-
1Academic Journal
المؤلفون: P. E. Tulin, M. B. Dolgushin, D. I. Nevzorov, P. V. Kochergin, Yu. I. Patyutko, П. Е. Тулин, М. Б. Долгушин, Д. И. Невзоров, П. В. Кочергин, Ю. И. Патютко
المصدر: Medical Visualization; № 1 (2018); 57-67 ; Медицинская визуализация; № 1 (2018); 57-67 ; 2408-9516 ; 1607-0763
مصطلحات موضوعية: нейроэндокринные опухоли поджелудочной железы, 18F-fluorodeoxyglucose, 68Ga-DOTA, pancreatic cancer, neuroendocrine tumors of the pancreas, 18F-фтордезоксиглюкоза, рак поджелудочной железы
وصف الملف: application/pdf
Relation: https://medvis.vidar.ru/jour/article/view/508/459; Ferlay J., Soerjomataram I., Ervik M., Dikshit R., Eser S., Mathers C., Rebelo M., Parkin D., Forman D., Bray F. Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11. 2013. DOI:10.1002/ijc.29210.; Hidalgo M., Cascinu S., Kleeff J., Labianca R., Löhr J., Neoptolemos J., Real F., Van Laethem J., Heinemann V. Addressing the challenges of pancreatic cancer: future directions for improving outcomes. Pancreatology. 2013; 15: 8–18. DOI:10.1016/j.pan.2014.10.001.; Solcia E., Capella C., Klöppel G. Tumors of the Pancreas: AFIP Atlas of Tumor Pathology, 3rd series, fascicle 20. Washington, DC: Armed Forces Institute of Pathology. 1997: 14–18.; Malvezzi M., Carioli G., Bertuccio P., Rosso T., Boffetta P., Levi F., La Vecchia C., Negri E. European cancer mortality predictions for the year 2016 with focus on leukaemias. Ann. Oncol. 2016; 27: 725–731. DOI:10.1093/annonc/mdw022.; Chari S.T., Leibson C.L., Rabe K.G., Timmons L.J., Ransom J., De Andrade M., Petersen G.M. Pancreatic cancer-associated diabetes mellitus: prevalence and temporal association with diagnosis of cancer. Gastroenterology. 2008; 134 (1): 95–101. DOI:10.1053/j.gastro.2007.10.040.; Bosetti C., Lucenteforte E., Silverman D.T., Petersen G., Bracci P.M., Ji B.T. Cigarette smoking and pancreatic cancer: an analysis from the International Pancreatic Cancer Case-Control Consortium (Panc4). Ann. Oncol. 2012; 23 (7): 1880–1888. DOI:10.1093/annonc/mdr541.; Duell E. J., Lucenteforte E., Olson S. H., Bracci P. M., Li D., Risch H. A. Pancreatitis and pancreatic cancer risk: a pooled analysis in the International Pancreatic Cancer Case-Control Consortium (Panс4). Ann. Oncol. 2012; 23 (11): 140. DOI:10.1093/annonc/mds140.; Artinyan A., Soriano P. A., Prendergast C., Low T., Ellenhorn J.D., Kim J. The anatomic location of pancreatic cancer is a prognostic factor for survival. HPB. 2008; 10 (5): 371–376. DOI:10.1080/13651820802291233.; Gospodarowicz M.K., Brierley J.D., Wittekind C. TNM classification of malignant tumours. 2017: 94–95.; Khalid A., Dewitt J., Ohori N. P., Chen J. H., Fasanella K. E., Sanders U. EUS-FNA mutational analysis in differentiating autoimmune pancreatitis and pancreatic cancer. Pancreatology. 2011; 11 (5): 482–486. DOI:10.1159/000331505.; Conrad C., Fernández-del Castillo C. Preoperative evaluation and management of the pancreatic head mass. J. Surg. Oncol. 2013; 107 (1): 23–32. DOI:10.1002/jso.23165.; Giovannini M. Contrast-enhanced and 3-dimensional endoscopic ultrasonography. Gastroenterol. Clin. N. Am. 2010; 39 (4): 845–858. DOI:10.1016/j.gtc.2010.08.027.; D’Onofrio M., Biagioli E., Gerardi C., Canestrini S., Rulli E., Crosara S. Diagnostic performance of contrast-enhanced ultrasound (CEUS) and contrast-enhanced endoscopic ultrasound (ECEUS) for the differentiation of pancreatic lesions: a systematic review and meta-analysis. Ultraschall Med. – Eur. J. Ultrasound. 