-
1Academic Journal
المؤلفون: I. Volodin V., F. Ageeva A., A. Kalinkin I., K. Karandasheva O., A. Tanas S., I. Anisimova V., I. Mishina A., R. Zinchenko A., L. Bessonova A., T. Markova V., M. Petuhova S., G. Rudenskaya E., N. Semenova A., G. Matyushchenko N., D. Guseva M., N. Demina A., A. Borovikov O., E. Dadali L., O. Levchenko A., I. Efimova Yu., S. Repina A., P. Vasilyev A., P. Sparber A., E. Shestopalova A., V. Strelnikov V., И. Володин В., Ф. Агеева А., А. Калинкин И., К. Карандашева О., А. Танас С., И. Анисимова В., И. Мишина А., Р. Зинченко А., Л. Бессонова А., Т. Маркова В., М. Петухова С., Г. Руденская Е., Н. Семенова А., Г. Матющенко Н., Д. Гусева М., Н. Демина А., А. Боровиков О., Е. Дадали Л., О. Левченко А., И. Ефимова Ю., С. Репина А., П. Васильев А., П. Спарбер А., Е. Шестопалова А., В. Стрельников В.
المصدر: Medical Genetics; Том 20, № 11 (2021); 3-11 ; Медицинская генетика; Том 20, № 11 (2021); 3-11 ; 2073-7998
مصطلحات موضوعية: Sotos syndrome, NSD1, NGS, MLPA, синдром Сотоса, высокопроизводительное параллельное секвенирование ДНК
وصف الملف: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/1993/1528; Asadi S. The Role of Mutations on Genes NSD1 and NFIX, In Sotos Syndrome. Clinical Research in Neurology. 2020;3(1):1-4.; Tatton-Brown K., Cole T.R.P., Rahman N. Sotos Syndrome. 2004 Dec 17 [updated 2019 Aug 1]. In: Adam M.P., Ardinger H.H., Pagon R.A., Wallace S.E., Bean L.J.H., Mirzaa G., Amemiya A., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2021. PMID: 20301652.; Douglas J., Hanks S., Temple I.K., Davies S., Murray A., Upadhyaya M., Tomkins S., Hughes H.E., Cole T.R., Rahman N. NSD1 mutations are the major cause of Sotos syndrome and occur in some cases of Weaver syndrome but are rare in other overgrowth phenotypes. Am J Hum Genet. 2003 Jan;72(1):132-43. doi:10.1086/345647.; Kurotaki N., Harada N., Yoshiura K., Sugano S., Niikawa N., Matsumoto N. Molecular characterization of NSD1, a human homologue of the mouse Nsd1 gene. Gene. 2001 Nov 28;279(2):197-204. doi:10.1016/s0378-1119(01)00750-8.; Huang N., vom Baur E., Garnier J.M., Lerouge T., Vonesch J.L., Lutz Y., Chambon P., Losson R. Two distinct nuclear receptor interaction domains in NSD1, a novel SET protein that exhibits characteristics of both corepressors and coactivators. EMBO J. 1998 Jun 15;17(12):3398-412. doi:10.1093/emboj/17.12.3398.; Rona G.B., Eleutherio E.C.A., Pinheiro A.S. PWWP domains and their modes of sensing DNA and histone methylated lysines. Biophys Rev. 2016 Mar;8(1):63-74. doi:10.1007/s12551-015-0190-6.; Dillon S.C., Zhang X., Trievel R.C., Cheng X. The SET-domain protein superfamily: protein lysine methyltransferases. Genome Biol. 2005;6(8):227. doi:10.1186/gb-2005-6-8-227.; Capili A.D., Schultz D.C., Rauscher III F.J., Borden K.L. Solution structure of the PHD domain from the KAP-1 corepressor: structural determinants for PHD, RING and LIM zinc-binding domains. EMBO J. 2001 Jan 15;20(1-2):165-77. doi:10.1093/emboj/20.1.165.; Lucio-Eterovic A.K., Singh M.M., Gardner J.E., Veerappan C.S., Rice J.C., Carpenter P.B. Role for the nuclear receptor-binding SET domain protein 1 (NSD1) methyltransferase in coordinating lysine 36 methylation at histone 3 with RNA polymerase II function. Proc Natl Acad Sci U S A. 2010 Sep 28;107(39):16952-7. doi:10.1073/pnas.1002653107.; Tauchmann S., Schwaller J. NSD1: A Lysine Methyltransferase between Developmental Disorders and Cancer. Life (Basel). 