-
1Academic Journal
المؤلفون: Аскарова , Фотима
المصدر: Eurasian Journal of Medical and Natural Sciences; Vol. 5 No. 1 (2025): Eurasian Journal of Medical and Natural Sciences; 7-12 ; Евразийский журнал медицинских и естественных наук; Том 5 № 1 (2025): Евразийский журнал медицинских и естественных наук; 7-12 ; Yevrosiyo tibbiyot va tabiiy fanlar jurnali; Jild 5 Nomeri 1 (2025): Yevrosiyo tibbiyot va tabiiy fanlar jurnali; 7-12 ; 2181-287X
مصطلحات موضوعية: Воспалительные заболевания, гинекология, диагностика, лечение, антибактериальная терапия, пробиотики, физиотерапия, репродуктивное здоровье, Inflammatory diseases, gynecology, diagnosis, treatment, antibiotic therapy, probiotics, physiotherapy, reproductive health
وصف الملف: application/pdf
-
2Conference
المؤلفون: Сафаров Мураджон Мавлонович
مصطلحات موضوعية: пробиотики, пребиотики, макро-, микроэлементы, кишечный микробиоценоз, бифидобактерии, лактобациллы, антиоксиданты, детергенты, иммунитет, микрофлора, дисбактериоз, токсикоз
Relation: https://doi.org/10.5281/zenodo.11474129; https://doi.org/10.5281/zenodo.11474130; oai:zenodo.org:11474130
-
3Academic Journal
المؤلفون: Glukharev A. Y., Barabashina S. I., Volchenko V. I., Zhivlyantseva Ju. V., Poteshkina V. A., Uskova I. V.
المصدر: Vestnik MGTU, Vol 26, Iss 3, Pp 207-222 (2023)
مصطلحات موضوعية: sausages, dry-cured fish sausages, fermentation, minced fish, probiotics, колбасные изделия, рыбные сыровяленые колбаски, ферментация, рыбный фарш, пробиотики, lactobacillus plantarum, General Works
وصف الملف: electronic resource
-
4Academic Journal
المؤلفون: Minushkin O.N., Khlynova O.V., Sitkin S.I., Yakovenko E.P., Kravchuk Y.A., Seliverstov P.V., Belousova E.A.
المساهمون: 1
المصدر: Almanac of Clinical Medicine; Vol 52, No 4 (2024); 241-248 ; Альманах клинической медицины; Vol 52, No 4 (2024); 241-248 ; 2587-9294 ; 2072-0505
مصطلحات موضوعية: irritable bowel syndrome, abdominal pain management, life quality, expert opinions, drug combination, antispasmodics, Meteospasmyl, probiotics, синдром раздраженного кишечника, лечение боли в животе, качество жизни, экспертные мнения, комбинация лекарств, спазмолитики, Метеоспазмил, пробиотики
وصف الملف: application/pdf
Relation: https://almclinmed.ru/jour/article/view/17344/1682; https://almclinmed.ru/jour/article/view/17344
-
5Academic Journal
المؤلفون: B. O. Bembeeva, T. V. Priputnevich, N. V. Dolgushina, Б. О. Бембеева, Т. В. Припутневич, Н. В. Долгушина
المصدر: Epidemiology and Vaccinal Prevention; Том 23, № 5 (2024); 92-98 ; Эпидемиология и Вакцинопрофилактика; Том 23, № 5 (2024); 92-98 ; 2619-0494 ; 2073-3046
مصطلحات موضوعية: пробиотики, COVID-19, SARS-CoV-2, pregnant women, gut microbiota, SCFA, беременные женщины, кишечная микробиота
وصف الملف: application/pdf
Relation: https://www.epidemvac.ru/jour/article/view/2088/1074; Liu Y., Chen H., Tang K., et al. Clinical manifestations and outcome of SARS-CoV-2 infection during pregnancy. The Journal of infection. 2020. P. 30109-2. doi:10.1016/j.jinf.2020.02.028.; Metz T. D., Clifton R. G., Hugheset B. L., et al. Disease severity and perinatal outcomes of pregnant patients with Coronavirus disease 2019 (COVID-19). Obstetrics and gynecol- ogy. 2021. Vol. 137, No. 4. P. 571–580. doi:10.1097/AOG.0000000000004339.; Marchand G., Patil A. S., Masoud A. T., et al. Systematic review and meta-analysis of COVID-19 maternal and neonatal clinical features and pregnancy outcomes up to June 3, 2021. AJOG Global Reports. 2022. Vol. 2, No. 1. P. 100049. doi:10.1016/j.xagr.2021.100049.; DeSisto C. L., Wallace B., Simeone R. M., et al. Risk for stillbirth among women with and without COVID -19 at delivery hospitalization - United States, march 2020 – septem- ber 2021. MMWR Morb Mortal Wkly Rep. 2021. Vol. 70, No. 47. P. 1640–1645. doi:10.15585/mmwr.mm7047e1.; Male V. SARS-CoV-2 infection and COVID-19 vaccination in pregnancy. Nat Rev Immunol. 2022. Vol. 22, No. 5. P. 277–282. doi:10.1038/s41577-022-00703-6.; Edlow A. G., Castro V. M., Shook L. L., et al. Neurodevelopmental outcomes at 1 year in infants of mothers who tested positive for SARS-CoV-2 during pregnancy. JAMA Netw Open. 2022. Vol. 5, No. 6. P. e2215787. doi:10.1001/jamanetworkopen.2022.15787.; Ostaff M. J., Stange E. F., Wehkamp J. Antimicrobial peptides and gut microbiota in homeostasis and pathology. EMBO Mol Med. 2013. Vol. 5, No. 10. P. 1465–83. doi:10.1002/emmm.201201773.; Edwards S. M., Cunningham S. A., Dunlop A. L., et al. The Maternal Gut Microbiome during Pregnancy. MCN The American Journal of Maternal/Child Nursing. 2017. Vol. 42, No. 6. P. 310–317. doi:10.1097/NMC.0000000000000372.; Amir M., Brown J. A., Rager S. L., et al. Maternal microbiome and infections in pregnancy. Microorganisms. 2020. Vol. 8, No. 12. P. 1996. doi:10.3390/microorganisms8121996.; Greenhalgh T., Jimenez J. L., Prather K. A., et al. Ten scientific reasons in support of airborne transmission of SARS-CoV-2. The Lancet. 2021. Vol. 397, No. P. 1603–1605. doi:10.1016/S0140-6736(21)00869-2.; De R., Dutta S. Role of the Microbiome in the Pathogenesis of COVID-19. Frontiers in Cellular and Infection Microbiology. 2022. Vol. 12. P. 736397. doi:10.3389/fcimb.2022.736397.; https://gogov.ru/covid-19/world; World Health Organization. Tracking SARS-CoV-2 variants. Доступно на Available at: https://www.who.int/activities/tracking-SARS-CoV-2-variants0.; Mizrahi B., Sudry T., Flaks-Manov N., et al. Long covid outcomes at one year after mild SARS-CoV-2 infection: nationwide cohort study. BMJ. 2023. Vol. 380. P. e072529. doi:10.1136/bmj-2022-072529.; Wang K., Chen W., Zhou Y., et al. SARS-CoV-2 invades host cells via a Novel route: CD147-spike protein. bioRxiv. 2020. doi: https://doi.org/10.1101/2020.03.14.988345.; Xu R., Lu R., Zhang T., et al. Temporal association between human upper respiratory and gut bacterial microbiomes during the course of COVID-19 in adults. Commun Biol. 2021. Vol. 4, No. 1. doi:10.1038/s42003-021-01796-w.; Dolk H. SARS-COV-2 pandemic: The significance of underlying conditions. Occupational Medicine. 2020. Vol. 70, No. 5. P. 352–353. doi:10.1093/occmed/kqaa084.; Leon D. A., Shkolnikov V. M., Smeeth L., et al. COVID-19: a need for real-time monitoring of weekly excess deaths. The Lancet. 2020. Vol. 395, No. 10234. P. 30933–8. doi:10.1016/S0140-6736(20)30933-8.; Salem D., Katranji F., Bakdash T. COVID-19 infection in pregnant women: Review of maternal and fetal outcomes. International Journal of Gynecology and Obstetrics. 2021. Vol. 152, No. 3. P. 291–298. doi:10.1002/ijgo.13533.; Koester S. T., Li N., Lachance D. M., et al. Variability in digestive and respiratory tract Ace2 expression is associated with the microbiome. PLoS One. 2021. Vol. 16, No. 3. P. e0248730. doi:10.1371/journal.pone.0248730.; Zuo T., Zhang F., Lui G. C. Y., et al, Alterations in gut microbiota of patients with COVID-19 during time of hospitalization. Gastroenterology. 2020. Vol. 159, No. 3. P. 944–955. doi:10.1053/j.gastro.2020.05.048.; Bingula R., Filaire M., Radosevic-Robin N., et al. Desired Turbulence? Gut-Lung Axis, Immunity, and Lung Cancer. Journal of Oncology. 2017. Vol. 2017. P. 5035371. doi:10.1155/2017/5035371.; Groves H. T., Higham S. L., Moffatt M. F., et al. Respiratory viral infection alters the gut microbiota by inducing inappetence. mBio. 2020. Vol. 11, No. 1. doi:10.1128/mBio.03236-19.; Wang M. K., Yue H. Y., Cai J., et al. COVID-19 and the digestive system: A comprehensive review. World J Clin Cases. 2021. Vol. 9, No. 16. P. 3796–3813. doi:10.12998/wjcc.v9.i16.3796.; Weng J., Li Y., Li J., et al. Gastrointestinal sequelae 90 days after discharge for COVID-19. The Lancet Gastroenterology and Hepatology. 2021. Vol. 6, No. 5. P. 344–346. doi:10.1016/S2468-1253(21)00076-5.; Ren Z., Wang H., Cui G., et al. Alterations in the human oral and gut microbiomes and lipidomics in COVID-19. Gut. 2021. Vol. 70, No. 7. P. 1253–1265. doi:10.1136/gutjnl-2020-323826.; Moreira-Rosário A., Marques C., Pinheiro H., et al. Gut Microbiota Diversity and C-Reactive Protein Are Predictors of Disease Severity in COVID-19 Patients. Front Microbiol. 2021. Vol. 12. P. 705020. doi:10.3389/fmicb.2021.705020.; Yeoh Y.K., Zuo T., Lui G.C., et al. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut. 2021. Vol. 70, No. 4. P. 698–706. doi:10.1136/gutjnl-2020-323020.; Yin Y. S., Minacapelli C. D., Parmar V., et al. Alterations of the fecal microbiota in relation to acute COVID-19 infection and recovery. Molecular Biomedicine. 2022. Vol. 3, No. 1. P. 36. doi:10.1186/s43556-022-00103-1.; Upadhyay V., Suryawanshi R., Tasoff P., et al. Mild SARS-CoV-2 infection results in long-lasting microbiota instability. bioRxiv. 2022. doi:10.1101/2022.12.07.519508.; Del Valle D. M., Kim-Schulze S., Huang H. H., et al. An inflammatory cytokine signature predicts COVID-19 severity and survival. Nat Med. 2020. Vol. 26, No. 10. P. 1636–1643. doi:10.1038/s41591-020-1051-9.; Masoodi M., Peschka M., Schmiedel S., et al. Disturbed lipid and amiNo acid metabolisms in COVID-19 patients. J Mol Med. 2022. Vol. 100, No. 4. P. 555–568. doi:10.1007/s00109-022-02177-4.; Mancabelli L., Milani C., Fontana F., et al. Untangling the link between the human gut microbiota composition and the severity of the symptoms of the COVID-19 infection. Environ Microbiol. 