2014; 35 (6): 515–521. DOI:10.1055/s-0034-1385068.; Kamisawa T., Wood L. D., Itoi T., Takaori K. Pancreatic cancer. Lancet. 2016; 388 (10039): 73–85. DOI:10.1016/S0140-6736(16)00141-0.; Karmazanovsky G., Fedorov V., Kubyshkin V., Kotchatkov A. Pancreatic head cancer: accuracy of CT in determination of resectability. Abdom. Imaging. 2005; 30 (4): 488–500. DOI:10.1007/s00261-004-0279-z.; Ahn S.S., Kim M.J., Choi J.Y., Hong H.S., Chung Y.E., Lim J.S. Indicative findings of pancreatic cancer in prediagnostic CT. Eur. Radiol. 2009; 19 (10): 2448–2455. DOI:10.1007/s00330-009-1422-6.; Li H., Zeng M.S., Zhou K.R., Lou W. Pancreatic adenocarcinoma: the different CT criteria for peripancreatic major arterial and venous invasion. J. Comput. Assist. Tomogr. 2005; 29 (2): 170–175.; d'Assignies G., Couvelard A., Bahrami S., Vullierme M.P., Hammel P., Hentic O. Pancreatic endocrine tumors: tumor blood flow assessed with perfusion CT reflects angiogenesis and correlates with prognostic factors1. Radiology. 2009; 250 (2): 407–416. DOI:10.1148/radiol.2501080291.; Нерестюк Я.И. КТ-перфузия при опухолях поджелудочной железы. Медицинская визуализация. 2015; 3: 57–67. Nerestjuk Ja.I. CT-perfusion in tumors of the pancreas. Medical Visualization. 2015; 3: 57–67. (In Russian); Bipat S., Phoa S.S.S., van Delden O.M., Bossuyt P.M., Gouma D.J., Laméris J.S. Ultrasonography, computed tomography and magnetic resonance imaging for diagnosis and determining resectability of pancreatic adenocarcinoma: a meta-analysis. J. Comput. Assist. Tomogr. 2005; 29 (4): 438–445.; Park H.S., Lee J.M., Choi H.K., Hong S.H., Han J.K., Choi B.I. Preoperative evaluation of pancreatic cancer: Comparison of gadolinium enhanced dynamic MRI with MR cholangiopancreatography versus MDCT. J. Magn. Reson. Imaging. 2009; 30 (3): 586–595. DOI:10.1002/jmri.21889.; Kim J.H., Park S.H., Yu E.S., Kim M.H., Kim J., Byun J.H., Lee M.G. Visually isoattenuating pancreatic adenocarcinoma at dynamic-enhanced CT: frequency, clinical and pathologic characteristics, and diagnosis at imaging examinations. Radiology. 2010; 257 (1): 87–96. DOI:10.1148/radiol.10100015.; Adamek H.E., Albert J., Breer H., Weitz M., Schilling D., Riemann J. F. Pancreatic cancer detection with magnetic resonance cholangiopancreatography and endoscopic retrograde cholangiopancreatography: a prospective controlled study. Lancet. 2000; 356 (9225): 190–193. DOI:10.1016/S0140-6736(00)02479-X.; Raman S.P., Horton K.M., Fishman E.K. Multimodality imaging of pancreatic cancer – computed tomography, magnetic resonance imaging, and positron emission tomography. Cancer J. 2012; 18 (6): 511–522. DOI:10.1097/PPO.0b013e318274a461.; Hruban R.H., Pitman M.B., Klimstra D.S. Tumors of the pancreas. Am. Registry Pathol. 2007; 6: 13–21. DOI:10.1043/1543-2165-133.3.454.; Гарматина О.Ю. Современные методы неинвазивной визуализации желчевыводящих путей. Клінічна та експериментальна патологія. 2014; 13 (2): 199–204. Garmatina O.Ju. Modern methods of non-invasive imaging of the biliary tract. Klinichna ta eksperimental'na patologija. 2014; 13 (2): 199–204. (In Russian); Zakharova O.P., Karmazanovsky G.G., Egorov V.I. Pancreatic adenocarcinoma: Outstanding problems. Wld J. Gastrointest. Surg. 2012; 4 (5): 104. DOI:10.4240/wjgs.v4.i5.104.; Шима В., Кауэлблингер К. Аденокарцинома поджелудочной железы: выявление, определение стадии и дифференциальная диагностика. Медицинская визуализация. 