2021 Aug 25;11(9):877. doi:10.3390/life11090877.; Türkmen S., Gillessen-Kaesbach G., Meinecke P., Albrecht B., Neumann L.M., Hesse V., Palanduz S., Balg S., Majewski F., Fuchs S., Zschieschang P., Greiwe M., Mennicke K., Kreuz F.R., Dehmel H.J., Rodeck B., Kunze J., Tinschert S., Mundlos S., Horn D. Mutations in NSD1 are responsible for Sotos syndrome, but are not a frequent finding in other overgrowth phenotypes. Eur J Hum Genet. 2003 Nov;11(11):858-65. doi:10.1038/sj.ejhg.5201050.; Dikow N., Maas B., Gaspar H., Kreiss-Nachtsheim M., Engels H., Kuechler A., Garbes L., Netzer C., Neuhann T.M., Koehler U., Casteels K., Devriendt K., Janssen J.W., Jauch A., Hinderhofer K., Moog U. The phenotypic spectrum of duplication 5q35.2-q35.3 encompassing NSD1: is it really a reversed Sotos syndrome? Am J Med Genet A. 2013 Sep;161A(9):2158-66. doi:10.1002/ajmg.a.36046.; Bernhardt I.T., Gunn A.J., Carter P.J. Growth hormone treatment for short stature associated with duplication of the NSD1 Sotos syndrome gene. Endocrinol Diabetes Metab Case Rep. 2021 Mar 5;2021:20-0033. doi:10.1530/EDM-20-0033.; Zhao Q., Caballero O.L., Levy S., Stevenson B.J., Iseli C., de Souza S.J., Galante P.A., Busam D., Leversha M.A., Chadalavada K., Rogers Y.H., Venter J.C., Simpson A.J., Strausberg R.L. Transcriptome-guided characterization of genomic rearrangements in a breast cancer cell line. Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):1886-91. doi:10.1073/pnas.0812945106.; Wang G.G., Cai L., Pasillas M.P., Kamps M.P. NUP98-NSD1 links H3K36 methylation to Hox-A gene activation and leukaemogenesis. Nat Cell Biol. 2007 Jul;9(7):804-12. doi:10.1038/ncb1608.; Berdasco M., Ropero S., Setien F., Fraga M.F., Lapunzina P., Losson R., Alaminos M., Cheung N.K., Rahman N., Esteller M. Epigenetic inactivation of the Sotos overgrowth syndrome gene histone methyltransferase NSD1 in human neuroblastoma and glioma. Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21830-5. doi:10.1073/pnas.0906831106.; Faravelli F. NSD1 mutations in Sotos syndrome. Am J Med Genet C Semin Med Genet. 2005 Aug 15;137C(1):24-31. doi:10.1002/ajmg.c.30061.; Visser R., Shimokawa O., Harada N., Niikawa N., Matsumoto N. Non-hotspot-related breakpoints of common deletions in Sotos syndrome are located within destabilised DNA regions. J Med Genet. 2005 Nov;42(11):e66. doi:10.1136/jmg.2005.034355.; Waggoner D.J., Raca G., Welch K., Dempsey M., Anderes E., Ostrovnaya I., Alkhateeb A., Kamimura J., Matsumoto N., Schaeffer G.B., Martin C.L., Das S. NSD1 analysis for Sotos syndrome: insights and perspectives from the clinical laboratory. Genet Med. 2005 Oct;7(8):524-33. doi:10.1097/01.GIM.0000178503.15559.d3.; Рыжкова О.П., Кардымон О.Л., Прохорчук Е.Б., Коновалов Ф.А., Масленников А.Б., Степанов В.А., Афанасьев А.А., Заклязьминская Е.В., Ребриков Д.В., Савостьянов К.В., Глотов А.С., Костарева А.А., Павлов А.Е., Голубенко М.В., Поляков А.В., Куцев С.И. Руководство по интерпретации данных последовательности ДНК человека, полученных методами массового параллельного секвенирования (MPS) (редакция 2018, версия 2). Медицинская генетика. 2019;18(2):3-23; https://www.medgen-journal.ru/jour/article/view/1993
-
2Academic Journal
المؤلفون: A. Petrenko N., P. Vasiliev A., S. Martsevich Yu., N. Kutishenko P., O. Zvonareva I., А. Петренко Н., П. Васильев А., С. Марцевич Ю., Н. Кутишенко П., О. Звонарева И.
