-
1Academic Journal
المؤلفون: A. V. Melnik, V. E. Solovyova, Yu. O. Yatsenko, A. E. Filippova, E. G. Asryan, T. Е. Seitumerov, E. R. Myshak, Yu. A. Chernysheva, S. A. Ziyadinova, V. O. Kononenko, M. R. Kadyrova, A. A. Denisenko, K. T. Ismagilova, D. V. Mushinsky, L. E. Sorokina, А. В. Мельник, В. Е. Соловьева, Ю. О. Яценко, А. Е. Филиппова, Э. Г. Асрян, Т. Э. Сейтумеров, Е. Р. Мышак, Ю. А. Чернышева, С. А. Зиядинова, В. О. Кононенко, М. Р. Кадырова, А. А. Денисенко, К. Т. Исмагилова, Д. В. Мушинский, Л. Е. Сорокина
المصدر: Obstetrics, Gynecology and Reproduction; Vol 18, No 3 (2024); 316-327 ; Акушерство, Гинекология и Репродукция; Vol 18, No 3 (2024); 316-327 ; 2500-3194 ; 2313-7347
مصطلحات موضوعية: ранняя диагностика, preeclampsia, PE, transcriptome, microRNAs, prognostic model, early diagnosis, преэклампсия, ПЭ, транскриптом, микроРНК, прогностическая модель
وصف الملف: application/pdf
Relation: https://www.gynecology.su/jour/article/view/2076/1221; Scholien R.R., Hopman M.T., Sweep F.C. et al. Co-occurrence of cardiovascular and prothrombotic risk factors in women with a history of preeclampsia. Obstet Gynecol. 2013;121(1):97–105. https://doi.org/10.1097/aog.0b013e318273764b.; Белокриницкая Т.Е., Фролова Н.И., Анохова Л.И. Молекулярно-генетические предикторы осложнений беременности. Новосибирск: Наука, 2019. 188 с.; The global strategy for women’s, children’s and adolescents’ health (2016-2030). New York: United Nations, 2015. 108 p. Режим доступа: https://www.who.int/docs/default-source/child-health/the-global-strategy-for-women-s-children-s-and-adolescents-health-2016-2030.pdf. [Дата доступа: 20.04.2024].; Mészáros B., Kukor Z., Valent S. Recent advances in the prevention and screening of preeclampsia. J Clin Med. 2023;12(18):6020. https://doi.org/10.3390/jcm12186020.; ACOG Practice Bulletin No. 202: Gestational Hypertension and Preeclampsia. Obstet Gynecol. 2019;133(1):1. https://doi.org/10.1097/AOG.0000000000003018.; Tiruneh S.A., Vu T.T.T., Moran L.J. et al. Externally validated prediction models for pre-eclampsia: systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2024;63(5):592–604. https://doi.org/10.1002/uog.27490.; Danielli M., Thomas R.C., Gillies C.L. et al. Blood biomarkers to predict the onset of pre-eclampsia: a systematic review and meta-analysis. Heliyon. 2022;8(11):e11226. https://doi.org/10.1016/j.heliyon.2022.e11226.; Roberts J.M., Rich-Edwards J.W., McElrath T.F. et al; Global Pregnancy Collaboration. Subtypes of preeclampsia: recognition and determining clinical usefulness. Hypertension. 2021;77(5):1430–41. https://doi.org/10.1161/HYPERTENSIONAHA.120.14781.; Xie G., Chen H., He C. et al. The dysregulation of miRNAs in epilepsy and their regulatory role in inflammation and apoptosis. Funct Integr Genomics. 2023;23(3):287. https://doi.org/10.1007/s10142-023-01220-y.; Redman C.W.G., Staff A.C., Roberts J.M. Syncytiotrophoblast stress in preeclampsia: the convergence point for multiple pathways. Am J Obstet Gynecol. 2022;226(2S):S907–S927. https://doi.org/10.1016/j.ajog.2020.09.047.; Гареев И.Ф., Бейлерли О.А. Циркулирующие микроРНК как биомаркеры: какие перспективы? Профилактическая медицина. 2018;21(6):142–50. https://doi.org/10.17116/profmed201821061142.; Клинические рекомендации – Преэклампсия. Эклампсия. Отеки, протеинурия и гипертензивные расстройства во время беременности, в родах и послеродовом периоде – 2021-2022-2023 (24.06.2021). М.: Министерство здравоохранения Россиийской Федерации, 2021. 54 с. Режим доступа: https://cr.minzdrav.gov.ru/recomend/637_1. [Дата доступа: 20.04.2024].; Laasanen J., Romppanen E.L., Hiltunen M. et al. Two exonic single nucleotide polymorphisms in the microsomal epoxide hydrolase gene are jointly associated with preeclampsia. Eur J Hum Genet. 2002;10(9):569–73. https://doi.org/10.1038/sj.ejhg.5200849.; Timofeeva A.V., Gusar V.A., Kan N.E. et al. Identification of potential early biomarkers of preeclampsia. Placenta. 2018;61:61–71. https://doi.org/10.1016/j.placenta.2017.11.011.; Iacobelli S., Bonsante F., Robillard P.-V. Comparison of risk factors and perinatal outcomes in early onset and late onset preeclampsia: a cohort based study in Reunion Island. J Reprod Immunol. 2017;123:12–6. https://doi.org/10.1016/j.jri.2017.08.005.; Jardim L., Rios D., Perucci L. et al. Is the imbalance between pro-angiogenic and anti-angiogenic factors associated with preeclampsia? Clini Chim Acta. 2015;447:34–8. https://doi.org/10.1016/j.cca.2015.05.004.; Panaitescu A., Syngelaki A., Prodan N. et al. Chronic hypertension and adverse pregnancy outcome: a cohort study. Ultrasound Obstet Gynecol. 2017;50(2):228–35. https://doi.org/10.1002/uog.17554.; Donker R.B., Mouillet J.-F., Nelson D.M., Sadovsky Y. The expression of Argonaute2 and related microRNA biogenesis proteins in normal and hypoxic trophoblasts. Mol Hum Reprod. 2007;13(4):273–9. https://doi.org/10.1093/molehr/gam006.; Ji L., Brkić J., Liu M. et al. Placental trophoblast cell differentiation: physiological regulation and pathological relevance to preeclampsia. Mol Asp Med. 2013;34(5):981–1023. https://doi.org/10.1016/j.mam.2012.12.008.; Seitz H., Royo H., Bortolin M.-L. et al. A large imprinted microRNA gene cluster at the mouse Dlk1-Gtl2 domain. Genome Res. 2004;14(9):1741–8. https://doi.org/10.1101/gr.2743304.; Yin Y., Liu M., Yu H. et al. Circulating microRNAs as biomarkers for diagnosis and prediction of preeclampsia: a systematic review and meta-analysis. Eur J Obstet Gynecol Reprod Biol. 2020;253:121–32. https://doi.org/10.1016/j.ejogrb.2020.08.016.; Lu Q., Ma Z., Ding Y. et al. Circulating miR-103a-3p contributes to angiotensin II-induced renal inflammation and fibrosis via a SNRK/NF-κB/p65 regulatory axis. Nat Commun. 2019;10(1):2145. https://doi.org/10.1038/s41467-019-10116-0.; Zhang C., Zhang C., Wang H. et al. Effects of miR-103a-3p on the autophagy and apoptosis of cardiomyocytes by regulating Atg5. Int J Mol Med. 2019;43(5):1951–60. https://doi.org/10.3892/ijmm.2019.4128.; He L., Xu J., Bai Y. et al. MicroRNA-103a regulates the calcification of vascular smooth muscle cells by targeting runt-related transcription factor 2 in high phosphorus conditions. Exp Ther Med. 2021;22(3):1036. https://doi.org/10.3892/etm.2021.10468.; Пакин В.С., Вашукова Е.С., Капустин Р.В. и др. Оценка уровня микроРНК в плаценте при тяжелом гестозе на фоне гестационного сахарного диабета. Журнал акушерства и женских болезней. 2017;66(3):110–5. https://doi.org/10.17816/JOWD663110-115.; Li T., Mo X., Fu L. et al. Molecular mechanisms of long noncoding RNAs on gastric cancer. Oncotarget. 2016;7(8):8601–12. https://doi.org/10.18632/oncotarget.6926.; Madsen H., Ditzel J. Blood-oxygen transport in first trimester of diabetic pregnancy. Acta Obstet Gynecol Scand. 1984;63(4):317–20. https://doi.org/10.3109/00016348409155523.; Ishibashi O., Ohkuchi A., Ali M.M. et al. Hydroxysteroid (17-β) dehydrogenase 1 is dysregulated by miR-210 and miR-518c that are aberrantly expressed in preeclamptic placentas: a novel marker for predicting preeclampsia. Hypertension. 2012;59(2):265–73. https://doi.org/10.1161/HYPERTENSIONAHA.111.180232.; Timofeeva A.V., Fedorov I.S., Sukhova Y.V. et al. Prediction of early- and late-onset pre-eclampsia in the preclinical stage via placenta-specific extracellular miRNA profiling. Int J Mol Sci. 2023;24(9):8006. https://doi.org/10.3390/ijms24098006.; Inno R., Kikas T., Lillepea K., Laan M. Coordinated expressional landscape of the human placental miRNome and transcriptome. Front Cell Dev Biol. 2021;9:697947. https://doi.org/10.3389/fcell.2021.697947.; https://www.gynecology.su/jour/article/view/2076
-
2Academic Journal
المؤلفون: V. E.A. Kotelnikova, D. E. Pantyukhova, F. D. Ablyamitova, S. N. Vikinskaya, Kh. U. Khalilova, L. F. Mustafaeva, D. A. Barieva, D. V. Yarovaya, N. D. Chopik, M. S. Ermakova, L. E. Sorokina, В. Э.А. Котельникова, Д. Е. Пантюхова, Ф. Д. Аблямитова, С. Н. Викинская, Х. У. Халилова, Л. Ф. Мустафаева, Д. А. Бариева, Д. В. Яровая, Н. Д. Чопик, М. С. Ермакова, Л. Е. Сорокина
المساهمون: The study was not sponsored, Исследование проведено без финансовой поддержки
المصدر: Obstetrics, Gynecology and Reproduction; Vol 18, No 2 (2024); 167-179 ; Акушерство, Гинекология и Репродукция; Vol 18, No 2 (2024); 167-179 ; 2500-3194 ; 2313-7347
مصطلحات موضوعية: микроРНК, РЕ, placenta, transcriptome, microRNA, ПЭ, плацента, транскриптом
وصف الملف: application/pdf
Relation: https://www.gynecology.su/jour/article/view/1966/1197; Филиппов О.С., Гусева Е.В. Материнская смертность в Российской Федерации в 2019 г. Проблемы репродукции. 2020;26(6–2):8–26. doi:10.17116/repro2020260628.; Сидорова И.С., Никитина Н.А., Филиппов О.С. и др. Решенные и нерешенные вопросы преэклампсии по результатам анализа материнской смертности за последние 10 лет. Акушерство и гинекология. 2021;(4):64–74. doi:10.18565/aig.2021.4.64-74.; Aldridge S., Teichmann S.A. Single cell transcriptomics comes of age. Nat Commun. 2020;11(1):4307. doi:10.1038/s41467-020-18158-5.; Gong S., Gaccioli F., Dopierala J. et al. The RNA landscape of the human placenta in health and disease. Nat Commun. 2021;12(1):2639. doi:10.1038/s41467-021-22695-y.; Клинические рекомендации – Преэклампсия. Эклампсия. Отеки, протеинурия и гипертензивные расстройства во время беременности, в родах и послеродовом периоде – 2021-2022-2023 (24. 06. 2021). М.: Министерство здравоохранения Российской Федерации, 2021. 54 с. Режим доступа: http://disuria.ru/_ld/10/1046_kr21O10O16MZ.pdf. [Дата обращения: 25. 12. 2023].; Howe C.G., Foley H.B., Kennedy E.M. et al. Extracellular vesicle microRNA in early versus late pregnancy with birth outcomes in the MADRES study. Epigenetics. 2022;17(3):269–85. doi:10.1080/15592294.2021.1899887.; Kuokkanen S., Chen B., Ojalvo L. et al. Genomic profiling of microRNAs and messenger RNAs reveals hormonal regulation in microRNA expression in human endometrium. Biol Reprod. 2010;82(4):791–801. doi:10.1095/biolreprod.109.081059.; Cai J.L., Liu L.L., Hu Y. et al. Polychlorinated biphenyls impair endometrial receptivity in vitro via regulating mir-30d expression and epithelial mesenchymal transition. Toxicology. 2016;365:25–34. doi:10.1016/j.tox.2016.07.017.; Zhao Y., He D., Zeng H. et al. Expression and significance of miR-30d-5p and SOCS1 in patients with recurrent implantation failure during implantation window. Reprod Biol Endocrinol. 2021;19(1):138. doi:10.1186/s12958-021-00820-2.; Balaguer N., Moreno I., Herrero M. et al. MicroRNA-30d deficiency during preconception affects endometrial receptivity by decreasing implantation rates and impairing fetal growth. Am J Obstet Gynecol. 2019;221(1):46. e1–46.e16. doi:10.1016/j.ajog.2019.02.047.; Zhang L., Li K., Tian S. et al. Down-regulation of microRNA-30d-5p is associated with gestational diabetes mellitus by targeting RAB8A. J Diabetes Complications. 2021;35(8):107959. doi:10.1016/j.jdiacomp.2021.107959.; Sun Y., Bilan P.J., Liu Z., Klip A. Rab8A and Rab13 are activated by insulin and regulate GLUT4 translocation in muscle cells. Proc Natl Acad Sci U S A. 2010;107(46):19909–14. doi:10.1073/pnas.1009523107.; Ishikura S., Bilan P.J., Klip A. Rabs 8A and 14 are targets of the insulin-regulated Rab-GAP AS160 regulating GLUT4 traffic in muscle cells. Biochem Biophys Res Commun. 2007;353(4):1074–9. doi:10.1016/j.bbrc.2006.12.140.; Wall A.A., Luo L., Hung Y. et al. Small GTPase Rab8a-recruited phosphatidylinositol 3-kinase γ regulates signaling and cytokine outputs from endosomal toll-like receptors. J Biol Chem. 2017;292(11):4411–22. doi:10.1074/jbc.M116.766337.; Nakajo A., Yoshimura S., Togawa H. et al. EHBP1L1 coordinates Rab8 and Bin1 to regulate apical-directed transport in polarized epithelial cells. J Cell Biol. 2016;212(3):297–306. doi:10.1083/jcb.201508086.; Wright K.R., Mitchell B., Santanam N. Redox regulation of microRNAs in endometriosis-associated pain. Redox Biol. 2017;12:956–66. doi:10.1016/j.redox.2017.04.037.; Cai H., Zhou H., Miao Y. et al. MiRNA expression profiles reveal the involvement of miR-26a, miR-548l and miR-34a in hepatocellular carcinoma progression through regulation of ST3GAL5. Lab Invest. 2017;97(5):530–42. doi:10.1038/labinvest.2017.12.; Liu C., Yang H., Xu Z. et al. microRNA-548l is involved in the migration and invasion of non-small cell lung cancer by targeting the AKT1 signaling pathway. J Cancer Res Clin Oncol. 2015;141(3):431–41. doi:10.1007/s00432-014-1836-7.; Cheng B., Li J.Y., Li X.C. et al. MiR-323b-5p acts as a novel diagnostic biomarker for critical limb ischemia in type 2 diabetic patients. Sci Rep. 2018;8(1):15080. doi:10.1038/s41598-018-33310-4.; Hedley P.L., Larsen S.O., Wøjdemann K.R. et al. First trimester maternal serum microRNA expression profile differentiates between uncomplicated pregnancies, and pregnancies which develop pre-eclampsia. medRxiv. 2023;23289708. doi:10.1101/2023.05.09.23289708.; https://www.gynecology.su/jour/article/view/1966
