يعرض 1 - 20 نتائج من 647 نتيجة بحث عن '"ПОЗВОНОЧНИК"', وقت الاستعلام: 0.63s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal
  3. 3
    Academic Journal
  4. 4
    Academic Journal

    المصدر: Ukrainian Neurosurgical Journal; Vol. 30 No. 1 (2024); 3-12 ; Ukrainian Neurosurgical Journal; Том 30 № 1 (2024); 3-12 ; 2663-9092 ; 2663-9084

    وصف الملف: application/pdf

  5. 5
    Academic Journal

    المصدر: Diagnostic radiology and radiotherapy; Том 14, № 4 (2023); 52-59 ; Лучевая диагностика и терапия; Том 14, № 4 (2023); 52-59 ; 2079-5343

    وصف الملف: application/pdf

    Relation: https://radiag.bmoc-spb.ru/jour/article/view/939/622; Selvarajah S., Schneider E.B., Becker D., Sadowsky C., Haider A.H., Hammond E.R. The Epidemiology of Childhood and Adolescent Traumatic Spinal Cord Injury in the United States: 2007–2010 // J. Neurotrauma. 2014. Vol. 31, No. 18. P. 1548–1560. doi:10.1089/neu.2014.3332.; Denslow E. Spinal Cord Injury in Children: Looking at Statistics and the Recovery Process // Flint Rehab. 2022.; Vogel L.C., Hickey K.J., Klaas S.J., Anderson C.J. Unique issues in pediatric spinal cord injury // Orthop. Nurs. 2004. Vol. 23. P. 300–308. doi:10.1097/00006416-200409000-00004.; Galvin J., Scheinberg A., New P.W. A retrospective case series of pediatric spinal cord injury and disease in Victoria, Australia // Spine (Phila Pa 1976). 2013. Vol. 38. E878–82. doi:10.1097/BRS.0b013e318294e839.; Chen Y., Tang Y., Vogel L.C., DeVivo M.J. Causes of spinal cord injury // Top Spinal Cord Inj. Rehabil. 2013. Vol. 19. P. 1–8. doi:10.1310/sci1901-1.; Osorio M., Reyes M.R., Massagli T.L. Pediatric Spinal Cord Injury // Curr. Phys. Med. Rehabil. Rep. 2014. Vol. 2. P. 158–168. doi:10.1007/s40141-014-0054-1.; Mahajan P., Jaffe D.M., Olsen C.S., Leonard J.R., Nigrovic L.E., Rogers A.J., Kuppermann N., Leonard J.C. Spinal cord injury without radiographic abnormality in children imaged with magnetic resonance imaging // J. Trauma Acute Care Surg. 2013. Vol. 75, No. 5. P. 843–847. doi:10.1097/TA.0b013e3182a74abd.; Hale A.T., Alvarado A., Bey A.K., Pruthi S., Mencio G.A., Bonfield C.M. et al. X-ray vs. CT in identifying significant C-spine injuries in the pediatric population // Childs Nerv. Syst. 2017. Vol. 33. P. 1977–1983. doi:10.1007/s00381-017-3448-4.; Cirak B., Ziegfeld S., Knight V.M., Chang D., Avellino A.M., Paidas C.N. et al. Spinal injuries in children // J. Pediatr. Surg. 2004. Vol. 39. P. 607–612. doi:10.1016/j.jpedsurg.2003.12.011.; Booth T.N. Cervical spine evaluation in pediatric trauma // AJR Am. J. Roentgenol. 2012. Vol. 198. W417–425. doi:10.2214/AJR.11.8150.; Saksena S., Mohamed F.B., Middleton D.M., Krisa L., Alizadeh M., Shahrampour S. et al. Diffusion Tensor Imaging Assessment of Regional White Matter Changes in the Cervical and Thoracic Spinal Cord in Pediatric Subjects // J. Neurotrauma. 2019. Vol. 36, No. 6. P. 853–861. doi:10.1089/neu.2018.5826.; Alkadeem R.M.D.E.A.A., El-Shafey M.H.R., Eldein A.E.M.S., Nagy H.A. Magnetic resonance diffusion tensor imaging of acute spinal cord injury in spinal trauma // Egypt. J. Radiol. Nucl. Med. 2021. 52. 70. doi:10.1186/s43055-021-00450.; Vaccaro A.R., Zeiller S.C., Hulbert R.J., Anderson P.A., Harris M., Hedlund R. et al. The Thoracolumbar Injury Severity Score: A Proposed Treatment Algorithm // Clinical Spine Surgery. 2015. Vol. 18. P. 209–215.; Henry M.K., Zonfrillo M.R., French B., Song L., Feudtner C., Wood J.N. Hospital Variation in Cervical Spine Imaging of Young Children with Traumatic Brain Injury // Acad. Pediatr. 2016. Vol. 16, No. 7. P. 684–691. doi:10.1016/j.acap.2016.01.017.; Powell E.C., Leonard J.R., Olsen C.S., Jaffe D.M., Anders J., Leonard J.C. Atlantoaxial Rotatory Subluxation in Children // Pediatr. Emerg. Care. 2017. 33, No. 2. P. 86–91. doi:10.1097/PEC.0000000000001023.; Leonard J.R., Jaffe D.M., Kuppermann N., Olsen C.S., Leonard J.C., Pediatric Emergency Care Applied Research Network (PECARN) Cervical Spine Study Group et al. Cervical spine injury patterns in children // Pediatrics. 2014. Vol. 133. P. 1179–1188. doi:10.1542/peds.2013-3505.; Browne L.R., Schwartz D.H., Ahmad F.A., Wallendorf M., Kuppermann N., Lerner E.B. et al. Interobserver Agreement In Pediatric CSI Assessment // Academic Emergency Medicine. 2017. Vol. 24, No. 12. P. 1501–1510. doi:10.1111/acem.13312.; Schottler J., Vogel L.C., Sturm P. Spinal cord injuries in young children: a review of children injured at 5 years of age and younger // Dev. Med. Child Neurol. 2012. Vol. 54, No. 12. P. 1138–1143. doi:10.1111/j.1469-8749.2012.04411.x.; Залетина А.В., Виссарионов С.В., Баиндурашвили А.Г., Садовой М.А., Соловьева К.С., Купцова О.А. Структура повреждений позвоночника у детей в регионах Российской Федерации // Хирургия позвоночника. 2017. Т. 14, № 4. С. 52–60. doi:10.14531/ss2017.4.52-60.; D’Amato C. Pediatric spinal trauma: injuries in very young children // Clin. Orthop. Relat. Res. 2005. 432. P. 34–40.; Садофьева В.И. Нормальная рентгеноанатомия костно-суставной системы у детей. Л.: Медицина, 1990. 222 c.; Adib O., Berthier E., Loisel D., Aubé C. Pediatric cervical spine in emergency: radiographic features of normal anatomy, variants and pitfalls // Skeletal Radiol. 2016. Vol. 45, No. 12. P. 1607–1617. doi:10.1007/s00256-016-2481-9.; Sanderson S.P., Houten J.K. Fracture through the C2 synchondrosis in a young child // Pediatr. Neurosurg. 2002. Vol. 36, No. 5. P. 277–278. doi:10.1159/000058434.; Fassett D.R., McCall T., Brockmeyer D.L. Odontoid synchondrosis fractures in children // Neurosurg Focus. 2006. Vol. 20, No. 2. E7.; Hernandez J.A., Chupik C., Swischuk L.E. Cervical spine trauma in children under 5 years: productivity of CT // Emerg. Radiol. 2004. Vol. 10, No. 4. P. 176–178. doi:10.1007/s10140-003-0320-5.; Pang D., Wilberger J.E. Jr. Spinal cord injury without radiographic abnormalities in children // J. Neurosurg. 1982. Vol. 57, No. 1. P. 114–129. doi:10.3171/jns.1982.57.1.0114.; Kulkarni M.V., Bondurant F.J., Rose S.L., Narayana P.A. 1.5 tesla magnetic resonance imaging of acute spinal trauma // Radiographics. 1988. Vol. 8, No. 6. P. 1059–1082. doi:10.1148/radiographics.8.6.3205929.; Tator C.H. Spinal cord syndromes with physiological and anatomic correlations // Principles of Spinal Surgery / еdited by А. Menezes, V. Sonntag. New York: McGraw Hill, 1996. P. 785–799.; Boese C.K., Lechler P. Spinal cord injury without radiologic abnormalities in adults: a systematic review // J. Trauma Acute Care Surg. 2013. Vol. 75, No. 2. P. 320–330. doi:10.1097/TA.0b013e31829243c9.; Smith P., Linscott L.L., Vadivelu S., Zhang B., Leach J.L. Normal Development and Measurements of the Occipital Condyle-C1 Interval in Children and Young Adults // AJNR Am. J. Neuroradiol. 2016. Vol. 37, No. 5. P. 952–957. doi:10.3174/ajnr.A4543.; Davis P.C., Reisner A., Hudgins P.A., Davis W.E., O’Brien M.S. Spinal injuries in children: role of MR // AJNR Am.J.Neuroradiol. 1993. Vol. 14, No. 3. P. 607–617.; Dundamadappa K., Cauley K.A. MR imaging of acute cervical spinal ligamentous and soft tissue trauma // S. Emerg Radiol. 2012. Vol. 19. P. 277–286. doi:10.1007/s10140-012-1033-4.; Gopinathan N.R., Viswanathan V.K., Crawford A.H. Cervical Spine Evaluation in Pediatric Trauma: A Review and an Update of Current Concepts // Indian. J. Orthop. 2018. Vol. 52, No. 5. P. 489–500. doi:10.4103/ortho.IJOrtho_607_17.; Aarabi B., Koltz M., Ibrahimi D. Hyperextension cervical spine injuries and traumatic central cord syndrome // Neurosurg. Focus. 2008. Vol. 25, No. 5. E9. doi:10.3171/FOC.2008.25.11.E9.; Miranda P., Gomez P., Alday R. Acute traumatic central cord syndrome: analysis of clinical and radiological correlations // J. Neurosurg. Sci. 2008. Vol. 52. P. 107–112.; Madroñero-Mariscal R., LópezDolado E. Pediatric SCIWORA-Type Injuries Revisited: What Should be the Most Discerning Definition of SCIWORA at the Current Days? // Ortho Res Online J. 2021. Vol. 8, No. 5. OPROJ. 000697.; https://radiag.bmoc-spb.ru/jour/article/view/939