المساهمون: Funded by the Russian Science Foundation (grant no. 18-78-10016, “Balancing knowledge reliability and ethical acceptability in clinical trials: from emergence of a randomized controlled trial to precision medicine”, Исследование выполнено за счет гранта Российского научного фонда (проект № 18-78-10016, «Между надежностью знаний и этической приемлемостью практик их получения: прошлое и настоящее клинических исследований лекарственных средств»)
المصدر: Rational Pharmacotherapy in Cardiology; Vol 17, No 1 (2021); 133-139 ; Рациональная Фармакотерапия в Кардиологии; Vol 17, No 1 (2021); 133-139 ; 2225-3653 ; 1819-6446
مصطلحات موضوعية: clinical trials, buccal dosage form, nitroglycerin, trinitrolong, drug registration, клинические исследования, буккальная лекарственная форма, нитроглицерин, тринитролонг, регистрация препарата
وصف الملف: application/pdf
Relation: https://www.rpcardio.com/jour/article/view/2398/2124; Метелица В.И. Страницы жизни. М.: Радуга; 2001.; Российский государственный архив научно-технической документации Фонд 236 Опись 1-1 Дело 2924.; Бабаян Э.А. Основные положения апробации лекарственных средств в СССР и зарубежных странах. М.: Медицина; 1982.; Метелица В. И., Давыдов А. Б. Препараты нитратов в кардиологии. М.: Медицина, 1989.; Метелица В.И. Справочник по клинической фармакологии сердечно-сосудистых лекарственных средств. 3-е изд., переработанное и дополненное. М.: Медицинское информационное агентство (МИА); 2005.; https://www.rpcardio.com/jour/article/view/2398
-
3Academic Journal
المؤلفون: O. Ivanova N., P. Vasiliev A., E. Zakharova Yu., О. Иванова Н., П. Васильев А., Е. Захарова Ю.
المصدر: Medical Genetics; Том 19, № 12 (2020); 4-17 ; Медицинская генетика; Том 19, № 12 (2020); 4-17 ; 2073-7998
مصطلحات موضوعية: primary dyslipidemia, monogenic dyslipidemia, familial hypercholesterolemia, cholesterol, triglycerides, дислипидемия первичная, дислипидемия моногенная, гиперхолестеринемия семейная, холестерин, триглицериды
وصف الملف: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/1811/1444; Hegele R.A., Ban M.R., Cao H., et al. Targeted next-generation sequencing in monogenic dyslipidemias. Curr Opin Lipidol. 2015;26(2):103-113. DOI:10.1097/MOL.0000000000000163.; Wiler C.J., Schmidt E.M., Sengupta S., et al. Discovery and refinement of loci associated with lipid levels. Nat. Genet. 2013; 45:1274-1283. DOI:10.1038/ng.2797; Ramasamy I. Update on the molecular biology of dyslipidemias. Clin Chim Acta. 2016;454:143-185. DOI:10.1016/j.cca.2015.10.033; Toth P.P. Reverse cholesterol transport: high-density lipoprotein’s magnificent mile. Current Atherosclerosis Reports. 2003;5(5):386-393. DOI:10.1007/s11883-003-0010-5; Oram J.F., Lawn R.M. ABCA1. The gatekeeper for eliminating excess tissue cholesterol. J Lipid Res 2001;42:1173-1179.; Huang R., Silva R.A., Jerome W.G, et al. Apolipoprotein A-I structural organization in high-density lipoproteins isolated from human plasma. Nat Struct Mol Biol.2011;18(4):416-422. DOI:10.1038/nsmb.2028; Annema W., Tietge U.J. Regulation of reverse cholesterol transport - a comprehensive appraisal of available animal studies. Nutr Metab (Lond) 2012;9:25. DOI:10.1186/1743-7075-9-25; Rader D.J., Alexander E.T., Weibel G.L., at