2015; 5: 52–72. Shíma V., Kabelbinder K. Pancreatic adenocarcinoma: detection, stage determination and differential diagnosis. Medical Visualization. 2015; 5: 52–72. (In Russian); Higashi T., Saga T., Nakamoto Y., Ishimori T., Fujimoto K., Doi R. Diagnosis of pancreatic cancer using fluorine-18 fluorodeoxyglucose positron emission tomography (FDG PET)—Usefulness and limitations in “clinical reality”. Ann. Nucl. Med. 2003; 17 (4): 261–279.; Kauhanen S.P., Komar G., Seppänen M.P., Dean K.I., Minn H.R., Kajander S.A. A prospective diagnostic accuracy study of 18F-fluorodeoxyglucose positron emission tomography/computed tomography, multidetector row computed tomography, and magnetic resonance imaging in primary diagnosis and staging of pancreatic cancer. Ann. Surg. 2009; 250 (6): 957–963. DOI:10.1097/SLA.0b013e3181b2fafa.; Dibble E.H., Karantanis D., Mercier G., Peller P.J., Kachnic L.A., Subramaniam R.M. PET/CT of cancer patients: part 1, pancreatic neoplasms. Am. J. Roentgenol. 2012; 199 (5): 952–967. DOI:10.2214/AJR.11.8182.; Lyshchik A., Higashi T., Hara T., Nakamoto Y., Fujimoto K., Doi R. Expression of glucose transporter-1, hexokinase-II, proliferating cell nuclear antigen and survival of patients with pancreatic cancer. Cancer Invest. 2007; 25 (3): 154–162. DOI:10.1080/07357900701208931.; Nishiyama Y., Yamamoto Y., Monden T., Sasakawa Y., Tsutsui K., Wakabayashi H. Evaluation of delayed additional FDG PET imaging in patients with pancreatic tumour. Nucl. Med. Commun. 2005; 26 (10): 895–901.; Bares R., Klever P., Hauptmann S., Hellwig D., Fass J., Cremerius U. 18F-fluorodeoxyglucose PET in vivo evaluation of pancreatic glucose metabolism for detection of pancreatic cancer. Radiology. 1994; 192 (1): 79–86. DOI:10.1148/radiology.192.1.8208970.; Ruf J., Hänninen E. L., Böhmig M., Koch I., Denecke T., Plotkin M. Impact of FDG-PET/MRI image fusion on the detection of pancreatic cancer. Pancreatology. 2006; 6 (6): 512–519. DOI:10.1159/000096993.; Wang X., Yu L. J. 18F-FDG PET/CT in detection of pancreatic cancer: Value of synthetic analysis interpretation. Zhongguo Yixue Yingxiang Jishu. 2007; 23: 1709–1712.; Hillner B.E., Siegel B.A., Liu D., Shields A.F., Gareen I.F., Hanna L. Impact of positron emission tomography/ computed tomography and positron emission tomography (PET) alone on expected management of patients with cancer: initial results from the National Oncologic PET Registry. J. Clin. Oncol. 2008; 26 (13): 2155–2161. DOI:10.1200/JCO.2007.14.5631.; Wang Z., Chen J. Q., Liu J. L., Qin X. G., Huang, Y. FDGPET in diagnosis, staging and prognosis of pancreatic carcinoma: a meta-analysis. Wld J. Gastroenterol. 2013; 19 (29): 4808. DOI:10.3748/wjg.v19.i29.4808.; Nakata B., Nishimura S., Ishikawa T., Ohira M., Nishino H., Kawabe J. Prognostic predictive value of 18F-fluorodeoxyglucose positron emission tomography for patients with pancreatic cancer. Int. J. Oncol. 2001; 19 (1): 53–58.; Lyshchik A., Higashi T., Nakamoto Y., Fujimoto K., Doi R., Imamura M., Saga T. Dual-phase 18F-fluoro-2-deoxy-Dglucose positron emission tomography as a prognostic parameter in patients with pancreatic cancer. Eur. J. Nucl. Med. Mol. Imaging. 