-
3Academic Journal
المؤلفون: N. V. Mostova, V. V. Kovalev, E. V. Kudryavtseva, Н. В. Мостова, В. В. Ковалев, Е. В. Кудрявцева
المساهمون: The authors declare no funding, Авторы заявляют об отсутствии финансовой поддержки
المصدر: Obstetrics, Gynecology and Reproduction; Vol 18, No 2 (2024); 200-210 ; Акушерство, Гинекология и Репродукция; Vol 18, No 2 (2024); 200-210 ; 2500-3194 ; 2313-7347
مصطلحات موضوعية: большие акушерские синдромы, PE, hypertensive disorders in pregnancy, HDP, gestational hypertension, great obstetrics syndromes, ПЭ, гипертензивные расстройства при беременности, ГРБ, гестационная гипертензия
وصف الملف: application/pdf
Relation: https://www.gynecology.su/jour/article/view/2051/1208; Duley L. The global impact of pre-eclampsia and eclampsia. Semin Perinatol. 2009;33(3):130–7. doi:10.1053/j.semperi.2009.02.010.; Trends in maternal mortality 2000 to 2020: estimates by WHO, UNICEF, UNFPA, World Bank Group and UNDESA/Population Division, Overview 2023. World Health Organization, 2023. Режим доступа: www.who.int/publications/i/item/9789240068759. [Дата обращения: 02. 10. 2023].; Сидорова И.С., Никитина Н.А., Филиппов О.С. и др. Решенные и нерешенные вопросы преэклампсии по результатам анализа материнской смертности за последние 10 лет. Акушерство и гинекология. 2021;(4):64–74. doi:10.18565/aig.2021.4.64-74.; Than N.G., Romero R., Tarca A.L. et al. Integrated systems biology approach identifies novel maternal and placental pathways of preeclampsia. Front Immunol. 2018;9:1661. doi:10.3389/fimmu.2018.01661.; Romero R. Prenatal medicine: the child is the father of the man. 1996. J Matern Fetal Neonatal Med. 2009;22(8):636–9. doi:10.1080/14767050902784171.; Kessous R., Shoham-Vardi I., Pariente G. et al. Long-term maternal atherosclerotic morbidity in women with pre-eclampsia. Heart. 2015;101(6):442–6. doi:10.1136/heartjnl-2014-306571.; Brouwers L., van der Meiden-van Roest A.J., Savelkoul C. et al. Recurrence of pre-eclampsia and the risk of future hypertension and cardiovascular disease : a systematic review and meta-analysis. BJOG. 2018;125(13):1642–54. doi:10.1111/1471-0528.15394.; Sukmanee J., Liabsuetrakul T. Risk of future cardiovascular diseases in different years postpartum after hypertensive disorders of pregnancy : а systematic review and meta-analysis. Medicine. 2022;101(30):e29646. doi:10.1097/MD.0000000000029646.; Долгополова Е.Л., Ломова Н.А., Караваева А.Л. и др. Тяжелая преэклампсия и задержка роста плода: отдаленные прогнозы для матерей и потомства. Акушерство и гинекология. 2020;(12):100–7. doi:10.18565/aig.2020.12.100-107.; Yan S., Lyu J., Liu Z. et al. Association of gestational hypertension and preeclampsia with offspring adiposity : a systematic review and meta-analysis. Front Endocrinol. 2022;13:906781. doi:10.3389/fendo.2022.906781.; Huang C., Li J., Qin G. et al. Maternal hypertensive disorder of pregnancy and offspring early-onset cardiovascular disease in childhood, adolescence, and young adulthood: a national population-based cohort study. PLoS Med. 2021;18(9):e1003805. doi:10.1371/journal.pmed.1003805.; Karatza A.A., Dimitriou G. Preeclampsia emerging as a novel risk factor for cardiovascular disease in the offspring. Curr Pediatr Rev. 2020;16(3):194–9. doi:10.2174/1573396316666191224092405.; NICE Clinical Guideline. Hypertension in pregnancy: diagnosis and management. National Institute for Health and Care Excellence (NICE), 2023. 62 p. Режим доступа: https://www.nice.org.uk/guidance/ng133/resources/hypertension-in-pregnancy-diagnosis-and-management-pdf-66141717671365. [Дата обращения: 02. 10. 2023].; AGOG practice advisory: low-dose aspirin use for the prevention of preeclampsia and related morbidity and mortality. AGOG, 2021. Режим доступа: https://www.acog.org/clinical/clinical-guidance/practice-advisory/articles/2021/12/low-dose-aspirin-use-for-the-prevention-of-preeclampsia-and-related-morbidity-and-mortality. [Дата обращения: 02. 10. 2023].; Poon L.C., Kametas N.A., Maiz N. et al. First-trimester prediction of hypertensive disorders in pregnancy. Hypertension. 2009;53(5):812–8. doi:10.1161/HYPERTENSIONAHA.108.127977.; O'Gorman N., Wright D., Poon L.C. et al. Multicenter screening for pre-eclampsia by maternal factors and biomarkers at 11-13 weeks' gestation: comparison with NICE guidelines and ACOG recommendations. Ultrasound Obstet Gynecol. 2017;49(6):756–60. doi:10.1002/uog.17455.; Poon L.C., Stratieva V., Piras S. et al. Hypertensive disorders in pregnancy: combined screening by uterine artery Doppler, blood pressure and serum PAPP-A at 11-13 weeks. Prenat Diagn. 2010;30(3):216–23. doi:10.1002/pd.2440.; Wright D., Akolekar R., Syngelaki A. et al. A competing risks model in early screening for preeclampsia. Fetal Diagn Ther. 2012;32(3):171–8. doi:10.1159/000338470.; Tan M.Y., Wright D., Syngelaki A. et al. Comparison of diagnostic accuracy of early screening for pre-eclampsia by NICE guidelines and a method combining maternal factors and biomarkers: results of SPREE. Ultrasound Obstet Gynecol. 2018;51(6):743–50. doi:10.1002/uog.19039.; Poon L.C., Shennan A., Hyett J.A. et al. The International Federation of Gynecology and Obstetrics (FIGO) initiative on pre-eclampsia: a pragmatic guide for first-trimester screening and prevention. Int J Gynaecol Obstet. 2019;145 Suppl 1(Suppl 1):1–33. doi:10.1002/ijgo.12802.; Приказ Минздрава России от 20. 10. 2020 N 1130н «Об утверждении Порядка оказания медицинской помощи по профилю "акушерство и гинекология"». М.: Министерство здравоохранения Российской Федерации, 2020. 688 с. Режим доступа: http://perinatcentr.ru/files/N_1130.pdf. [Дата обращения: 02. 10. 2023].; Rolnik D.L., Wright D., Poon L.C. et al. ASPRE trial: performance of screening for preterm pre-eclampsia. Ultrasound Obstet Gynecol. 2017;50(4):492–5. doi:10.1002/uog.18816.; Wright D., Poon L.C., Rolnik D.L. et al. Aspirin for Evidence-Based Preeclampsia Prevention trial: influence of compliance on beneficial effect of aspirin in prevention of preterm preeclampsia. Am J Obstet Gynecol. 2017;217(6):685.e1–685.e5. doi:10.1016/j.ajog.2017.08.110.; Кудрявцева Е.В., Канивец И.В., Киевская Ю.К. и др. Неинвазивный пренатальный тест в России: популяционное исследование. Акушерство и гинекология. 2019;(12):28–33. doi:10.18565/aig.2019.12.30-35.; Кудрявцева Е.В., Ковалев В.В., Николаева Е.Б., Дектярев А.А. Неинвазивный пренатальный скрининг: первый опыт Свердловской области. Уральский медицинский журнал. 2019;15(183):78–81. URL: https://www.elibrary.ru/item.asp?id=41589641&ysclid=lwbzesv5a2697312447.; Morain S., Greene M.F., Mello M.M. A new era in noninvasive prenatal testing. N Engl J Med. 2013;369(6):499–501. doi:10.1056/NEJMp1304843.; Холин А.М., Муминова К.Т., Балашов И.С. и др. Прогнозирование преэклампсии в первом триместре беременности: валидация алгоритмов скрининга на российской популяции. Акушерство и гинекология. 2017;(8):74–84. doi:10.18565/aig.2017.8.74-84.; Parra-Cordero M., Rodrigo R., Barja P. et al. Prediction of early and late pre-eclampsia from maternal characteristics, uterine artery Doppler and markers of vasculogenesis during first trimester of pregnancy. Ultrasound Obstet Gynecol. 2013;41(5):538–44. doi:10.1002/uog.12264.; https://www.gynecology.su/jour/article/view/2051
-
4Academic Journal
المؤلفون: Зувайдуллаев Бахром, Назиров МуҳаммадЛатиф, Xалилов Илхом
مصطلحات موضوعية: Полиэтилен (ПЭ), бактерия, УВ-спектрофотометр, биопарчаланиш, Pseudomonas
Relation: https://zenodo.org/communities/sai_2181-3337; https://doi.org/10.5281/zenodo.8367329; https://doi.org/10.5281/zenodo.8367330; oai:zenodo.org:8367330
-
5Academic Journal
المؤلفون: Назиров Муҳаммад Латиф, Xалилов Илхом, Қобилов Фазлиддин, Зувайдуллаев Бахром., Сафаров Ҳуснидин
مصطلحات موضوعية: Полиэтилен (ПЭ), бактерия, ҳарорат, УВ-спектрофотометр, биопарчаланиш, Pseudomonas
Relation: https://zenodo.org/communities/sai_2181-3337; https://doi.org/10.5281/zenodo.8367175; https://doi.org/10.5281/zenodo.8367176; oai:zenodo.org:8367176
-
6Academic Journal
المؤلفون: M. D. Umerova, S. S. Alyadinova, M. J. Khonjonova, R. A. Balakadasheva, E. E. Menadzhiev, D. I. Kharchuk, D. O. Leus, G. I. Islyamova, M. I. Islyamova, S. L. Abkarimova, D. S. Kasabyan, L. E. Sorokina, М. Д. Умерова, С. С. Алядинова, М. Д. Хонджонова, Р. А. Балакадашева, Э. Э. Менаджиев, Д. И. Харчук, Д. И. Леус, Г. И. Ислямова, М. И. Ислямова, С. Л. Абкаримова, Д. С. Касабян, Л. Е. Сорокина
المصدر: Obstetrics, Gynecology and Reproduction; Vol 17, No 3 (2023); 309-320 ; Акушерство, Гинекология и Репродукция; Vol 17, No 3 (2023); 309-320 ; 2500-3194 ; 2313-7347
مصطلحات موضوعية: микроРНК, pregnancy complications, preeclampsia, PE, fetal growth retardation, FGR, transcriptome, miRNA, осложнения беременности, преэклампсия, ПЭ, задержка роста плода, ЗРП, транскриптом
وصف الملف: application/pdf
Relation: https://www.gynecology.su/jour/article/view/1688/1114; https://www.gynecology.su/jour/article/view/1688/1118; Di Renzo G.C. The great obstetrical syndromes. J Maternal Fetal Neonatal Med. 2018;22(8):633–5. https://doi.org/10.1080/14767050902866804.; Brosens I., Pijnenborg R., Vercruysse L., Romero R. The «Great Obstetrical Syndromes» are associated with disorders of deep placentation. Am J Obstet Gynecol. 2011;204(3):193–201. https://doi.org/10.1016/j.ajog.2010.08.009.; Радзинский В.Е., Милованов А.П., Ордиянц И.М. и др. Экстраэмбриональные и околоплодные структуры при нормальной и осложненной беременности. Под ред. В.Е. Радзинского, А.П. Милованова. М.: МИА, 2004. 393 с.; Malhotra A., Allison B.J., Castillo-Melendez M. et al. Neonatal morbidities of fetal growth restriction: pathophysiology and impact. Front Endocrinol. 2019;10:55. https://doi.org/10.3389/fendo.2019.00055.; Hafner E., Metzenbauer M., Höfinger D. et al. Placental growth from the first to the second trimester of pregnancy in SGA-foetuses and pre-eclamptic pregnancies compared to normal foetuses. Placenta. 2003;24(4):336–42. https://doi.org/10.1053/plac.2002.0918.; Tsochandaridis M., Nasca L., Toga C., Levy-Mozziconacci A. Circulating microRNAs as clinical biomarkers in the predictions of pregnancy complications. Biomed Res Int. 2015;2015:294954. https://doi.org/10.1155/2015/294954.; Iljas J.D., Guanzon D., Elfeky O. et al. Review: bio-compartmentalization of microRNAs in exosomes during gestational diabetes mellitus. Placenta. 2017;54:76–82. https://doi.org/10.1016/j.placenta.2016.12.002.; Anton L., Olarerin-George A.O., Hogenesch J.B., Elovitz M.A. Placental expression of miR-517a/b and miR-517c contributes to trophoblast dysfunction and preeclampsia. PLoS One. 2015;10(3):e0122707. https://doi.org/10.1371/journal.pone.0122707.; Wang Y., Zhang Y., Wang H. et al. Aberrantly up-regulated miR-20a in pre-eclampsic placenta compromised the proliferative and invasive behaviors of trophoblast cells by targeting forkhead box protein A1. Int J Biol Sci. 2014;10(9):973–82. https://doi.org/10.7150/ijbs.9088.; Peng P., Song H., Xie C. et al. miR-146a-5p-mediated suppression on trophoblast cell progression and epithelial-mesenchymal transition in preeclampsia. Biol Res. 2021;54(1):30. https://doi.org/10.1186/s40659-021-00351-5.; Lip S., Boekschoten M., van Pampus M. et al. 103. Dysregulated circulating microRNAs in preeclampsia: the role of miR-574-5p and miR-1972 in endothelial dysfunction. Pregnancy Hypertens. 2018;13:S22. https://doi.org/10.1016/j.preghy.2018.08.068.; Luque A., Farwati A., Crovetto F. et al. Usefulness of circulating microRNAs for the prediction of early preeclampsia at first-trimester of pregnancy. Sci Rep. 2014;4:4882. https://doi.org/10.1038/srep04882.; Luo R., Shao X., Xu P. et al. MicroRNA-210 contributes to preeclampsia by downregulating potassium channel modulatory factor 1. Hypertension. 2014;64(4):839–45. https://doi.org/10.1161/HYPERTENSIONAHA.114.03530.; Xie N., Jia Z., Li L. miR-320a upregulation contributes to the development of preeclampsia by inhibiting the growth and invasion of trophoblast cells by targeting interleukin 4. Mol Med Rep. 2019;20(4):3256–64. https://doi.org/10.3892/mmr.2019.10574.; Zhong Y., Zhu F., Ding Y. Differential microRNA expression profile in the plasma of preeclampsia and normal pregnancies. Exp Ther Med. 2019;18(1):826–32. https://doi.org/10.3892/etm.2019.7637.; Winger E.E., Reed J.L., Ji X. et al. MicroRNAs isolated from peripheral blood in the first trimester predict spontaneous preterm birth. PLoS One. 2020;15(8):e0236805. https://doi.org/10.1371/journal.pone.0236805.; Kochhar P., Vukku M., Rajashekhar R. et al. MicroRNA signatures associated with fetal growth restriction: a systematic review. Eur J Clin Nutr. 2022;76(8):1088–102. https://doi.org/10.1038/s41430-021-01041-x.; Enquobahrie D.A., Abetew D.F., Sorensen T.K. et al. Placental microRNA expression in pregnancies complicated by preeclampsia. Am J Obstet Gynecol. 