  6. 6
    Academic Journal

    المصدر: Modern Rheumatology Journal; Том 18, № 1 (2024); 7-14 ; Современная ревматология; Том 18, № 1 (2024); 7-14 ; 2310-158X ; 1996-7012

    وصف الملف: application/pdf

    Relation: https://mrj.ima-press.net/mrj/article/view/1524/1432; Rudwaleit M, van der Heijde D, Landewe R, et al. The Assessment of SpondyloArthritis International Society classification criteria for peripheral spondyloarthritis and for spondyloarthritis in general. Ann Rheum Dis. 2011 Jan; 70(1):25-31. doi:10.1136/ard.2010.133645. Epub 2010 Nov 24.; Moll JM, Wright V. Psoriatic arthritis. Semin Arthritis Rheum. 1973;3(1):55-78. doi:10.1016/0049-0172(73)90035-8.; Gladman DD. Axial disease in psoriatic arthritis. Curr Rheumatol Rep. 2007 Dec;9(6): 455-60. doi:10.1007/s11926-007-0074-2.; Baraliakos X, Coates LC, Braun J. The involvement of the spine in psoriatic arthritis. Clin Exp Rheumatol. 2015 Sep-Oct;33(5 Suppl 93):S31-5. Epub 2015 Oct 15.; Насонов ЕЛ, Коротаева ТВ, Лила АМ, Кубанов АА. Можно ли предотвратить развитие псориатического артрита у пациентов с псориазом? Научно-практическая ревматология. 2019;57(3):250-254.; Hojgaard P, Ballegaard Ch, Cordtz R. Gender differences in biologic treatment outcomes – a study of 1750 patients with psoriatic arthritis using Danish Health Care Registers. Rheumatology (Oxford). 2018 Sep 1; 57(9):1651-1660. doi:10.1093/rheumatology/key140.; Fernandez-Sueiro JL. The Challenge and Need of Defining Axial Psoriatic. J Rheumatol. 2009 Dec;36(12):2633-4. doi:10.3899/jrheum.091023.; De Vlam K, Lories R, Steinfeld S, et al. Is Axial Involvement Underestimated in Patients with Psoriatic Arthritis? Data from the BEPAS Cohort. Ann Rheum Dis. 2016;75: 1156-7.; Chandran V, Tolusso DC, Cook RJ, Gladman DD. Risk factors for axial inflammatory arthritis in patients with psoriatic arthritis. J Rheumatol. 2010 Apr;37(4):809-15. doi:10.3899/jrheum.091059. Epub 2010 Mar 15.; Mease PJ, Gladman DD, Papp KA, et al. Prevalence of rheumatologist-diagnosed psoriatic arthritis in patients with psoriasis in European/North American dermatology clinics. J Am Acad Dermatol. 2013 Nov;69(5): 729-735. doi:10.1016/j.jaad.2013.07.023. Epub 2013 Aug 24.; Van der Heijde D, Østergaard M. Assessment of disease activity and damage in inflammatory arthritis. In: Bijlsma JW, Faarvang KL, editors. EULAR Textbook on Rheumatic Diseases. London: BMJ Publishing Group Ltd; 2009.; Chandran V, Barrett J, Schentag CT, et al. Axial psoriatic arthritis: Update on a longterm prospective study. J Rheumatol. 2009 Dec; 36(12):2744-50. doi:10.3899/jrheum.090412. Epub 2009 Nov 2.; Hanly JG, Russell ML, Gladman DD. Psoriatic spondyloarthropathy: A long term prospective study. Ann Rheum Dis. 1988 May; 47(5):386-93. doi:10.1136/ard.47.5.386.; Queiro R, Belzunegui J, Gonzalez C, et al. Clinically asymptomatic axial disease in psoriatic spondyloarthropathy. A retrospective study. Clin Rheumatol. 2002 Feb;21(1):10-3. doi:10.1007/s100670200003.; Gladman DD, Brubacher B, Buskila D, et al. Differences in the expression of spondyloarthropathy: A comparison between ankylosing spondylitis and psoriatic arthritis. Clin Invest Med. 1993 Feb;16(1):1-7.; Sieper J, van der Heijde D, Landewe R, et al. New criteria for inflammatory back pain in patients with chronic back pain: A real patient exercise by experts from the Assessment of SpondyloArthritis international Society (ASAS). Ann Rheum Dis. 2009 Jun;68(6): 784-8. doi:10.1136/ard.2008.101501. Epub 2009 Jan 15.; Aydin SZ, Kilic L, Kucuksahin O, et al. Performances of inflammatory back pain criteria in axial psoriatic arthritis. Rheumatology (Oxford). 2017 Nov 1;56(11):2031-2032. doi:10.1093/rheumatology/kex307.; Haroon M, Gallagher P, FitzGerald O. Inflammatory back pain criteria perform well in subset of patients with active axial psoriatic arthritis but not among patients with established axial disease. Ann Rheum Dis. 2019 Jul; 78(7):1003-1004. doi:10.1136/annrheumdis2018-214583. Epub 2018 Dec 14.; Feld J, Ye JY, Chandran V, et al. Is axial psoriatic arthritis distinct from ankylosing spondylitis with and without concomitant psoriasis? Rheumatology (Oxford). 2020 Jun 1; 59(6):1340-1346. doi:10.1093/rheumatology/kez457.; Mease PJ, Marchese M, Mclean R, et al. OP0049 Comparison of baseline disease activity and patient (pt)-reported outcomes (PROS) between pts with psoriatic arthritis and axial involvement (axial PSA) and axial spondyloarthritis (axial SPA) from the CORRONA PSA/SPA registry. Ann Rheum Dis. 2021;80(Suppl 1):26. doi:10.1136/annrheumdis-2021-eular.137.; Gubar E, Korotaeva T, Korsakova Y, et al. Clinical and radiographic phenotype of axial psoriatic arthritis. Ann Rheum Dis. 2022;81(1): 1592. doi:10.1136/annrheumdis-2022-eular.1564.; Aydin SZ, Kucuksahin O, Kilic L, et al. Axial psoriatic arthritis: the impact of underdiagnosed disease on outcomes in real life. Clin Rheumatol. 2018 Dec;37(12):3443-3448. doi:10.1007/s10067-018-4173-4. Epub 2018 Jun 13.; Губарь ЕЕ, Логинова ЕЮ, Смирнов АВ и др. Клинико-инструментальная характеристика аксиального поражения при раннем периферическом псориатическом артрите (данные исследования РЕМАРКА). Научно-практическая ревматология. 2018;56(1):34-40.; Jadon DR, Sengupta R, Nightingale A, et al. Axial Disease in Psoriatic Arthritis study: Defining the clinical and radiographic phenotype of psoriatic spondyloarthritis. Ann Rheum Dis. 2017 Apr;76(4):701-707. doi:10.1136/annrheumdis-2016-209853. Epub 2016 Dec 2.; Eder L, Chandran V, Gladman DD. What have we learned about genetic susceptibility in psoriasis and psoriatic arthritis? Curr Opin Rheumatol. 2015 Jan;27(1):91-8. doi:10.1097/BOR.0000000000000136.; Губарь ЕЕ, Логинова ЕЮ, Корсакова ЮЛ и др. Возможности скрининга высокого риска поражения осевого скелета при псориатическом артрите. Современная ревматология. 2020;14(3):34-38. doi:10.14412/1996-7012-2020-3-34-38; Castillo-Gallego C, Aydin SZ, Emery P, et al. Magnetic resonance imaging assessment of axial psoriatic arthritis: Extent of disease relates to HLA-B27. Arthritis Rheum. 2013 Sep; 65(9):2274-8. doi:10.1002/art.38050.; Braun J, Landewe RBM. No efficacy of anti-IL-23 therapy for axial spondyloarthritis in randomised controlled trials but in posthoc analyses of psoriatic arthritis-related ‘physician-reported spondylitis’? Ann Rheum Dis. 2022 Apr;81(4):466-468. doi:10.1136/annrheumdis-2021-221422. Epub 2021 Oct 16.; Poddubnyy D, Jadon DR, van den Bosch F, et al. Axial involvement in psoriatic arthritis: An update for rheumatologists. Semin Arthritis Rheum. 2021 Aug;51(4):880-887. doi:10.1016/j.semarthrit.2021.06.006. Epub 2021 Jun 19.; Lubrano E, Parsons WJ, Marchesoni A, et al. The definition and measurement of axial psoriatic arthritis. J Rheumatol Suppl. 