al. The role of reverse cholesterol transport in animals and humans and relationship to atherosclerosis. J Lipid Res 2009; 50:S189-94. DOI:10.1194/jlr.R800088-JLR200; Jakulj L., van Dijk T.H., de Boer J.F., et al. Transintestinal cholesterol transport is active in mice and humans and controls ezetimibe-induced fecal neutral sterol excretion. Cell Metab 2016; 24:783-794. DOI:10.1016/j.cmet.2016.10.001; Lusis A. J. Atherosclerosis. Nature 2000;407, 233-241. DOI:10.1038/35025203; Benn M., Watts G.F., Tybjærg-Hansen A., Nordestgaard B.G. Mutations causative of familial hypercholesterolaemia: screening of 98 098 individuals from the Copenhagen General Population Study estimated a prevalence of 1 in 217. Eur Heart J 2016;37:1384-1394. DOI:10.1093/eurheartj/ehw028; Lahtinen A.M., Havulinna A.S., Jula A., Salomaa V., Kontula K. Prevalence and clinical correlates of familial hypercholesterolemia founder mutations in the general population. Atherosclerosis 2015;238:64-69 DOI:10.1016/j.atherosclerosis.2014.11.015; Akioyamen L.E., Genest J., Shan S.D., et al. Estimating the prevalence of heterozygous familial hypercholesterolaemia: a systematic review and meta-analysis. BMJ Open. 2017;7:e016461. DOI:10.1136/bmjopen-2017-016461; Dieckmann M., Dietrich M.F., Herz J. Lipoproteinreceptors: anevolutionarily ancient multifunctional receptor family. Biol Chem 2010; 391:1341-1363. DOI:10.1515/BC.2010.129; Stenson P.D., Mort M., Ball E.V., et al. HGMD® Professional 2020.1 The Human Gene Mutation Database: towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies. Hum Genet 2017; 136:665-677.; Soutar A.K., Naoumova R.P. Mechanisms of disease: genetic causes of familial hypercholesterolemia. Nat Clin Pract Cardiovasc Med. 2007; 4:214-225. DOI:10.1038/ncpcardio0836; Grenkowitz T., Kassner U., Wuhle Demuth M., et al. Clinical characterization and mutation spectrum of German patients with familial hypercholesterolemia. Atherosclerosis. 2016;253:88-93. DOI:10.1016/j.atherosclerosis.2016.08.037; Mollaki V., Drogari E. Genetic causes of monogenic familial hypercholesterolemia in the Greek population: Lessons, mistakes, and the way forward. J Clin Lipidol. 2016;10(4):748-756. DOI:10.1016/j.jacl.2016.02.020; Kusters D.M., Huijgen R., Defesche J.C., et al. Founder mutations in the Netherlands: geographical distribution of the most prevalent mutations in the low-density lipoprotein receptor and apolipoprotein B genes. Neth Heart J. 2011;19(4):175-182. DOI:10.1007/s12471-011-0076-6; Futema M., Whittall R.A., Kiley A., et al. Analysis of the frequency and spectrum of mutations recognised to cause familial hypercholesterolaemia in routine clinical practice in a UK specialist hospital lipid clinic. Atherosclerosis. 2013;229(1):161-168. DOI:10.1016/j.atherosclerosis.2013.04.011; Iacocca M.A., Hegele R.A. Role of DNA copy number variation in dyslipidemias. Curr Opin Lipidol. 