2022. Vol. 24, No. 12, P. 6453–6462. doi:10.1111/1462-2920.16201.; Margolis K. G., Cryan J. F., Mayer E. A. The Microbiota-Gut-Brain Axis: From Motility to Mood. Gastroenterology. 2021. Vol. 160, No. 5. P. 1486–1501. doi:10.1053/j.gastro.2020.10.066.; Nilsen M., Madelen Saunders C., Leena Angell I., et al. Butyrate levels in the transition from an infant-to an adult-like gut microbiota correlate with bacterial networks associ- ated with eubacterium rectale and rumiNococcus gnavus. Genes (Basel). 2020. Vol. 11, No. 11. P. 1245. doi:10.3390/genes11111245.; Sencio V., Machelart A., Robil C., et al. Alteration of the gut microbiota following SARS-CoV-2 infection correlates with disease severity in hamsters. Gut Microbes. 2022. Vol. 14, No. 1. P. 2018900. doi:10.1080/19490976.2021.2018900.; Ji J. J., Sun Q. M., Nie D. Y., et al. Probiotics protect against RSV infection by modulating the microbiota-alveolar-macrophage axis. Acta Pharmacol Sin. 2021. Vol. 42, No. 10. P. 1630-1641. doi:10.1038/s41401-020-00573-5.; Peery A. F., Crockett S. D., Murphy C. C., et al. Prolonged Impairment of Short-Chain Fatty Acid and L-Isoleucine Biosynthesis in Gut Microbiome in Patients With COVID-19. Gastroenterology. 2022. Vol. 162, No. 2. P. 621-644. doi:10.1053/j.gastro.2021.10.013.; Freedberg D. E., Chang L. Gastrointestinal symptoms in COVID-19: the long and the short of it. Curr Opin Gastroenterol. 2022. Vol. 38, No. 6. P. 555–561. doi:10.1097/MOG.0000000000000876.; Redd W. D., Zhou J. C., Hathorn K. E., et al. Prevalence and characteristics of gastrointestinal symptoms in patients with severe acute respiratory syndrome coronavirus 2 infection in the United States: a multicenter cohort study. Gastroenterology. 2020. Vol. 159, No. 2. P. 765–767. doi:10.1053/j.gastro.2020.04.045.; Chen Y., Chen L., Deng Q., et al. The presence of SARS-CoV-2 RNA in the feces of COVID-19 patients. J Med Virol. 2020. Vol. 92, No. 7. P. 833–840. doi:10.1002/jmv.25825.; Tang A., Tong Z. D., Wang H. L., et al. Detection of novel coronavirus by RT-PCR in stool specimen from asymptomatic child, China. Emerg Infect Dis. 2020. Vol. 26, No. 6. P. 1337–1339. doi:10.3201/eid2606.200301.; Wu X., Liu X., Zhou Y., et al. 3-month, 6-month, 9-month, and 12-month respiratory outcomes in patients following COVID-19-related hospitalisation: a prospective study. Lancet Respir Med. 2021. Vol. 9, No. 7. P. 747–754. doi:10.1016/S2213-2600(21)00174-0.; Gareau M. G., Barrett K. E. The role of the microbiota-gut-brain axis in post-acute COVID syndrome. American Journal of Physiology-Gastrointestinal and Liver Physiology. 2023. Vol. 324, No. 4. P. 322–328. doi:10.1152/ajpgi.00293.2022.; Jensterle M., Herman R., Janež A., et al. The Relationship between COVID-19 and hypothalamic-pituitary-adrenal axis: a large spectrum from glucocorticoid insufficiency to excess-The CAPISCO International Expert Panel. International Journal of Molecular Sciences. 2022. Vol. 23, No. 13. P. 7326. doi:10.3390/ijms23137326.; Ancona G., Alagna L., Alteri C., et al. Gut and airway microbiota dysbiosis and their role in COVID-19 and long-COVID. Front ImmuNol. 2023. Vol. 14. doi:10.3389/fimmu.2023.1080043.; Dashraath P., Wong J. L. J, Lim M. X. K., et al. Coronavirus disease 2019 (COVID-19) pandemic and pregnancy. Am J Obstet Gynecol. 2020. Vol. 222, No. 6. P. 521–531. doi:10.1016/j.ajog.2020.03.021.; Park S. K., Lee C. W., Park D. I., et al. Detection of SARS-CoV-2 in fecal samples from patients with asymptomatic and mild COVID-19 in Korea. Clinical Gastroenterology and Hepatology. 2021. Vol. 19, No. 7. P. 1387–1394. doi:10.1016/j.cgh.2020.06.005.; Shokri-Afra H., Alikhani A., Moradipoodeh B., et al. Elevated fecal and serum calprotectin in COVID-19 are not consistent with gastrointestinal symptoms. Sci Rep. 2021. Vol. 11. P. 22001. doi:10.1038/s41598-021-01231-4.; Livanos A. E., Jha D., Cossarini F., et al. Intestinal host response to SARS-CoV-2 infection and COVID-19 outcomes in patients with gastrointestinal symptoms. Gastroenterology. 2021. Vol. 160, No. 7. P. 2435–2450. doi:10.1053/j.gastro.2021.02.056.; Su Q., Lau R. I., Liu Q., Chan F. K. L., et al. Post-acute COVID-19 syndrome and gut dysbiosis linger beyond 1 year after SARS-CoV-2 clearance. Gut. 2022. Vol. 72, No. 6. P. 1230–1232. doi:10.1136/gutjnl-2022-328319.; Gibson G. R., Hutkins R., Sanders M. E., et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews Gastroenterology and Hepatology. 2017. Vol. 14, No. 8. P. 491-502. doi:10.1038/nrgastro.2017.75.; Marinova V. Y., Rasheva I. K., Kizheva Y. K. Microbiological quality of probiotic dietary supplements. BiotechNology and BiotechNological Equipment. 2019. Vol. 33, No. 1. P. 834–841. doi:10.1080/13102818.2019.1621208.; Kim S. K., Guevarra R. B., Kim Y. T., et al. Role of probiotics in human gut microbiome-associated diseases. J Microbiol Biotechnol. 2019. Vol. 29, No. 9. P. 1335–1340. doi:10.4014/jmb.1906.06064.; Etienne-Mesmin L., Chassaing B., Desvaux M., et al. Experimental models to study intestinal microbes–mucus interactions in health and disease. FEMS Microbiology Reviews. 2019. Vol. 43, No. 5. P. 457-489. doi:10.1093/femsre/fuz013.; Lehtoranta L., Pitkäranta A., Korpela R. Probiotics in respiratory virus infections. European Journal of Clinical Microbiology and Infectious Diseases. 2014. Vol. 33, No. 8. P. 1289–302. doi:10.1007/s10096-014-2086-y.; Li Q., Cheng F., Xu Q., et al. The role of probiotics in coronavirus disease-19 infection in Wuhan: A retrospective study of 311 severe patients. Int Immunopharmacol. 2021. Vol. 95. P. 107531 doi:10.1016/j.intimp.2021.107531.; Gutiérrez-Castrellón P., Gandara-Martí T., Abreu Y., et al. Probiotic improves symptomatic and viral clearance in Covid19 outpatients: a randomized, quadruple-blinded, placebo-controlled trial. Gut Microbes. 2022. Vol. 14, No. 1. P. 2018899. doi:10.1080/19490976.2021.2018899.; Rather I. A., Choi S. B., Kamli M. R., et al. Potential adjuvant therapeutic effect of lactobacillus plantarum probio-88 postbiotics against SARS-COV-2. Vaccines (Basel). 2021. Vol. 9, No. 10. P. 1067. doi:10.3390/vaccines9101067.; Desheva Y., Leontieva G., Kramskaya T., et al. Developing a live probiotic vaccine based on the enterococcus faecium l3 strain expressing influenza neuraminidase. Microorganisms. 2021. Vol. 9, No. 12. P. 2446. doi:10.3390/microorganisms9122446.; https://www.epidemvac.ru/jour/article/view/2088
-
6Academic Journal
المؤلفون: I. V. Nikolaeva, G. S. Shaikhieva, L. R. Gaynatullina, И. В. Николаева, Г. С. Шайхиева, Л. Р. Гайнатуллина
المصدر: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 69, № 5 (2024); 45-51 ; Российский вестник перинатологии и педиатрии; Том 69, № 5 (2024); 45-51 ; 2500-2228 ; 1027-4065
مصطلحات موضوعية: кесарево сечение, probiotics, gastrointestinal problems, microecological problems, cesarean delivery, пробиотики, гастроинтестинальные нарушения, микроэкологические нарушения
وصف الملف: application/pdf
Relation: https://www.ped-perinatology.ru/jour/article/view/2064/1530; Derrien M., Alvarez A.S., de Vos W.M. The gut microbiota in the first decade of life. Trends Microbiol 2019; 27(12): 997–1010. DOI:10.1016/j.tim.2019.08.001; Papathoma E., Triga M., Fouzas S., Dimitriou G. Cesarean section delivery and development of food allergy and atopic dermatitis in early childhood. Pediatr Allergy Immunol 2016; 27(4): 419–424. DOI:10.1111/pai.12552; Francino M.P. Birth mode-related differences in gut microbiota colonization and immune system development. Ann Nutr Metab 2018; 73(Suppl 3): 12–16. DOI:10.1159/000490842; Li N., Liang S., Chen Q., Zhao L., Li B., Huo G. Distinct gut microbiota and metabolite profiles induced by delivery mode in healthy Chinese infants. J Proteomics 2021; 232: 104071. DOI:10.1016/j.jprot.2020.104071; Dogra S., Sakwinska O., Soh S. E., Ngom-Bru C., Brück W.M., Berger B. et al. Dynamics of infant gut microbiota are influenced by delivery mode and gestational duration and are associated with subsequent adiposity. MBio 2015; 6 (1): E02419–14. DOI:10.1128/mBio.02419–14; Николаева И.В. Формирование кишечной микрофлоры и факторы, влияющие на этот процесс. Детские инфекции 2011; 10 (3): 39–42.; Navarro-Tapia E., Sebastiani G., Sailer S., Toledano LA., Serra-Delgado M., García-Algar Ó. et al. Probiotic Supplementation During the Perinatal and Infant Period: Effects on Gut Dysbiosis and Disease. Nutrients 2020;12(8):2243. DOI:10.3390/nu12082243; Николаева И.В., Анохин В.А., Купчихина Л.А., Халиуллина С.В. Риск развития инфекционных и соматических заболеваний у детей раннего возраста, рожденных кесаревым сечением. Практическая медицина 2013; 6 (75): 93–96.; Николаева И.В., Шайхиева Г.С., Хаертынов Х.С., Гатауллин М.Р., Урманчеева Ю.