2005; 32 (4): 389–397. DOI:10.1007/s00259-004-1656-0.; Topkan E., Parlak C., Kotek A., Yapar A. F., Pehlivan B. Predictive value of metabolic 18FDG-PET response on outcomes in patients with locally advanced pancreatic carcinoma treated with definitive concurrent chemoradiotherapy. BMC Gastroenterol. 2011; 11 (1): 123. DOI:10.1186/1471-230X-11-123.; Heinrich S., Goerres G.W., Schäfer M., Sagmeister M., Bauerfeind P., Pestalozzi B.C. Positron emission tomography/computed tomography influences on the management of resectable pancreatic cancer and its cost-effectiveness. Ann. Surg. 2005; 242 (2): 235–243.; Coleman R.E., DeGrado T.R., Wang S., Baldwin S.W., Orr M.D., Reiman R.E., Price D.T. Preliminary Evaluation of F-18 Fluorocholine (FCH) as a PET Tumor Imaging Agent. Clin. Positron Imaging. 2000; 3 (4): 147.; Wang X.Y., Yang F., Jin C., Fu D.L. Utility of PET/CT in diagnosis, staging, assessment of resectability and metabolic response of pancreatic cancer. Wld J. Gastroenterol. 2014; 20 (42): 15580–15589. DOI:10.3748/wjg.v20.i42.15580.; Nishiyama Y., Yamamoto Y., Monden T., Sasakawa Y., Tsutsui K., Wakabayashi H., Ohkawa M. Evaluation of delayed additional FDG PET imaging in patients with pancreatic tumour. Nucl. Med. Communications. 2005; 26 (10): 895–901.; Tann M., Sandrasegaran K., Jennings S.G., Skandarajah A., McHenry L., Schmidt C.M. Positron-emission tomography and computed tomography of cystic pancreatic masses. Clin. Radiol. 2007; 62 (8): 745–751. DOI:10.1016/j.crad.2007.01.023.; Takakura K., Sumiyama K., Munakata K., Ashida H., Arihiro S., Kakutani H., Tajiri H. Clinical usefulness of diffusion-weighted MR imaging for detection of pancreatic cancer: comparison with enhanced multidetector-row CT. Abdom. Imaging. 2011; 36 (4): 457–462. DOI:10.1007/s00261-011-9728-7.; Neoptolemos J.P., Dunn J.A., Stocken D.D., Almond J., Link K., Beger H., Fernandez-Cruz L. Adjuvant chemoradiotherapy and chemotherapy in resectable pancreatic cancer: a randomised controlled trial. Lancet. 2001; 358 (9293): 1576–1585.; Ford E.C., Herman J., Yorke E., Wahl R.L. 18F-FDG PET/ CT for image-guided and intensity-modulated radiotherapy. J. Nucl. Med. 2009; 50 (10): 1655–1665. DOI:10.2967/jnumed.108.055780.; Topkan E., Yavuz A.A., Aydin M., Onal C., Yapar F., Yavuz M.N. Comparison of CT and PET-CT based planning of radiation therapy in locally advanced pancreatic carcinoma. J. Experim. & Clin. Cancer Res. 2008; 27 (1): 41. DOI:10.1186/1756-9966-27-41.; Rose D.M., Delbeke D., Beauchamp R.D., Chapman W.C., Sandler M.P., Sharp K.W., Leach S.D. 18-Fluorodeoxyglucose-positron emission tomography in the management of patients with suspected pancreatic cancer. Ann. Surg. 1999; 229 (5): 729.; Bang S., Chung H.W., Park S.W., Chung J.B., Yun M., Lee J.D., Song S.Y. The clinical usefulness of 18-fluorodeoxyglucose positron emission tomography in the differential diagnosis, staging, and response evaluation after concurrent chemoradiotherapy for pancreatic cancer. J. Clin. Gastroenterol. 2006; 40 (10): 923–929. DOI:10.1097/01.mcg.0000225672.68852.05.; Ruf J., Hänninen E.L., Oettle H., Plotkin M., Pelzer U., Stroszczynski C., Amthauer H. Detection of recurrent pancreatic cancer: comparison of FDG-PET with CT/MRI. Pancreatology. 2005; 5 (2): 266–272. DOI:10.1159/000085281.; Michl P., Pauls S., Gress T.M. Evidence-based diagnosis and staging of pancreatic cancer. Best Pract. Res. Clin. Gastroenterol. 