2011;204(2):178.e12–21. https://doi.org/10.1016/j.ajog.2010.09.004.; Luo S., Cao N., Tang Y., Gu W. Identification of key microRNAs and genes in preeclampsia by bioinformatics analysis. PLoS One. 2017;12(6):e0178549. https://doi.org/10.1371/journal.pone.0178549.; Wu L., Zhou H., Lin H. et al. Circulating microRNAs are elevated in plasma from severe preeclamptic pregnancies. Reproduction. 2012;143(3):389–97. https://doi.org/10.1530/REP-11-0304.; Клинические рекомендации – Преэклампсия. Эклампсия. Отеки, протеинурия и гипертензивные расстройства во время беременности, в родах и послеродовом периоде – 2021-2022-2023 (24.06.2021). М.: Министерство здравоохранения Российской Федерации, 2021. 54 с. Режим доступа: http://disuria.ru/_ld/10/1046_kr21O10O16MZ.pdf. [Дата обращения: 25.05.2023].; Клинические рекомендации – Недостаточный рост плода, требующий предоставления медицинской помощи матери (задержка роста плода) – 2022-2023-2024 (14.02.2022). М.: Министерство здравоохранения Российской Федерации, 2022. 47 с. Режим доступа: http://disuria.ru/_ld/11/1152_kr22O36p5MZ.pdf. [Дата обращения: 25.05.2023].; Inno R., Kikas T., Lillepea K., Laan M. Coordinated expressional landscape of the human placental miRNome and transcriptome. Front Cell Dev Biol. 2021;9:697947. https://doi.org/10.3389/fcell.2021.697947.; Wang W., Feng L., Zhang H. et al. Preeclampsia up-regulates angiogenesis-associated microRNA (i.e., miR-17, -20a, and -20b) that target ephrin-B2 and EPHB4 in human placenta. J Clin Endocrinol Metab. 2012;97(6):e1051–e1059. https://doi.org/10.1210/jc.2011-3131.; Zhang C., Li Q., Ren N. et al. Placental miR-106a~363 cluster is dysregulated in preeclamptic placenta. Placenta. 2015;36(2):250–52. https://doi.org/10.1016/j.placenta.2014.11.020.; Ishibashi O., Ohkuchi A., Ali M.M. et al. Hydroxysteroid (17-β) dehydrogenase 1 is dysregulated by miR-210 and miR-518c that are aberrantly expressed in preeclamptic placentas: a novel marker for predicting preeclampsia. Hypertension. 2012;59(2):265–73. https://doi.org/10.1161/HYPERTENSIONAHA.111.180232.; Hromadnikova I., Kotlabova K., Hympanova L., Krofta L. Gestational hypertension, preeclampsia and intrauterine growth restriction induce dysregulation of cardiovascular and cerebrovascular disease associated microRNAs in maternal whole peripheral blood. Thromb Res. 2016;137:12–140. https://doi.org/10.1016/j.thromres.2015.11.032.; https://www.gynecology.su/jour/article/view/1688
-
7Academic Journal
المؤلفون: K. N. Grigoreva, N. R. Gashimova, V. O. Bitsadze, L. L. Pankratyeva, J. Kh. Khizroeva, M. V. Tretyakova, J.-C. Gris, A. E. Malikova, D. V. Blinov, V. I. Tsibizova, N. D. Degtyareva, S. V. Martirosyan, A. D. Makatsariya, К. Н. Григорьева, Н. Р. Гашимова, В. О. Бицадзе, Л. Л. Панкратьева, Д. Х. Хизроева, М. В. Третьякова, Ж.-К. Гри, А. Е. Маликова, Д. В. Блинов, В. И. Цибизова, Н. Д. Дегтярева, С. В. Мартиросян, А. Д. Макацария
المصدر: Obstetrics, Gynecology and Reproduction; Vol 17, No 1 (2023); 127-137 ; Акушерство, Гинекология и Репродукция; Vol 17, No 1 (2023); 127-137 ; 2500-3194 ; 2313-7347
مصطلحات موضوعية: беременность, von Willebrand factor, vWF, ADAMTS-13/vWF axis, preeclampsia, PE, pregnancy, фактор фон Виллебранда, ось ADAMTS-13/vWF, преэклампсия, ПЭ
وصف الملف: application/pdf
Relation: https://www.gynecology.su/jour/article/view/1554/1079; Moschcowitz E. Hyaline thrombosis of the terminal arterioles and capillaries: a hitherto undescribed disease. Proc NY Pathol Soc. 1924;24:21–4.; Moschowitz E. An acute febrile pleiochromic anemia with hyaline thrombosis of the terminal arterioles and capillaries: an undescribed disease. Arch Intern Med. 1925;36(1):89–93.; Singer K., Bornstein F.P., Wile S.A. Thrombotic thrombocytopenic purpura; hemorrhagic diathesis with generalized platelet thromboses. Blood. 1947;2(6):542–54.; Amorosi E., Ultmann J. Thrombotic thrombocytopenic purpura: report of 16 cases and review of the literature. Medicine. 1966;45(2):139–60. https://doi.org/10.1097/00005792-196603000-00003.; Moake J.L., Rudy C.K., Troll J.H. et al. Unusually large plasma factor VIII:von Willebrand factor multimers in chronic relapsing thrombotic thrombocytopenic purpura. N Engl J Med. 1982;307(23):1432–5. https://doi.org/10.1056/NEJM198212023072306.; Furlan M., Robles R., Lämmle B. Partial purification and characterization of a protease from human plasma cleaving von Willebrand factor to fragments produced by in vivo proteolysis. Blood. 1996;87(10):4223–34.; Tsai H.M. Physiologic cleavage of von Willebrand factor by a plasma protease is dependent on its conformation and requires calcium ion. Blood. 1996;87(10):4235–44.; Gerritsen H.E., Robles R., Lämmle B., Furlan M. Partial amino acid sequence of purified von Willebrand factor-cleaving protease. Blood. 2001;98(6):1654–61. https://doi.org/10.1182/blood.v98.6.1654.; McGrath R.T., McKinnon T.A.J., Byrne B. et al. Expression of terminal alpha2-6-linked sialic acid on von Willebrand factor specifically enhances proteolysis by ADAMTS13. Blood. 2010;115(13):2666–73. https://doi.org/10.1182/blood-2009-09-241547.; Schaller M., Studt J.-D., Voorberg J., Hovinga J.A.K. Acquired thrombotic thrombocytopenic purpura. Development of an autoimmune response. Hamostaseologie. 2013;33(2):121–30. https://doi.org/10.5482/HAMO-12-12-0023.; Jian C., Xiao J., Gong L. et al. Gain-of-function ADAMTS13 variants that are resistant to autoantibodies against ADAMTS13 in patients with acquired thrombotic thrombocytopenic purpura. Blood. 2012;119(16):3836–43. https://doi.org/10.1182/blood-2011-12-399501.; Gao W., Anderson P.J., Majerus E.M. et al. Exosite interactions contribute to tension-induced cleavage of von Willebrand factor by the antithrombotic ADAMTS13 metalloprotease. Proc Natl Acad Sci U S A. 2006;103(50):19099–104. https://doi.org/10.1073/pnas.0607264104.; Voorberg J., Verbij F.C., Fijnheer R. Disappearing acts of ADAMTS13. EBioMedicine. 2015;2(8):800–1. https://doi.org/10.1016/j.ebiom.2015.07.013.; Zhou W., Inada M., Lee T.-P. et al. ADAMTS13 is expressed in hepatic stellate cells. Lab Invest. 2005;85(6):780–8. https://doi.org/10.1038/labinvest.3700275.; Turner N., Nolasco L., Tao Z. et al. Human endothelial cells synthesize and release ADAMTS-13. J Thromb Haemost. 2006;4(6):1396–404. https://doi.org/10.1111/j.1538-7836.2006.01959.x.; Shen L., Lu G., Dong N. et al. Simvastatin increases ADAMTS13 expression in podocytes. Thromb Res. 2013;132(1):94–9. https://doi.org/10.1016/j.thromres.2013.05.02.; Tauchi R., Imagama S., Ohgomori T. et al. ADAMTS-13 is produced by glial cells and upregulated after spinal cord injury. Neurosci Lett. 2012;517(1):1–6. https://doi.org/10.1016/j.neulet.2012.03.002.; Zeng M., Chen Q., Liang W. et al. Predictive value of ADAMTS-13 on concealed chronic renal failure in COPD patients. Int J Chron Obstruct Pulmon Dis. 2017;12:3495–501. https://doi.org/10.2147/COPD.S151983.; Singh K., Kwong A.C., Madarati H. et al. Characterization of ADAMTS13 and von Willebrand factor levels in septic and non-septic ICU patients. PLoS One. 2021;16(2):e0247017. https://doi.org/10.1371/journal.pone.0247017.; Moller C., Schutte A.E., Smith W., Botha-Le Roux S. Von Willebrand factor, its cleaving protease (ADAMTS13), and inflammation in young adults: the African-PREDICT study. Cytokine. 2020;136:155265. https://doi.org/10.1016/j.cyto.2020.155265.; Langholm L.L., Rønnow S.R., Sand J.M.B. et al. Increased von Willebrand factor processing in COPD, reflecting lung epithelium damage, is associated with emphysema, exacerbations and elevated mortality risk. Int J Chron Obstruct Pulmon Dis. 2020;15:543–52. https://doi.org/10.2147/COPD.S235673.; Frentzou G., Bradford C., Harkness KA. et al. IL-1beta down-regulates ADAMTS-13 mRNA expression in cells of the central nervous system. J Mol Neurosci. 2012;46(2):343–51. https://doi.org/10.1007/s12031-011-9591-6.; Shen L., Lu G., Dong N. et al. Simvastatin increases ADAMTS13 expression in podocytes. Thromb Res. 2013;132(1):94–9. https://doi.org/10.1016/j.thromres.2013.05.024.; Springer T.A. Biology and physics of von Willebrand factor concatamers. J Thromb Haemost. 2011;9 Suppl 1(0 1):130–43. https://doi.org/10.1111/j.1538-7836.2011.04320.x.; Hobbs W.E., Moore E.E., Penkala R.A. et al. Cocaine and specific cocaine metabolites induce von Willebrand factor release from endothelial cells in a tissue-specific manner. Arterioscler Thromb Vasc Biol. 2013;33(6):1230–7. https://doi.org/10.1161/ATVBAHA.113.301436.; Chang J.C. TTP-like syndrome: novel concept and molecular pathogenesis of endotheliopathy-associated vascular microthrombotic disease. Thromb J. 2018;16:20. https://doi.org/10.1186/s12959-018-0174-4.; Sadler J.E. Von Willebrand factor, ADAMTS-13, and thrombotic thrombocytopenic purpura. Blood. 2008;112(1):11–8. https://doi.org/10.1182/blood-2008-02-078170.; Eischer L., Kammer M., Traby L. et al. Risk of cancer after anticoagulation in patients with unprovoked venous thromboembolism: an observational cohort study. J Thromb Haemost. 2017;15(7):1368–74. https://doi.org/10.1111/jth.13702.; George J.N. The association of pregnancy with thrombotic thrombocytopenic purpura-hemolytic uremic syndrome. Curr Opin Hematol. 2003;10(5):339–44. https://doi.org/10.1097/00062752-200309000-00003.; Tsai H.M. Thrombotic thrombocytopenic purpura: a thrombotic disorder caused by ADAMTS13 deficiency. Hematol Oncol Clin North Am. 2007;21(4):609–32. https://doi.org/10.1016/j.hoc.2007.06.003.; Sakai K., Fujimura Y., Nagata Y. et al. Success and limitations of plasma treatment in pregnant women with congenital thrombotic thrombocytopenic purpura. J Thromb Haemost. 2020;18(11):2929–41. https://doi.org/10.1111/jth.15064.; Nonaka T., Yamaguch, M., Nishijima K. et al. A successfully treated case of an acute presentation of congenital thrombotic thrombocytopenic purpura (Upshaw-Schulman syndrome) with decreased ADAMTS13 during late stage of pregnancy. J Obstet Gynaecol Res. 2021;47(5):1892– 7. https://doi.org/10.1111/jog.14737.; Roose E., Tersteeg C., Demeersseman R. et al. Anti-ADAMTS13 antibodies and a novel heterozygous p.R1177Q mutation in a case of pregnancyonset immune-mediated thrombotic thrombocytopenic purpura. TH Open. 2018;2(1):e8–e15. https://doi.org/10.1055/s-0037-1615252.; Al-Husban N., Al-Kuran O. Post-partum thrombotic thrombocytopenic purpura (TTP) in a patient with known idiopathic (immune) thrombocytopenic purpura: a case report and review of the literature. J Med Case Rep. 2018;12(1):147. https://doi.org/10.1186/s13256-018-1692-1.; Ferrari B., Peyvandi F. How I treat thrombotic thrombocytopenic purpura in pregnancy. Blood. 2020;136(19):2125–32. https://doi.org/10.1182/blood.2019000962.; Sié P., Caron C., Azam J. et al. Reassessment of von Willebrand factor (VWF), VWF propeptide, factor VIII:C and plasminogen activator inhibitors 1 and 2 during normal pregnancy. Br J Haematol. 2003;121(6):897–903. https://doi.org/10.1046/j.1365-2141.2003.04371.x.; Drury-Stewart D.N., Lannert K.W., Chung D. et al. Complex changes in von Willebrand factor-associated parameters are acquired during uncomplicated pregnancy. PLoS One. 2014;9(11):e112935. https://doi.org/10.1371/journal.pone.0112935.; Chen Y., Huang P., Han C. et al. Association of placenta-derived extracellular vesicles with pre-eclampsia and associated hypercoagulability: A clinical observational study. BJOG. 2020;128(6):1037–46. https://doi.org/10.1111/1471-0528.16552.; Yoshida Y., Matsumoto M., Yagi H. et al. Severe reduction of free-form ADAMTS13, unbound to von Willebrand factor, in plasma of patients with HELLP syndrome. Blood Adv. 2017;1(20):1628–31. https://doi.org/10.1182/bloodadvances.2017006767.; Molvarec A., Rigó J., Bõze T. et al. Increased plasma von Willebrand factor antigen levels but normal von Willebrand factor cleaving protease (ADAMTS13) activity in preeclampsia. Thromb Haemost. 2009;101(2):305–11.; Ramadan M., Badr D., Hubeish M. et al. HELLP Syndrome, thrombotic thrombocytopenic purpura or both: appraising the complex association and proposing a stepwise practical plan for differential diagnosis. J Hematol. 2018;7(1):32–7. https://doi.org/10.14740/jh347w.; Sánchez-Luceros A., Farías C.E., Amaral M.M. et al. von Willebrand factorcleaving protease (ADAMTS13) activity in normal non-pregnant women, pregnant and post-delivery women. Thromb Haemost. 2004;92(6):1320– 6. https://doi.org/10.1160/TH03-11-0683.; Ramlakhan K.P., Johnson M.R., Roos-Hesselink J.W. Pregnancy and cardiovascular disease. Nat Rev Cardiol. 2020;17(11):718–31. https://doi.org/10.1038/s41569-020-0390-z.; Aref S., Goda H. Increased VWF antigen levels and decreased ADAMTS13 activity in preeclampsia. Hematology. 