Р. Этиологическая структура и особенности клинических проявлений неонатальных инфекций у детей, рожденных путем кесарева сечения. Российский вестник перинатологии и педиатрии 2017; 62(5): 88–92.; Gong Y., Zhong H., Wang J., Wang X., Huang L., Zou Y. et al. Effect of probiotic supplementation on the gut microbiota composition of infants delivered by cesarean section: an exploratory, randomized, open-label, parallel-controlled Trial. Curr Microbiol 2023; 80 (11): 341. DOI:10.1007/s00284–023–03444–4; Korpela K., Salonen A., Vepsäläinen O., Suomalainen M., Kolmeder C., Varjosalo M. et al. Probiotic supplementation restores normal microbiota composition and function in antibiotic-treated and in caesarean-born infants. Microbiome 2018; 6(1): 182. DOI:10.1186/s40168–018–0567–4; Ahmadi E., Alizadeh-Navaei R., Sadegh Rezai M. Efficacy of probiotic use in acute rotavirus diarrhea in children: A systematic review and meta-analysis. Caspian J Intern Med 2015; 6(4): 187–195.; Guandalini S., Cernat E., Moscoso D. Prebiotics and probiotics in irritable bowel syndrome and inflammatory bowel disease in children. Benef Microbes 2015; 6(2): 209–217. DOI:10.3920/BM2014.0067; Blaabjerg S., Artzi D.M., Aabenhus R. Probiotics for the prevention of antibiotic-associated diarrhea in outpatients — a systematic review and meta-analysis. Antibiotics (Basel) 2017; 6(4): 21. DOI:10.3390/antibiotics6040021; Руженцова Т.А., Хавкина Д.А., Плоскирева А.А., Мешкова Н.А. Рациональные подходы к терапии нарушений функции желудочно-кишечного тракта у детей. Медицинский Совет 2020; 1: 106–112.; Robertson C., Savva G.M., Clapuci R., Jones J., Maimouni H., Brown E. et al. Incidence of necrotising enterocolitis before and after introducing routine prophylactic Lactobacillus and Bifidobacterium probiotics. Arch Dis Child Fetal Neonatal Ed 2020; 105: 380–386. DOI:10.1136/archdis-child-2019–317346; Shirazinia R., Golabchifar A.A., Fazeli M.R. Efficacy of probiotics for managing infantile colic due to their anti-inflammatory properties: a meta-analysis and systematic review. Clin Exp Pediatr 2021; 64(12): 642–651. DOI:10.3345/cep.2020.01676; Мазанкова Л.Н., Рыбальченко О.В., Корниенко Е.А., Перловская С.Г. Пробиотики в педиатрии: за и против с позиции доказательной медицины. Российский вестник перинатологии и педиатрии 2016; 1: 16–26.; Андреева И.В., Стецюк О.У. Эффективность и безопасность комбинации Lactobacillus acidophilus LA 5 и Bifido-bacterium lactis ВB 12 в гастроэнтерологии, педиатрии и аллергологии. Клиническая микробиология и антимикробная химиотерапия 2016; 2(18): 113–124.; Jungersen M., Wind A., Johansen E., Christensen J.E., Stuer-Lauridsen B., Eskesen D. The Science behind the Probiotic Strain Bifidobacterium animalis subsp. Lactis BB-12. Microorganisms 2014; 2: 92–110. DOI:10.3390/microor-ganisms2020092; Sharma R., Bhaskar B., Sanodiya B.S., Thakur G.S., Jaiswal P., Yadav N. et al. Probiotic Efficacy and Potential of Streptococcus thermophilus modulating human health: A synoptic review. J Pharm Biol Scie 2014; 9(3): 52–58. DOI:10.9790/3008–09325258; Patel S., Chaudhari M., Kadam S., Rao S., Patole S. Standardized feeding and probiotic supplementation for reducing necrotizing enterocolitis in preterm infants in a resource limited set up. Eur J Clin Nutr 2018; 72: 281–287. DOI:10.1038/s41430–017–0040–7; Plummer E.L., Bulach D.M., Murray G.L., Jacobs S.E., Tabrizi S.N., Garland S.M. Gut microbiota of preterm infants supplemented with probiotics: sub-study of the ProPrems trial. BMC Microbiol 2018; 18(1): 184. DOI:10.1186/s12866–018–1326–1; Пахомовская Н.Л., Венедиктова М.М. Влияние микробиоты ребенка первого года жизни на его развитие. Медицинский совет 2018; 2: 200–205.; Мазанкова Л.Н., Яковлева Г.Ю., Ардатская М.Д. Ротавирусная инфекция у детей раннего возраста: обоснование пробиотической терапии. Детские инфекции 2011; 2: 52–56.
-
7Academic Journal
المؤلفون: О. V. Dedikova, I. N. Zakharova, A. E. Kuchina, I. V. Berezhnaya, N. G. Sugian, M. D. Ardatskaya, О. В. Дедикова, И. Н. Захарова, А. Е. Кучина, И. В. Бережная, Н. Г. Сугян, М. Д. Ардатская
المصدر: Meditsinskiy sovet = Medical Council; № 1 (2024); 176–188 ; Медицинский Совет; № 1 (2024); 176–188 ; 2658-5790 ; 2079-701X
مصطلحات موضوعية: пробиотики, short-chain fatty acids, L. reuteri DSM 17938, 16S rRNA, Bifidobacterium, Bacteroides, microbial colonization, probiotics, короткоцепочечные жирные кислоты, 16S рРНК, микробная колонизация
وصف الملف: application/pdf
Relation: https://www.med-sovet.pro/jour/article/view/8093/7153; Hwang JS, Im CR, Im SH. Immune disorders and its correlation with gut microbiome. Immune Netw. 2012;12(4):129–138. https://doi.org/10.4110/in.2012.12.4.129.; Ling Z, Xiao H, Chen W. Gut Microbiome: The Cornerstone of Life and Health. Advanced Gut & Microbiome Research. 2022:9894812. https://doi.org/10.1155/2022/9894812.; Fujimura KE, Sitarik AR, Havstad S, Lin DL, Levan S, Fadrosh D et al. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat Med. 2016;22(10):1187–1191. https://doi.org/10.1038/nm.4176.; Kerr CA, Grice DM, Tran CD, Bauer DC, Li D, Hendry P, Hannan GN. Early life events influence whole-of-life metabolic health via gut microflora and gut permeability. Crit Rev Microbiol. 2015;41(3):326–340. https://doi.org/10.3109/1040841X.2013.837863.; Garcia Rodenas CL, Lepage M, Ngom-Bru C, Fotiou A, Papagaroufalis K, Berger B. Effect of Formula Containing Lactobacillus reuteri DSM 17938 on Fecal Microbiota of Infants Born by Cesarean-Section. J Pediatr Gastroenterol Nutr. 2016;63(6):681–687. https://doi.org/10.1097/MPG.0000000000001198.; Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, Knight R. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A. 2010;107(26):11971–11975. https://doi.org/10.1073/pnas.1002601107.; Hoang DM, Levy EI, Vandenplas Y. The impact of Caesarean section on the infant gut microbiome. Acta Paediatr. 2021;110(1):60–67. https://doi.org/10.1111/apa.15501.; Ардатская МД, Анучкин АА, Буторова ЛИ, Павлов АИ, Нугаева НР, Фадина ЖВ. Патогенетические аспекты развития и лечения антибиотик-ассоциированной диареи: выбор синбиотика с позиции доказательной медицины. Медицинский совет. 2023;17(6):113–125. https://doi.org/10.21518/ms2023-026.; Готтшалк Г. Метаболизм бактерий. М.: Мир; 1982. 310 с.; Булатова ЕМ, Шабалов АМ, Богданова НМ, Шилов АИ, Курицина НС. Профиль микробного метаболизма кишечника у детей первого полугодия жизни при различных способах родоразрешения. Педиатрия. 2018;97(1):38–45. https://doi.org/10.24110/0031-403X-2018-97-1-38-45.; Gensollen T, Iyer SS, Kasper DL, Blumberg RS. How colonization by microbiota in early life shapes the immune system. Science. 2016;352(6285):539–544. https://doi.org/10.1126/science.aad9378.; Browne HP, Shao Y, Lawley TD. Motherinfant transmission of human microbiota. Curr Opin Microbiol. 2022;69:102173. https://doi.org/10.1016/j.mib.2022.102173.; Round JL, Mazmanian SK. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci U S A. 2010;107(27):12204–12209. https://doi.org/10.1073/pnas.0909122107.; Kristensen K, Henriksen L. Cesarean section and disease associated with immune function. J Allergy Clin Immunol. 2016;137(2):587–590. https://doi.org/10.1016/j.jaci.2015.07.040.; Peters LL, Thornton C, de Jonge A, Khashan A, Tracy M, Downe S et al. The effect of medical and operative birth interventions on child health outcomes in the first 28 days and up to 5 years of age: A linked data population-based cohort study. Birth. 2018;45(4):347–357. https://doi.org/10.1111/birt.12348.; Słabuszewska-Jóźwiak A, Szymański JK, Ciebiera M, Sarecka-Hujar B, Jakiel G. Pediatrics Consequences of Caesarean Section-A Systematic Review and Meta-Analysis. Int J Environ Res Public Health. 2020;17(21):8031. https://doi.org/10.3390/ijerph17218031.; Stokholm J, Thorsen J, Blaser MJ, Rasmussen MA, Hjelmsø M, Shah S et al. Delivery mode and gut microbial changes correlate with an increased risk of childhood asthma. Sci Transl Med. 2020;12(569):eaax9929. https://doi.org/10.1126/scitranslmed.aax9929.; Tang M, Marroquin E. The role of the gut microbiome in the intergenerational transmission of the obesity phenotype: A narrative review. Front Med (Lausanne). 2022;9:1057424. https://doi.org/10.3389/fmed.2022.1057424.; Ma J, Li Z, Zhang W, Zhang C, Zhang Y, Mei H et al. Comparison of the Gut Microbiota in Healthy Infants With Different Delivery Modes and Feeding Types: A Cohort Study. Front Microbiol. 2022;13:868227. https://doi.org/10.3389/fmicb.2022.868227.; Korpela K, Zijlmans MA, Kuitunen M, Kukkonen K, Savilahti E, Salonen A et al. Childhood BMI in relation to microbiota in infancy and lifetime antibiotic use. Microbiome. 2017;5(1):26. https://doi.org/10.1186/s40168-017-0245-y.; Rooks MG, Garrett WS. Gut microbiota, metabolites and host immunity. Nat Rev Immunol. 2016;16(6):341–352. https://doi.org/10.1038/nri.2016.42.; González S, Selma-Royo M, Arboleya S, Martínez-Costa C, Solís G, Suárez M et al. Levels of Predominant Intestinal Microorganisms in 1 Month-O ld Full-Term Babies and Weight Gain during the First Year of Life. Nutrients. 2021;13(7):2412. https://doi.org/10.3390/nu13072412.; Dror T, Dickstein Y, Dubourg G, Paul M. Microbiota manipulation for weight change. Microb Pathog. 2017;106:146–161. https://doi.org/10.1016/j.micpath.2016.01.002.; Arboleya S, Martinez-Camblor P, Solís G, Suárez M, Fernández N, de Los Reyes-Gavilán CG, Gueimonde M. Intestinal Microbiota and Weight-Gain in Preterm Neonates. Front Microbiol. 2017;8:183. https://doi.org/10.3389/fmicb.2017.00183.; https://www.med-sovet.pro/jour/article/view/8093
-
8Academic Journal
المؤلفون: Yu. Yu. Borshchev, D. L. Sonin, S. M. Minasyan, O. V. Borshcheva, I. Yu. Burovenko, M. M. Galagudza, Ю. Ю. Борщев, Д. Л. Сонин, С. М. Минасян, О. В. Борщева, И. Ю. Буровенко, М. М. Галагудза
المساهمون: The study was supported by the Russian Science Foundation grant No. 23-15-00139., Исследование выполнено за счет гранта Российского научного фонда (проект № 23-15-00139).