2015 Nov;93:40-2. doi:10.3899/jrheum.150634.; Lubrano E, Spadaro A. Axial psoriatic arthritis: an intriguing clinical entity or a subset of an intriguing disease? Clin Rheumatol. 2012 Jul;31(7):1027-32. doi:10.1007/s10067-012-1990-8. Epub 2012 May 3.; Rudwaleit M, van der Heijde D, Landewe R, et al. The development of Assessment of SpondyloArthritis international Society classification criteria for axial spondyloarthritis (part II): Validation and final selection. Ann Rheum Dis. 2009 Jun;68(6):777-83. doi:10.1136/ard.2009.108233. Epub 2009 Mar 17.; Клинические рекомендации. Псориаз артропатический. Псориатический артрит. 2021. [Clinical recommendations. Psoriasis is arthropathic. Psoriatic arthritis. 2021]. https://cr.minzdrav.gov.ru/recomend/562_2.; Bennett AN, McGonagle D, O’Connor P, et al. Severity of baseline magnetic resonance imaging-evident sacroiliitis and HLA-B27 status in early inflammatory back pain predict radiographically evident ankylosing spondylitis at eight years. Arthritis Rheum. 2008 Nov; 58(11):3413-8. doi:10.1002/art.24024.; Oostveen J, Prevo R, den Boer J, van de Laar M. Early detection of sacroiliitis on magnetic resonance imaging and subsequent development of sacroiliitis on plain radiography. A prospective, longitudinal study. J Rheumatol. 1999 Sep;26(9):1953-8.; Feld J, Chandran V, Haroon N, et al. Axial disease in psoriatic arthritis and ankylosing spondylitis: A critical comparison. Nat Rev Rheumatol. 2018 Jun;14(6):363-371. doi:10.1038/s41584-018-0006-8.; Kilic G, Kilic E, Nas K, et al. Comparison of ASDAS and BASD AI as a measure of disease activity in axial psoriatic arthritis. Clin Rheumatol. 2015 Mar;34(3):515-21. doi:10.1007/s10067-014-2734-8. Epub 2014 Jul 2.; Salvarani C, Macchioni P, Cremonesi T, et al. The cervical spine in patients with psoriatic arthritis: A clinical, radiological and immunogenetic study. Ann Rheum Dis. 1992 Jan; 51(1):73-7. doi:10.1136/ard.51.1.73.; Helliwell PS, Hickling P, Wright V. Do the radiological changes of classic ankylosing spondylitis differ from the changes found in the spondylitis associated with inflammatory bowel disease, psoriasis, and reactive arthritis? Ann Rheum Dis. 1998 Mar;57(3):135-40. doi:10.1136/ard.57.3.135.; Laiho K, Kauppi M. The cervical spine in patients with psoriatic arthritis. Ann Rheum Dis. 2002 Jul;61(7):650-2. doi:10.1136/ard.61.7.650.; Blau RH, Kaufman RL. Erosive and subluxing cervical spine disease in patients with psoriatic arthritis. J Rheumatol. 1987 Feb; 14(1):111-7.; Queiro R, Sarasqueta C, Torre JC, et al. Prevalence and predictors of cervical involvement in psoriatic spondyloarthropathy. J Clin Rheumatol. 2002 Feb;8(1):23-9. doi:10.1097/00124743-200202000-00006.; Jeannou J, Goupille P, Avimadje MA, et al. Cervical spine involvement in psoriatic arthritis. Rev Rhum Engl Ed. 1999 Dec;66(12): 695-700.; Chandran V. Psoriatic spondylitis or ankylosing spondylitis with psoriasis: Same or different? Curr Opin Rheumatol. 2019 Jul;31(4): 329-334. doi:10.1097/BOR.0000000000000609.; Helliwell PS. Axial disease in psoriatic arthritis. Rheumatology (Oxford). 2020 Jun 1; 59(6):1193-1195. doi:10.1093/rheumatology/kez629.; Bywaters EG, Dixon AS. Paravertebral ossification in psoriatic arthritis. Ann Rheum Dis. 1965 Jul;24(4):313-31. doi:10.1136/ard.24.4.313.; Van der Linden S, Valkenburg Ha, Cats A. Evaluation of diagnostic criteria for ankylosing spondylitis. A proposal for modification of the New York criteria. Arthritis Rheum. 1984 Apr;27(4):361-8. doi:10.1002/art.1780270401.; Смирнов АВ. Лучевая диагностика анкилозирующего спондилита (болезни Бехтерева). Москва: ИМА-ПРЕСС; 2020. C. 98.; Lubrano E, Marchesoni A, Olivieri I, et al. Psoriatic arthritis spondylitis radiology index: a modified index for radiologic assessment of axial involvement in psoriatic arthritis. J Rheumatol. 2009 May;36(5):1006-11. doi:10.3899/jrheum.080491. Epub 2009 Mar 30.; Biagioni BJ, Gladman DD, Cook RJ, et al. Reliability of radiographic scoring methods in axial psoriatic arthritis. Arthritis Care Res (Hoboken). 2014 Sep;66(9):1417-22. doi:10.1002/acr.22308.; Смирнов АВ. Атлас лучевой диагностики псориатического артрита. Москва: ИМА-ПРЕСС; 2022. C. 47.; Docherty P, Mitchell MJ, MacMillan L, et al. Magnetic resonance imaging in the detection of sacroiliitis. J Rheumatol. 1992 Mar;19(3):393-401.; Blum U, Buitrago-Tellez C, Mundinger A, et al. Magnetic resonance maging (MRI) for detection of active sacroiliitis – a prospective study comparing conventional radiography, scintigraphy, and contrast enhanced MRI. J Rheumatol. 1996 Dec;23(12):2107-15.; Rudwaleit M, Landewe R, van der Heijde D, et al. SpondyloArthritis international Society (ASAS) classification criteria for axial spondyloarthritis (Part I): Classification of paper patients by expert opinion including uncertainty appraisal. Ann Rheum Dis. 2009 Jun;68(6): 770-6. doi:10.1136/ard.2009.108217. Epub 2009 Mar 17.; Maksymowych WP, Lambert RGW, Østergaard M, et al. MRI lesions in the sacroiliac joints of patients with spondyloarthritis: an update of definitions and validation by the ASAS MRI working group. Ann Rheum Dis. 2019 Nov;78(11):1550-1558. doi:10.1136/annrheumdis-2019-215589. Epub 2019 Aug 17.; Krabbe S, Sørensen IJ, Jensen B, et al. Inflammatory and structural changes in vertebral bodies and posterior elements of the spine in axial spondyloarthritis: Construct validity, responsiveness and discriminatory ability of the anatomy-based CANDEN scoring system in a randomised placebo-controlled trial. RMD Open. 2018 Mar 16;4(1):e000624. doi:10.1136/rmdopen-2017-000624. eCollection 2018.; Krabbe S, Østergaard M, Pedersen SJ, et al. Canada-Denmark MRI scoring system of the spine in patients with axial spondyloarthritis: Updated definitions, scoring rules and interreader reliability in a multiple reader setting. RMD Open. 2019 Oct 13;5(2):e001057. doi:10.1136/rmdopen-2019-001057. eCollection 2019.; Gaspersic N, Sersa I, Jevtic V, et al. Monitoring ankylosing spondylitis therapy by dynamic contrast-enhanced and diffusion-weighted magnetic resonance imaging. Skeletal Radiol. 2008 Feb;37(2):123-31. doi:10.1007/s00256-007-0407-2. Epub 2007 Nov 22.; Zhang M, Zhou L, Huang N, et al. Assessment of active and inactive sacroiliitis in patients with ankylosing spondylitis using quantitative dynamic contrast-enhanced MRI. J Magn Reson Imaging. 