2018;29(2):125-132. DOI:10.1097/MOL.0000000000000483; Bertolini S., Pisciotta L., Fasano T., et al. The study of familial hypercholesterolemia in Italy: a narrative review. Atheroscler Suppl 2017; 29:1-10. DOI:10.1016/j.atherosclerosissup.2017.07.003; Miyake Y., Yamamura T., Sakai N., et al. Update of Japanese common LDLR gene mutations and their phenotypes: mild type mutation L547V might predominate in the Japanese population. Atherosclerosis 2009; 203: 153-160. DOI:10.1016/j.atherosclerosis.2008.07.005; Elbitar S., Susan-Resiga D., Ghaleb Y., et al. New Sequencing technologies help revealing unexpected mutations in Autosomal Dominant Hypercholesterolemia. Sci Rep. 2018;8(1):1943. doi:10.1038/s41598-018-20281-9. DOI:10.1038/s41598-018-20281-9; Huang L.S., Ripps M.E., Korman S.H., et al. Hypobetalipoproteinemia Due to an Apolipoprotein B Gene Exon 21 Deletion Derived by Alu-Alu Recombination. J Biol Chem. 1989; Jul 5;264(19):11394-11400.; Blesa S., Vernia S., Garcia-Garcia A.B., et al. A new PCSK9 gene promoter variant affects gene expression and causes autosomal dominant hypercholesterolemia. J Clin Endocrinol Metab 2008; 93:3577-3583. DOI:10.1210/jc.2008-0269; Iacocca M.A., Wang J., Sarkar S., et al. Whole-gene duplication of PCSK9 as a novel genetic mechanism for severe familial hypercholesterolemia. Can J Cardiol. 2018; 34:1316-1324. DOI:10.1016/j.cjca.2018.07.479; Seidah N.G., Awan Z., Chrétien M., Mbikay M. PCSK9: a key modulator of cardiovascular health. Circ Res. 2014;114(6):1022-36. DOI:10.1161/CIRCRESAHA.114.301621; Arca M., Zuliani G., Wilund K., et al. Autosomal recessive hypercholesterolaemia in Sardinia, Italy, and mutations in ARH a clinical and molecular genetic analysis. Lancet. 2002; 359: 817-841. DOI:10.1016/S0140-6736(02)07955-2; Johansen C.T., Dube J.B., Loyzer M.N., et al. Lipidseq: A next-generation clinical resequencing panel for monogenic dyslipidemias. J Lipid Res. 2014;55:765-772. DOI:10.1194/jlr.D045963; Buonuomo P.S., Iughetti L., Pisciotta L., et al. Timely diagnosis of sitosterolemia by next generation sequencing in two children with severe hypercholesterolemia. Atherosclerosis. 2017;262:71-77. DOI:10.1016/j.atherosclerosis.2017.05.002; Wang W., Jiang L., Chen P.P., et al. A case of sitosterolemia misdiagnosed as familial hypercholesterolemia: a 4-year follow-up. J Clin Lipidol. 2018;12:236-239. DOI:10.1016/j.jacl.2017.10.008; Brinton E.A., Hopkins P.N., Hegele R.A., et al. The association between hypercholesterolemia and sitosterolemia, and report of a sitosterolemia kindred. J Clin Lipidol. 2017;12:152-161. https://doi.org/10.1016/j.jacl.2017. 10.013.; Fouchier S.W., Defesche J.C. Lysosomal acid lipase A and the hypercholesterolaemic phenotype, Curr. Opin. Lipidol. 2013; 24:332-338. DOI:10.1097/MOL.0b013e328361f6c6; Carter A., Brackley S.M., Gao J., Mann J.P. The global prevalence and genetic spectrum of lysosomal acid lipase deficiency: A rare condition that mimics NAFLD. J Hepatol. 2019;70(1):142-150. DOI:10.1016/j.jhep.2018.09.028; Wintjens R., Bozon D., Belabbas K., et al. Global molecular analysis and APOE mutations in a cohort of autosomal dominant hypercholesterolemia patients in France. J Lipid Res. 2016;57(3):482-91. DOI:10.1194/jlr.P055699; De Beer F., Stalenhoef A.F.H., Hoogerbrugge N., et al. Expression of type 3 hyperlipoproteinemia in apolipoprotein E2 (Arg158-Cys) homozygotes is associated with hyperinsulinemia, Arterioscler. Thromb. Vasc. Biol. 2002;22:294-299. DOI:10.1161/hq0202.102919; Welty F.K. Hypobetalipoproteinemia and abetalipoproteinemia. Curr Opin Lipidol. 