2013;18(4):237–41. https://doi.org/10.1179/1607845412Y.0000000070.; Regal J.F., Gilbert J.S., Burwick R.M. The complement system and adverse pregnancy outcomes. Mol Immunol. 2015;67(1):56–70. https://doi.org/10.1016/j.molimm.2015.02.030.; Opichka M., Rappelt M., Gutterman D.D. et al. Vascular dysfunction in preeclampsia. Cells. 2021;10(11):3055. https://doi.org/10.3390/cells10113055.; Sánchez-Aranguren L.C., Prada C.E., Riaño-Medina C.E., Lopez M. Endothelial dysfunction and preeclampsia: role of oxidative stress. Front Physiol. 2014;5:372. https://doi.org/10.3389/fphys.2014.00372.; Lamarca B. Endothelial dysfunction. An important mediator in the pathophysiology of hypertension during pre-eclampsia. Minerva Ginecol. 2012;64(4):309–20.; Gadisseur A., Berneman Z., Schroyens W., Michiels J.J. Laboratory diagnosis of von Willebrand disease type 1/2E (2A subtype IIE), type 1 Vicenza and mild type 1 caused by mutations in the D3, D4, B1-B3 and C1-C2 domains of the von Willebrand factor gene. Role of von Willebrand factor multimers and the von Willebrand factor propeptide/antigen ratio. Acta Haematol. 2009;121(2–3):128–38. https://doi.org/10.1159/000214853.; Hulstein J.J.J., Heimel P.J.V.R., Franx A. et al. Acute activation of the endothelium results in increased levels of active von Willebrand factor in hemolysis, elevated liver enzymes and low platelets (HELLP) syndrome. J Throm. Haemost. 2006;4(12):2569–75. https://doi.org/10.1111/j.1538-7836.2006.02205.x.; Stepanian A., Cohen-Moatti M., Sanglier T. et al.Von Willebrand factor and ADAMTS13: a candidate couple for preeclampsia pathophysiology. Arter Thromb Vasc Biol. 2011;31(7):1703–9. https://doi.org/10.1161/ATVBAHA.111.223610.; Sabau L.,Terriou L., Provot F. et al. Are there any additional mechanisms for haemolysis in HELLP syndrome? Thromb Res. 2016;142:40-3. https://doi.org/10.1016/j.thromres.2016.03.014.; Krogh A.-S., Hovinga J.A.K., Romundstad P.R. et al. ADAMTS13 gene variants and function in women with preeclampsia: a population-based nested case-control study from the HUNT Study. Thromb Res. 2015;136(2):282–8. https://doi.org/10.1016/j.thromres.2015.06.022.; Ehrenforth S., Junker R., Koch H.G. et al. Multicentre evaluation of combined prothrombotic defects associated with thrombophilia in childhood. Childhood Thrombophilia Study Group. Eur J Pediatr. 1999;158 Suppl 3:S97–104. https://doi.org/10.1007/pl00014359.; Lisman T., Platto M., Meijers J.C.M. et al. The hemostatic status of pediatric recipients of adult liver grafts suggests that plasma levels of hemostatic proteins are not regulated by the liver. Blood. 2011;117(6):2070–2. https://doi.org/10.1182/blood-2010-08-300913.; Strauss T., Elisha N., Ravid B. et al. Activity of Von Willebrand factor and levels of VWF-cleaving protease (ADAMTS13) in preterm and full term neonates. Blood Cells Mol Dis. 2017;67:14–7. https://doi.org/10.1016/j.bcmd.2016.12.013.; Hunt R., Hoffman C.M., Emani S. et al. Elevated preoperative von Willebrand factor is associated with perioperative thrombosis in infants and neonates with congenital heart disease. J Thromb Haemost. 2017;15(12):2306–16. https://doi.org/10.1111/jth.13860.; Kulkarni A.A., Osmond M., Bapir M. et al. The effect of labour on the coagulation system in the term neonate. Haemophilia. 2013;19(4):533–8. https://doi.org/10.1111/hae.12115.; Kavakli K., Canciani M.T., Mannucci P.M. Plasma levels of the von Willebrand factor-cleaving protease in physiological and pathological conditions in children. Pediatr Hematol Oncol. 2002;19(7):467–73. https://doi.org/10.1080/08880010290097288.; Feys H.B., Canciani M.T., Peyvandi F. et al. ADAMTS13 activity to antigen ratio in physiological and pathological conditions associated with an increased risk of thrombosis. Br J Haematol. 2007;138(4):534–40. https://doi.org/10.1111/j.1365-2141.2007.06688.x; Schmugge M., Dunn M.S., Amankwah K.S. et al. The activity of the von Willebrand factor cleaving protease ADAMTS-13 in newborn infants. J Thromb Haemost. 2004;2(2):228–33. https://doi.org/10.1046/j.1538-7933.2003.00575.x.; Tsai H.M., Sarode R., Downes K.A. Ultralarge von Willebrand factor multimers and normal ADAMTS13 activity in the umbilical cord blood. Thromb Res. 2002;108(2–3):121–5. https://doi.org/10.1016/s0049-3848(02)00396-1.; Thomas K.B., Sutor A.H., Altinkaya N. et al. von Willebrand factor-collagen binding activity is increased in newborns and infants. Acta Paediatr. 1995;84(6):697–9. https://doi.org/10.1111/j.1651-2227.1995.tb13733.x.; Blasi A., von Meijenfeldt F.A., Adelmeijer J. et al. In vitro hypercoagulability and ongoing in vivo activation of coagulation and fibrinolysis in COVID-19 patients on anticoagulation. J Thromb Haemost. 2020;18(10):2646–53. https://doi.org/10.1111/jth.15043.; von Meijenfeldt F.A., Havervall S., Adelmeijer J. et al. Prothrombotic changes in patients with COVID-19 are associated with disease severity and mortality. Res Pract Thromb Haemost. 2021;5(1):132–41. https://doi.org/10.1002/rth2.12462.; Sui J., Noubouossie D.F., Gandotra S., Cao L. Elevated plasma fibrinogen is associated with excessive inflammation and disease severity in COVID19 patients. Front Cell Infect Microbiol. 2021;11:734005. https://doi.org/10.3389/fcimb.2021.734005.; Lopez-Castaneda S., García-Larragoiti N., Cano-Mendez A. et al. Inflammatory and prothrombotic biomarkers associated with the severity of COVID-19 infection. Clin Appl Thromb Hemost. 2021;27:107602962199909. https://doi.org/10.1177/1076029621999099.; Hanff T.C., Mohareb A.M., Giri J. et al. Thrombosis in COVID-19. Am J Hematol. 2020;95(12):1578–89. https://doi.org/10.1002/ajh.25982.; Malas M.B., Naazie I.N., Elsayed N. et al. Thromboembolism risk of COVID-19 is high and associated with a higher risk of mortality: a systematic review and meta-analysis. EClinicalMedicine. 2020;29:100639. https://doi.org/10.1016/j.eclinm.2020.100639.; Bazzan M., Montaruli B., Sciascia S. et al. Low ADAMTS 13 plasma levels are predictors of mortality in COVID-19 patients. Intern Emerg Med. 2020;15(5):861–3. https://doi.org/10.1007/s11739-020-02394-0.; Huisman A., Beun R., Sikma M. et al. Involvement of ADAMTS13 and von Willebrand factor in thromboembolic events in patients infected with SARS-CoV-2. Int J Lab Hematol. 2020;42(5):e211–e212. https://doi.org/10.1111/ijlh.13244.; Favaloro E.J., Henry B.M., Lippi G. Increased VWF and decreased ADAMTS-13 in COVID-19: creating a milieu for (micro)thrombosis. Semin Thromb Hemost. 2021;47(4):400–18. https://doi.org/10.1055/s-0041-1727282.; Xu X., Feng Y., Jia Y. et al. Prognostic value of von Willebrand factor and ADAMTS13 in patients with COVID-19: A systematic review and metaanalysis. Thromb Res. 2022;218:83–98. https://doi.org/10.1016/j.thromres.2022.08.017.; Bitsadze V.O., Khizroeva J.K., Gris J. et al. Pathogenetic and prognostic significance of inflammation and altered ADAMTS-13/vWF axis in patients with severe COVID-19. Obstetrics, Gynecology and Reproduction. 2022;16(3):228–43. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2022.327.; Seth R., McKinnon T.A.J., Zhang X.F. Contribution of the von Willebrand factor/ADAMTS13 imbalance to COVID-19 coagulopathy. Am J Physiol Heart Circ Physiol. 2022;322(1):H87–H93. https://doi.org/10.1152/ajpheart.00204.2021.; Latimer G., Corriveau C., DeBiasi R.L. et al. Cardiac dysfunction and thrombocytopenia-associated multiple organ failure inflammation phenotype in a severe paediatric case of COVID-19. Lancet Child Adolesc Health. 2020;4(7):552–4. https://doi.org/10.1016/S2352-4642(20)30163-2.; Doevelaar A., Bachmann M., Hölzer B. et al. COVID-19 is associated with relative ADAMTS13 deficiency and VWF multimer formation resembling TTP (Preprint). medRxiv. August 25, 2020. https://doi.org/10.1101/2020.08.23.20177824.; https://www.gynecology.su/jour/article/view/1554
-
8Academic Journal
المؤلفون: D. G. Pashkovsky, E. V. Solovieva, Ts. R. Rabadanova, P. T. Gorbunova, A. B. Dubovaya, E. R. Muslimova, E. E. Khoroz, Z. S. Karabash, L. E. Sorokina, Д. Г. Пашковский, Е. В. Соловьева, Ц. Р. Рабаданова, П. Т. Горбунова, А. Б. Дубовая, Э. Р. Муслимова, Э. Э. Хороз, З. С. Карабаш, Л. Е. Сорокина
المصدر: Obstetrics, Gynecology and Reproduction; Vol 17, No 2 (2023); 231-243 ; Акушерство, Гинекология и Репродукция; Vol 17, No 2 (2023); 231-243 ; 2500-3194 ; 2313-7347
مصطلحات موضوعية: микроРНК, preeclampsia, PE, fetal growth retardation, FGR, transcriptome, miRNA, преэклампсия, ПЭ, задержка роста плода, ЗРП, транскриптом
وصف الملف: application/pdf
Relation: https://www.gynecology.su/jour/article/view/1634/1100; Di Renzo G.C. The great obstetrical syndromes. J Maternal Fetal Neonatal Med. 2018;22(8):633–5. https://doi.org/10.1080/14767050902866804.; Brosens I., Pijnenborg R., Vercruysse L., Romero R. The «Great Obstetrical Syndromes» are associated with disorders of deep placentation. Am J Obstet Gynecol. 2011;204(3):193–201. https://doi.org/10.1016/j.ajog.2010.08.009.; Тезиков Ю.В., Липатов И.С., Фролова Н.А. и др. Методология профилактики больших акушерских синдромов. Вопросы гинекологии, акушерства и перинатологии. 2016;(2):20–30. https://doi.org/10.20953/1726-1678-2016-2-20-30.; Ковалев В.В., Кудрявцева Е.В., Миляева Н.М., Беломестнов С.Р. Большие акушерские синдромы: «гордиев узел» генных сетей. Уральский медицинский журнал. 2018;(13):40–7. https://doi.org/10.25694/URMJ.2018.13.45.; Никитина Н.А., Сидорова И.С., Агеев М.Б. и др. Новые технологии в решении проблем преэклампсии. Акушерство и гинекология. 2022;(10):5–13. https://doi.org/10.18565/aig.2022.10.5-13.; Romero R. Prenatal medicine: The child is the father of the man. 1996. J Matern Fetal Neonatal Med. 2009;22(8):636–9. https://doi.org/10.1080/14767050902784171.; Волочаева М.В., Баев О.Р. Современные представления о патогенезе задержки роста плода. Акушерство и гинекология. 2021;(8):13–7. https://doi.org/10.18565/aig.2021.8.13-17.; Сидорова И.С., Никитина Н.А., Унанян А.Л. и др. Система комплемента при беременности, осложненной преэклампсией. Акушерство и гинекология. 2021;(8):5–12. https://doi.org/10.18565/aig.2021.8.5-12.; Игнатко И.В., Казбекова М.Т., Якубова Д.И. и др. Что мы знаем о фетальном и материнском микрохимеризме? Вопросы гинекологии, акушерства и перинатологии. 2021;20(5):87–92. https://doi.org/10.20953/1726-1678-2021-5-87-92.; Акушерство. Национальное руководство. Под ред. Э.К. Айламазяна, В.Н. Серова, В.Е. Радзинского, Г.М. Савельевой. М.: ГЭОТАР-Медиа, 2021. 608 с.; Сидорова И.С., Никитина Н.А. Преэклампсия как гестационный иммунокомплексный комплементопосредованный эндотелиоз. Российский вестник акушера-гинеколога. 2019;19(1):5–11. https://doi.org/10.17116/rosakush2019190115.; Симанов И.В. Факторы риска развития преэклампсии. Справочник врача общей практики. 2019;(1):17–21.; Ярыгина Т.А., Батаева Р.С. Методика проведения скринингового исследования в пером триместре беременности с расчетом риска развития преэклампсии и задержки роста плода по алгоритму Фонда медицины плода (Fetal Medicine Foundation). Ультразвуковая и функциональная диагностика. 2018;(4):77–88.; Muresan D., Rotar I.C., Stamatian F. The usefulness of fetal Doppler evaluation in early versus late onset intrauterine growth restriction. Review of the literature. Med Ultrason. 2016;18(1):103–9. https://doi.org/10.11152/mu.2013.2066.181.dop.; Ohno Y., Terauchi M., Tamakoshi K. et al. The risk factors for labor onset hypertension. Hypertens Res. 2016;39(4):260–5. https://doi.org/10.1038/hr.2015.112.; Oudejans C.B., Poutsma A., Michel O.J. et al. Noncoding RNA-regulated gain-of-function of STOX2 in Finnish pre-eclamptic families. Sci Rep. 2016;24(6):32129. https://doi.org/10.1038/srep32129.; Hromadnikova I., Kotlabova K., Ondrackova M. et al. Circulating C19MC microRNAs in preeclampsia, gestational hypertension, and fetal growth restriction. Mediators Inflamm. 2013;2013:186041. https://doi.org/10.1155/2013/186041.; Noguer-Dance M., Abu-Amero S., Al-Khtib M. et al. The primate-specific microRNA gene cluster (C19MC) is imprinted in the placenta. Hum Mol Genet. 2010;19(18):3566–82. https://doi.org/10.1093/hmg/ddq272.; Suarez Y. MicroRNAs as novel regulators of angiogenesis. Circ Res. 2009;104(4):442–54. https://doi.org/10.1161/CIRCRESAHA.108.191270.; Enquobahrie D.A., Abetew D.F., Sorensen T.K. et al. Placental microRNA expression in pregnancies complicated by preeclampsia. Am J Obstet Gynecol. 2011;204(2):178.e12–21. https://doi.org/10.1016/j.ajog.2010.09.004.; Luo S., Cao N., Tang Y., Gu W. Identification of key microRNAs and genes in preeclampsia by bioinformatics analysis. PLoS One. 2017;12(6):e0178549. https://doi.org/10.1371/journal.pone.0178549.; Wu L., Zhou H., Lin H. et al. Circulating microRNAs are elevated in plasma from severe preeclamptic pregnancies. Reproduction. 