2017 Jul;46(1): 71-78. doi:10.1002/jmri.25559. Epub 2016 Nov 16.; Ai F, Ai T, Li X, et al. Value of diffusionweighted magnetic resonance imaging in early diagnosis of ankylosing spondylitis. Rheumatol Int. 2012 Dec;32(12):4005-13. doi:10.1007/s00296-011-2333-9. Epub 2012 Jan 3.; Sahin N, Hacibeyoglu H, Ince O, et al. Is there a role for DWI in the diagnosis of sacroiliitis based on ASAS criteria? Int J Clin Exp Med. 2015 May 15;8(5):7544-52. eCollection 2015.; Ning Q, Fan T, Ren H, et al. Differentiating active from Inactive Sacroiliitis in ankylosing spondylitis by combination of DWI and Magnetization Transfer Imaging. Pak J Med Sci. 2023 Mar-Apr;39(2):417-422. doi:10.12669/pjms.39.2.6094.; Guo C, Zheng K, Xie Z, et al. Intravoxel incoherent motion diffusion-weighted imaging as a quantitative tool for evaluating disease activity in patients with axial spondyloarthritis. Clin Radiol. 2022 Jun;77(6):e434-e441. doi:10.1016/j.crad.2022.02.004. Epub 2022 Feb 27.; Bozgeyik Z, Ozgocmen S, Kocakoc E. Role of diffusion-weighted MRI in the detection of early active sacroiliitis. AJR Am J Roentgenol. 2008 Oct;191(4):980-6. doi:10.2214/AJR.07.3865.; Boy FN, Kayhan A, Karakas HM, et al. The role of multi-parametric MR imaging in the detection of early inflammatory sacroiliitis according to ASAS criteria. Eur J Radiol. 2014 Jun;83(6):989-996. doi:10.1016/j.ejrad.2014.03.002. Epub 2014 Mar 22.; Boy FN, Kayhan A, Karakas HM, et al. The role of multi-parametric MR imaging in the detection of early inflammatory sacroiliitis according to ASAS criteria. Eur J Radiol. 2014 Jun;83(6):989-996. doi:10.1016/j.ejrad.2014. 03.002. Epub 2014 Mar 22.; Корниенко ВН, Пронин ИН. Диагностическая нейрорадиология. Москва: Медицина; 2006. 1327 с.; Ward R, Caruthers S, Yablon C, et al. Analysis of diffusion changes in posttraumatic bone marrow using navigator-corrected diffusion gradients. AJR Am J Roentgenol. 2000 Mar; 174(3):731-4. doi:10.2214/ajr.174.3.1740731.; Baur A, Stäbler A, Brüning R, et al. Diffusion-weighted MRI of bone marrow: differentiation of benign versus pathologic compression fractures. Radiology. 1998 May;207(2): 349-56. doi:10.1148/radiology.207.2.9577479.; Chan JH, Peh WC, Tsui EY, et al. Acute vertebral body compression fractures: discrimination between benign and malignant causes using apparent diffusion coefficients. Br J Radiol. 2002 Mar;75(891):207-14. doi:10.1259/bjr.75.891.750207.; Braun J, Bollow M, Eggens U, et al. Use of dynamic magnetic resonance imaging with fast imaging in the detection of early and advanced sacroiiitis in spondylarthropathy patients. Arthritis Rheum. 1994 Jul;37(7):1039-45. doi:10.1002/art.1780370709.; Bammer R, Herneth AM, Maier SE, et al. Line scan diffusion imaging of the spine. AJNR Am J Neuroradiol. 2003 Jan;24(1):5-12.; Pui MH, Mitha A, Rae WI, Corr P. Diffusion-weighted magnetic resonance imaging of spinal infection and malignancy. J Neuroimaging. 2005 Apr;15(2):164-70. doi:10.1177/1051228404274306.; Latour LL, Svoboda K, Mitra PP, Sotak CH. Time-dependent diffusion of water in a biological model system. Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1229-33. doi:10.1073/pnas.91.4.1229.; Antoch G, Vogt FM, Freudenberg LS, et al. Wholebody dual-modality PET/CT and whole-body MRI for tumor staging in oncology. JAMA. 2003 Dec 24;290(24):3199-206. doi:10.1001/jama.290.24.3199.; Baur-Melnyk A, Buhmann S, Becker C, et al. Wholebody MRI versus whole-body MDCT for staging of multiple myeloma. AJR Am J Roentgenol. 2008 Apr;190(4):1097-104. doi:10.2214/AJR.07.2635.; Lauenstein TC, Freudenberg LS, Goehde SC, et al. Whole-body MRI using a rolling table platform for the detection of bone metastases. Eur Radiol. 2002 Aug;12(8):2091-9. doi:10.1007/s00330-002-1344-z. Epub 2002 Mar 8.; Pasoglou V, Michoux N, Peeters F, et al. Whole-body 3D T1-weighted MR imaging in patients with prostate cancer: feasibility and evaluation in screening for metastatic disease. Radiology. 2015 Apr;275(1):155-66. doi:10.1148/radiol.14141242. Epub 2014 Dec 15.; Lecouvet FE, Larbi A, Pasoglou V, et al. MRI for response assessment in metastatic bone disease. Eur Radiol. 2013 Jul;23(7): 1986-97. doi:10.1007/s00330-013-2792-3. Epub 2013 Mar 1.; Lecouvet FE, Talbot JN, Messiou C, et al. Monitoring the response of bone metastases to treatment with magnetic resonance imaging and nuclear medicine techniques: a review and position statement by the European Organisation for Research and Treatment of Cancer imaging group. Eur J Cancer. 2014 Oct; 50(15):2519-31. doi:10.1016/j.ejca.2014.07.002. Epub 2014 Aug 16.; Padhani AR, Makris A, Gall P, et al. Therapy monitoring of skeletal metastases with whole-body diffusion MRI. J Magn Reson Imaging. 2014 May;39(5):1049-78. doi:10.1002/jmri.24548. Epub 2014 Feb 10.; Lecouvet FE, Michoux N, Nzeusseu Toukap A, et al. The increasing spectrum of indications of wholebody MRI beyond oncology: imaging answers to clinical needs. Semin Musculoskelet Radiol. 2015 Sep;19(4):348-62. doi:10.1055/s-0035-1564695. Epub 2015 Nov 19.; Østergaard M, Poggenborg RP, Axelsen MB, et al. Magnetic resonance imaging in spondyloarthritis — how to quantify findings and measure response. Best Pract Res Clin Rheumatol. 2010 Oct;24(5):637-57. doi:10.1016/j.berh.2010.06.001.; Althoff CE, Sieper J, Song IH, et al. Active inflammation and structural change in early active axial spondyloarthritis as detected by whole-body MRI. Ann Rheum Dis. 2013 Jun; 72(6):967-73. doi:10.1136/annrheumdis2012-201545. Epub 2012 Jun 26.; Althoff CE, Appel H, Rudwaleit M, et al. Whole-body MRI as a new screening tool for detecting axial and peripheral manifestations of spondyloarthritis. Ann Rheum Dis. 2007 Jul; 66(7):983-5. doi:10.1136/ard.2007.069948.; Meaney JF, Fagan A. Whole-body MR imaging in a multimodality world: current applications, limitations, and future potential for comprehensive musculo- skeletal imaging. Semin Musculoskelet Radiol. 2010 Mar;14(1): 14-21. doi:10.1055/s-0030-1248702. Epub 2010 Mar 12.; Mager AK, Althoff CE, Sieper J, et al. Role of whole-body magnetic resonance imaging in diagnosing early spondyloarthritis. Eur J Radiol. 2009 Aug;71(2):182-8. doi:10.1016/j.ejrad.2009.04.051. Epub 2009 May 23.; Poggenborg RP, Pedersen SJ, Eshed I, et al. Head-to-toe whole-body MRI in psoriatic arthritis, axial spondyloarthritis and healthy subjects: first steps towards global inflammation and damage scores of peripheral and axial joints. Rheumatology (Oxford). 2015 Jun; 54(6):1039-49. doi:10.1093/rheumatology/keu439. Epub 2014 Nov 26.; Østergaard M, Eshed I, Althoff CE, et al. Whole-body magnetic resonance imaging in inflammatory arthritis: Systematic literature review and first steps toward standardization and an OMERACT scoring system. J Rheumatol. 2017 Nov;44(11):1699-1705. doi:10.3899/jrheum.161114. Epub 2017 Jun 15.; https://mrj.ima-press.net/mrj/article/view/1524