المصدر: The Siberian Journal of Clinical and Experimental Medicine; Том 38, № 4 (2023); 86-96 ; Сибирский журнал клинической и экспериментальной медицины; Том 38, № 4 (2023); 86-96 ; 2713-265X ; 2713-2927
مصطلحات موضوعية: кардиопротекция, probiotics, antibiotics, heart, ischemia, reperfusion, infarct size, cardioprotection, пробиотики, антибиотики, сердце, ишемия, реперфузия, размер инфаркта
وصف الملف: application/pdf
Relation: https://www.sibjcem.ru/jour/article/view/2057/893; Dai H., Much A.A., Maor E., Asher E., Younis A., Xu Y. et al. Global, regional, and national burden of ischaemic heart disease and its attributable risk factors, 1990–2017: results from the Global Burden of Disease Study 2017. Eur. Heart J. Qual. Care Clin. Outcomes. 2022;8(1):50–60. DOI:10.1093/ehjqcco/qcaa076.; Camacho X., Nedkoff L., Wright F.L., Nghiem N., Buajitti E., Goldacre R. et al. Relative contribution of trends in myocardial infarction event rates and case fatality to declines in mortality: an international comparative study of 1.95 million events in 80.4 million people in four countries. Lancet. Public Health. 2022;7(3):e229–e239. DOI:10.1016/S24682667(22)00006-8.; Perrino C., Ferdinandy P., Bøtker H.E., Brundel B.J.J.M., Collins P., Davidson S.M. et al. Improving translational research in sex-specific effects of comorbidities and risk factors in ischaemic heart disease and cardioprotection: position paper and recommendations of the ESC Working Group on Cellular Biology of the Heart. Cardiovasc. Res. 2021;117(2):367–385. DOI:10.1093/cvr/cvaa155.; Postler T.S., Ghosh S. Understanding the holobiont: how microbial metabolites affect human health and shape the immune system. Cell. Metab. 2017;26(1):110–130. DOI:10.1016/j.cmet.2017.05.008.; Rahman M.M., Islam F., Or-Rashid M.H., Mamun A.A., Rahaman M.S., Islam M.M. et al. The gut microbiota (microbiome) in cardiovascular disease and its therapeutic regulation. Front. Cell. Infect. Microbiol. 2022;12:903570. DOI:10.3389/fcimb.2022.903570.; Danilo C.A., Constantopoulos E., McKee L.A., Chen H., Regan J.A., Lipovka Y. et al. Bifidobacterium animalis subsp. Lactis 420 mitigates the pathological impact of myocardial infarction in the mouse. Benef. Microbes. 2017;8(2):257–269. DOI:10.3920/BM2016.0119.; Yang T., Santisteban M.M., Rodriguez V., Li E., Ahmari N., Carvajal J.M., Zadeh M. et al. Gut dysbiosis is linked to hypertension. Hypertension. 2015;65(6):1331–1340. DOI:10.1161/HYPERTENSIONAHA.115.05315.; Sun S., Lulla A., Sioda M., Winglee K., Wu M.C., Jacobs D.R.Jr. et al. Gut microbiota composition and blood pressure. Hypertension. 2019;73(5):998–1006. DOI:10.1161/HYPERTENSIONAHA.118.12109.; Yang Z., Wang Q., Liu Y., Wang L., Ge Z., Li Z. et al. Gut microbiota and hypertension: association, mechanisms and treatment. Clin. Exp. Hypertens. 2023;45(1):2195135. DOI:10.1080/10641963.2023.2195135.; Pluznick J. A novel SCFA receptor, the microbiota, and blood pressure regulation. Gut Microbes. 2014;5(2):202–207. DOI:10.4161/ gmic.27492.; Shen X., Li L., Sun Z., Zang G., Zhang L., Shao C. et al. Gut microbiota and atherosclerosis-focusing on the plaque stability. Front. Cardiovasc. Med. 2013;8:668532. DOI:10.3389/fcvm.2021.668532.; Emoto T., Yamashita T., Sasaki N., Hirota Y., Hayashi T., So A. et al. Analysis of gut microbiota in coronary artery disease patients: a possible link between gut microbiota and coronary artery disease. J. Atheroscler. Thromb. 2016;23(8):908–921. DOI:10.5551/jat.32672.; Tuomisto S., Huhtala H., Martiskainen M., Goebeler S., Lehtimäki T., Karhunen P.J. Age-dependent association of gut bacteria with coronary atherosclerosis: Tampere Sudden Death Study. PLoS One. 2019;14(8):e0221345. DOI:10.1371/journal.pone.0221345.; Oktaviono Y.H., Dyah Lamara A., Saputra P.B.T., Arnindita J.N., Pasahari D., Saputra M.E. et al. The roles of trimethylamine-N-oxide in atherosclerosis and its potential therapeutic aspect: A literature review. Biomol. Biomed. 2023;online ahead of print. DOI:10.17305/bb.2023.8893.; Jia B., Zou Y., Han X., Bae J.W., Jeon C.O. Gut microbiome-mediated mechanisms for reducing cholesterol levels: implications for ameliorating cardiovascular disease. Trends Microbiol. 2023;31(1):76–91. DOI:10.1016/j.tim.2022.08.003.; Jia Q., Li H., Zhou H., Zhang X., Zhang A., Xie Y. et al. Role and effective therapeutic target of gut microbiota in heart failure. Cardiovasc. Ther. 2019;2019:5164298. DOI:10.1155/2019/5164298.; Mamic P., Chaikijurajai T., Tang W.H.W. Gut microbiome – a potential mediator of pathogenesis in heart failure and its comorbidities: State-ofthe-art review. J. Mol. Cell. Cardiol. 2021;152:105–117. DOI:10.1016/j.yjmcc.2020.12.001.; Tang W.H.W., Bäckhed F., Landmesser U., Hazen S.L. Intestinal microbiota in cardiovascular health and disease: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2019;73(16):2089–2105. DOI:10.1016/j.jacc.2019.03.024.; Nesci A., Carnuccio C., Ruggieri V., D’Alessandro A., Di Giorgio A., Santoro L et al. Gut microbiota and cardiovascular disease: evidence on the metabolic and inflammatory background of a complex relationship. Int. J. Mol. Sci. 2023;24(10):9087. DOI:10.3390/ijms24109087.; Cao H., Zhu Y., Hu G., Zhang Q., Zheng L. Gut microbiome and metabolites, the future direction of diagnosis and treatment of atherosclerosis? Pharmacol. Res. 2023;187:106586. DOI:10.1016/j.phrs.2022.106586.; Шляхто Е.В., Петрищев Н.Н., Галагудза М.М., Власов Т.Д., Нифонтов Е.М. Кардиопротекция: фундаментальные и клинические аспекты. CПб.: НП-Принт; 2013:399.; Lam V., Su J., Koprowski S., Hsu A., Tweddell J.S., Rafiee P. et al. Intestinal microbiota determine severity of myocardial infarction in rats. FASEB J. 2012;26(4):1727–1735. DOI:10.1096/fj.11-197921.; Gan X.T., Ettinger G., Huang C.X., Burton J.P., Haist J.V. et al. Probiotic administration attenuates myocardial hypertrophy and heart failure after myocardial infarction in the rat. Circ. Heart Fail. 2014;7(3):491–499. DOI:10.1161/CIRCHEARTFAILURE.113.000978.; Lam V., Su J., Hsu A., Gross G.J., Salzman N.H., Baker J.E. Intestinal microbial metabolites are linked to severity of myocardial infarction in rats. PLoS One. 2016;11(8):e0160840. DOI:10.1371/journal.pone.0160840.; Liu Z., Liu H.Y., Zhou H., Zhan Q., Lai W., Zeng Q. et al. Moderate-intensity exercise affects gut microbiome composition and influences cardiac function in myocardial infarction mice. Front. Microbiol. 2017;8:1687. DOI:10.3389/fmicb.2017.01687.; Sadeghzadeh J., Vakili A., Sameni H.R., Shadnoush M., Bandegi A.R., Zahedi Khorasani M. The effect of oral consumption of probiotics in prevention of heart injury in a rat myocardial infarction model: a histopathological, hemodynamic and biochemical evaluation. Iran Biomed. J. 2017;21(3):174–181. DOI:10.18869/acadpub.ibj.21.3.174.; Borshchev Y.Y., Minasian S.M., Burovenko I.Y., Borshchev V.Y., Protsak E.S., Semenova N.Y. et al. Effects of tetracycline on myocardial infarct size in obese rats with chemically-induced colitis. PLoS One. 2019;14(11):e0225185. DOI:10.1371/journal.pone.0225185.; Trinei M., Carpi A., Menabo’ R., Storto M., Fornari M., Marinelli A. et al. Dietary intake of cyanidin-3-glucoside induces a long-lasting cardioprotection from ischemia/reperfusion injury by altering the microbiota. J. Nutr. Biochem. 2022;101:108921. DOI:10.1016/j.jnutbio.2021.108921.; Borshchev Y.Y., Burovenko I.Y., Karaseva A.B., Minasian S.M., Protsak E.S., Borshchev V.Y. et al. Probiotic therapy with Lactobacillus acidophilus and Bifidobacterium animalis subsp. lactis results in infarct size limitation in rats with obesity and chemically induced colitis. Microorganisms. 2022;10(11):2293. DOI:10.3390/microorganisms10112293.; Borshchev Yu.Yu., Sonin D.L., Burovenko I.Yu., Borshchev V.Yu., Cheburkin Yu.V.,Borshcheva O.V. et al. The effect of probiotic strains on myocardial infarction size, biochemical and immunological parameters in rats with systemic inflammatory response syndrome and polymorbidity. J. Evol. Biochem. Physiol. 2022;58(6):2058–2069. DOI:10.1134/S0022093022060321.; Gagné M.A., Barbeau C., Frégeau G., Gilbert K., Mathieu O., Auger J. et al. Dysbiotic microbiota contributes to the extent of acute myocardial infarction in rats. Sci. Rep. 2022;12(1):16517. DOI:10.1038/s41598022-20826-z.; Zhao J., Zhang Q., Cheng W., Dai Q., Wei Z., Guo M. et al. Heart-gut microbiota communication determines the severity of cardiac injury after myocardial ischaemia / reperfusion. Cardiovasc. Res. 2023;119(6):1390– 1402. DOI:10.1093/cvr/cvad023.; Zhong X., Zhao Y., Huang L., Liu J., Wang K., Gao X. et al. Remodeling of the gut microbiome by Lactobacillus johnsonii alleviates the development of acute myocardial infarction. Front. Microbiol. 2023;14:1140498. DOI:10.3389/fmicb.2023.1140498.; Wu Z.X., Li S.F., Chen H., Song J.X., Gao Y.F., Zhang F. et al. The changes of gut microbiota after acute myocardial infarction in rats. PLoS One. 2017;12(7):e0180717. DOI:10.1371/journal.pone.0180717.; Цибульников С.Ю., Маслов Л.Н., Цепокина А.В., Хуторная М.В., Кутихин А.Г., Цибульникова М.Р. и др. Проблема конечного эффектора ишемического прекондиционирования сердца. Российский физиологический журнал им. И.М. Сеченова. 2016;102(4):421–435.; Altamirano F., Wang Z.V., Hill J.A. Cardioprotection in ischaemia-reperfusion injury: novel mechanisms and clinical translation. J. Physiol. 2015;593(17):3773–3788. DOI:10.1113/JP270953.; Шляхто Е.В., Нифонтов Е.М., Галагудза М.М. Ограничение ишемического и реперфузионного повреждения миокарда с помощью преи посткондиционирования: молекулярные механизмы и мишени для фармакотерапии. Креативная кардиология. 