2012;143(3):389–97. https://doi.org/10.1530/REP-11-0304.; Клинические рекомендации – Преэклампсия. Эклампсия. Отеки, протеинурия и гипертензивные расстройства во время беременности, в родах и послеродовом периоде – 2021-2022-2023 (24.06.2021). М.: Министерство здравоохранения Российской Федерации, 2021. 54 с. Режим доступа: http://disuria.ru/_ld/10/1046_kr21O10O16MZ.pdf. [Дата обращения: 25.03.2023].; Клинические рекомендации – Недостаточный рост плода, требующий предоставления медицинской помощи матери (задержка роста плода) – 2022-2023-2024 (14.02.2022). М.: Министерство здравоохранения Российской Федерации, 2022. 47 с. Режим доступа: http://disuria.ru/_ld/11/1152_kr22O36p5MZ.pdf. [Дата обращения: 25.03.2023].; Anton L., Olarerin-George A.O., Hogenesch J.B., Elovitz M.A. Placental expression of miR-517a/b and miR-517c contributes to trophoblast dysfunction and preeclampsia. PLoS One. 2015;10(3):e0122707. https://doi.org/10.1371/journal.pone.0122707.; Wang Y., Zhang Y., Wang H. et al. Aberrantly up-regulated miR-20a in pre-eclampsic placenta compromised the proliferative and invasive behaviors of trophoblast cells by targeting forkhead box protein A1. Int J Biol Sci. 2014;10(9):973–82. https://doi.org/10.7150/ijbs.9088.; Peng P., Song H., Xie C. et al. miR-146a-5p-mediated suppression on trophoblast cell progression and epithelial-mesenchymal transition in preeclampsia. Biol Res. 2021;54(1):30. https://doi.org/10.1186/s40659-021-00351-5.; Lip S., Boekschoten M., van Pampus M. et al. 103. Dysregulated circulating microRNAs in preeclampsia: the role of miR-574-5p and miR-1972 in endothelial dysfunction. Pregnancy Hypertens. 2018;13:S22. https://doi.org/10.1016/j.preghy.2018.08.068.; Luque A., Farwati A., Crovetto F. et al. Usefulness of circulating microRNAs for the prediction of early preeclampsia at first-trimester of pregnancy. Sci Rep. 2014;4:4882. https://doi.org/10.1038/srep04882.; Luo R., Shao X., Xu P. et al. MicroRNA-210 contributes to preeclampsia by downregulating potassium channel modulatory factor 1. Hypertension. 2014;64(4):839–45. https://doi.org/10.1161/HYPERTENSIONAHA.114.03530.; Huang X., Wu L., Zhang G. et al. Elevated microRNA-181a-5p contributes to trophoblast dysfunction and preeclampsia. Reprod Sci. 2019;26(8):1121–9. https://doi.org/10.1177/1933719118808916.; Xie N., Jia Z., Li L. miR-320a upregulation contributes to the development of preeclampsia by inhibiting the growth and invasion of trophoblast cells by targeting interleukin 4. Mol Med Rep. 2019;20(4):3256–64. https://doi.org/10.3892/mmr.2019.10574.; Zhong Y., Zhu F., Ding Y. Differential microRNA expression profile in the plasma of preeclampsia and normal pregnancies. Exp Ther Med. 2019;18(1):826–32. https://doi.org/10.3892/etm.2019.7637.; Ren Y., Xu Y., Wang Y. et al. Regulation of miR-375 and Sonic hedgehog on vascular endothelial growth factor in preeclampsia rats and its effect on trophoblast cells. Biosci Rep. 2020;BSR20200613. https://doi.org/10.1042/BSR20200613. [Online ahead of print].; Awamleh Z., Gloor G.B., Han V.K.M. Placental microRNAs in pregnancies with early onset intrauterine growth restriction and preeclampsia: potential impact on gene expression and pathophysiology. BMC Med Genomics. 2019;12(1):91. https://doi.org/10.1186/s12920-019-0548-x.; Morales-Prieto D.M., Ospina-Prieto S., Chaiwangyen W. et al. Pregnancy-associated miRNA-clusters. J Reprod Immunol. 2013;97(1):51–61. https://doi.org/10.1016/j.jri.2012.11.001.; Morales-Prieto D.M., Chaiwangyen W., Ospina-Prieto S. et al. MicroRNA expression profiles of trophoblastic cells. Placenta. 2012;33(9):725–34. https://doi.org/10.1016/j.placenta.2012.05.009.; Jeschke U., Schiessl B., Mylonas I. et al. Expression of the proliferation marker Ki-67 and of p53 tumor protein in trophoblastic tissue of preeclamptic, HELLP, and intrauterine growth-restricted pregnancies. Int J Gynecol Pathol. 2006;25(4):354–60. https://doi.org/10.1097/01.pgp.0000225838.29127.6; Staribratova D., Zaprianov Z., Milchev N. Proliferation of villous trophoblast and stroma in normal and pathologic pregnancies (preeclampsia). Akush Ginekol (Sofiia). 2005;44(2):20–2. [Article in Bulgarian].; Prusac I.K., Zekic Tomas S., Roje D. Apoptosis, proliferation and Fas ligand expression in placental trophoblast from pregnancies complicated by HELLP syndrome or pre-eclampsia. Acta Obstet Gynecol Scand. 2011;90(10):1157–63. https://doi.org/10.1111/j.1600-0412.2011.01152.x.; Фураева К.Н., Степанова О.И., Овчинникова О.М. и др. Пролиферативная и миграционная активность клеток трофобласта при преэклампсии. Акушерство и гинекология. 2015;(5):49–55.; Hromadnikova I., Kotlabova K., Hympanova L., Krofta L. Gestational hypertension, preeclampsia and intrauterine growth restriction induce dysregulation of cardiovascular and cerebrovascular disease associated microRNAs in maternal whole peripheral blood. Thromb Res. 2016;137:126–40. https://doi.org/10.1016/j.thromres.2015.11.032.; Ходжаева З.С., Холин А.М., Вихляева Е.М. Ранняя и поздняя преэклампсия: парадигмы патобиологии и клиническая практика. Акушерство и гинекология. 2013;(10):4−11.; Chen S., Chen R., Zhang T. et al. Relationship of cardiovascular disease risk factors and noncoding RNAs with hypertension: a case-control study. BMC Cardiovasc Disord. 2018;18(1):58. https://doi.org/10.1186/s12872-018-0795-3.; Тolba F.M., Agha A.M., Rachwan M. et al. Evaluation of MicroRNA-210 (miR-210) as a diagnostic and prognostic biomarker in pre-eclampsia pregnancies. Benha Medical Journal. 2020;38(1):79–93. https://doi.org/10.21608/bmfj.2020.120287.; Ura B., Feriotto G., Monasta L. et al. Potential role of circulating microRNAs as early markers of preeclampsia. Taiwan J Obstet Gynecol. 2014;53(2):232–4. https://doi.org/10.1016/j.tjog.2014.03.001.; https://www.gynecology.su/jour/article/view/1634
-
9Academic Journal
المؤلفون: E. V. Kudryavtseva, V. V. Kovalev, A. A. Dektyarev, I. I. Baranov, Е. В. Кудрявцева, В. В. Ковалев, А. А. Дектярев, И. И. Баранов
المصدر: Obstetrics, Gynecology and Reproduction; Vol 16, No 6 (2022); 664-675 ; Акушерство, Гинекология и Репродукция; Vol 16, No 6 (2022); 664-675 ; 2500-3194 ; 2313-7347
مصطلحات موضوعية: ПЭ, FGR, small-for-gestational-age, prenatal screening, non-invasive prenatal test, NIPT, preeclampsia, РЕ, ЗРП, малый для гестационного возраста плод, пренатальный скрининг, неинвазивный пренатальный тест, НИПТ, преэклампсия
وصف الملف: application/pdf
Relation: https://www.gynecology.su/jour/article/view/1517/1068; Smith G.C.S. Universal screening for foetal growth restriction. Best Pract Res Clin Obstet Gynaecol. 2018;49:16–28. https://doi.org/10.1016/j.bpobgyn.2018.02.008.; Ковалев В.В., Кудрявцева Е.В., Беломестнов С.Р. и др. Факторы риска антенатальной гибели плода. Уральский медицинский журнал. 2019;(15):5–9. https://doi.org/10.25694/URMJ.2019.15.04.; Kesavan K., Devaskar S.U. Intrauterine growth restriction: postnatal monitoring and Ootcomes. Pediatr Clin North Am. 2019;66(2):403–23. https://doi.org/10.1016/j.pcl.2018.12.009.; Hansen D.N., Odgaard H.S., Uldbjerg N. et al. Screening for small-forgestational-age fetuses. Acta Obstet Gynecol Scand. 2020;99(4):503–9. https://doi.org/10.1111/aogs.13764.; Hendrix M., Bons J., van Harenet A. et al. Role of sFlt-1 and PlGF in the screening of small-for-gestational age neonates during pregnancy: A systematic review. Ann Clin Biochem. 2020;57(1):44–58. https://doi.org/10.1177/0004563219882042.; Spencer K., Macri J.N., Aitken D.A., Connor J.M. Free beta-hCG as firsttrimester marker for fetal trisomy. Lancet. 1992;339(8807):1480. https://doi.org/10.1016/0140-6736(92)92073-o.; Hasmasanu M.G., Bolboaca S.D, Baizat M.I. et al. Neonatal short-term outcomes in infants with intrauterine growth restriction. Saudi Med J. 2015;36(8):947–53. https://doi.org/10.15537/smj.2015.8.11533.; Valsamakis G., Kanaka-Gantenbein C., Malamitsi-Puchner A., Mastorakos G. Causes of intrauterine growth restriction and the postnatal development of the metabolic syndrome. Ann N Y Acad Sci. 2006:1092:138–47. https://doi.org/10.1196/annals.1365.012.; Клинические рекомендации. Недостаточный рост плода, требующий предоставления медицинской помощи матери (задержка роста плода). 2022–2023–2024 (14.02.2022). М.: Министерство здравоохранения Российской Федерации, 2022. 47 с. Режим доступа: http://disuria.ru/_ld/11/1152_kr22O36p5MZ.pdf. [Дата обращения: 25.05.2022].; Gordijn S.J., Beune I.M., Thilaganathan B. et al. Consensus definition of fetal growth restriction: a Delphi procedure. Ultrasound Obstet Gynecol. 2016:48(3):333–9. https://doi.org/10.1002/uog.15884.; Lausman A., Kingdom J., Maternal Fetal Medicine Committee. Intrauterine growth restriction: screening, diagnosis, and management. J Obstet Gynaecol Can. 2013;35(8):741–8. [Article in English, French]. https://doi.org/10.1016/S1701-2163(15)30865-3.; Salomon L.J., Malan V. Managing and identifying the causes of IUGR. J Gynecol Obstet Biol Reprod (Paris). 2013;42(8):929–40. [Article in French]. https://doi.org/10.1016/j.jgyn.2013.09.016.; ACOG. Practice Bulletin No 204: Fetal growth restriction. Obstet Gynecol. 2019;133(1):1–25. https://doi.org/10.1097/AOG.0000000000003070.; Crovetto F., Triunfo S., Crispi F. et al. Differential performance of firsttrimester screening in predicting small-for-gestational-age neonate orfetal growth restriction. Ultrasound Obstet Gynecol. 2017;49(3):349–56. https://doi.org/10.1002/uog.15919.; Tan M.Y., Poon L.C., Rolnik D.L. et al. Prediction and prevention of smallfor-gestational-age neonates: evidence from SPREE and ASPRE. Ultrasound Obstet Gynecol. 2018;52(1):52–9. https://doi.org/10.1002/uog.19077.; Приказ Министерства здравоохранения и социального развития РФ от 3 декабря 2007 г. N 736 «Об утверждении перечня медицинских показаний для искусственного прерывания беременности» с изменениями и дополнениями от 27 декабря 2011 г. M., 2011. 19 р. Режим доступа: http://www.crbnovopokrovskay.ru/normativnie_dok/akusher_i_ginek/prikaz_mz_i_socialnogo_razvitija_rf_ot_3.12.2007g-.pdf. [Дата обращения: 25.05.2022].; Приказ Министерства здравоохранения РФ от 1 ноября 2012 г. N 572н «Об утверждении Порядка оказания медицинской помощи по профилю "акушерство и гинекология (за исключением использования вспомогательных репродуктивных технологий)"». М.: Министерство здравоохранения Российской Федерации, 2012. 463 с. Режим доступа: http://zdrav.spb.ru/media/komzdrav/documents/document/file/prikaz_minzdrava_01_11_2015_572-n.pdf. [Дата обращения: 25.05.2022].; Сухих Г.Т., Трофимов Д.Ю., Барков И.Ю. и др. Неинвазивный пренатальный ДНК-скрининг анеуплоидий плода по крови матери методом высокопроизводительного секвенирования. Акушерство и гинекология. 2016;(6):129–57. https://doi.org/10.18565/aig.2016.6.recomendations.; Кудрявцева Е.В., Канивец И.В., Киевская Ю.К. и др. Неинвазивный пренатальный тест в России: популяционное исследование. Акушерство и гинекология. 2019;(12):28–33. https://doi.org/10.18565/aig.2019.12.30-35.; van der Meij K.R.M., Sistermans E.A., Macville M.V.E. et al. TRIDENT-2: National implementation of genome-wide non-invasive prenatal testing as a first-tier screening test in the Netherlands. Am J Hum Genet. 2019;105(6):1091–101. https://doi.org/10.1016/j.ajhg.2019.10.005.; Дектярев А.А., Кудрявцева Е.В., Ковалев В.В. Патогенетические ассоциации показателей пренатального скрининга первого триместра беременности с задержкой роста плода. Пермский медицинский журнал. 2022;39(1):11–20. https://doi.org/10.17816/pmj39111-20.; Кудрявцева Е.В., Ковалев В.В., Канивец И.В. и др. Free-DNA плода: опыт популяционного скрининга хромосомной патологии в России. Вопросы гинекологии, акушерства и перинатологии. 2019;18(3):46–51. https://doi.org/10.20953/1726-1678-2019-3-46-51.; Rolnik D.L., da Silva Costa F., Lee T.J. et al. Association between fetal fraction on cell-free DNA testing and first-trimester markers for pre-eclampsia. Ultrasound Obstet Gynecol. 2018;52(6):722–7. https://doi.org/10.1002/uog.18993.; Scheffer P.G., Wirjosoekarto S.A.M., Becking E.C. et al. Association between low fetal fraction in cell-free DNA testing and adverse pregnancy outcome: A systematic review. Prenatal Diagn. 2021;41(10):1287–95. https://doi.org/10.1002/pd.6028.; Кудрявцева Е.В., Ковалев В.В., Баранов И.В. и др. Низкая фетальная фракция внеклеточной ДНК при проведении неинвазивного пренатального ДНК-скрининга: возможные причины, клиническое значение и тактические решения. Доктор.Ру. 2020;19(8):49–54. https://doi.org/10.31550/1727-2378-2020-19-8-49-54.; Taylor B.D., Haggerty C.L., Ness R.B. et al. Fetal sexual dimorphism in systemic soluble fms-like tyrosine kinase 1 among normotensive and preeclamptic women. Am J Reprod Immunol. 2018;80(5):e13034. https://doi.org/10.1111/aji.13034.; Coutinho C.M., Melchiorre K., Thilaganathan B. Stillbirth at term: Does size really matter? Int J Gynaecol Obstet. 2020;150(3):299–305. https://doi.org/10.1002/ijgo.13229.; Albu A.R., Anca A.F., Horhoianu V.V., Horhoianu I.A. Predictive factors for intrauterine growth restriction. J Med Life. 2014;7(2):165–71.; Kiserud T., Benachi A., Hecher K. et al. The World Health Organization fetal growth charts: concept, findings, interpretation, and application. Am J Obstet Gynecol. 2018;218(2S):S619–S629. https://doi.org/10.1016/j.ajog.2017.12.010.; Zhang N., Tan J., Yang H., Khalil R.A. Comparative risks and predictors of preeclamptic pregnancy in the Eastern, Western and developing world. Biochem Pharmacol. 2020;182:114247. https://doi.org/10.1016/j.bcp.2020.114247.; Chaemsaithong P., Sahota D.S., Poon L.C. First trimester preeclampsia screening and prediction. Am J Obstet Gynecol. 2022;226(2S):S1071–S1097.e2. https://doi.org/10.1016/j.ajog.2020.07.020.; Nowacka U., Papastefanou I., Bouariu A. et al. Second-trimester contingent screening for small-for-gestational-age neonate. Ultrasound Obstet Gynecol. 2022;59(2):177–84. https://doi.org/10.1002/uog.23730.; Hebert J.F., Millar J.A., Raghavan R. et al. Male fetal sex affects uteroplacental angiogenesis in growth restriction mouse model†. Biol Reprod. 2021;104(4):924–34. https://doi.org/10.1093/biolre/ioab006.; Brown L.D., Palmer C., Teynor L. et al. Fetal sex does not impact placental blood flow or placental amino acid transfer in late gestation pregnant sheep with or without placental insufficiency. Reprod Sci. 2022;29(6):1776–89. https://doi.org/10.1007/s43032-021-00750-9.; Stenhouse C., Hogg C.O., Ashworth C.J. Novel relationships between porcine fetal size, sex, and endometrial angiogenesis†. Biol Reprod. 2019;101(1):112–25. https://doi.org/10.1093/biolre/ioz068.; https://www.gynecology.su/jour/article/view/1517