  7. 7
    Academic Journal

    المصدر: Creative surgery and oncology; Том 14, № 2 (2024); 163-173 ; Креативная хирургия и онкология; Том 14, № 2 (2024); 163-173 ; 2076-3093 ; 2307-0501

    وصف الملف: application/pdf

    Relation: https://www.surgonco.ru/jour/article/view/953/604; Wu M.Y., Li C.J., Yiang G.T., Cheng Y.L., Tsai A.P., Hou Y.T., et al. Molecular regulation of bone metastasis pathogenesis. Cell Physiol Biochem. 2018;46(4):1423–38. DOI:10.1159/000489184; McCabe F.J., Jadaan M.M., Byrne F., Devitt A.T., McCabe J.P. Spinal metastasis: The rise of minimally invasive surgery. Surgeon. 2021:S1479-666X(21)00140-2. DOI:10.1016/j.surge.2021.08.007; Luksanapruksa P., Buchowski J.M., Hotchkiss W., Tongsai S., Wilartratsami S., Chotivichit A. Prognostic factors in patients with spinal metastasis: a systematic review and meta-analysis. Spine J. 2017;17(5):689–708. DOI:10.1016/j.spinee.2016.12.003; Kim H.J., McLawhorn A.S., Goldstein M.J., Boland P.J. Malignant osseous tumors of the pediatric spine. J Am Acad Orthop Surg. 2012;20(10):646–56. DOI:10.5435/JAAOS-20-10-646; Patnaik S., Turner J., Inaparthy P., Kieffer W.K. Metastatic spinal cord compression. Br J Hosp Med (Lond). 2020;81(4):1–10. DOI:10.12968/hmed.2019.0399; Choi D., Bilsky M., Fehlings M., Fisher C., Gokaslan Z. Spine oncology-metastatic spine tumors. Neurosurgery. 2017;80(3S):S131–7. DOI:10.1093/neuros/nyw084; Challapalli A., Aziz S., Khoo V., Kumar A., Olson R., Ashford R.U., et al. Spine and non-spine bone metastases — current controversies and future direction. Clin Oncol (R Coll Radiol). 2020;32(11):728–44. DOI:10.1016/j.clon.2020.07.010; Katsimbri P. The biology of normal bone remodelling. Eur J Cancer Care (Engl). 2017;26(6). DOI:10.1111/ecc.12740 9 Mizoguchi T., Ono N. The diverse origin of bone-forming osteoblasts. J Bone Miner Res. 2021;36(8):1432–47. DOI:10.1002/jbmr.4410; Kim J.M., Lin C., Stavre Z., Greenblatt M.B., Shim J.H. Osteoblast-osteoclast communication and bone homeostasis. Cells. 2020;9(9):2073. DOI:10.3390/cells9092073; Robling A.G., Bonewald L.F. The osteocyte: new insights. Annu Rev Physiol. 2020;82:485–506. DOI:10.1146/annurev-physiol-021119-034332; Zalfa C., Paust S. Natural killer cell interactions with myeloid derived suppressor cells in the tumor microenvironment and implications for cancer immunotherapy. Front Immunol. 2021;12:633205. DOI:10.3389/fimmu.2021.633205; Wein M.N., Kronenberg H.M. Regulation of bone remodeling by parathyroid hormone. Cold Spring Harb Perspect Med. 2018;8(8):a031237. DOI:10.1101/cshperspect.a031237; Zhu S., Liu M., Bennett S., Wang Z., Pfleger K.D.G., Xu J. The molecular structure and role of CCL2 (MCP-1) and C-C chemokine receptor CCR2 in skeletal biology and diseases. J Cell Physiol. 2021;236(10):7211–22. DOI:10.1002/jcp.30375; Udagawa N., Koide M., Nakamura M., Nakamichi Y., Yamashita T., Uehara S., et al. Osteoclast differentiation by RANKL and OPG signaling pathways. J Bone Miner Metab. 2021;39(1):19–26. DOI:10.1007/s00774-020-01162-6; Kitaura H., Marahleh A., Ohori F., Noguchi T., Shen W.R., Qi J., et al. Osteocyte-related cytokines regulate osteoclast formation and bone resorption. Int J Mol Sci. 2020;21(14):5169. DOI:10.3390/ijms21145169; Yang L., Kang M., He R., Meng B., Pal A., Chen L., et al. Microanatomical changes and biomolecular expression at the PDL-entheses during experimental tooth movement. J Periodontal Res. 2019;54(3):251–8. DOI:10.1111/jre.12625; Yang D., Wan Y. Molecular determinants for the polarization of macrophage and osteoclast. Semin Immunopathol. 2019;41(5):551–63. DOI:10.1007/s00281-019-00754-3; De Cicco P., Ercolano G., Ianaro A. The new era of cancer immunotherapy: targeting myeloid-derived suppressor cells to overcome immune evasion. Front Immunol. 2020;11:1680. DOI:10.3389/fimmu.2020.01680; Li X., Liu Y., Wu B., Dong Z., Wang Y., Lu J., et al. Potential role of the OPG/RANK/RANKL axis in prostate cancer invasion and bone metastasis. Oncol Rep. 2014;32(6):2605–11. DOI:10.3892/or.2014.3511; Deligiorgi M.V., Panayiotidis M.I., Griniatsos J., Trafalis D.T. Harnessing the versatile role of OPG in bone oncology: counterbalancing RANKL and TRAIL signaling and beyond. Clin Exp Metastasis. 2020;37(1):13–30. DOI:10.1007/s10585-019-09997-8; Takegahara N., Kim H., Choi Y. RANKL biology. Bone. 2022;159:116353. DOI:10.1016/j.bone.2022.116353; Jaffee W.F. Tumors and tumorous conditions of the bones and joints. Philadelphia, PA: Lea and Febiger; 1958.; Gao Z.Y., Zhang T., Zhang H., Pang C.G., Xia Q. Effectiveness of preoperative embolization in patients with spinal metastases: a systematic review and meta-analysis. World Neurosurg. 2021;152:e745–57. DOI:10.1016/j.wneu.2021.06.062; Perrin R.G., Laxton A.W. Metastatic spine disease: epidemiology, pathophysiology, and evaluation of patients. Neurosurg Clin N Am. 2004;15(4):365–73. DOI:10.1016/j.nec.2004.04.018; Nater A., Sahgal A., Fehlings M. Management — spinal metastases. Handb Clin Neurol. 2018;149:239–55. DOI:10.1016/B978-0-12- 811161-1.00016-5; Gilbert R.W., Kim J.H., Posner J.B. Epidural spinal cord compression from metastatic tumor: diagnosis and treatment. Ann Neurol. 1978;3(1):40–51. DOI:10.1002/ana.410030107; Turajlic S., Swanton C. Metastasis as an evolutionary process. Science. 2016;352(6282):169–75. DOI:10.1126/science.aaf2784; Hofbauer L.C., Bozec A., Rauner M., Jakob F., Perner S., Pantel K. Novel approaches to target the microenvironment of bone metastasis. Nat Rev Clin Oncol. 2021;18(8):488–505. DOI:10.1038/s41571-021-00499-9; Santos J.L.M., Kalhorn S.P. Anatomy of the posterolateral spinal epidural ligaments. Surg Neurol Int. 2021;12:33. DOI:10.25259/SNI_894_2020; Nathoo N., Caris E.C., Wiener J.A., Mendel E. History of the vertebral venous plexus and the significant contributions of Breschet and Batson. Neurosurgery. 2011;69(5):1007–14; disc. 1014. DOI:10.1227/NEU.0b013e3182274865; Onuigbo W.I. Batson’s theory of vertebral venous metastasis: a review. Oncology. 1975;32(3–4):145–50. DOI:10.1159/000225060. PMID: 1221328; Wu S., Pan Y., Mao Y., Chen Y., He Y. Current progress and mechanisms of bone metastasis in lung cancer: a narrative review. Transl Lung Cancer Res. 2021;10(1):439–51. DOI:10.21037/tlcr-20-835; Sturge J., Caley M.P., Waxman J. Bone metastasis in prostate cancer: emerging therapeutic strategies. Nat Rev Clin Oncol. 2011;8(6):357–68. DOI:10.1038/nrclinonc.2011.67; Spano D., Heck C., De Antonellis P., Christofori G., Zollo M. Molecular networks that regulate cancer metastasis. Semin Cancer Biol. 2012;22(3):234–49. DOI:10.1016/j.semcancer.2012.03.006; Satcher R.L., Zhang X.H. Evolving cancer-niche interactions and therapeutic targets during bone metastasis. Nat Rev Cancer. 2022;22(2):85– 101. DOI:10.1038/s41568-021-00406-5 37 Raubenheimer E.J., Noffke C.E. Pathogenesis of bone metastasis: a review. J Oral Pathol Med. 2006;35(3):129–35. DOI:10.1111/j.1600-0714.2006.00360.x; Joyce J.A., Pollard J.W. Microenvironmental regulation of metastasis. Nat Rev Cancer. 2009;9(4):239–52. DOI:10.1038/nrc2618; Liu Y., Qing H., Su X., Wang C., Li Z., Liu S. Association of CD44 gene polymorphism with survival of NSCLC and risk of bone metastasis. Med Sci Monit. 2015;21:2694–700. DOI:10.12659/MSM.894357; Chen F., Han Y., Kang Y. Bone marrow niches in the regulation of bone metastasis. Br J Cancer. 2021;124(12):1912–20. DOI:10.1038/s41416-021-01329-6; Clézardin P., Coleman R., Puppo M., Ottewell P., Bonnelye E., Paycha F., et al. Bone metastasis: mechanisms, therapies, and biomarkers. Physiol Rev. 2021;101(3):797–855. DOI:10.1152/physrev.00012.2019; Fornetti J., Welm A.L., Stewart S.A. Understanding the bone in cancer metastasis. J Bone Miner Res. 2018;33(12):2099–113. DOI:10.1002/jbmr.3618; Eleraky M., Papanastassiou I., Vrionis F.D. Management of metastatic spine disease. Curr Opin Support Palliat Care. 2010;4(3):182–8. DOI:10.1097/SPC.0b013e32833d2fdd; Kaur M., Nagpal M., Singh M. Osteoblast-n-Osteoclast: making headway to osteoporosis treatment. Curr Drug Targets. 