2007;1(2):75–101.; Lama Tamang R., Juritsch A.F., Ahmad R., Salomon J.D., Dhawan P., Ramer-Tait A.E. et al. The diet-microbiota axis: a key regulator of intestinal permeability in human health and disease. Tissue Barriers. 2023;11(2):2077069. DOI:10.1080/21688370.2022.2077069.; Hanna A., Frangogiannis N.G. Inflammatory cytokines and chemokines as therapeutic targets in heart failure. Cardiovasc. Drugs Ther. 2020;34(6):849–863. DOI:10.1007/s10557-020-07071-0.; Belosjorow S., Bolle I., Duschin A., Heusch G., Schulz R. TNF-alpha antibodies are as effective as ischemic preconditioning in reducing infarct size in rabbits. Am. J. Physiol. Heart Circ. Physiol. 2003;284(3):H927– H930. DOI:10.1152/ajpheart.00374.2002.; Lin J., Li Q., Jin T., Wang J., Gong Y., Lv Q. et al. Cardiomyocyte IL-1R2 protects heart from ischemia/reperfusion injury by attenuating IL-17RA-mediated cardiomyocyte apoptosis. Cell Death Dis. 2022;13(1):90. DOI:10.1038/s41419-022-04533-1.; Karmazyn M., Gan X.T., Rajapurohitam V. The potential contribution of circulating and locally produced leptin to cardiac hypertrophy and failure. Can. J. Physiol. Pharmacol. 2013;91:883–888. DOI:10.1139/cjpp-20130057.; Polyakova E.A., Mikhaylov E.N., Galagudza M.M., Shlyakhto E.V. Hyperleptinemia results in systemic inflammation and the exacerbation of ischemia-reperfusion myocardial injury. Heliyon. 2021;7(11):e08491. DOI:10.1016/j.heliyon.2021.e08491.; Chiang J.Y. Bile acid metabolism and signaling. Compr. Physiol. 2013;3(3):1191–1212. DOI:10.1002/cphy.c120023.; Fiorucci S., Distrutti E. Bile acid-activated receptors, intestinal microbiota, and the treatment of metabolic disorders. Trends Mol. Med. 2015;21(11):702–714. DOI:10.1016/j.molmed.2015.09.001.; Pu J., Yuan A., Shan P., Gao E., Wang X., Wang Y. et al. Cardiomyocyte-expressed farnesoid-X-receptor is a novel apoptosis mediator and contributes to myocardial ischaemia/reperfusion injury. Eur. Heart J. 2013;34(24):1834–1845. DOI:10.1093/eurheartj/ehs011.; Gao J., Liu X., Wang B., Xu H., Xia Q., Lu T. et al. Farnesoid X receptor deletion improves cardiac function, structure and remodeling following myocardial infarction in mice. Mol. Med. Rep. 2017;16(1):673–679. DOI:10.3892/mmr.2017.6643.; Gao Y., Zhao Y., Yuan A., Xu L., Huang X., Su Y. et al. Effects of farnesoid-X-receptor SUMOylation mutation on myocardial ischemia / reperfusion injury in mice. Exp. Cell. Res. 2018;371(2):301–310. DOI:10.1016/j.yexcr.2018.07.004.; Wang J., Zhang J., Lin X., Wang Y., Wu X., Yang F. et al. DCA-TGR5 signaling activation alleviates inflammatory response and improves cardiac function in myocardial infarction. J. Mol. Cell. Cardiol. 2021;151:3–14. DOI:10.1016/j.yjmcc.2020.10.014.; Thomas C., Gioiello A., Noriega L., Strehle A., Oury J., Rizzo G. et al. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell. Metab. 2009;10(3):167–177. DOI:10.1016/j.cmet.2009.08.001.; Ravassa S., Zudaire A., Díez J. GLP-1 and cardioprotection: from bench to bedside. Cardiovasc. Res. 2012;94(2):316–323. DOI:10.1093/cvr/cvs123.; Lu Y., Zhang Y., Zhao X., Shang C., Xiang M., Li L., Cui X. Microbiota-derived short-chain fatty acids: Implications for cardiovascular and metabolic disease. Front. Cardiovasc. Med. 2022;9:900381. DOI:10.3389/fcvm.2022.900381.; Chang P.V., Hao L., Offermanns S., Medzhitov R. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc. Natl. Acad. Sci. USA. 2014;111(6):2247– 2252. DOI:10.1073/pnas.1322269111.; Lymperopoulos A., Suster M.S., Borges J.I. Short-chain fatty acid receptors and cardiovascular function. Int. J. Mol. Sci. 2022;23(6):3303. DOI:10.3390/ijms23063303.; Deng F., Zhang L.Q., Wu H., Chen Y., Yu W.Q., Han R.H. et al. Propionate alleviates myocardial ischemia-reperfusion injury aggravated by Angiotensin II dependent on caveolin-1/ACE2 axis through GPR41. Int. J. Biol. Sci. 2022;18(2):858–872. DOI:10.7150/ijbs.67724.; Tang T.W.H., Chen H.C., Chen C.Y., Yen C.Y.T., Lin C.J., PrajnamitraR.P. et al. Loss of gut microbiota alters immune system composition and cripples postinfarction cardiac repair. Circulation. 2019;139(5):647–659. DOI:10.1161/CIRCULATIONAHA.118.035235.; Lin C.J., Cheng Y.C., Chen H.C., Chao Y.K., Nicholson M.W., Yen E.C.L. et al. Commensal gut microbiota-derived acetate and propionate enhance heart adaptation in response to cardiac pressure overload in mice. Theranostics. 2022;12(17):7319–7334. DOI:10.7150/thno.76002.; Sun Y., Zhou C., Chen Y., He X., Gao F., Xue D. Quantitative increase in short-chain fatty acids, especially butyrate protects kidney from ischemia/reperfusion injury. J. Investig. Med. 2022;70(1):29–35. DOI:10.1136/jim-2020-001715.; Chen R., Xu Y., Wu P., Zhou H., Lasanajak Y., Fang Y. et al. Transplantation of fecal microbiota rich in short chain fatty acids and butyric acid treat cerebral ischemic stroke by regulating gut microbiota. Pharmacol. Res. 2019;148:104403. DOI:10.1016/j.phrs.2019.104403.; Baba A.A., Srinivas M., Shariff A., Nazir T. Role of short chain fatty acids in mesenteric ischemia reperfusion injury in rats. Eur. J. Pediatr. Surg. 2010;20(2):98–101. DOI:10.1055/s-0029-1241836.; https://www.sibjcem.ru/jour/article/view/2057
-
9Academic Journal
المؤلفون: S. D. Sinyushkina, A. V. Gorinova, A. S. Belousova, Yu. A. Sorokina, O. V. Zanozina, С. Д. Синюшкина, А. В. Горинова, А. С. Белоусова, Ю. А. Сорокина, О. В. Занозина
المصدر: Meditsinskiy sovet = Medical Council; № 16 (2024); 292-301 ; Медицинский Совет; № 16 (2024); 292-301 ; 2658-5790 ; 2079-701X
مصطلحات موضوعية: системное воспаление, dysbiosis, endotoxemia, probiotics, prebiotics, postbiotics, synbiotics, cardiometabolic diseases, systemic inflammation, дисбиоз, эндотоксемия, пробиотики, пребиотики, постбиотики, синбиотики, кардиометаболические заболевания
وصف الملف: application/pdf
Relation: https://www.med-sovet.pro/jour/article/view/8638/7586; Newgard CB. Metabolomics and Metabolic Diseases: Where Do We Stand? Cell Metabolism. 2017;25(1):43–56. https://doi.org/10.1016/j.cmet.2016.09.018; Xu C, Cao Z. Cardiometabolic diseases, total mortality, and benefits of adherence to a healthy lifestyle: a 13-year prospective UK Biobank study. J Transl Med. 2022;20(1):234. https://doi.org/10.1186/s12967-022-03439-y.; Zemedikun DT, Gray LJ, Khunti K, Davies MJ, Dhalwani NN. Patterns of Multimorbidity in Middle-Aged and Older Adults: An Analysis of the UK Biobank Data. Mayo Clinic Proceedings. 2018;93(7):857–866. https://doi.org/10.1016/j.mayocp.2018.02.012.; Barkas F, Elisaf M, Liberopoulos E, Kalaitzidis R, Liamis G. Uric acid and incident chronic kidney disease in dyslipidemic individuals. Cur Med Res Opin. 2018;34(7):1193–1199. https://doi.org/10.1080/03007995.2017.1372157.; Wang Z, Li Y, Liao W, Huang J, Liu Y, Li Z et al. Gut microbiota remodeling: A promising therapeutic strategy to confront hyperuricemia and gout. Front Cell Infect Microbiol. 2022;12:935723. https://doi.org/10.3389/fcimb.2022.935723.; Cunningham AL, Stephens JW, Harris DA. Gut microbiota influence in type 2 diabetes mellitus (T2DM). Gut Pathog. 2021;13(1):50. https://doi.org/10.1186/s13099-021-00446-0.; Zhao L, Lou H, Peng Y, Chen S, Zhang Y, Li X. Comprehensive relationships between gut microbiome and faecal metabolome in individuals with type 2 diabetes and its complications. Endocrine. 2019;66(3):526–537. https://doi.org/10.1007/s12020-019-02103-8.; Yassour M, Lim MY, Yun HS, Tickle TL, Sung J, Song YM et al. Sub-clinical detection of gut microbial biomarkers of obesity and type 2 diabetes. Genome Med. 2016;8(1):17. https://doi.org/10.1186/s13073-016-0271-6.; Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB et al. Crosstalk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci USA. 2013;110(22):9066–9071. https://doi.org/10.1073/pnas.1219451110.; Grondin JA, Kwon YH, Far PM, Haq S, Khan WI. Mucins in Intestinal Mucosal Defense and Inflammation: Learning From Clinical and Experimental Studies. Front Immunol. 2020;11:2054. https://doi.org/10.3389/fimmu.2020.02054.; Li J, Yang G, Zhang Q, Liu Z, Jiang X, Xin Y. Function of Akkermansia muciniphila in type 2 diabetes and related diseases. Front Microbiol. 2023;14:1172400. https://doi.org/10.3389/fmicb.2023.1172400.; Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D et al. Metabolic Endotoxemia Initiates Obesity and Insulin Resistance. Diabetes. 2007;56(7):1761–1772. https://doi.org/10.2337/db06-1491.; Sedighi M, Razavi S, Navab-Moghadam F, Khamseh ME, Alaei-Shahmiri F, Mehrtash A et al. Comparison of gut microbiota in adult patients with type 2 diabetes and healthy individuals. Microbial Pathogenesis. 2017;111:362–369. https://doi.org/10.1016/j.micpath.2017.08.038.; Qin X, Zou H. The role of lipopolysaccharides in diabetic retinopathy. BMC Ophthalmol. 2022;22(1):86. https://doi.org/10.1186/s12886-022-02296-z.; Gomes JMG, Costa JDA, Alfenas RDCG. Metabolic endotoxemia and diabetes mellitus: A systematic review. Metabolism. 2017;68:133–144. https://doi.org/10.1016/j.metabol.2016.12.009.; Grinevich VN, Tkacheva ON, Egshatyan LV, Sas EI, Efimov OI. Contribution of the gut microbiota to the pathogenesis of insulin resistance (literature review). Profil Med. 2015;18(1):54. https://doi.org/10.17116/profmed201518154-58.; Sikalidis AK, Maykish A. The Gut Microbiome and Type 2 Diabetes Mellitus: Discussing A Complex Relationship. Biomedicines. 2020;8(1):8. https://doi.org/10.3390/biomedicines8010008.; Shih CT, Yeh YT, Lin CC, Yang LY, Chiang CP. Akkermansia muciniphila is Negatively Correlated with Hemoglobin A1c in Refractory Diabetes. Microorganisms. 