2006; 20 (2): 227–251. DOI:10.1016/j.bpg.2005.10.005.; Goh B.K., Chung Y.F., Ng D.C., Selvarajan S., Soo K.C. Positron emission tomography with 2-deoxy-2-[18f] fluoro-D-glucose in the detection of malignancy in intraductal papillary mucinous neoplasms of the pancreas. JOP. 2007; 8 (3): 350–354.; Langer A.A systematic review of PET and PET/CT in oncology: a way to personalize cancer treatment in a costeffective manner? BMC Health Services Res. 2010; 10 (1): 283. DOI:10.1186/1472-6963-10-283.; Segard T., Robins P.D., Yusoff I.F., Ee H., Morandeau L., Campbell E.M., Francis R.J. Detection of hypoxia with 18F-fluoromisonidazole (18F-FMISO) PET/CT in suspectedor proven pancreatic cancer. Clin. Nucl. Med. 2013; 38 (1): 1–6. DOI:10.1097/RLU.0b013e3182708777.; Herrmann K., Erkan M., Dobritz M., Schuster T., Siveke J.T., Beer A.J., Kleeff J. Comparison of 3′-deoxy3′-[18F] fluorothymidine positron emission tomography (FLT PET) and FDG PET/CT for the detection and characterization of pancreatic tumours. Eur. J. Nucl. Med. Mol. Imaging. 2012; 39 (5): 846–851. DOI:10.1007/s00259-012-2061-8.; Henriksen G., Herz M., Hauser A., Schwaiger M., Wester H.J. Synthesis and preclinical evaluation of the choline transport tracer deshydroxy-[18F] fluorocholine ([18F] dOC). Nucl. Med. Biol. 2004; 31 (7): 851–858.; Yao J.C., Hassan M., Phan A., Dagohoy C., Leary C., Mares J.E., Evans D.B. One hundred years after “carcinoid”: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J. Clin. Oncol. 2008; 26 (18): 3063–3072. DOI:10.1200/JCO.2007.15.4377.; Bosman F.T., Carneiro F., Hruban R.H., Theise N.D. WHO classification of tumours of the digestive system. Wld Health Organization. 2010; 4.; Krenning E.P., Kwekkeboom D.J., Bakker W.E.A., Breeman W.A.P., Kooij P.P.M., Oei H.Y., Visser T.J. Somatostatin receptor scintigraphy with [111In-DTPA-D-Phe1]-and [123I-Tyr3]-octreotide: the Rotterdam experience with more than 1000 patients. Eur. J. Nucl. Med. 1993; 20 (8): 716–731. DOI:10.1007/BF00181765.; Srirajaskanthan R., Kayani I., Quigley A.M., Soh J., Caplin M.E., Bomanji J. The role of 68Ga-DOTATATE PET in patients with neuroendocrine tumors and negative or equivocal findings on 111In-DTPA-octreotide scintigraphy. J. Nucl. Med. 2010; 51 (6): 875–882. DOI:10.2967/jnumed.109.066134.; Schreiter N.F., Brenner W., Nogami M., Buchert R., Huppertz A., Pape U.F., Prasad V., Hamm B., Maurer M. Cost comparison of 111In-DTPA-octreotide scintigraphy and 68Ga-DOTATOC PET/CT for staging enteropancreatic neuroendocrine tumours. Eur. J. Nucl. Med. Mol. Imaging. 2012; 39 (1): 72–82. DOI:10.1007/s00259-011-1935-5.; Ambrosini V., Campana D., Bodei L., Nanni C., Castellucci P., Allegri V., Fanti S. 68Ga-DOTANOC PET/CT clinical impact in patients with neuroendocrine tumors. J. Nucl. Med. 2010; 51 (5): 669–673. DOI:10.2967/jnumed.109.071712.; Ambrosini V., Campana D., Tomassetti P., Fanti S. 68Galabelled peptides for diagnosis of gastroenteropancreatic NET. Eur. J. Nucl. Med. Mol. Imaging. 2012; 39 (1): 52–60. DOI:10.1007/s00259-011-1989-4.; Koopmans K.P., de Vries E.G., Kema I.P., Elsinga P.H., Neels O.C., Sluiter W.J., Jager P.L. Staging of carcinoid tumours with 18F-DOPA PET: a prospective, diagnostic accuracy study. Lancet Oncol. 