-
10Academic Journal
المؤلفون: M. A. Kurtser, L. G. Sichinava, A. O. Alazhazhi, O. A. Latyshkevich, E. V. Nikolaeva, М. А. Курцер, Л. Г. Сичинава, А. О. Алажажи, О. А. Латышкевич, Е. В. Николаева
المصدر: Obstetrics, Gynecology and Reproduction; Vol 16, No 5 (2022); 541-551 ; Акушерство, Гинекология и Репродукция; Vol 16, No 5 (2022); 541-551 ; 2500-3194 ; 2313-7347
مصطلحات موضوعية: тип плацентации, multiple pregnancy, twins, preeclampsia, PE, type of placentation, многоплодие, двойня, преэклампсия, ПЭ
وصف الملف: application/pdf
Relation: https://www.gynecology.su/jour/article/view/1461/1055; Сидорова И.С., Никитина Н.А., Унанян А.Л. Преэклампсия и снижение материнской смертности в России. Акушерство и гинекология. 2018;(1):107–12. https://doi.org/10.18565/aig.2018.1.107-112.; Курцер М.А., Шаманова М.Б., Синицина О.В. и др. Клиническое обоснование определения соотношения sFlt-1/PlGF с целью раннего выявления и оценки степени тяжести преэклампсии. Акушерство и гинекология. 2018;(11):114–20. https://doi.org/10.18565/aig.2018.11.114-120.; Say L., Chou D., Gemmill A. et al. Global causes of maternal death: a WHO systematic analysis. Lancet Glob Health. 2014;2(6):e323–33. https://doi.org/10.1016/S2214-109X(14)70227-X.; Redman C.W., Staff A.C. Preeclampsia, biomarkers, syncytiotrophoblast stress, and placental capacity. Am J Obstet Gynecol. 2015;213(4 Suppl):S9.e1, S9–11. https://doi.org/10.1016/j.ajog.2015.08.003.; Sánchez O., Llurba E., Marsal G. et al. First trimester serum angiogenic/anti-angiogenic status in twin pregnancies: relationship with assisted reproduction technology. Hum Reprod. 2012;27(2):358–65. https://doi.org/10.1093/humrep/der394.; Zeisler H., Llurba E., Chantraine F. et al. Predictive value of the sFlt-1:PlGF ratio in women with suspected preeclampsia. N Engl J Med. 2016;374(1):13–22. https://doi.org/10.1056/NEJMoa1414838.; Karumanchi S.A., Maynard S.E., Stillman I.E. et al. Preeclampsia: a renal perspective. Kidney Int. 2005;67(6):2101–13. https://doi.org/10.1111/j.1523-1755.2005.00316.x.; Narang K., Szymanski L.M. Multiple gestations and hypertensive disorders of pregnancy: What do we know? Curr Hypertens Rep. 2020;23(1):1. https://doi.org/10.1007/s11906-020-01107-4.; Francisco C., Wright D., Benkő Z. et al. Competing-risks model in screening for pre-eclampsia in twin pregnancy according to maternal factors and biomarkers at 11–13 weeks' gestation. Ultrasound Obstet Gynecol. 2017;50(5):589–95. https://doi.org/10.1002/uog.17531.; Kozłowski S., Stelmaszczyk-Emmel A., Szymusik I. et al. sFlt-1, not PlGF, is related to twin gestation choronicity in the first and third trimesters of pregnancy. Diagnostics (Basel). 2021;11(7):1181. https://doi.org/10.3390/diagnostics11071181.; Phipps E.A., Thadhani R., Benzing T., Karumanchi S.A. Pre-eclampsia: pathogenesis, novel diagnostics and therapies. Nat Rev Nephrol. 2019;15(5):275–89. https://doi.org/10.1038/s41581-019-0119-6. Erratum in: Nat Rev Nephrol. 2019;15(6):386. https://doi.org/10.1038/s41581-019-0156-1.; Fisher S.J. Why is placentation abnormal in preeclampsia? Am J Obstet Gynecol. 2015;213(4 Suppl):S115–22. https://doi.org/10.1016/j.ajog.2015.08.042.; Волочаева М.В., Баев О.Р. Современные представления о патогенезе задержки роста плода. Акушерство и гинекология. 2021;(8):13–7. https://doi.org/10.18565/aig.2021.8.13-17.; Bujold E., Romero R., Chaiworapongsa T. et al. Evidence supporting that the excess of the sVEGFR-1 concentration in maternal plasma in preeclampsia has a uterine origin. J Matern Fetal Neonatal Med. 2005;18(1):9–16. https://doi.org/10.1080/14767050500202493.; Nagamatsu T., Fujii T., Kusumi M. et al. Cytotrophoblasts up-regulate soluble fms-like tyrosine kinase-1 expression under reduced oxygen: an implication for the placental vascular development and the pathophysiology of preeclampsia. Endocrinology. 2004;145(11):4838–45. https://doi.org/10.1210/en.2004-0533.; Hytten F. Blood volume changes in normal pregnancy. Clin Haematol. 1985;14(3):601–12.; Курцер М.А., Сичинава Л.Г., Алажажи А.О. и др. Прогностическая значимость соотношения ангиогенных факторов sFlt-1/PlGF в качестве маркера преэклампсии у беременных двойней. Вопросы гинекологии, акушерства и перинатологии. 2022;21(2):5–13. https://doi.org/10.20953/1726-1678-2022-2-5-12.; Faupel-Badger J.M., McElrath T.F., Lauria M. et al. Maternal circulating angiogenic factors in twin and singleton pregnancies. Am J Obstet Gynecol. 2015;212(5):636.e1–8. https://doi.org/10.1016/j.ajog.2014.11.035.; Письмо Министерства здравоохрагегия Российской Федерации от 07 июня 2016 г. N 15-4/10/2-3483 «О направлении клинических рекомендаций (протокола лечения) «Гипертензивные расстройства во время беременности, в родах и послеродовом периоде. Преэклампсия. Эклампсия». Клинические рекомендации (Протокол лечения). М., 2016. 40 с. Режим доступа: https://rokb.ru/sites/default/files/pictures/gipertenzivnye_rasstroystva_vo_vremya_beremennosti_v_rodah_i_poslerodovom_periode._preeklampsiya._eklampsiya.pdf. [Дата обращения: 01.06.2022].; Рекомендации по лечению артериальной гипертонии. ESH/ESC 2013. Российский кардиологический журнал. 2014;19(1):7–94.; Ходжаева З.С., Холин А.М., Вихляева Е.М. Ранняя и поздняя преэклампсия: парадигмы патобиологии и клиническая практика. Акушерство и гинекология. 2013;(10):4–11.; Brandão A.H., Evangelista A.A., Martins R.M. et al. Prediction of early and late preeclampsia by flow-mediated dilation of the brachial artery. Radiol Bras. 2014;47(4):206–9. https://doi.org/10.1590/0100-3984.2013.1894.; https://www.gynecology.su/jour/article/view/1461
-
11Academic Journal
المؤلفون: K. N. Grigoreva, V. O. Bitsadze, J. Kh. Khizroeva, E. V. Slukhanchuk, M. V. Tretyakova, N. A. Makatsariya, J.-Ch. Gris, G. C. Di Renzo, V. I. Tsibizova, D. V. Blinov, A. D. Makatsariya, К. Н. Григорьева, В. О. Бицадзе, Д. Х. Хизроева, Е. В. Слуханчук, М. В. Третьякова, Н. А. Макацария, Ж.-К. А. Гри, Д. К. Ди Ренцо, В. И. Цибизова, Д. В. Блинов, А. Д. Макацария
المصدر: Obstetrics, Gynecology and Reproduction; Vol 16, No 3 (2022); 306-316 ; Акушерство, Гинекология и Репродукция; Vol 16, No 3 (2022); 306-316 ; 2500-3194 ; 2313-7347
مصطلحات موضوعية: венозная тромбоэмболия эндотелиальная дисфункция, PE, pregnancy, venous thromboembolism, endothelial dysfunction, ПЭ, беременность
وصف الملف: application/pdf
Relation: https://www.gynecology.su/jour/article/view/1361/1025; https://www.gynecology.su/jour/article/view/1361/1026; English F.A., Kenny L.C., McCarthy F.P. Risk factors and effective management of preeclampsia. Integr Blood Press Control. 2015;8:7–12. https://doi.org/10.2147/IBPC.S50641.; Egan K., Kevane B., NíAinle F. Elevated venous thromboembolism risk in preeclampsia: molecular mechanisms and clinical impact. Biochem Soc Trans. 2015;43(4):696–701. https://doi.org/10.1042/BST20140310.; Gris J.-C., Bouvier S., Cochery-Nouvellon É. et al. The role of haemostasis in placenta-mediated complications. Thromb Res. 2019;181 Suppl 1:S10– S14. https://doi.org/10.1016/S0049-3848(19)30359-7.; Ramlakhan K.P., Johnson M.R., Roos-Hesselink J.W. Pregnancy and cardiovascular disease. Nat Rev Cardiol. 2020;17(11):718–31. https://doi.org/10.1038/s41569-020-0390-z.; Matsuo K., Kooshesh S., Dinc M. et al. Late postpartum eclampsia: report of two cases managed by uterine curettage and review of the literature. Am J Perinatol. 2007;24(4):257–66. https://doi.org/10.1055/s-2007-976548.; Pijnenborg R., Vercruysse L., Hanssens M. The uterine spiral arteries in human pregnancy: facts and controversies. Placenta. 2006;27(9–10):939– 58. https://doi.org/10.1016/j.placenta.2005.12.006.; Rana S., Lemoine E., Granger J.P., Karumanchi S.A. Preeclampsia: pathophysiology, challenges, and perspectives. Circ Res. 2019;124(7):1094–112. https://doi.org/10.1161/CIRCRESAHA.118.313276.; Guerby P., Tasta O., Swiader A. et al. Role of oxidative stress in the dysfunction of the placental endothelial nitric oxide synthase in preeclampsia. Redox Biol. 2021;40:101861. https://doi.org/10.1016/j.redox.2021.101861.; Sánchez-Aranguren L.C., Prada C.E., Riaño-Medina C.E., Lopez M. Endothelial dysfunction and preeclampsia: role of oxidative stress. Front Physiol. 2014;5:372. https://doi.org/10.3389/fphys.2014.00372.; Системные синдромы в акушерско-гинекологической клинике: руководство для врачей. Под ред. А.Д. Макацария. М.: МИА, 2010. 897 с.; Lamarca B. Endothelial dysfunction. An important mediator in the pathophysiology of hypertension during pre-eclampsia. Minerva Ginecol. 2012;64(4):309–20.; Fakhouri F., Vercel C., Frémeaux-Bacchi V. Obstetric nephrology: AKI and thrombotic microangiopathies in pregnancy. Clin J Am Soc Nephrol. 2012;7(12):2100–6. https://doi.org/10.2215/CJN.13121211.; Wang M., Hao H., Leeper N.J., Zhu L.; Early Career Committee. Thrombotic regulation from the endothelial cell perspectives. Arterioscler Thromb Vasc Biol. 2018;38(6):e90–e95. https://doi.org/10.1161/ATVBAHA.118.310367.; Weissgerber T.L., Garcia-Valencia O., Milic N.M. et al. Early onset preeclampsia is associated with glycocalyx degradation and reduced microvascular perfusion. J Am Heart Assoc. 2019;8(4):e010647. https://doi.org/10.1161/JAHA.118.010647.; Martin F.A., Murphy R.P., Cummins P.M. Thrombomodulin and the vascular endothelium: insights into functional, regulatory, and therapeutic aspects. Am J Physiol Heart Circ Physiol. 2013;304(12):H1585–97. https://doi.org/10.1152/ajpheart.00096.2013.; Turner R.J., Bloemenkamp K.W., Bruijn J.A., Baelde H.J. Loss of thrombomodulin in placental dysfunction in preeclampsia. Arterioscler Thromb Vasc Biol. 2016;36(4):728–35. https://doi.org/10.1161/ATVBAHA.115.306780.; Fraser R., Whitley G.S., Johnstone A.P. et al. Impaired decidual natural killer cell regulation of vascular remodelling in early human pregnancies with high uterine artery resistance. J Pathol. 2012;228(3):322–32. https://doi.org/10.1002/path.4057.; Hayes-Ryan D., Khashan A.S., Hemming K. et al. Placental growth factor in assessment of women with suspected pre-eclampsia to reduce maternal morbidity: a stepped wedge cluster randomised control trial (PARROT Ireland). BMJ. 2021;374:n1857. https://doi.org/10.1136/bmj.n1857.; Poon L.C., Magee L.A., Verlohren S. et al. A literature review and best practice advice for second and third trimester risk stratification, monitoring, and management of pre-eclampsia: compiled by the pregnancy and non-communicable diseases committee of FIGO (the international federation of gynecology and obstetrics). Int J Gynaecol Obstet. 2021;154 Suppl 1:3–31. https://doi.org/10.1002/ijgo.13763.; Dvorak H.F. Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol. 2002;20(21):4368–80. https://doi.org/10.1200/JCO.2002.10.088.; Levine R.J., Maynard S.E., Qian C. et al. Circulating angiogenic factors and the risk of preeclampsia. N Engl J Med. 2004;350(7):672–83. https://doi.org/10.1056/NEJMoa031884.; McKeeman G.C., Ardill J.E., Caldwell C.M. et al. Soluble vascular endothelial growth factor receptor-1 (sFlt-1) is increased throughout gestation in patients who have preeclampsia develop. Am J Obstet Gynecol. 