2020;8(9):1360. https://doi.org/10.3390/microorganisms8091360.; Gao X, Huynh BT, Guillemot D, Glaser P, Opatowski L. Inference of Significant Microbial Interactions From Longitudinal Metagenomics Data. Front Microbiol. 2018;9:2319. https://doi.org/10.3389/fmicb.2018.02319.; Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM, Diakogiannaki E et al. Short-Chain Fatty Acids Stimulate Glucagon-Like Peptide-1 Secretion via the G-Protein – Coupled Receptor FFAR2. Diabetes. 2012;61(2):364–371. https://doi.org/10.2337/db11-1019.; Mandøe MJ, Hansen KB, Hartmann B, Rehfeld JF, Holst JJ, Hansen HS. The 2-monoacylglycerol moiety of dietary fat appears to be responsible for the fat-induced release of GLP-1 in humans. Am J Clin Nutr. 2015;102(3):548–555. https://doi.org/10.3945/ajcn.115.106799.; Parada Venegas D, De la Fuente MK, Landskron G, González MJ, Quera R, Dijkstra G et al. Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Front Immunol. 2019;10:277. https://doi.org/10.3389/fimmu.2019.00277.; Sternini C, Anselmi L, Rozengurt E. Enteroendocrine cells: a site of ‘taste’ in gastrointestinal chemosensing. Curr Opin Endocrinol Diabetes Obes. 2008;15(1):73–78. https://doi.org/10.1097/MED.0b013e3282f43a73.; Amato A, Cinci L, Rotondo A, Serio R, Faussone-Pellegrini MS, Vannucchi MG et al. Peripheral motor action of glucagon-like peptide-1 through enteric neuronal receptors: GLP-1 and intestinal motility. Neurogastroenterol Motil. 2010;22(6):664. https://doi.org/10.1111/j.1365-2982.2010.01476.x.; Covasa M, Stephens RW, Toderean R, Cobuz C. Intestinal Sensing by Gut Microbiota: Targeting Gut Peptides. Front Endocrinol. 2019;10:82. https://doi.org/10.3389/fendo.2019.00082.; He J, Zhang P, Shen L, Niu L, Tan Y, Chen L et al. Short-Chain Fatty Acids and Their Association with Signalling Pathways in Inflammation, Glucose and Lipid Metabolism. Int J Mol Sci. 2020;21(17):6356. https://doi.org/10.3390/ijms21176356.; Canfora EE, Jocken JW, Blaak EE. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol. 2015;11(10):577–591. https://doi.org/10.1038/nrendo.2015.128.; Méndez-Salazar EO, Vázquez-Mellado J, Casimiro-Soriguer CS, Dopazo J, Çubuk C, Zamudio-Cuevas Y et al. Taxonomic variations in the gut microbiome of gout patients with and without tophi might have a functional impact on urate metabolism. Mol Med. 2021;27(1):50. https://doi.org/10.1186/s10020-021-00311-5.; Guo Z, Zhang J, Wang Z, Ang KY, Huang S, Hou Q et al. Intestinal Microbiota Distinguish Gout Patients from Healthy Humans. Sci Rep. 2016;6(1):20602. https://doi.org/10.1038/srep20602.; Xing SC, Meng DM, Chen Y, Jiang G, Liu XS, Li N et al. Study on the Diversity of Bacteroides and Clostridium in Patients with Primary Gout. Cell Biochem Biophys. 2015;71(2):707–715. https://doi.org/10.1007/s12013-014-0253-5.; Crane JK, Naeher TM, Broome JE, Boedeker EC. Role of Host Xanthine Oxidase in Infection Due to Enteropathogenic and Shiga-Toxigenic Escherichia coli. McCormick BA, ed. Infect Immun. 2013;81(4):1129–1139. https://doi.org/10.1128/IAI.01124-12.; Hsieh CY, Lin HJ, Chen CH, Lai ECC, Yang YHK. Chronic kidney disease and stroke. Lancet Neurol. 2014;13(11):1071. https://doi.org/10.1016/S1474-4422(14)70199-1.; Zhang W, Wang T, Guo R, Cui W, Yu W, Wang Z et al. Variation of Serum Uric Acid Is Associated With Gut Microbiota in Patients With Diabetes Mellitus. Front Cell Infect Microbiol. 2022;11:761757. https://doi.org/10.3389/fcimb.2021.761757.; Martinon F, Pétrilli V, Mayor A, Tardivel A, Tschopp J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature. 2006;440(7081):237–241. https://doi.org/10.1038/nature04516.; Joosten LA, Netea MG, Mylona E, Koenders MI, Malireddi RK, Oosting M et al. Engagement of fatty acids with toll-like receptor 2 drives interleukin-1β production via the ASC/caspase 1 pathway in monosodium urate monohydrate crystal-induced gouty arthritis. Arthritis Rheum. 2010;62(11):3237–3248. https://doi.org/10.1002/art.27667.; Yamazaki T, Ohshio K, Sugamata M, Morita Y. Lactic acid bacterium, Lactobacillus paracasei KW3110, suppresses inflammatory stress-induced caspase-1 activation by promoting interleukin-10 production in mouse and human immune cells. PLoS ONE. 2020;15(8):e0237754. https://doi.org/10.1371/journal.pone.0237754.; Елисеев МС, Харламова ЕН, Желябина ОВ, Лила АМ. Микробиота как новый патогенетический фактор развития хронической гиперурикемии и подагры. Часть I: современное состояние проблемы. Современная ревматология. 2022;16(5):7–12. https://doi.org/10.14412/1996-7012-2022-5-7-12.; Henson MA. Interrogation of the perturbed gut microbiota in gouty arthritis patients through in silico metabolic modeling. Eng Life Sci. 2021;21(7):489–501. https://doi.org/10.1002/elsc.202100003.; Chu Y, Sun S, Huang Y, Gao Q, Xie X, Wang P et al. Metagenomic analysis revealed the potential role of gut microbiome in gout. NPJ Biofilms Microbiomes. 2021;7(1):66. https://doi.org/10.1038/s41522-021-00235-2.; Vaure C, Liu Y. A Comparative Review of Toll-Like Receptor 4 Expression and Functionality in Different Animal Species. Front Immunol. 2014;5:316. https://doi.org/10.3389/fimmu.2014.00316.; Lv Q, Xu D, Zhang X, Yang X, Zhao P, Cui X et al. Association of Hyperuricemia With Immune Disorders and Intestinal Barrier Dysfunction. Front Physiol. 2020;11:524236. https://doi.org/10.3389/fphys.2020.524236.; Xu D, Lv Q, Wang X, Cui X, Zhao P, Yang X et al. Hyperuricemia is associated with impaired intestinal permeability in mice. Am J Physiol Gastrointest Liver Physiol. 2019;317(4):G484–G492. https://doi.org/10.1152/ajpgi.00151.2019.; Säemann MD, Böhmig GA, Osterreicher CH, Burtscher H, Parolini O, Diakos C et al. Anti-inflammatory effects of sodium butyrate on human monocytes: potent inhibition of IL-12 and up-regulation of IL-10 production. FASEB J. 2000;14(15):2380–2382. https://doi.org/10.1096/fj.00-0359fje.; Cleophas MC, Crişan TO, Lemmers H, Toenhake-Dijkstra H, Fossati G, Jansen TL et al. Suppression of monosodium urate crystal-induced cytokine production by butyrate is mediated by the inhibition of class I histone deacetylases. Ann Rheum Dis. 2016;75(3):593–600. https://doi.org/10.1136/annrheumdis-2014-206258.; Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM et al. Changes in Gut Microbiota Control Metabolic Endotoxemia-Induced Inflammation in High-Fat Diet–Induced Obesity and Diabetes in Mice. Diabetes. 2008;57(6):1470–1481. https://doi.org/10.2337/db07-1403.; Wang HB, Wang PY, Wang X, Wan YL, Liu YC. Butyrate Enhances Intestinal Epithelial Barrier Function via Up-Regulation of Tight Junction Protein Claudin-1 Transcription. Dig Dis Sci. 2012;57(12):3126–3135. https://doi.org/10.1007/s10620-012-2259-4.; Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes. 2016;7(3):189–200. https://doi.org/10.1080/19490976.2015.1134082.; Li J, Zhao F, Wang Y, Chen J, Tao J, Tian G et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome. 2017;5(1):14. https://doi.org/10.1186/s40168-016-0222-x.; Verhaar BJH, Collard D, Prodan A, Levels JHM, Zwinderman AH, Bäckhed F et al. Associations between gut microbiota, faecal short-chain fatty acids, and blood pressure across ethnic groups: the HELIUS study. Eur Heart J. 2020;41(44):4259–4267. https://doi.org/10.1093/eurheartj/ehaa704.; Razavi AC, Potts KS, Kelly TN, Bazzano LA. Sex, gut microbiome, and cardiovascular disease risk. Biol Sex Differ. 2019;10(1):29. https://doi.org/10.1186/s13293-019-0240-z.; Raetz CRH, Whitfield C. Lipopolysaccharide Endotoxins. Annu Rev Biochem. 2002;71(1):635–700. https://doi.org/10.1146/annurev.biochem.71.110601.135414.; Kotrova AD, Shishkin AN, Ermolenko EI, Saraykina DA, Volovnikova VA. Gut microbiota and hypertension. Arter Gipertenz. 2021;26(6):620–628. https://doi.org/10.18705/1607-419X-2020-26-6-620-628.; Chambers ES, Preston T, Frost G, Morrison DJ. Role of Gut Microbiota-Generated Short-Chain Fatty Acids in Metabolic and Cardiovascular Health. Curr Nutr Rep. 2018;7(4):198–206. https://doi.org/10.1007/s13668-018-0248-8.; Kim S, Goel R, Kumar A, Qi Y, Lobaton G, Hosaka K et al. Imbalance of gut microbiome and intestinal epithelial barrier dysfunction in patients with high blood pressure. Clin Sci (Lond). 2018;132(6):701–718. https://doi.org/10.1042/CS20180087.; Ivanova AYu, Rysenkova EYu, Smirnova MD, Fofanova TV, Medvedev OS. Antioxidant effect of gut microbiota on cardiovascular system. Kardio Vestn. 2021;16(2):15. https://doi.org/10.17116/Cardiobulletin20211602115.; Busnelli M, Manzini S, Chiesa G. The Gut Microbiota Affects Host Pathophysiology as an Endocrine Organ: A Focus on Cardiovascular Disease. Nutrients. 2019;12(1):79. https://doi.org/10.3390/nu12010079.; Huart J, Leenders J, Taminiau B, Descy J, Saint-Remy A, Daube G et al. Gut Microbiota and Fecal Levels of Short-Chain Fatty Acids Differ Upon 24-Hour Blood Pressure Levels in Men. Hypertension. 2019;74(4):1005–1013. https://doi.org/10.1161/HYPERTENSIONAHA.118.12588.; Sun S, Lulla A, Sioda M, Winglee K, Wu MC, Jacobs DRJr et al. Gut Microbiota Composition and Blood Pressure: The CARDIA Study. Hypertension. 2019;73(5):998–1006. https://doi.org/10.1161/HYPERTENSIONAHA.118.12109.; Yang T, Santisteban MM, Rodriguez V, Li E, Ahmari N, Carvajal JM et al. Gut Dysbiosis Is Linked to Hypertension. Hypertension. 2015;65(6):1331–1340. https://doi.org/10.1161/HYPERTENSIONAHA.115.05315.; Masson GS, Nair AR, Dange RB, Silva-Soares PP, Michelini LC, Francis J. Toll-Like Receptor 4 Promotes Autonomic Dysfunction, Inflammation and Microglia Activation in the Hypothalamic Paraventricular Nucleus: Role of Endoplasmic Reticulum Stress. PLoS ONE. 2015;10(3):e0122850. https://doi.org/10.1371/journal.pone.0122850.; Barantsevich NE, Konradi AO, Barantsevich EP. Arterial hypertension: The role of gut microbiota. Arter Gipertenz. 