2006; 7 (9): 728–734.; Kayani I., Conry B.G., Groves A.M., Win T., Dickson J., Caplin M., Bomanji J.B. A comparison of 68Ga-DOTATATE and 18F-FDG PET/CT in pulmonary neuroendocrine tumors. J. Nucl. Med. 2009; 50 (12): 1927–1932. DOI:10.1016/S1470-2045(06)70801-4.; Pasquali C., Rubello D., Sperti C., Gasparoni P., Liessi G., Chierichetti F., Pedrazzoli S. Neuroendocrine tumor imaging: can 18F-fluorodeoxyglucose positron emission tomography detect tumors with poor prognosis and aggressive behavior? Wld J. Surg. 1998; 22 (6): 588–592.; Binderup T., Knigge U., Loft A., Federspiel B., Kjaer A. 18F-fluorodeoxyglucose positron emission tomography predicts survival of patients with neuroendocrine tumors. Clin. Cancer Res. 2010; 16 (3): 978–985. DOI:10.1158/1078-0432.CCR-09-1759.; https://medvis.vidar.ru/jour/article/view/508
-
2Academic Journal
المؤلفون: P. E. Tulin, M. B. Dolgushin, A. A. Odzharova, M. A. Menkov, B. M. Medvedeva, S. V. Shiryaev, Yu. I. Patyutko, B. I. Dolgushin, П. Е. Тулин, М. Б. Долгушин, А. А. Оджарова, М. А. Меньков, Б. М. Медведева, С. В. Ширяев, Ю. И. Патютко, Б. И. Долгушин
المصدر: Diagnostic radiology and radiotherapy; № 3 (2015); 59-69 ; Лучевая диагностика и терапия; № 3 (2015); 59-69 ; 2079-5343 ; undefined
مصطلحات موضوعية: ПЭТ, 18F-ФДГ, 18F-ФХ, компьютерная томография, перфузия, опухоли печени, гепатоцеллюлярный рак, 18F-FDG, 18F-FCho, computed tomography, perfusion, liver tumors, hepatocellular carcinoma
وصف الملف: application/pdf
Relation: https://radiag.bmoc-spb.ru/jour/article/view/165/166; GLOBOCAN: Estimated Cancer Incidence, Mortality, and Prevalence Worldwide in 2012.— IARC, 2014.; Bray F. et al. Global cancer transitions according to the Human Development Index (2008–2030): a population-based study // The lancet oncology.— 2012.— Vol. 13, № 8.— Р. 790–801.; Патютко Ю. И. и др. Гепатоцеллюлярный рак печени // Бюллетень медицинских интернет-конференций. Общество с ограниченной ответственностью Наука и инновации.— 2011.— Т. 1, № 6.— С. 6.; Чиссов В. И. Онкология: нац. руководство.— М.: ГЭОТАР-Медиа, 2008.— С. 205–212.; Суконко О. Г. Гепатоцеллюлярный рак. Алгоритм диагностики и ле че ния злокачественных новообразований.— Минск, 2012.— С. 12–14.; Подымова С. Д. Болезни печени: руководство для врачей.— М.: Медицина, 1998.; Bosch F. X., Ribes J., Borràs J. Epidemiology of primary liver cancer // Seminars in liver disease.— 1998.— Vol. 19, № 3.— Р. 271–285.; Beasley R. P. et al. Hepatocellular carcinoma and hepatitis B virus: a prospective study of 22 707 men in Taiwan // Lancet.— 1981.— Vol. 318, № 8256.— Р. 1129–1133.; Highleyman L. Does Hepatocellular Carcinoma Differ in People with Hepatitis B and C? // 2015 ASCO Annual Meeting.— 2015.— С. 1.; Miller K. D. et al. Global Cancer Epidemiology and the Cancer Divide //Global Perspectives on Cancer: Incidence, Care, and Experience.— 2015.— С. 5.; Зогот С. Р. и др. Гепатоцеллюлярный рак (эпидемиология, лучевая диагностика, современные аспекты лечения) // Практиче ская медицина.— 2013.— № 2 (67).; Salomao M., McMillen E., Lefkowitch J. H. Recent advances in the classification of hepatocellular carcinoma // Diagnostic Histopathology.— 2012.— Vol. 18, № 1.— Р. 37–45.; Ершов В. А. Морфологические критерии первичного рака печени // Медицина.— 2009.— С. 204.; Matsui O. et al. Benign and malignant nodules in cirrhotic livers: distinction based on blood supply // Radiology.— 1991.— Vol. 178, № 2.— С. 493–497.; Bartolotta T. V. et al. Focal liver lesions: contrast-enhanced ultrasound // Abdominal imaging.— 2009.— Vol. 34, № 2.— Р. 193–209.; Tiferes D. A., D’Ippolito G. Liver neoplasms: imaging characterization // Radiologia Brasileira.— 2008.— Vol. 41, № 2.