2020;21(16):1640– 51. DOI:10.2174/1389450121666200731173522; Zhang X. Interactions between cancer cells and bone microenvironment promote bone metastasis in prostate cancer. Cancer Commun (Lond). 2019;39(1):76. DOI:10.1186/s40880-019-0425-1; Tahara R.K., Brewer T.M., Theriault R.L., Ueno N.T. Bone metastasis of breast cancer. Adv Exp Med Biol. 2019;1152:105–29. DOI:10.1007/978-3-030-20301-6_7; Győri D.S., Mócsai A. Osteoclast signal transduction during bone metastasis formation. Front Cell Dev Biol. 2020;8:507. DOI:10.3389/fcell.2020.00507; Zhang R., Li J., Assaker G., Camirand A., Sabri S., Karaplis A.C., et al. Parathyroid hormone-related protein (PTHrP): an emerging target in cancer progression and metastasis. Adv Exp Med Biol. 2019;1164:161– 78. DOI:10.1007/978-3-030-22254-3_13; Edwards C.M., Johnson R.W. From good to bad: the opposing effects of PTHrP on tumor growth, dormancy, and metastasis throughout cancer progression. Front Oncol. 2021;11:644303. DOI:10.3389/fonc.2021.644303; Zheng X., Kang W., Liu H., Guo S. Inhibition effects of total flavonoids from Sculellaria barbata D. Don on human breast carcinoma bone metastasis via downregulating PTHrP pathway. Int J Mol Med. 2018;41(6):3137–46. DOI:10.3892/ijmm.2018.3515; Okamoto K. Role of RANKL in cancer development and metastasis. J Bone Miner Metab. 2021;39(1):71–81. DOI:10.1007/s00774-020-01182-2; David Roodman G., Silbermann R. Mechanisms of osteolytic and osteoblastic skeletal lesions. Bonekey Rep. 2015;4:753. DOI:10.1038/bonekey.2015.122; Fang J., Xu Q. Differences of osteoblastic bone metastases and osteolytic bone metastases in clinical features and molecular characteristics. Clin Transl Oncol. 2015;17(3):173–9. DOI:10.1007/s12094-014-1247-x; Buijs J.T., Stayrook K.R., Guise T.A. The role of TGF-β in bone metastasis: novel therapeutic perspectives. Bonekey Rep. 2012;1:96. DOI:10.1038/bonekey.2012.96; Syed V. TGF-β signaling in cancer. J Cell Biochem. 2016;117(6):1279– 87. DOI:10.1002/jcb.25496; Trivedi T., Pagnotti G.M., Guise T.A., Mohammad K.S. The role of TGF-β in bone metastases. Biomolecules. 2021;11(11):1643. DOI:10.3390/biom11111643; Tiedemann K., Hussein O., Komarova S.V. Role of altered metabolic microenvironment in osteolytic metastasis. Front Cell Dev Biol. 2020;8:435. DOI:10.3389/fcell.2020.00435; Teicher B.A. TGFβ-directed therapeutics: 2020. Pharmacol Ther. 2021;217:107666. DOI:10.1016/j.pharmthera.2020.107666; Wan L., Pantel K., Kang Y. Tumor metastasis: moving new biological insights into the clinic. Nat Med. 2013;19(11):1450–64. DOI:10.1038/nm.3391; Weidle U.H., Birzele F., Kollmorgen G., Rüger R. Molecular mechanisms of bone metastasis. Cancer Genomics Proteomics. 2016;13(1):1– 12. PMID: 26708594; Loreth D., Schuette M., Zinke J., Mohme M., Piffko A., Schneegans S., et al. CD74 and CD44 expression on CTCs in cancer patients with brain metastasis. Int J Mol Sci. 2021;22(13):6993. DOI:10.3390/ijms22136993; Miwa S., Mizokami A., Keller E.T., Taichman R., Zhang J., Namiki M. The bisphosphonate YM529 inhibits osteolytic and osteoblastic changes and CXCR-4-induced invasion in prostate cancer. Cancer Res. 2005;65(19):8818–25. DOI:10.1158/0008-5472.CAN-05-0540; Wang J., Loberg R., Taichman R.S. The pivotal role of CXCL12 (SDF-1)/CXCR4 axis in bone metastasis. Cancer Metastasis Rev. 2006;25(4):573–87. DOI:10.1007/s10555-006-9019-x; Cheng X., Wang Z. Immune modulation of metastatic niche formation in the bone. Front Immunol. 2021;12:765994. DOI:10.3389/fimmu.2021.765994; Mohammad K.S., Guise T.A. Mechanisms of osteoblastic metastases: role of endothelin-1. Clin Orthop Relat Res. 2003;(415 Suppl):S67–74. DOI:10.1097/01.blo.0000093047.96273.4e; Tocci P., Blandino G., Bagnato A. YAP and endothelin-1 signaling: an emerging alliance in cancer. J Exp Clin Cancer Res. 2021;40(1):27. DOI:10.1186/s13046-021-01827-8; Clines G.A., Mohammad K.S., Bao Y., Stephens O.W., Suva L.J., Shaughnessy J.D. Jr, et al. Dickkopf homolog 1 mediates endothelin1-stimulated new bone formation. Mol Endocrinol. 2007;21(2):486–98. DOI:10.1210/me.2006-0346; Leth J.M., Ploug M. Targeting the urokinase-type plasminogen activator receptor (uPAR) in human diseases with a view to non-invasive imaging and therapeutic intervention. Front Cell Dev Biol. 2021;9:732015. DOI:10.3389/fcell.2021.732015; Sabur V., Untan I., Tatlisen A. Role of PSA kinetics in hormone-refractory prostate cancer. J Coll Physicians Surg Pak. 2021;30(6):673–8. DOI:10.29271/jcpsp.2021.06.673; Chaoying L., Chao M., Xiangrui Y., Yingjian H., Gang Z., Yunhan R., et al. Risk factors of bone metastasis in patients with newly diagnosed prostate cancer. Eur Rev Med Pharmacol Sci. 2022;26(2):391–8. DOI:10.26355/eurrev_202201_27863; Kaplan Z., Zielske S.P., Ibrahim K.G., Cackowski F.C. Wnt and β-Catenin signaling in the bone metastasis of prostate cancer. Life (Basel). 2021;11(10):1099. DOI:10.3390/life11101099; Supsavhad W., Hassan B.B., Simmons J.K., Dirksen W.P., Elshafae S.M., Kohart N.A., et al. Effect of Dickkopf-1 (Dkk-1) and SP600125, a JNK inhibitor, on Wnt signaling in canine prostate cancer growth and bone metastases. Vet Sci. 2021;8(8):153. DOI:10.3390/vetsci8080153; Cai X., Luo J., Yang X., Deng H., Zhang J., Li S., et al. In vivo selection for spine-derived highly metastatic lung cancer cells is associated with increased migration, inflammation and decreased adhesion. Oncotarget. 2015;6(26):22905–17. DOI:10.18632/oncotarget.4416; Kfoury Y., Baryawno N., Severe N., Mei S., Gustafsson K., Hirz T., et al. Human prostate cancer bone metastases have an actionable immunosuppressive microenvironment. Cancer Cell. 2021;39(11):1464–78.e8. DOI:10.1016/j.ccell.2021.09.005; Weitzmann M.N. Bone and the immune system. Toxicol Pathol. 2017;45(7):911–24. DOI:10.1177/0192623317735316; Okamoto K., Takayanagi H. Osteoimmunology. Cold Spring Harb Perspect Med. 2019;9(1):a031245. DOI:10.1101/cshperspect.a031245; Amarasekara D.S., Yun H., Kim S., Lee N., Kim H., Rho J. Regulation of Osteoclast Differentiation by Cytokine Networks. Immune Netw. 2018;18(1):e8. DOI:10.4110/in.2018.18.e8; D’Oronzo S., Coleman R., Brown J., Silvestris F. Metastatic bone disease: Pathogenesis and therapeutic options: Up-date on bone metastasis management. J Bone Oncol. 2018;15:004–4. DOI:10.1016/j. jbo.2018.10.004; Gabrilovich D.I. Myeloid-derived suppressor cells. Cancer Immunol Res. 2017;5(1):3–8. DOI:10.1158/2326-6066.CIR-16-0297; Botta C., Gullà A., Correale P., Tagliaferri P., Tassone P. Myeloidderived suppressor cells in multiple myeloma: pre-clinical research and translational opportunities. Front Oncol. 2014;4:348. DOI:10.3389/fonc.2014.00348; Cook K.D., Finger E.C., Santos C.D., Rock D.A. A quantitative method for detection of circulating fms related tyrosine kinase 3 (FLT-3) in acute myeloid leukemia (AML) patients. J Immunol Methods. 2019;470:55–8. DOI:10.1016/j.jim.2019.04.010; Schrijver I.T., Théroude C., Roger T. Myeloid-derived suppressor cells in sepsis. Front Immunol. 2019;10:327. DOI:10.3389/fimmu.2019.00327; Dysthe M., Parihar R. Myeloid-derived suppressor cells in the tumor microenvironment. Adv Exp Med Biol. 2020;1224:117–40. DOI:10.1007/978-3-030-35723-8_8; Groth C., Hu X., Weber R., Fleming V., Altevogt P., Utikal J., et al. Immunosuppression mediated by myeloid-derived suppressor cells (MDSCs) during tumour progression. Br J Cancer. 2019;120(1):16–25. DOI:10.1038/s41416-018-0333-1; Mortezaee K. Myeloid-derived suppressor cells in cancer immunotherapy-clinical perspectives. Life Sci. 2021;277:119627. DOI:10.1016/j.lfs.2021.119627; Pan Y., Yu Y., Wang X., Zhang T. Tumor-associated macrophages in tumor immunity. Front Immunol. 2020;11:583084. DOI:10.3389/fimmu.2020.583084; https://www.surgonco.ru/jour/article/view/953