2020;25(5):460–466. https://doi.org/10.18705/1607-419X-2019-25-5-460-466.; Suchy-Dicey AM, Laha T, Hoofnagle A, Newitt R, Sirich TL, Meyer TW et al. Tubular Secretion in CKD. J Am Soc Nephrol. 2016;27(7):2148–2155. https://doi.org/10.1681/ASN.2014121193.; Lin CJ, Chen HH, Pan CF, Chuang CK, Wang TJ, Sun FJ et al. p-cresylsulfate and indoxyl sulfate level at different stages of chronic kidney disease. J Clin Lab Anal. 2011;25(3):191–197. https://doi.org/10.1002/jcla.20456.; Wu IW, Hsu KH, Lee CC, Sun CY, Hsu HJ, Tsai CJ et al. p-Cresyl sulphate and indoxyl sulphate predict progression of chronic kidney disease. Nephrol Dial Transplant. 2011;26(3):938–947. https://doi.org/10.1093/ndt/gfq580.; Ellis RJ, Small DM, Vesey DA, Johnson DW, Francis R, Vitetta L et al. Indoxyl sulphate and kidney disease: Causes, consequences and interventions. Nephrology. 2016;21(3):170–177. https://doi.org/10.1111/nep.12580.; Fujii H, Goto S, Fukagawa M. Role of Uremic Toxins for Kidney, Cardiovascular, and Bone Dysfunction. Toxins. 2018;10(5):202. https://doi.org/10.3390/toxins10050202.; Motojima M, Hosokawa A, Yamato H, Muraki T, Yoshioka T. Uremic toxins of organic anions up-regulate PAI-1 expression by induction of NF-κB and free radical in proximal tubular cells. Kidney Int. 2003;63(5):1671–1680. https://doi.org/10.1046/j.1523-1755.2003.00906.x.; Kim SM, Song IH. The clinical impact of gut microbiota in chronic kidney disease. Korean J Intern Med. 2020;35(6):1305–1316. https://doi.org/10.3904/kjim.2020.411.; Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT et al. Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19(5):576–585. https://doi.org/10.1038/nm.3145.; Tang WH, Wang Z, Kennedy DJ, Wu Y, Buffa JA, Agatisa-Boyle B et al. Gut Microbiota-Dependent Trimethylamine N -Oxide (TMAO) Pathway Contributes to Both Development of Renal Insufficiency and Mortality Risk in Chronic Kidney Disease. Circ Res. 2015;116(3):448–455. https://doi.org/10.1161/CIRCRESAHA.116.305360.; Missailidis C, Hällqvist J, Qureshi AR, Barany P, Heimbürger O, Lindholm B et al. Serum Trimethylamine-N-Oxide Is Strongly Related to Renal Function and Predicts Outcome in Chronic Kidney Disease. PLoS ONE. 2016;11(1):e0141738. https://doi.org/10.1371/journal.pone.0141738.; Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, DuGar B et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472(7341):57–63. https://doi.org/10.1038/nature09922.; Chen K, Zheng X, Feng M, Li D, Zhang H. Gut Microbiota-Dependent Metabolite Trimethylamine N-Oxide Contributes to Cardiac Dysfunction in Western Diet-Induced Obese Mice. Front Physiol. 2017;8:139. https://doi.org/10.3389/fphys.2017.00139.; Ohira H, Tsutsui W, Fujioka Y. Are Short Chain Fatty Acids in Gut Microbiota Defensive Players for Inflammation and Atherosclerosis? J Atheroscler Thromb. 2017;24(7):660–672. https://doi.org/10.5551/jat.RV17006.; Larsen N, Vogensen FK, van den Berg FW, Nielsen DS, Andreasen AS, Pedersen BK et al. Gut Microbiota in Human Adults with Type 2 Diabetes Differs from Non-Diabetic Adults. PLoS ONE. 2010;5(2):e9085. https://doi.org/10.1371/journal.pone.0009085.; Kojta I, Chacińska M, Błachnio-Zabielska A. Obesity, Bioactive Lipids, and Adipose Tissue Inflammation in Insulin Resistance. Nutrients. 2020;12(5):1305. https://doi.org/10.3390/nu12051305.; Schnabel RB, Hasenfuß G, Buchmann S, Kahl KG, Aeschbacher S, Osswald S et al. Heart and brain interactions: Pathophysiology and management of cardio-psycho-neurological disorders. Herz. 2021;46(2):138–149. https://doi.org/10.1007/s00059-021-05022-5.; Klück V, Liu R, Joosten LAB. The role of interleukin-1 family members in hyperuricemia and gout. Joint Bone Spine. 2021;88(2):105092. https://doi.org/10.1016/j.jbspin.2020.105092.; Wu H, Esteve E, Tremaroli V, Khan MT, Caesar R, Mannerås-Holm L et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat Med. 2017;23(7):850–858. https://doi.org/10.1038/nm.4345.; Rodriguez J, Hiel S, Delzenne NM. Metformin: old friend, new ways of action–implication of the gut microbiome? Curr Opin Clin Nutr Metab Care. 2018;21(4):294–301. https://doi.org/10.1097/MCO.0000000000000468.; Shin NR, Lee JC, Lee HY, Kim MS, Whon TW, Lee MS et al. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut. 2014;63(5):727–735. https://doi.org/10.1136/gutjnl-2012-303839.; Yan X, Feng B, Li P, Tang Z, Wang L. Microflora Disturbance during Progression of Glucose Intolerance and Effect of Sitagliptin: An Animal Study. J Diabetes Res. 2016;2016:2093171. https://doi.org/10.1155/2016/2093171.; Zhang Q, Xiao X, Li M, Yu M, Ping F, Zheng J et al. Vildagliptin increases butyrate-producing bacteria in the gut of diabetic rats. PLoS ONE. 2017;12(10):e0184735. https://doi.org/10.1371/journal.pone.0184735.; Sugahara M, Pak WLW, Tanaka T, Tang SCW, Nangaku M. Update on diagnosis, pathophysiology, and management of diabetic kidney disease. Nephrology. 2021;26(6):491–500. https://doi.org/10.1111/nep.13860.; Packer M. Fetal Reprogramming of Nutrient Surplus Signaling, O-GlcNAcylation, and the Evolution of CKD. J Am Soc Nephrol. 2023;34(9):1480–1491. https://doi.org/10.1681/ASN.0000000000000177.; Lingli X, Wenfang X. Characteristics and molecular mechanisms through which SGLT2 inhibitors improve metabolic diseases: A mechanism review. Life Sci. 2022;300:120543. https://doi.org/10.1016/j.lfs.2022.120543.; Griffin M, Rao VS, Ivey-Miranda J, Fleming J, Mahoney D, Maulion C et al. Empagliflozin in Heart Failure: Diuretic and Cardiorenal Effects. Circulation. 2020;142(11):1028–1039. https://doi.org/10.1161/CIRCULATIONAHA.120.045691.; Lu YP, Zhang ZY, Wu HW, Fang LJ, Hu B, Tang C et al. SGLT2 inhibitors improve kidney function and morphology by regulating renal metabolic reprogramming in mice with diabetic kidney disease. J Transl Med. 2022;20(1):420. https://doi.org/10.1186/s12967-022-03629-8.; Cowie MR, Fisher M. SGLT2 inhibitors: mechanisms of cardiovascular benefit beyond glycaemic control. Nat Rev Cardiol. 2020;17(12):761–772. https://doi.org/10.1038/s41569-020-0406-8.; Novikov A, Fu Y, Huang W, Freeman B, Patel R, van Ginkel C et al. SGLT2 inhibition and renal urate excretion: role of luminal glucose, GLUT9, and URAT1. Am J Physiol Renal Physiol. 2019;316(1):F173–F185. https://doi.org/10.1152/ajprenal.00462.2018.; Suijk DLS, Van Baar MJB, Van Bommel EJM, Iqbal Z, Krebber MM, Vallon V et al. SGLT2 Inhibition and Uric Acid Excretion in Patients with Type 2 Diabetes and Normal Kidney Function. Clin J Am Soc Nephrol. 2022;17(5):663–671. https://doi.org/10.2215/CJN.11480821.; Liu Z, Kong H, Zhang B. Narrative literature review of antidiabetic drugs’ effect on hyperuricemia: elaborating actual data and mechanisms. J Cosmet Laser Ther. 2024;13(6):e240070. https://doi.org/10.1530/EC-24-0070.; Washio K, Kusunoki Y, Murase T, Nakamura T, Osugi K, Ohigashi M et al. Xanthine oxidoreductase activity is correlated with insulin resistance and subclinical inflammation in young humans. Metabolism. 2017;70:51–56. https://doi.org/10.1016/j.metabol.2017.01.031.; Otaki Y, Watanabe T, Kinoshita D, Yokoyama M, Takahashi T, Toshima T et al. Association of plasma xanthine oxidoreductase activity with severity and clinical outcome in patients with chronic heart failure. Int J Cardiol. 2017;228:151–157. https://doi.org/10.1016/j.ijcard.2016.11.077.; Tanaka K, Nakayama M, Kanno M, Kimura H, Watanabe K, Tani Y et al. Renoprotective effects of febuxostat in hyperuricemic patients with chronic kidney disease: a parallel-group, randomized, controlled trial. Clin Exp Nephrol. 2015;19(6):1044–1053. https://doi.org/10.1007/s10157-015-1095-1.; Tani T, Okamoto K, Fujiwara M, Katayama A, Tsuruoka S. Metabolomics analysis elucidates unique influences on purine / pyrimidine metabolism by xanthine oxidoreductase inhibitors in a rat model of renal ischemiareperfusion injury. Mol Med. 2019;25(1):40. https://doi.org/10.1186/s10020-019-0109-y.; Zatz R, Dunn BR, Meyer TW, Anderson S, Rennke HG, Brenner BM. Prevention of diabetic glomerulopathy by pharmacological amelioration of glomerular capillary hypertension. J Clin Invest. 1986;77(6):1925–1930. https://doi.org/10.1172/JCI112521.; Anders HJ, Davis JM, Thurau K. Nephron Protection in Diabetic Kidney Disease. Ingelfinger JR, ed. N Engl J Med. 2016;375(21):2096–2098. https://doi.org/10.1056/NEJMcibr1608564.; Packer M. Hyperuricemia and Gout Reduction by SGLT2 Inhibitors in Diabetes and Heart Failure. J Am Coll Cardiol. 2024;83(2):371–381. https://doi.org/10.1016/j.jacc.2023.10.030.; Benigni A, Cassis P, Remuzzi G. Angiotensin II revisited: new roles in inflammation, immunology and aging. EMBO Mol Med. 2010;2(7):247–257. https://doi.org/10.1002/emmm.201000080.; Xiong Y, He Y, Chen Z, Wu T, Xiong Y, Peng Y et al. Lactobacillus induced by irbesartan on spontaneously hypertensive rat contribute to its antihypertensive effect. J Hypertens. 2024;42(3):460–470. https://doi.org/10.1097/HJH.0000000000003613.; Dong S, Liu Q, Zhou X, Zhao Y, Yang K, Li L et al. Effects of Losartan, Atorvastatin, and Aspirin on Blood Pressure and Gut Microbiota in Spontaneously Hypertensive Rats. Molecules. 