2004;191(4):1240–6.https://doi.org/10.1016/j.ajog.2004.03.004.; Chaiworapongsa T., Romero R., Espinoza J. et al. Evidence supporting a role for blockade of the vascular endothelial growth factor system in the pathophysiology of preeclampsia. Young Investigator Award. Am J Obstet Gynecol. 2004;190(6):1541–7; discussion 1547–50. https://doi.org/10.1016/j.ajog.2004.03.043.; Maynard S.E., Min J.Y., Merchan J. et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest. 2003;111(5):649–58. https://doi.org/10.1172/JCI17189.; Hu Y., Yan R., Zhang C. et al. HMGB1 from hypoxic trophoblasts promotes endothelial microparticle production and thrombophilia in preeclampsia. Arterioscler Thromb Vasc Biol. 2018;38(6):1381–91.https://doi.org/10.1161/ATVBAHA.118.310940.; Hu Y., Li H., Yan R. et al. Increased neutrophil activation and plasma DNA levels in patients with pre-eclampsia. Thromb Haemost. 2018;118(12):2064–73. https://doi.org/10.1055/s-0038-1675788.; Слуханчук Е.В. NETs и онкологический процесс. Акушерство, Гинекология и Репродукция. 2021;15(1):107–116. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2021.204.; Jacobsen A.F., Skjeldestad F.E., Sandset P.M. Ante- and postnatal risk factors of venous thrombosis: a hospital-based case-control study. J Thromb Haemost. 2008;6(6):905–12. https://doi.org/10.1111/j.1538-7836.2008.02961.x.; Peixoto A.B., Araujo Júnior E., Ribeiro J.U. et al. Evaluation of inflammatory mediators in the deciduas of pregnant women with pre-eclampsia/eclampsia. J Matern Fetal Neonatal Med. 2016;29(1):75–9. https://doi.org/10.3109/14767058.2014.987117.; Regal J.F., Burwick R.M., Fleming S.D. The complement system and preeclampsia. Curr Hypertens Rep. 2017;19(11):87. https://doi.org/10.1007/s11906-017-0784-4.; Sudo M., Yoshita K., Ito Y. et al. Histopathological features of kidney and renal prognosis in patients with preeclampsia. Pregnancy Hypertens. 2021;25:75–80. https://doi.org/10.1016/j.preghy.2021.05.015.; Paré E., Parry S., McElrath T.F. et al. Clinical risk factors for preeclampsia in the 21st century. Obstet Gynecol. 2014;124(4):763–70. https://doi.org/10.1097/AOG.0000000000000451.; Zera C.A., Seely E.W., Wilkins-Haug L.E. et al. The association of body mass index with serum angiogenic markers in normal and abnormal pregnancies. Am J Obstet Gynecol. 2014;211(3):247.e1–7. https://doi.org/10.1016/j.ajog.2014.03.020.; Raia-Barjat T., Edebiri O., Ni Ainle F. Preeclampsia and venous thromboembolism: pathophysiology and potential therapy. Front Cardiovasc Med. 2022;9:856923. https://doi.org/10.3389/fcvm.2022.856923.; Huppertz B. Placental origins of preeclampsia: challenging the current hypothesis. Hypertension. 2008;51(4):970–5. https://doi.org/10.1161/HYPERTENSIONAHA.107.107607.; Chunilal S.D., Bates S.M. Venous thromboembolism in pregnancy: diagnosis, management and prevention. Thromb Haemost. 2009;101(3):428–38.; Parunov L.A., Soshitova N.P., Ovanesov M.V. et al. Epidemiology of venous thromboembolism (VTE) associated with pregnancy. Birth Defects Res C Embryo Today. 2015;105(3):167–84. https://doi.org/10.1002/bdrc.21105.; Konstantinides S.V., Meyer G., Becattini C. et al., ESC Scientific Document Group. 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS). Eur Heart J. 2020;41(4):543–603. https://doi.org/10.1093/eurheartj/ehz405.; Pregnancy Mortality Surveillance System. Center for Disease Control and Prevention, 2019. Available at: https://www.cdc.gov/reproductivehealth/maternal-mortality/pregnancy-mortalitysurveillance-system.htm.; Rodger M. Pregnancy and venous thromboembolism: ’TIPPS’ for risk stratification. Hematol Am Soc Hematol Educ Program. 2014;2014(1):387–92. https://doi.org/10.1182/asheducation-2014.1.387.; Liu S., Rouleau J., Joseph K.S. et al. Epidemiology of pregnancyassociated venous thromboembolism: a population-based study in Canada. J Obstet Gynaecol Can. 2009;31(7):611–20. https://doi.org/10.1016/S1701-2163(16)34240-2.; ACOG Practice Bulletin No. 196: Thromboembolism in pregnancy. Obstet Gynecol. 2018;132(1):e1–е17. https://doi.org/10.1097/AOG.0000000000002706.; Bates S.M., Middeldorp S., Rodger M. et al. Guidance for the treatment and prevention of obstetric-associated venous thromboembolism. J Thromb Thrombolysis. 2016;41(1):92–128. https://doi.org/10.1007/s11239-015-1309-0.; Royal College of Obstetricians and Gynaecologists. Reducing the risk of venous thromboembolism during pregnancy and the puerperium (Greentop Guideline No 37a). London: RCOG, 2015. Available at: https://www.rcog.org.uk/globalassets/documents/guidelines/gtg37a.pdf.; Linnemann B., Bauersachs R., Rott H. et al.; Working Group in Women’s Health of the Society of Thrombosis and Haemostasis. Diagnosis of pregnancy-associated venous thromboembolism – position paper of the Working Group in Women’s Health of the Society of Thrombosis and Haemostasis (GTH). Vasa. 2016;45(2):87–101. https://doi.org/10.1024/0301-1526/a000503.; Sennstrom M., Rova K., Hellgren M. et al. Thromboembolism and in vitro fertilization–a systematic review. Acta Obstet Gynecol Scand. 2017;96(9):1045–52. https://doi.org/10.1111/aogs.13147.; Sultan A.A., West J., Grainge M.J. et al. Development and validation of risk prediction model for venous thromboembolism in postpartum women: multinational cohort study. BMJ. 2016;355:i6253. https://doi.org/10.1136/bmj.i6253.; Sultan A.A., Tata L.J., West J. et al. Risk factors for first venous thromboembolism around pregnancy: a population-based cohort study from the United Kingdom. Blood. 2013;121(19):3953–61. https://doi.org/10.1182/blood-2012-11-469551.; Osol G., Moore L.G. Maternal uterine vascular remodeling during pregnancy. Microcirculation. 2014;21(1):38–47. https://doi.org/10.1111/micc.12080.; Sultan A.A., West J., Tata L.J. et al. Risk of first venous thromboembolism in and around pregnancy: a population-based cohort study. Br J Haematol. 2012;156(3):366–73. https://doi.org/10.1111/j.1365-2141.2011.08956.x.; Zhou Z.-H., Chen Y., Zhao B.-H. et al. Early postpartum venous thromboembolism: risk factors and predictive index. Clin Appl Thromb Hemost. 2019;25:1076029618818777. https://doi.org/10.1177/1076029618818777.; Sultan A.A., Grainge M.J., West J. et al. Impact of risk factors on the timing of first postpartum venous thromboembolism: a population-based cohort study from England. Blood. 2014;124(18):2872–80. https://doi.org/10.1182/blood-2014-05-572834.; Benschop L., Duvekot J.J., van Lennep R.J.E. Future risk of cardiovascular disease risk factors and events in women after a hypertensive disorder of pregnancy. Heart. 2019;105(16):1273–8. https://doi.org/10.1136/heartjnl-2018-313453.; Thilaganathan B., Kalafat E. Cardiovascular system in preeclampsia and beyond. Hypertension. 2019;73(3):522–31. https://doi.org/10.1161/HYPERTENSIONAHA.118.11191.; Craici I., Wagner S., Garovic V.D. Preeclampsia and future cardiovascular risk: formal risk factor or failed stress test? Ther Adv Cardiovasc Dis. 2008;2(4):249–59. https://doi.org/10.1177/1753944708094227.; van Oostwaard M.F., Langenveld J., Schuit E. et al. Recurrence of hypertensive disorders of pregnancy: an individual patient data metaanalysis. Am J Obstet Gynecol. 2015;212(5):624.e1–17. https://doi.org/10.1016/j.ajog.2015.01.009.; Barton J.R., Sibai B.M. Prediction and prevention of recurrent preeclampsia. Obstet Gynecol. 2008;112(2 Pt 1):359–72. https://doi.org/10.1097/AOG.0b013e3181801d56.; Mostello D., Kallogjeri D., Tungsiripat R., Leet T. Recurrence of preeclampsia: effects of gestational age at delivery of thefirst pregnancy, body mass index, paternity, and interval between births. Am J Obstet Gynecol. 2008;199(1):55.e1–7. https://doi.org/10.1016/j.ajog.2007.11.058.; van Rijn B.B., Hoeks L.B., Bots M.L. et al. Outcomes of subsequent pregnancy after first pregnancy with early-onset preeclampsia. Am J Obstet Gynecol. 2006;195(3):723–8. https://doi.org/10.1016/j.ajog.2006.06.044.; Bramham K., Briley A.L., Seed P. et al. Adverse maternal and perinatal outcomes in women with previous preeclampsia: a prospective study. Am J Obstet Gynecol. 2011;204(6):512.e1–9. https://doi.org/10.1016/j.ajog.2011.02.014.; McDonald S.D., Best C., Lam K. The recurrence risk of severe de novo pre-eclampsia in singleton pregnancies: a population-based cohort. BJOG. 2009;116(12):1578–84. https://doi.org/10.1111/j.1471-0528.2009.02317.x.; Benschop L., Duvekot J.J., Roeters van Lennep J.E. Future risk of cardiovascular disease risk factors and events in women after a hypertensive disorder of pregnancy. Heart. 2019;105(16):1273–8.; Leon L.J., McCarthy F.P., Direk K. et al. Preeclampsia and cardiovascular disease in a large UK pregnancy cohort of linked electronic health records: a CALIBER study. Circulation. 2019;140(13):1050–60. https://doi.org/10.1161/HYPERTENSIONAHA.118.038080.; Alsnes I.V., Vatten L.J., Fraser A. et al. Hypertension in pregnancy and offspring cardiovascular risk in young adulthood: prospective and sibling studies in the HUNT study (Nord-Trøndelag Health Study) in Norway. Hypertension. 2017;69(4):591–8. https://doi.org/10.1161/HYPERTENSIONAHA.116.08414.; Bates S.M., Greer I.A., Middeldorp S. et al. VTE, thrombophilia, antithrombotic therapy, and pregnancy: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012;141(2 Suppl):e691S–736S. https://doi.org/10.1378/chest.11-2300.; Kelliher S., Maguire P.B., Szklanna P.B. et al. Pathophysiology of the venous thromboembolism risk in preeclampsia. Hamostaseologie. 2020;40(5):594–604. https://doi.org/10.1055/a-1162-3905.; Schaefer C., Hannemann D., Meister R. et al. Vitamin K antagonists and pregnancy outcome. A multi-centre prospective study. Thromb Haemost. 2006;95(6):949–57. https://doi.org/10.1160/TH06-02-0108.; Mohzari Y.A., Asdaq S.M.B., Bamogaddam R.F. et al. Postpartum prophylaxis of venous thromboembolism with anticoagulation: a case report. J Taibah Univ Med Sci. 2021;16(2):292–4. https://doi.org/10.1016/j.jtumed.2020.12.016.; Sessa M., Mascolo A., Callreus T. et al. Direct-acting oral anticoagulants (DOACs) in pregnancy: new insight from VigiBase®. Sci Rep. 2019;9(1):7236. https://doi.org/10.1038/s41598-019-43715-4.; Quinlan D.J., Mcquillan A., Eikelboom J.W. Low molecular-weight heparin compared with intravenous unfractionated heparin for treatment of pulmonary embolism: a meta-analysis of randomized, controlled trials. Ann Intern Med. 2004;140(3):175–83. https://doi.org/10.7326/0003-4819-140-3-200402030-00008.; Galambosi P., Hiilesmaa V., Ulander V.M. et al. Prolonged low molecularweight heparin use during pregnancy and subsequent bone mineral density. Thromb Res. 2016;143:122–6. https://doi.org/10.1016/j.thromres.2016.05.016.; Bapat P., Pinto L.S., Lubetsky A. et al. Examining the transplacental passage of apixaban using the dually perfused human placenta. J Thromb Haemost. 2016;14(7):1436–41. https://doi.org/10.1111/jth.13353.; von Schmidt auf Altenstadt J.F., Hukkelhoven C.W.P.M., van Roosmalen J., Bloemenkamp K.W.M. Pre-eclampsia increases the risk of postpartum haemorrhage: a nationwide cohort study in the Netherlands. PLoS One. 2013;8(12):e81959. https://doi.org/10.1371/journal.pone.0081959.; Rodger M.A., Gris J.C., de Vries J.I.P. et al. Low-molecular-weight heparin and recurrent placenta-mediated pregnancy complications: a metaanalysis of individual patient data from randomised controlled trials. Lancet. 2016;388(10060):2629–41. https://doi.org/10.1016/S0140-6736(16)31139-4.; Leduc D., Senikas V., Lalonde A.B., Clinical Practice Obstetrics Committee. Active management of the third stage of labour: prevention and treatment of postpartum hemorrhage. J Obstet Gynaecol Can. 2009;31:980–93. https://doi.org/10.1016/S1701-2163(16)34329-8.; Chan W.-S., Rey E., Kent N.E. et al. Venous thromboembolism and antithrombotic therapy in pregnancy. J Obstet Gynaecol Can. 2014;36(6):527–53. https://doi.org/10.1016/s1701-2163(15)30569-7.; Bates S.M., Rajasekhar A., Middeldorp S. et al. American Society of Hematology 2018 guidelines for management of venous thromboembolism: venous thromboembolism in the context of pregnancy. Blood Adv. 2018;2(22):3317–59. https://doi.org/10.1182/bloodadvances.2018024802.; Branch D.W., Holmgren C., Goldberg J.D. Committee on Practice Bulletins – Obstetrics, American College of Obstetricians and Gynecologists. Practice Bulletin No. 132: antiphospholipid antibody syndrome. Obstet Gynaecol. 2012;120(6):1514–21. https://doi.org/10.1097/01.AOG.0000423816.39542.0f.; https://www.gynecology.su/jour/article/view/1361
-
12Academic Journal
المؤلفون: A. Ivshin A., T. Bagaudin Z., A. Gusev V., А. Ившин А., Т. Багаудин З., А. Гусев В.