  8. 8
    Academic Journal

    المصدر: Creative surgery and oncology; Том 14, № 2 (2024); 127-135 ; Креативная хирургия и онкология; Том 14, № 2 (2024); 127-135 ; 2076-3093 ; 2307-0501

    وصف الملف: application/pdf

    Relation: https://www.surgonco.ru/jour/article/view/948/599; Кит О.И., Закондырин Д.Е., Гринь А.А., Росторгуев Э.Е., Юндин С.В. Опыт лечения опухолей позвоночника, осложненных компрессией спинного мозга и его корешков. Инновационная медицина Кубани. 2022;1:5–11. DOI:10.35401/2500-0268-2022-25-1-5-11; Кит О.И., Вошедский В.И., Сакун П.Г., Гусарева М.А., Власов С.Г., Мусейко К.Н. и др. Опыт применения радиохирургического комплекса Novalis Tx в практике ФГБУ «НМИЦ онкологии» Минздрава России. Южно-Российский онкологический журнал. 2020;1(4):32–7. DOI:10.37748/2687-0533-2020-1-4-4; Bilsky M.H., Laufer I., Fourney D.R., Groff M., Schmidt M.H., Varga P.P., et al. Reliability analysis of the epidural spinal cord compression scale. J Neurosurg Spine. 2010;13(3):324–8. DOI:10.3171/2010.3.SPINE09459; Uei H., Tokuhashi Y., Maseda M., Nakahashi M., Sawada H., Nakayama E., et al. Comparison between minimally invasive spine stabilization with and without posterior decompression for the management of spinal metastases: a retrospective cohort study. J Orthop Surg Res. 2018;13(1):87. DOI:10.1186/s13018-018-0777-2; Fisher C.G., DiPaola C.P., Ryken T.C. A novel classification system for spinal instability in neoplastic disease: an evidencebased approach and expert consensus from the Spine. Spine (Phila Pa 1976). 2010;35:E1221–9. DOI:10.1097/BRS.0b013e3181e16ae2; Pennington Z., Ahmed A.K., Westbroek E.M., Cottrill E., Lubelski D., Goodwin M.L., et al. SINS Score and Stability: evaluating the need for stabilization within the uncertain category. World Neurosurg. 2019;128;1034–47. DOI:10.1016/j.wneu.2019.05.067; Maseda M., Uei H., Nakahashi M., Sawada H., Tokuhashi Y. Neurological outcome of treatment for patients with impending paralysis due to epidural spinal cord compression by metastatic spinal tumor. J Orthop Surg Res. 2019;14(1):291. DOI:10.1186/s13018-019-1348-x; Laufer I., Rubin D.G., Lis E., Cox B.W., Stubblefield M.D., Yamada Y., et al. The NOMS framework: approach to the treatment of spinal metastatic tumors. Oncologist 2013;18(6):744–51. DOI:10.1634/theoncologist.2012-0293; Balagamwala E.H., Naik M., Reddy C.A., Angelov L., Suh J.H., Djemil T., et al. Pain flare after stereotactic radiosurgery for spine metastases. J Radiosurg SBRT. 2018;5(2):99–105. PMID: 29657890; Guo L., Xu Q., Ke L., Wu Z., Zeng Z., Chen L., et al. The impact of radiosensitivity on clinical outcomes of spinal metastases treated with stereotactic body radiotherapy Cancer Medicine. 2023;12:13279–89. DOI:10.1002/cam4.6019; Correia D., Moullet B., Cullmann J., Heiss R., Ermiş E., Aebersold D.M., et al. Response assessment after stereotactic body radiation therapy for spine and non-spine bone metastases: results from a single institutional study. Radiat Oncol. 2022;17(1):37. DOI:10.1186/s13014-022-02004-7; Kelley K.D., Racareanu R., Sison C.P., Gogineni E., Rana Z., Gandhi S.V., et al. Outcomes in the radiosurgical management of metastatic spine disease. Adv Radiat Oncol. 2019;4(2):283–93. DOI:10.1016/j.adro.2018.10.007; Kim Y.J., Kim J.H., Kim K., Kim H.J., Chie E.K., Shin K. H., et al. The feasibility of spinal stereotactic radiosurgery for spinal metatstases with epidural cord compression. Cancer Res Treat. 2019;51(4):1324–35. DOI:10.4143/crt.2018.653; https://www.surgonco.ru/jour/article/view/948

  9. 9
    Conference

    وصف الملف: application/pdf

    Relation: Молодежь и современные информационные технологии : сборник трудов XX Международной научно-практической конференции студентов, аспирантов и молодых учёных, 20-22 марта 2023 г., г. Томск; Цзию, У. Влияние размещения предметов на эргономику рюкзака / Цзию У, Шкляр А. В.; Томский политехнический университет, ИШИТР // Молодежь и современные информационные технологии : сборник трудов XX Международной научно-практической конференции студентов, аспирантов и молодых учёных, 20-22 марта 2023 г., г. Томск. — Томск : Изд-во ТПУ, 2023. — С. 206-207.; http://earchive.tpu.ru/handle/11683/78028

  10. 10
    Academic Journal

    المصدر: Russian Journal of Pediatric Surgery, Anesthesia and Intensive Care; Vol 13 (2023): Supplement; 123 ; Российский вестник детской хирургии, анестезиологии и реаниматологии; Vol 13 (2023): Supplement; 123 ; 2587-6554 ; 2219-4061 ; 10.17816/psaic.2023

    وصف الملف: application/pdf

  11. 11
    Academic Journal
  12. 12
    Academic Journal

    المساهمون: The work was carried out on the topic of the Plan of research works of the IIF of the Ural Branch of the Russian Academy of Sciences No. 122020900136-4, head – Academician of the Russian Academy of Sciences, MD, Professor A.V. Chereshnev., Работа выполнена по теме из Плана НИР «ИИФ» УрО РАН № Гос. регистрации 122020900136-4, руководитель – академик РАН, д.м.н., профессор А.В. Черешнев

    المصدر: Medical Immunology (Russia); Том 25, № 4 (2023); 823-830 ; Медицинская иммунология; Том 25, № 4 (2023); 823-830 ; 2313-741X ; 1563-0625

    وصف الملف: application/pdf

    Relation: https://www.mimmun.ru/mimmun/article/view/2849/1785; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2849/12051; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2849/12052; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2849/12053; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2849/12054; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2849/12055; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2849/12056; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2849/12057; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2849/12058; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2849/12059; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2849/12060; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2849/12061; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2849/12062; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2849/12063; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2849/12064; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2849/12424; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2849/12461; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2849/12462; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2849/12463; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2849/12464; Ali N. Role of vitamin D in preventing of Covid-19 infection, progression and severity. J. Infect. Public Health, 2020, Vol. 13, no. 10, pp. 1373-1380.; Barrea L., Verde L., Grant W.B. Frias-Toral E., Sarno G., Vetrani C., Ceriani F., Garcia-Velasquez E., Contreras-Briceño J., Savastano S., Colao A., Muscogiuri G. Vitamin D: a role also in long Covid-19? Nutrients, 2022, Vol. 14, no. 8, 1625. doi.org/10.3390/nu14081625.; Baxter B.A., Ryan M.G., LaVergne S.M., Stromberg S., Berry K., Tipton M., Natter N., Nudell N., McFann K., Dunn J., Webb T.L., Armstrong M., Reisdorph N., Ryan E.P. Correlation between 25-hydroxyvitamin D/D3 deficiency and Covid-19 disease severity in adults from Northern Colorado. Nutrients, 2022, Vol. 14, no. 24, 5204. doi.org/10.3390/nu14245204; Berdyugina O.V., Gusev E.V., Berdyugin K.A. Arthralgia and other pathologies of large joints as aconsequence of a new coronavirus infection (Covid-19). Journal of Ural Medical Academic Science, 2022, Vol. 19, no. 3, pp. 282-293.; Borsche L., Glauner B., von Mendel J. Covid-19 mortality risk correlates inversely with vitamin D3 status, and a mortality rate close to zero could theoretically be achieved at 50 ng/ml 25(oh)d3: results of a systematic review and meta-analysis. Nutrients, 2021, Vol. 13, no. 10, 3596. doi.org/10.3390/nu13103596.; Disser N.P., de Micheli A.J., Schonk M.M., Konnaris M.A., Piacentini A.N., Edon D.L., Toresdahl B.G., Rodeo S.A., Casey E.K., Mendias C.L. Musculoskeletal consequences of Covid-19. J. Bone Joint Surg. Am., 2020, Vol. 102, no. 14, pp. 1197-1204.; Hadizadeh F. Supplementation with vitamin D in the Covid-19 pandemic? Nutr. Rev., 2021, Vol. 79, no. 2, pp. 200-208.; Karaarslan F., Güneri F.D., Kardeş S. Long Covid: rheumatologic/musculoskeletal symptoms in hospitalized Covid-19 survivors at 3 and 6 months. Clin. Rheumatol., 2022, Vol. 41, no. 1, pp. 289-296.; Marik P. EVMS critid care Covid-19. Management protocol 04-06-2020 – Norfolk, Virginia 2020. 20 р.; Mercola J., Grant W.B., Wagner C.L. Evidence regarding vitamin D and risk of Covid-19 and its severity. Nutrients, 2020, Vol. 12, no. 11, 3361. doi.org/10.3390/nu12113361.; Premraj L., Kannapadi N.V., Briggs J., Seal S.M., Battaglini D., Fanning J., Suen J., Robba C., Fraser J., Cho S.M. Mid and long-term neurological and neuropsychiatric manifestations of post-Covid-19 syndrome: a meta-analysis. J. Neurol. Sci., 2022, Vol. 434, 120162. doi.org/10.1016/j.jns.2022.120162.; Prietl B., Treiber G., Pieber T.R., Amrein K. Vitamin D and immune function. Nutrients, 2013, Vol. 5, no. 7, pp. 2502-2521.; Stohs S.J., Aruoma O.I. Vitamin D and wellbeing beyond infections: Covid-19 and future pandemics. J. Am. Coll. Nutr., 2021, Vol. 40, no. 1, pp. 41-42.; Taquet M., Dercon Q., Luciano S., Geddes J.R., Husain M., Harrison P.J. Incidence, co-occurrence, and evolution of long-Covid features: a 6-month retrospective cohort study of 273,618 survivors of Covid-19. PLoS Med., 2021, Vol. 18, no. 9, e1003773. doi.org/10.1371/journal.pmed.1003773.; Thacher T.D. Vitamin D and Covid-19. Mayo Clin. Proc., 2021, Vol. 96, no. 4, pp. 838-840.; https://www.mimmun.ru/mimmun/article/view/2849

