med. – 2014. – Vol. 20. – P. 204–213.; Maslove D. M., Lamontagne F., Marshall J. C. et al. A path to precision in the ICU // Crit. Care. – 2017. – Vol. 21:79. DOI 10.1186/s13054–017–1653–x.; Mathias B., Lipori G., Lyle L. et al. Integrating «big data» into surgical practice // Surgery. – 2016. – Vol. 159. – P. 371–374.; Opal S. M., Dellinger R. P., Vincent J. L. et al. The next generation of sepsis clinical trial designs: what is next after the demise of recombinant human activated protein C? // Crit. Care Med. – 2014. – Vol. 42. – P. 1714–1721.; Parnell G., McLean A., Booth D. et al. Aberrant cell cycle and apoptotic changes characterise severe influenza A infection – a meta-analysis of genomic signatures in circulating leukocytes // PLoS One – 2011. – Vol. 6. – Р. e17186.; Parnell G. P.,Tang B. M., Nalos M. et al. Identifying key regulatory genes in the whole blood of septic patients to monitor underlying immune dysfunctions // Shock. – 2013. – Vol. 40, № 3. – P. 166–174.; Peltonen L., McKusick V. A. Dissecting human disease in the postgenomic era // Science. – 2001. – Vol. 291. – P. 1224–1229.; Prescott H. C., Calfee C. S., Thompson B. T. et al. Toward smarter lumping and smarter splitting: rethinking strategies for sepsis and acute respiratory distress syndrome clinical trial design // Am. J. Respir. Crit. Care Med. – 2016. – Vol. 194. – P. 147–155.; Puthucheary Z. A., Wischmeyer P. Predicting critical illness mortality and personalizing therapy: moving to multidimensional data // Crit. Care. – 2017. – Vol. 21. – 20 DOI 10.1186/s13054–016–1597–6; Rello J., Valenzuela-Sánchez F. Septic shock in the era of precision medicine // J. Thorac Dis. – 2016. – Vol. 8. – P. 1022–1023.; Russell J. A. Genomics and pharmacogenomics of sepsis: so close and yet so far // Crit. Care. – 2016. – Vol. 42. – P. 1–4.; Shankar-Hari M. et al. Developing a new definition and assessing new clinical criteria for septic shock: for the third international consensus definitions for sepsis and septic shock (Sepsis-3) // JAMA. – 2016. – Vol. 315. – P. 775–787.; Simpson S. O. New sepsis criteria: a change we should not make // Chest. – 2016. – Vol. 149, № 5. – Р. 1117–1118.; Sims C. R., Nguyen T. C., Mayeux P. R. Could biomarker direct therapy for the septic patients? // J. Pharmacol. Exp. Ther. – 2016. – Vol. 357, № 2. – P. 228–239.; Singer M., Deutschman C. S., Seymour C. W. et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3) // JAMA. – 2016. – Vol. 315. – P. 801–810.; Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016 // Crit. Care Med. – 2017. – Vol. 45, № 3. – P. 486–552.; Sweeney T. E., Wong H. R. Risk stratification and prognosis in sepsis: what have we learned from microarrays? // Clin. Chest Med. – 2016. – Vol. 37. – P. 209–218.; Sweeney T. E., Khatri P. Benchmarking sepsis gene expression diagnostics using public data // Crit. Care Med. – 2017. – Vol. 45. – P. 1–10.; Sweeney T. E., Perumal T. M., Henao R. et al. Mortality prediction in sepsis via gene expression analysis: a community approach. bioRxiv. preprint first posted online Dec. 19, 2016; doi: http://dx.doi.org/10.1101/095489; Tang В. М. Р., McLean A. S., Dawes I. W. et al. Gene-expression profiling in sepsis diagnosis // Am. J. Respir. Crit. Care Med. – 2007. – Vol. 176. – P. 676–684.; Tsalik E. L., Langley R. J., Dinwiddie D. L. et al. An integrated transcriptome and expressed variant analysis of sepsis survival and death // Genome Med. – 2014. – Vol. 6, № 11. – P. 111.; Wong H. R., Shanley T. P., Sakthivel B. et al. Genome-level expression profiles in pediatric septic shock indicate a role for altered zinc homeostasis in poor outcome // Physiol. Genomics. – 2007. – Vol. 