2014;25(3):161-8. DOI:10.1097/MOL.0000000000000072; Noto D., Cefalu A.B., Valenti V., et al. Prevalence of ANGPTL3 and APOB gene mutations in subjects with combined hypolipidemia. Arterioscler Thromb Vasc Biol. 2012; 32:805-809. DOI:10.1161/ATVBAHA.111.238766; Lee J., Hegele R.A. Abetalipoproteinemia and homozygous hypobetalipoproteinemia: a framework for diagnosis and management. J Inherit Metab Dis. 2014 May;37(3):333-339. DOI:10.1007/s10545-013-9665-4; Sané A.T., Seidman E., Peretti N., et al. Understanding Chylomicron Retention Disease Through Sar1b Gtpase Gene Disruption: Insight From Cell Culture. Arterioscler Thromb Vasc Biol. 2017;37(12):2243-2251. DOI:10.1161/ATVBAHA.117.310121; Blanco-Vaca F., Martin-Campos J.M., Beteta-Vicente M. et al. Molecular Analysis of APOB, SAR1B, ANGPTL3, and MTTP in Patients With Primary Hypocholesterolemia in a Clinical Laboratory Setting: Evidence Supporting Polygenicity in Mutation-Negative Patients. Atherosclerosis. 2019;283:52-60. DOI:10.1016/j.atherosclerosis.2019.01.036; Vitali C., Khetarpal S.A., Rader D.J. HDL Cholesterol Metabolism and the Risk of CHD: New Insights from Human Genetics. Curr Cardiol Rep. 2017;19(12):132. DOI:10.1007/s11886-017-0940-0; Dron J.S., Wang J., Low-Kam C., et al. Polygenic determinants in extremes of high-density lipoprotein cholesterol. J. Lipid Res. 2017;58: 2162-2170. DOI:10.1194/jlr.M079822; Zanoni P., Khetarpal S.A., Larach D.B. et al. Rare Variant in Scavenger Receptor BI Raises HDL Cholesterol and Increases Risk of Coronary Heart Disease. Science. 2016;351(6278):1166-1171. DOI:10.1126/science.aad3517; Hegele R.A., Ginsberg H.N., Chapman M.J., et al. The polygenic nature of hypertriglyceridaemia: implications for definition, diagnosis, and management. European Atherosclerosis Society Consensus Panel. Lancet Diabetes Endocrinol. 2014;2(8):655-666. DOI:10.1016/S2213-8587(13)70191-8; Moulin P., Dufour R., Averna M., et al. Identification and diagnosis of patients with familial chylomicronaemia syndrome (FCS): Expert panel recommendations and proposal of an “FCS score”. Atherosclerosis. 2018;275:265-272. DOI:10.1016/j.atherosclerosis.2018.06.814; Iacocca M.A., Dron J.S., Hegele R.A. Progress in finding pathogenic DNA copy number variations in dyslipidemia. Curr Opin Lipidol. 2019;30(2):63-70. DOI:10.1097/MOL.0000000000000581; Hopkins P.N., Toth P.P., Ballantyne C.M., Rader D.J. National Lipid Association Expert Panel on Familial Hypercholesterolemia. Familial hypercholesterolemias: prevalence, genetics, diagnosis and screening recommendations from the National Lipid Association Expert Panel on Familial Hypercholesterolemia. J Clin Lipidol. 2011;5(3 Suppl):S9-17. DOI:10.1016/j.jacl.2011.03.452; Priest J.R., Knowles J.W. Standards of Evidence and Mechanistic Inference in Autosomal Recessive Hypercholesterolemia. Arterioscler Thromb Vasc Biol. 2016;36(8):1465-1466. DOI:10.1161/ATVBAHA.116.307714; Hegele R.A., Borén J., Ginsberg H.N., et al. Rare dyslipidaemias, from phenotype to genotype to management: a European Atherosclerosis Society task force consensus statement. Lancet Diabetes Endocrinol. 2020;8(1):50-67. doi:10.1016/S2213-8587(19)30264-5; https://www.medgen-journal.ru/jour/article/view/1811