— Р. 119–127.; Mirk P. et al. Ultrasonographic patterns in hepatic hemangiomas // Journal of clinical ultrasound: JCU.— 1982.— Vol. 10, № 8.— С. 373.; Терновой С. К., Шахиджанова С. В. Магнитно-резонансная томография в диагностике очаговых заболеваний печени (обзор литературы) // Медицинская визуализация.— 1999.; Лукьянченко А. Б., Медведева Б. М. Магнитно-резонансная томография в диагностике и дифференциальной диагностике очаговых поражений печени // Вестник РОНЦ им. Н. Н. Блохина РАМН.— 2004.— Т. 15, № 1–2.; Van den Esschert J. W. et al. Differentiation of hepatocellular adenoma and focal nodular hyperplasia using 18F-fluorocholine PET/CT // Europ. J. of nuclear medicine and molecular imaging.— 2011.— Vol. 38, № 3.— Р. 436–440.; Talbot J. N. et al. Detection of hepatocellular carcinoma with PET/CT: a prospective comparison of 18F-fluorocholine and 18F-FDG in patients with cirrhosis or chronic liver disease // Journal of Nuclear Medicine.— 2010.— Vol. 51, № 11.— Р. 1699–1706.; Delbeke D. et al. Evaluation of benign vs malignant hepatic lesions with positron emission tomography // Archives of Surgery.— 1998.— Vol. 133, № 5.— Р. 510–516.; Тулин П. Е., Долгушин М. Б., Патютко Ю. И. и др. ПЭТ/КТ с 18F-ФДГ и 18F-холином в диагностике смешанного гепатохолангиоцеллюлярного рака. Клиническое наблюдение // Диагнос тиче ская и интервенционная радиология.— 2015.— Т. 9, № 1.— С. 91–99.; Кармазановский Г. Г., Шимановский Н. Л. Диагностическая эффективность нового магнитно-резонансного контрастного средства «Примовист» (гадоксетовая кислота) при выявлении первичных и вторичных опухолей печени // Мед. визуализация.— 2007.— № 6.— С. 135–143.; Pantoja E. Angiography in liver hemangioma // Amer. J. of Roentgenology.— 1968.— Vol. 104, № 4.— С. 874–879.; Zajko A. B. et al. Angiography of liver transplantation patients // Radiology.— 1985.— Vol. 157, № 2.— Р. 305–311.; Долгушин М. Б., Пронин И. Н., Фадеева Л. М. и др. ИП SWAN (3.0 тесла МРТ) и КТ-перфузия в комплексной оценке структурных особенностей метастазов в головной мозг и злокачественных глиом // Лучевая диагностика и терапия.— 2012.— Т. 3.— С. 41–51.; Meier P., Zierler K. L. On the theory of the indicator-dilution method for measurement of blood flow and volume // Journal of applied physiology.— 1954.— Vol. 6, № 12.— Р. 731–744.; Kety S. S., Schmidt C. F. The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure and normal values // Journal of Clinical Investigation.— 1948.— Vol. 27, № 4.— Р. 476.; Пронин И. Н. и др. Перфузионная КТ: исследование мозговой гемодинамики в норме // Медицинская визуализация.— 2007.— № 3.— Р. 8–12.; Axel L. Cerebral blood flow determination by rapid-sequence computed tomography: theoretical analysis // Radiology.— 1980.— Vol. 137, № 3.— Р. 679–686.; Mathieu D. et al. Hepatic adenomas and focal nodular hyperplasia: dy na mic CT study // Radiology.— 1986.— Vol. 160, № 1.— Р. 53–58.; Miles K. A. Measurement of tissue perfusion by dynamic computed tomography // The British journal of radiology.— 1991.— Vol. 64, № 761.— Р. 409–412.; Rees S. Measurement of tissue perfusion by dynamic computed tomography // The British journal of radiology.— 1992.— Vol. 65, № 774.— Р. 554–555.; Miles K. A., Hayball M. P., Dixon A. K. Functional images of hepatic perfusion obtained with dynamic CT // Radiology.— 1993.— Vol. 188, № 2.— Р. 405–411.; Kuang Y. Positron emission tomography imaging of hepatocellular carcinoma with radiolabeled choline.