30, № 2. – P. 146–155.; Wong H. R., Cvijanovich N. Z., Anas N. et al. Developing a clinically feasible personalized medicine approach to pediatric septic shock // Am. J. Respir. Crit. Care Med. – 2015. – Vol. 191, № 3. – P. 309–315.; Wong H. R., Weiss S. L., Giuliano Jr. J. S. et al. Testing the Prognostic Accuracy of the Updated Pediatric Sepsis Biomarker Risk Model // PLoS ONE. – 2016. – Vol. 9, № 1. – Р. e86242.; Wong H. R., Cvijanovich N. Z., Anas N. et al. Improved Risk Stratification in Pediatric Septic Shock Using Both Protein and mRNA Biomarkers: PERSEVERE–XP // Am. J. Resp. Crit. Care Med. – 2017 Accepted: March 20, 2017 DOI: http://dx.doi.org/10.1164/rccm.201701–0066OC; Vogel and Motulski’s Human Genetics: Problems and Approaches. Springer, 2009.; https://www.vair-journal.com/jour/article/view/159
-
20Academic Journal
المؤلفون: G. A. Kudinova, P. I. Mironov, I. I. Lutfarakhmanov, Г. А. Кудинова, П. И. Миронов, И. И. Лутфарахманов
المصدر: Messenger of ANESTHESIOLOGY AND RESUSCITATION; Том 13, № 6 (2016); 54-58 ; Вестник анестезиологии и реаниматологии; Том 13, № 6 (2016); 54-58 ; 2541-8653 ; 2078-5658
مصطلحات موضوعية: антибиотикорезистентность, unproved infection, anti-bacterial therapy, resistance to antibiotics, недоказанная инфекция, антибактериальная терапия
وصف الملف: application/pdf
Relation: https://www.vair-journal.com/jour/article/view/130/168; Александрович Ю. С., Пшениснов К. В. Интенсивная терапия новорожденных. – Спб.: Изд-во Н-Л, 2013 – 672 с.; Ведение новорожденных с респираторным дистресс-синдромом // Клин. рекомендации РАСПМ под ред. акад. РАН В. В. Володина. – 2016. – 48 с.; Миронов П. И., Руднов В. А. Клиническое значение контроля уровня прокальцитонина в крови при проведении искусственной вентиляции легких у новорожденных с респираторным дистресс-синдромом // Вестн. анестезиол. и реаниматол. – 2015. – № 2. – С. 22–26.; Abbas Q., Ul Haq A., Kumar R. et al. Evaluation of antibiotic use in Pediatric Intensive Care Unit of a developing country // Indian. J. Crit. Care Med. – 2016. – Vol. 20, № 5. – Р. 39–42.; Duflo F., Debon R., Monneret G. et al. Alveolar and serum procalcitonin: diagnostic and prognostic value in ventilator-associated pneumonia // Anesthesiology. – 2002. – Vol. 96. – P. 74–79.; Gerber J. S., Newland J. G., Coffin S. E. et al. Variability in antibiotic use at children’s hospitals // Pediatrics. – 2010. – Vol. 126, № 6. – P. 1067–1073.; Kuppala V. S., Meinzen-Derr J., Morrow A. L. et al. Prolonged initial empirical antibiotic treatment is associated with adverse outcomes in premature infants // J. Pediatr. – 2011. – Vol. 159, № 5. – P. 720–725.; Oppert M., Reinicke A., Muller C. et al. Elevations in procalcitonin but not C-reactive protein are associated with pneumonia after cardiopulmonary resuscitation // Resuscitation. – 2002. – Vol. 53. – P. 167–170.; Patel S. J., Saiman L. Antibiotic resistance in neonatal intensive care unit pathogens: mechanisms, clinical impact, and prevention including antibiotic stewardship // Clin. Perinatol. – 2010. – Vol. 37, № 3. – P. 547–563.; Sastre J. L., Solis D. P., Seradilla V. R. et al. Procalciotoin is not sufficiently reliable to be the sole marker of neonatal sepsis of nosocomial origin // BMC Pediatrics. – 2006. – Vol. 6. – P. 1–7.; Schulman J., Dimand R. J., Lee H. C. et al. Neonatal intensive care unit antibiotic use // Pediatrics. – 2015. – Vol. 135. – № 5. – P. 826–833.; Sweet D. G., Carnielli V., Greisen G. et al. European consensus guidelines on the management of neonatal respiratory distress syndrome in preterm infants – 2013 Update // Neonatology. – 2013. – Vol. 103, № 4. – P. 353–358.; https://www.vair-journal.com/jour/article/view/130