المصدر: Obstetrics, Gynecology and Reproduction; Vol 15, No 5 (2021); 576-585 ; Акушерство, Гинекология и Репродукция; Vol 15, No 5 (2021); 576-585 ; 2500-3194 ; 2313-7347
مصطلحات موضوعية: artificial intelligence, Al, prediction, great obstetrical syndromes, preeclampsia, PE, machine learning, neural networks, algorithms, risk factors, искусственный интеллект, ИИ, прогнозирование, большие акушерские синдромы, преэклампсия, ПЭ, машинное обучение, нейронные сети, алгоритмы, факторы риска
وصف الملف: application/pdf
Relation: https://www.gynecology.su/jour/article/view/1047/952; Di Renzo G.C. The great obstetrical syndromes. J Matern Fetal Neonatal Med. 2009;22(8):633–5. https://doi.org/10.1080/14767050902866804.; Brosens I., Pijnenborg R., Vervruysse L., Romero R. The «Great obstetrical syndromes» are associated with disorders of deep placentation. Am J Obstet Gynecol. 2011;204(3):193–201. https://doi.org/10.1016/j.ajog.2010.08.009.; Mastrolia S.A., Mazor M., Loverro G. et al. Placental vascular pathology and increased thrombin generation as mechanisms of desease in obstetrical syndromes. Perr J. 2014;18(2):e653. https://doi.org/10.7717/peerj.653.; Walker J.J. Pre-eclampsia. Lancet. 2000;356(9237):1260–5. https://doi.org/10.1016/S0140-6736(00)02800-2.; Ghulmiyyah L., Sibai B. Maternal mortality from preeclampsia/eclampsia. Semin Perinatol. 2012;36(1):56–9. https://doi.org/10.1053/j.semperi.2011.09.011.; Kuklina E.V., Ayala C., Callaghan W.M. Hypertensive disorders and severe obstetric morbidity in the United States. Obstet Gynecol. 2009;113(6):1299–306. https://doi.org/10.1097/AOG.0b013e3181a45b25.; ACOG Committee Opinion No. 743: Low-Dose Aspirin Use During Pregnancy. Obstet Gynecol. 2018;132(1):e44–e52. https://doi.org/10.1097/AOG.0000000000002708.; Rolnik D.L., Wright D., Poon L.C. et al. Aspirin versus placebo in pregnancies at high risk for preterm preeclampsia. N Engl J Med. 2017;377(7):613–22. https://doi.org/10.1056/NEJMoa1704559.; Duley L., Meher S., Hunter K.E. et al. Antiplatelet agents for preventing pre-eclampsia and its complications. Cochrane Database Syst Rev. 2019;2019(10):CD004659. https://doi.org/10.1002/14651858.CD004659.pub3.; Клинические рекомендации «Преэклампсия. Эклампсия. Отеки, протеинурия и гипертензивные расстройства во время беременности, в родах и послеродовом периоде». Минздрав России, 2021. 79 с.; Duhig K., Vandermolen B., Shennan A. Recent advances in the diagnosis and management of pre-eclampsia. F1000Res. 2018;7:242. https://doi.org/10.12688/f1000research.12249.1.; Schork N.J. Artificial intelligence and personalized medicine. Cancer Treat Res. 2019;178:265–83. https://doi.org/10.1007/978-3-030-16391-4_11.; Camacho D.M., Collins K.M., Powers R.K. et al. Next-generation machine learning for biological networks. Cell. 2018;173(7):1581–92. https://doi.org/10.1016/j.cell.2018.05.015.; Sidey-Gibbons J., Sidey-Gibbons C. Machine learning in medicine: a practical introduction. BMC Med Res Methodol. 2019;19(1):64. https://doi.org/10.1186/s12874-019-0681-4.; Ившин А.А., Гусев А.В., Новицкий Р.Э. Искусственный интеллект: предиктивная аналитика перинатального риска. Вопросы гинекологии, акушерства и перинатологии. 2020;19(6):133–44. http://doi.org/10.20953/1726-1678-2020-6-133-144.; Ившин А.А., Багаудин Т.З., Гусев А.В. Искусственный интеллект на страже репродуктивного здоровья. Акушерство и гинекология. 2021;(5):17–24. http://doi.org/10.18565/aig.2021.5.17-24.; National Collaborating Centre for Women's and Children's Health (UK). Hypertension in Pregnancy: The Management of Hypertensive Disorders During Pregnancy. London: RCOG Press, 2010.; LeFevre M.L.; U.S. Preventive Services Task Force. Low-dose aspirin use for the prevention of morbidity and mortality from preeclampsia: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med. 2014;161(11):819–26. https://doi.org/10.7326/M14-1884.; Poon L.C., Shennan A., Hyett J.A. et al. The International Federation of Gynecology and Obstetrics (FIGO) initiative on pre-eclampsia: A pragmatic guide for first-trimester screening and prevention [published correction appears in Int J Gynaecol Obstet. 2019;146(3):390–1]. Int J Gynaecol Obstet. 2019;145(Suppl 1):1–33. https://doi.org/10.1002/ijgo.12802.; O’Gorman N., Wright D., Poon L.C. et al. Multicenter screening for pre-eclampsia by maternal factors and biomarkers at 11-13 weeks’ gestation: comparison with NICE guidelines and ACOG recommendations. Ultrasound Obstet Gynecol. 2017;49(6):756–60. https://doi.org/10.1002/uog.17455.; Kleinrouweler C.E., Cheong-See F.M., Collins G.S. et al. Prognostic models in obstetrics: available, but far from applicable. Am J Obstet Gynecol. 2016;214(1):79–90.e36. https://doi.org/10.1016/j.ajog.2015.06.013.; Kenny L.C., Dunn W.B., Ellis D.I. et al. Novel biomarkers for pre-eclampsia detected using metabolomics and machine learning. Metabolomics. 2005;1(3):227–34. https://doi.org/10.1007/s11306-005-0003-1.; van Kuijk S.M., Delahaije D.H., Dirksen C.D. et al. External validation of a model for periconceptional prediction of recurrent early-onset preeclampsia. Hypertens Pregnancy. 2014;33(3):265–76. https://doi.org/10.3109/10641955.2013.872253.; Villa P.M., Marttinen P., Gillberg J. et al. Cluster analysis to estimate the risk of preeclampsia in the high-risk Prediction and Prevention of Preeclampsia and Intrauterine Growth Restriction (PREDO) study. PLoS One. 2017;12(3):e0174399. https://doi.org/10.1371/journal.pone.0174399.; Tejera E., Areias J.M., Rodrigues A. et al. Artificial neural network for normal, hypertensive, and preeclamptic pregnancy classification using maternal heart rate variability indexes. J Matern Fetal Neonatal Med. 2011;24(9):1147–51. https://doi.org/10.3109/14767058.2010.545916.; Neocleous C.K., Anastasopoulos P., Nikolaides K.H. et al. Neural networks to estimate the risk for preeclampsia occurrence. International Joint Conference on Neural Networks. Atlanta, Georgia, USA, 14–19 June 2009. 2221–5. https://doi.org/10.1109/IJCNN.2009.5178820.; Marić I., Tsur A., Aghaeepour N. et al. Early prediction of preeclampsia via machine learning. Am J Obstet Gynecol MFM. 2020;2(2):100100. https://doi.org/10.1016/j.ajogmf.2020.100100.; Praciano de Souza P.C., Gurgel Alves J.A., Holanda Moura S. et al. Second trimester screening of preeclampsia using maternal characteristics and uterine and ophthalmic artery Doppler. Ultraschall Med. 2018;39(2):190–7. http://doi.org/10.1055/s-0042-104649.; Gomaa M.F., Naguib A.H., Swedan K.H., Abdellatif S.S. Serum tumor necrosis factor-α level and uterine artery Doppler indices at 11-13 weeks' gestation for preeclampsia screening in low-risk pregnancies: a prospective observational study. J Reprod Immunol. 2015;109:31–5. http://doi.org/10.1016/j.jri.2015.02.007.; Zhou J., Zhao X., Wang Z., Hu Y. Combination of lipids and uric acid in mid-second trimester can be used to predict adverse pregnancy outcomes. J Matern Fetal Neonatal Med. 2012;25(12):2633–8. http://doi.org/10.3109/14767058.2012.704447.; Jhee J.H., Lee S., Park Y. et al. Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One. 2019;14(8):e0221202. https://doi.org/10.1371/journal.pone.0221202.; Wright D., Akolekar R., Syngelaki A. et al. A competing risks model in early screening for preeclampsia [published correction appears in Fetal Diagn Ther. 2013;34(1):18]. Fetal Diagn Ther. 2012;32(3):171–8. https://doi.org/10.1159/000338470.; Akolekar R., Syngelaki A., Poon L. et al. Competing risks model in early screening for preeclampsia by biophysical and biochemical markers [published correction appears in Fetal Diagn Ther. 2013;34(1):43]. Fetal Diagn Ther. 2013;33(1):8–15. https://doi.org/10.1159/000341264.; Wright A., Wright D., Syngelaki A. et al. Two-stage screening for preterm preeclampsia at 11–13 weeks' gestation. Am J Obstet Gynecol. 2019;220(2):197.e1–197.e11. https://doi.org/10.1016/j.ajog.2018.10.092.; Wright D., Tan M.Y., O'Gorman N. et al. Predictive performance of the competing risk model in screening for preeclampsia [published correction appears in Am J Obstet Gynecol. 2019 Apr 24]. Am J Obstet Gynecol. 2019;220(2):199.e1–199.e13. https://doi.org/10.1016/j.ajog.2018.11.1087.; Andrietti S., Silva M., Wright A. et al. Competing-risks model in screening for preeclampsia by maternal factors and biomarkers at 35-37 weeks' gestation. Ultrasound Obstet Gynecol. 2016;48(1):72–9. https://doi.org/10.1002/uog.15812.; Tan M.Y., Wright D., Syngelaki A. et al. Comparison of diagnostic accuracy of early screening for pre-eclampsia by NICE guidelines and a method combining maternal factors and biomarkers: results of SPREE. Ultrasound Obstet Gynecol. 2018;51(6):743–50. https://doi.org/10.1002/uog.19039.; Poon L.C., Rolnik D.L., Tan M.Y. et al. ASPRE trial: incidence of preterm pre-eclampsia in patients fulfilling ACOG and NICE criteria according to risk by FMF algorithm. Ultrasound Obstet Gynecol. 2018;51(6):738–42. https://doi.org/10.1002/uog.19019.; Sonek J., Krantz D., Carmichael J. et al. First-trimester screening for early and late preeclampsia using maternal characteristics, biomarkers, and estimated placental volume. Am J Obstet Gynecol. 2018;218(1):126.e1–126.e13. https://doi.org/10.1016/j.ajog.2017.10.024.; https://www.gynecology.su/jour/article/view/1047
-
13Report
المؤلفون: Ярёмко, Федор Викторович
المساهمون: Ильященко, Дмитрий Павлович
مصطلحات موضوعية: ПЭ - полиэтилен, SDR - стандартное отношение размеров, ПНД - полиэтилен низкого давления, НИ - сварка нагретым инструментом, ЗН- сварка закладным нагревателем, PE - polyethylene, SDR - Standart Dimension Ratio, HDPE - low pressure polyethylene, NI - welding with a heated tool, ЗН - welding with embedded heater, 15.03.01, 621.757:621.791:622.691.4
وصف الملف: application/pdf
Relation: Ярёмко Ф. В. Разработка технологии сборки и сварки магистрального газопровода из полиэтиленовых труб диаметром 225 мм : бакалаврская работа / Ф. В. Ярёмко; Национальный исследовательский Томский политехнический университет (ТПУ), Юргинский технологический институт (филиал) ТПУ (ЮТИ ТПУ), Юргинский технологический институт (филиал) ТПУ (ЮТИ ТПУ); науч. рук. Д. П. Ильященко. — Томск, 2021.; http://earchive.tpu.ru/handle/11683/67116
-
14Academic Journal
المؤلفون: Хабибуллина, З. В., Чан Ван Туан, Ракоч, А. Г.
مصطلحات موضوعية: сплав Д16Т, плазменно-электролитическое оксидирование, ПЭ покрытия, алюминиевые сплавы, титановые сплавы, плазменно-электролитические покрытия, адгезия ПЭ
وصف الملف: application/pdf
Relation: Хабибуллина, З. В. Основные функциональные свойства внутренних слоев ПЭ покрытий, полученных на сплаве Д16Т / З. В. Хабибуллина, Чан Ван Туан, А. Г. Ракоч // Инновационные материалы и технологии - 2022 : материалы Международной научно-технической конференции молодых ученых, Минск, 23-24 марта 2022 г. - Минск : БГТУ, 2022. – С. 401-403.; https://elib.belstu.by/handle/123456789/48896; 544.653.22
-
15
مصطلحات موضوعية: ПЭ покрытия, плазменно-электролитическое оксидирование, титановые сплавы, адгезия ПЭ, плазменно-электролитические покрытия, сплав Д16Т, алюминиевые сплавы
وصف الملف: application/pdf
-
16Academic Journal
مصطلحات موضوعية: пьезоэлектрический привод, микропьезоэлектрический двигатель, МПД, обратный пьезоэлектрический эффект, ПЭ, ультразвуковой генератор, подвижная часть, piezoelectric drive, micro piezoelectric engine
وصف الملف: application/pdf
Relation: Гасанов М. Г. Определение оптимальных размеров элементов пьезоэлектрического двигателя для оптических коммутаторов / М. Г. Гасанов, С. Г. Гардашов // Вісник Нац. техн. ун-ту "ХПІ" : зб. наук. пр. Сер. : Інформатика та моделювання. – Харків : НТУ "ХПІ", 2017. – № 50 (1271). – С. 25-35.; http://repository.kpi.kharkov.ua/handle/KhPI-Press/35473
-
17Academic Journal
المؤلفون: Бызова, Н. А., Байматов, Д. К., Хмельников, Е. А., Заводова, Т. Е.
مصطلحات موضوعية: ВЗРЫВНОЕ МЕТАТЕЛЬНОЕ УСТРОЙСТВО (ВМУ), ПОРАЖАЮЩИЕ ЭЛЕМЕНТЫ (ПЭ), ВЗРЫВЧАТОЕ ВЕЩЕСТВО (ВВ), МОДЕЛИРОВАНИЕ, ДЕТОНАЦИОННАЯ ВОЛНА
وصف الملف: application/pdf
Relation: Молодежь и наука. — Том 1. — Нижний Тагил, 2022; МОДЕЛИРОВАНИЕ ВЗРЫВНОГО МЕТАТЕЛЬНОГО УСТРОЙСТВА ДЛЯ ПРОВЕДЕНИЯ ИСПЫТАНИЙ НА ПОРАЖЕНИЕ БОЕПРИПАСОВ ВЫСОКОСКОРОСТНЫМ ОСКОЛКОМ / Н. А. Бызова, Д. К. Байматов, Е. А. Хмельников, Т. Е. Заводова. — Текст : электронный // Молодежь и наука : материалы международной научно-практической конференции старшеклассников, студентов и аспирантов (27 мая 2022 г.) : в 2 томах. — Нижний Тагил : НТИ (филиал) УрФУ, 2022. — Том 1. — С. 117-120.; http://elar.urfu.ru/handle/10995/117439
-
18Academic Journal
المؤلفون: F B Buranova
المصدر: RUDN Journal of Medicine, Vol 0, Iss 3, Pp 82-87 (2010)
مصطلحات موضوعية: беременность после ЭКО и ПЭ, плацентарная недостаточность, КТГ, плазмаферез, Medicine
وصف الملف: electronic resource
-
19
مصطلحات موضوعية: МОДЕЛИРОВАНИЕ, ДЕТОНАЦИОННАЯ ВОЛНА, ВЗРЫВНОЕ МЕТАТЕЛЬНОЕ УСТРОЙСТВО (ВМУ), ПОРАЖАЮЩИЕ ЭЛЕМЕНТЫ (ПЭ), ВЗРЫВЧАТОЕ ВЕЩЕСТВО (ВВ)
وصف الملف: application/pdf
-
20