— Case Western Reserve University, 2009.— Р. 38–48.; Pritchard P. H., Vance D. E. Choline metabolism and phosphatidylcholine biosynthesis in cultured rat hepatocytes // Biochem. J.— 1981.— Vol. 196.— Р. 261–267.; Yamamoto Y. et al. Detection of hepatocellular carcinoma using 11C-choline PET: comparison with 18F-FDG PET // Journal of Nuclear Medicine.— 2008.— Vol. 49, № 8.— С. 1245–1248.; Paudyal B. et al. Clinicopathological presentation of varying 18F-FDG uptake and expression of glucose transporter 1 and hexokinase II in cases of hepatocellular carcinoma and cholangiocellular carcinoma // Annals of nuclear medicine.— 2008.— Vol. 22, № 1.— С. 83–86.; Hwang K. H. et al. Evaluation of patients with hepatocellular carcinomas using [11C] acetate and [18F] FDG PET/CT: A preliminary study // Applied Radiation and Isotopes.— 2009.— Vol. 67, № 7.— Р. 1195–1198.; Sorensen M. et al. The potential use of 2-[18F] fluoro-2-deoxy-Dgalactose as a PET/CT tracer for detection of hepatocellular carcinoma // Eurор. J. of nuclear medicine and molecular imaging.— 2011.— Vol. 38, № 9.— С. 1723–1731.; Lee J. D. et al. Different glucose uptake and glycolytic mechanisms between hepatocellular carcinoma and intrahepatic mass-forming cholangiocarcinoma with increased 18F-FDG uptake // Journal of Nuclear Medicine.— 2005.— Vol. 46, № 10.— С. 1753–1759.; Izuishi K. et al. Molecular mechanisms of [18F] fluorodeoxyglucose accumulation in liver cancer // Oncology reports.— 2014.— Vol. 31, № 2.— Р. 701–706.; Zeisel S. H., Blusztajn J. K. Choline and human nutrition // Annual review of nutrition.— 1994.— Vol. 14, № 1.— P. 269–296.; Ackerstaff E., Glunde K., Bhujwalla Z. M. Choline phospholipid metabolism: a target in cancer cells? // J. of cellular biochemistry.— 2003.— Vol. 90, № 3.— P. 525–533.; Araki T. et al. Dynamic CT densitometry of hepatic tumors // American Journal of Roentgenology.— 1980.— Vol. 135, № 5.— Р. 1037–1043. 47. Foley W. D. et al. Contrast enhancement technique for dynamic hepatic computed tomographic scanning // Radiology.— 1983.— Vol. 147, № 3.— Р. 797–803.; Дударев В. С., Анкифеев В. В. Современная интервенционная радио логия // Новости лучевой диагностики.— 1997.— № 1.— С. 26–27.; Prokop M., Galanski M., Van Der Molen A. J. Spiral and multislice computed tomography of the body.— Thieme, 2003.— Р. 234–237.; Asayama Y. et al. Arterial blood supply of hepatocellular carcinoma and histologic grading: radiologic-pathologic correlation // Amer. J. of Roentgenology.— 2008.— Vol. 190, № 1.— P. W28–W34.; Tong R. T. et al. Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors // Cancer research.— 2004.— Vol. 64, № 11.— Р. 3731–3736.; Ternberg J. L., Butcher H. R. Blood-flow relation between hepatic artery and portal vein // Science.— 1965.— Vol. 150, № 3699.— Р. 1030–1031.; https://radiag.bmoc-spb.ru/jour/article/view/165; undefined
-
3
المؤلفون: П. Е. Тулин, М. Б. Долгушин, А. А. Оджарова, М. А. Меньков, Б. М. Медведева, С. В. Ширяев, Ю. И. Патютко, Б. И. Долгушин, P. E. Tulin, M. B. Dolgushin, A. A. Odzharova, M. A. Menkov, B. M. Medvedeva, S. V. Shiryaev, Yu. I. Patyutko, B. I. Dolgushin
المصدر: Diagnostic radiology and radiotherapy ; Лучевая диагностика и терапия
مصطلحات موضوعية: PET, 18F-FDG, 18F-FCho, computed tomography, perfusion, liver tumors, hepatocellular carcinoma, ПЭТ, 18F-ФДГ, 18F-ФХ, компьютерная томография, перфузия, опухоли печени, гепатоцеллюлярный рак