2023;28(2):612. https://doi.org/10.3390/molecules28020612.; Jia Q, Li H, Zhou H, Zhang X, Zhang A, Xie Y et al. Role and Effective Therapeutic Target of Gut Microbiota in Heart Failure. Cardiovasc Ther. 2019;2019:5164298. https://doi.org/10.1155/2019/5164298.; Tao YW, Gu YL, Mao XQ, Zhang L, Pei YF. Effects of probiotics on type II diabetes mellitus: a meta-analysis. J Transl Med. 2020;18(1):30. https://doi.org/10.1186/s12967-020-02213-2.; Vallianou N, Stratigou T, Christodoulatos GS, Tsigalou C, Dalamaga M. Probiotics, Prebiotics, Synbiotics, Postbiotics, and Obesity: Current Evidence, Controversies, and Perspectives. Curr Obes Rep. 2020;9(3):179–192. https://doi.org/10.1007/s13679-020-00379-w.; Wang H, Mei L, Deng Y, Liu Y, Wei X, Liu M et al. Lactobacillus brevis DM9218 ameliorates fructose-induced hyperuricemia through inosine degradation and manipulation of intestinal dysbiosis. Nutrition. 2019;62:63–73. https://doi.org/10.1016/j.nut.2018.11.018.; Hamada T, Hisatome I, Wakimizu T, Kato M, Gotou T, Koga A et al. Lactobacillus gasseri PA-3 reduces serum uric acid levels in patients with marginal hyperuricemia. Nucleosides Nucleotides Nucleic Acids. 2022;41(4):361–369. https://doi.org/10.1080/15257770.2022.2039702.; Zhang X, Kapoor D, Jeong SJ, Fappi A, Stitham J, Shabrish V et al. Identification of a leucine-mediated threshold effect governing macrophage mTOR signalling and cardiovascular risk. Nat Metab. 2024;6(2):359–377. https://doi.org/10.1038/s42255-024-00984-2.; Yadav MK, Kumari I, Singh B, Sharma KK, Tiwari SK. Probiotics, prebiotics and synbiotics: Safe options for next-generation therapeutics. Appl Microbiol Biotechnol. 2022;106(2):505–521. https://doi.org/10.1007/s00253-021-11646-8.; Sanders ME, Merenstein DJ, Reid G, Gibson GR, Rastall RA. Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nat Rev Gastroenterol Hepatol. 2019;16(10):605–616. https://doi.org/10.1038/s41575-019-0173-3.; Oniszczuk A, Oniszczuk T, Gancarz M, Szymańska J. Role of Gut Microbiota, Probiotics and Prebiotics in the Cardiovascular Diseases. Molecules. 2021;26(4):1172. https://doi.org/10.3390/molecules26041172.; Salminen S, Collado MC, Endo A, Hill C, Lebeer S, Quigley EMM et al. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat Rev Gastroenterol Hepatol. 2021;18(9):649–667. https://doi.org/10.1038/s41575-021-00440-6.; Ji J, Jin W, Liu SJ, Jiao Z, Li X. Probiotics, prebiotics, and postbiotics in health and disease. MedComm. 2023;4(6):e420. https://doi.org/10.1002/mco2.420.; Kavita OmH, Chand U, Kushawaha PK. Postbiotics: An alternative and innovative intervention for the therapy of inflammatory bowel disease. Microbiol Res. 2024;279:127550. https://doi.org/10.1016/j.micres.2023.127550.; Zakrzewska Z, Zawartka A, Schab M, Martyniak A, Skoczeń S, Tomasik PJ, Wędrychowicz A. Prebiotics, Probiotics, and Postbiotics in the Prevention and Treatment of Anemia. Microorganisms. 2022;10(7):1330. https://doi.org/10.3390/microorganisms10071330.; Kvakova M, Kamlarova A, Stofilova J, Benetinova V, Bertkova I. Probiotics and postbiotics in colorectal cancer: Prevention and complementary therapy. World J Gastroenterol. 2022;28(27):3370–3382. https://doi.org/10.3748/wjg.v28.i27.3370.
-
10Academic Journal
المؤلفون: Иван Юрьевич Евдокимов, Алена Николаевна Иркитова, Ангелина Владимировна Малкова, Дина Евгеньевна Дудник, Максим Вячеславович Ширманов
المصدر: Ползуновский вестник, Iss 1, Pp 29-36 (2023)
مصطلحات موضوعية: bacilluspumilus, bacillustoyonensis, водородный показатель, глубинное культивирование, фер-ментация, пробиотики, биореактор, биопродукты., Technology
وصف الملف: electronic resource
-
11Academic Journal
المؤلفون: К.М. Гонсалвеш, Х.С. Маседо, Л.Н.М. Фернандеш, Л.П. Чурилов, Ж.Ф. Карвалью
المصدر: Российские биомедицинские исследования, Vol 8, Iss 2 (2023)
مصطلحات موضوعية: ревматические заболевания, пробиотики, ревматоидный артрит, остеоартрит, фибромиалгия, склеродермия, Medicine (General), R5-920
وصف الملف: electronic resource
-
12Academic Journal
المؤلفون: V. A. Neschislyaev, E. G. Shilova, A. M. Nikolaeva, E. V. Orlova, В. А. Несчисляев, Е. Г. Шилова, А. М. Николаева, Е. В. Орлова
المساهمون: The study was performed without external funding., Работа выполнена без спонсорской поддержки.
المصدر: Biological Products. Prevention, Diagnosis, Treatment; Том 23, № 3-1 (2023): Разработка и совершенствование отечественных биологических лекарственных средств; 422-430 ; БИОпрепараты. Профилактика, диагностика, лечение; Том 23, № 3-1 (2023): Разработка и совершенствование отечественных биологических лекарственных средств; 422-430 ; 2619-1156 ; 2221-996X
مصطلحات موضوعية: новый комплексный биопрепарат, metabolite type probiotics, bacteriophages and probiotics, bacteriotropic properties, antibacterial and probiotic effects, correction of dysbiosis, novel combined biological product, пробиотики метаболитного типа, бактериофаги и пробиотики, бактериотропные свойства, антибактериальное и пробиотическое действие, коррекция дисбиоза
وصف الملف: application/pdf
Relation: https://www.biopreparations.ru/jour/article/view/466/769; Ефименко ТА, Терехова ЛП, Ефременкова ОВ. Современное состояние проблем антибиотикорезистентности патогенных бактерий. Антибиотики и химиотерапия. 2019;64(5–6):64–8. EDN: GJTLZH; Назаров ПА. Альтернативы антибиотикам: литические ферменты бактериофагов и фаговая терапия. Вестник Российского государственного медицинского университета. 2018;(1):5–15. https://doi.org/10.24075/vrgmu.2018.002; Трухманов АС, Румянцева ДЕ. Перспективы применения метабиотиков в комплексной терапии заболеваний кишечника. Consilium Medicum. 2020;22(8):51–6. https://doi.org/10.26442/20751753.2020.8.200282; Шендеров БА. Метабиотики — новая технология профилактики заболеваний, связанных с микроэкологическим дисбалансом человека. Вестник восстановительной медицины. 2017;(4):40–9. EDN: ZFOTLF; Несчисляев ВА, Чистохина ЛП. Способ получения биологического стимулятора. Патент Российской Федерации № 2224018; 2004. EDN: PEVCZU; Шилова ЕГ, Пустобаева МС, Красильникова АН, Хохрякова МД. Методы идентификации карбоновых кислот в составе экзометаболита пробиотической культуры Lactobacilus plantarum 8p-а3. Медико-фармацевтический журнал «Пульс». 2022:24(6):89–93. https://doi.org/10.26787/nydha-2686-6838-2022-24-6-89-93; Несчисляев ВА, Пшеничнов РА, Арчакова ЕГ, Чистохина ЛП, Фадеева ИВ. Способ определения антагонистической активности пробиотиков. Патент Российской Федерации № 2187801; 2002. EDN: QSTGQZ; Хохрякова МД, Шилова ЕГ, Несчисляев ВА, Федорова ТВ, Орлова ЕВ, Мокин ПА. Расширение сферы применения теста ингибирования биолюминесценции. Медико-фармацевтический журнал «Пульс». 2022;24(4):138–42. https://doi.org/10.26787/nydha-2686-6838-2022-24-4-138-142; https://www.biopreparations.ru/jour/article/view/466
-
13Academic Journal
المصدر: Ползуновский вестник, Iss 2, Pp 20-27 (2022)
مصطلحات موضوعية: йогурт, альбумин, пробиотики, закваска, активная кислотность, органолептические показа-тели, функциональные продукты, здоровое питание., Technology
وصف الملف: electronic resource
-
14Academic Journal
المؤلفون: Aleksey Lodygin, Elena Medintseva, Dmitriy Lodygin
المصدر: Вестник Северо-Кавказского федерального университета, Vol 0, Iss 4, Pp 19-24 (2022)
مصطلحات موضوعية: обезжиренное молоко, лактулоза, пребиотический концентрат, пробиотики, функциональные кисломолочные продукты, skim milk, lactulose, prebiotic concentrate, probiotics, functional fermented dairy products, Economics as a science, HB71-74
وصف الملف: electronic resource
-
15Academic Journal
المؤلفون: Анна Викторовна Борисова, Алина Николаевна Иванова, Надежда Валерьевна Чикова, Екатерина Олеговна Бурлак
المصدر: Ползуновский вестник, Iss 1, Pp 39-46 (2022)
مصطلحات موضوعية: молочный продукт, мороженое, функциональный продукт, растительное молоко, сироп шиповника, пищевые волокна, пробиотики, мороженое йогуртовое, Technology
وصف الملف: electronic resource
-
16Academic Journal
المؤلفون: N. G. Neznanov, G. V. Rukavishnikov, E. D. Kasyanov, M. A. Ganzenko, L. V. Leonova, T. V. Zhilyaeva, G. E. Mazo
المصدر: Бюллетень сибирской медицины, Vol 20, Iss 4, Pp 171-179 (2022)
مصطلحات موضوعية: депрессия, нутриенты, витамины, пробиотики, микробиом, экологические факторы, Medicine
وصف الملف: electronic resource
-
17Academic Journal
المؤلفون: Юсуфжонова Н. Ф., Рахимова М.У., Акбарходжаева Х.Н., Хатамов Д. Г.
المصدر: Modern Scientific Research International Scientific Journal, 1(4), 9-15, (2023-06-15)
مصطلحات موضوعية: пробиотики, конструировании бакпрепаратов, антибиотикорезистентность, диффузия антибиотика, умеренная устойчивость
Relation: https://doi.org/10.5281/zenodo.8049540; https://doi.org/10.5281/zenodo.8049541; oai:zenodo.org:8049541
-
18Academic Journal
المصدر: Educational Research in Universal Sciences, 2(3), 242-248, (2023-03-30)
مصطلحات موضوعية: кандидоз полости рта, пробиотики, оральный кандидоз, Candida, зубные протезы
Relation: https://doi.org/10.5281/zenodo.7806637; https://doi.org/10.5281/zenodo.7806636; oai:zenodo.org:7806637
-
19Academic Journal
المؤلفون: Элова Н.А., Амирсаидова Д.А.
مصطلحات موضوعية: индекс массы тела, микробиом, ожирение, хроническая эндотоксемия, лакто- и бифидобактерии, пробиотики нового поколения
Relation: https://zenodo.org/communities/sai_2181-3337; https://doi.org/10.5281/zenodo.8372398; https://doi.org/10.5281/zenodo.8372399; oai:zenodo.org:8372399
-
20Academic Journal
المؤلفون: Д.А. Амирсаидова, Г.А. Бекмуродова, Н.А.Элова, Ш.М. Миралимова, Ш.М.Маматраимова
مصطلحات موضوعية: аутоагрегация, коагрегация и штаммов лактобактерий, пробиотики, патогены, колонизации патогенными микроорганизмами, нормофлора полости рта
Relation: https://zenodo.org/communities/sai_2181-3337; https://doi.org/10.5281/zenodo.8372550; https://doi.org/10.5281/zenodo.8372551; oai:zenodo.org:8372551