  13. 13
    Academic Journal
  14. 14
    Academic Journal

    المصدر: Siberian journal of oncology; Том 21, № 2 (2022); 96-108 ; Сибирский онкологический журнал; Том 21, № 2 (2022); 96-108 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2022-21-2

    وصف الملف: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/2095/974; Каприн А.Д., Старинский В.В., Петрова Г.В. Злокачественные новообразования в России в 2018 году. М., 2019. 250 с.; Ratasvuori M., Wedin R., Keller J., Nottrott M., Zaikova O., Bergh P., Kalen A., Nilsson J., Jonsson H., Laitinen M. Insight opinion to surgically treated metastatic bone disease: Scandinavian Sarcoma Group Skeletal Metastasis Registry report of 1195 operated skeletal metastasis. Surg Oncol. 2013; 22(2): 132–8. doi:10.1016/j.suronc.2013.02.008.; Willeumier J.J., van der Linden Y.M., van de Sande M.A.J., Dijkstra P.D.S. Treatment of pathological fractures of the long bones. EFORT Open Rev. 2017; 1(5): 136–45. doi:10.1302/2058-5241.1.000008.; Biermann J.S., Holt G.E., Lewis V.O., Schwartz H.S., Yaszemski M.J. Metastatic bone disease: diagnosis, evaluation, and treatment. J Bone Joint Surg Am. 2009; 91(6): 1518–30.; Bickels J., Dadia S., Lidar Z. Surgical management of metastatic bone disease. J Bone Joint Surg Am. 2009; 91(6): 1503–16. doi:10.2106/JBJS.H.00175.; Ashford R.U., Pendlebury S., Stalley P.D. Management of metastatic disease of the appendicular skeleton. Curr Orthop 2006; 20: 299–315.; Shibata H., Kato S., Sekine I., Abe K., Araki N., Iguchi H., Izumi T., Inaba Y., Osaka I., Kato S., Kawai A., Kinuya S., Kodaira M., Kobayashi E., Kobayashi T., Sato J., Shinohara N., Takahashi S., Takamatsu Y., Takayama K., Takayama K., Tateishi U., Nagakura H., Hosaka M., Morioka H., Moriya T., Yuasa T., Yurikusa T., Yomiya K., Yoshida M. Diagnosis and treatment of bone metastasis: comprehensive guideline of the Japanese Society of Medical Oncology, Japanese Orthopedic Association, Japanese Urological Association, and Japanese Society for Radiation Oncology. ESMO Open. 2016; 1(2). doi:10.1136/esmoopen-2016-000037.; Ruggieri P., Mavrogenis AF, Casadei R., Errani C., Angelini A., Calabrò T., Pala E., Mercuri M. Protocol of surgical treatment of long bone pathological fractures. Injury. 2010; 41: 1161–7. doi:10.1016/j.injury.2010.09.018.; Szendrői M., Antal1 I., Szendrői A., Lazáry A., Varga P.P. Diagnostic algorithm, prognostic factors and surgical treatment of metastatic cancer diseases of the long bones and spine. EFORT Open Rev. 2017; 2(9): 372–381. doi:10.1302/2058-5241.2.170006.; Mirels H. Metastatic disease in long bones. A proposed scoring system for diagnosing impending pathologic fractures. Clin Orthop Relat Res. 1989; 249: 256–64.; Laitinen M., Ratasvuori M., Pakarinen T.-K. The multi-modal approach to metastatic diseases. European Intructional Lectures. Berlin, Heidelberg: Springer, 2012. 35–44. doi:10.1007/978-3-642-27293-6_4.; Forsberg J.A., Eberhardt J., Boland P.J., Wedin R., Healey J.H. Estimating survival in patients with operable skeletal metastases: an application of a bayesian belief network. PLoS One. 2011; 6(5). doi:10.1371/journal.pone.0019956.; Katagiri H., Okada R., Takagi T., Takahashi M., Murata H., Harada H., Nishimura T., Asakura H., Ogawa H. New prognostic factors and scoring system for patients with skeletal metastasis. Cancer Med. 2014; 3: 1359–67. doi:10.1002/cam4.292.; Westhoff P.G., de Graeff A., Monninkhof E.M., Bollen L., Dijkstra S.P., van der Steen-Banasik E.M., van Vulpen M., Leer J.W., Marijnen C.A., van der Linden Y.M.; Dutch Bone Metastasis Study Group. An easy tool to predict survival in patients receiving radiation therapy for painful bone metastases. Int J Radiat Oncol Biol Phys. 2014; 90(4): 739–47. doi:10.1016/j.ijrobp.2014.07.051.; Janssen S.J., van der Heijden A.S., van Dijke M., Ready J.E., Raskin K.A., Ferrone M.L., Hornicek F.J., Schwab J.H. 2015 Marshall Urist Young Investigator Award: Prognostication in Patients With Long Bone Metastases: Does a Boosting Algorithm Improve Survival Estimates? Clin Orthop Relat Res. 2015; 473(10): 3112–21. doi:10.1007/s11999-015-4446-z.; Bollen L., van der Linden Y.M., Pondaag W., Fiocco M., Pattynama B.P., Marijnen C.A., Nelissen R.G., Peul W.C., Dijkstra P.D. Prognostic factors associated with survival in patients with symptomatic spinal bone metastases: a retrospective cohort study of 1,043 patients. Neuro Oncol. 2014; 16(7): 991–8. doi:10.1093/neuonc/not318.; Toyoda Y., Shinohara N., Harabayashi T., Abe T., Akino T., Sazawa A., Nonomura K. Survival and prognostic classification of patients with metastatic renal cell carcinoma of bone. Eur Urol. 2007; 52(1): 163–8. doi:10.1016/j.eururo.2006.10.060.; Nathan S.S., Healey J.H., Mellano D., Hoang B., Lewis I., Morris C.D., Athanasian E.A., Boland P.J. Survival in patients operated on for pathologic fracture: implications for end-of-life orthopedic care. J Clin Oncol. 2005; 23(25): 6072–82. doi:10.1200/JCO.2005.08.104.; Kirkinis M.N., Lyne C.J., Wilson M.D., Choong P.F. Metastatic bone disease: A review of survival, prognostic factors and outcomes following surgical treatment of the appendicular skeleton. Eur J Surg Oncol. 2016; 42(12): 1787–97. doi:10.1016/j.ejso.2016.03.036.; Hansen B.H., Keller J., Laitinen M., Berg P., Skjeldal S., Trovik C., Nilsson J., Walloe A., Kalén A., Wedin R. The Scandinavian Sarcoma Group Skeletal Metastasis Register. Survival after surgery for bone metastases in the pelvis and extremities. Acta Orthop Scand Suppl. 2004; 75(311): 11–5. doi:10.1080/00016470410001708270.; Lin P.P., Mirza A.N., Lewis V.O., Cannon C.P., Tu S.M., Tannir N.M., Yasko A.W. Patient survival after surgery for osseous metastases from renal cell carcinoma. J Bone Joint Surg Am. 2007; 89(8): 1794–801. doi:10.2106/JBJS.F.00603.; Fuhrman S.A., Lasky L.C., Limas C. Prognostic significance of morphologic parameters in renal cell carcinoma. Am J Surg Pathol. 1982; 6(7): 655–63. doi:10.1097/00000478-198210000-00007.; Harries M., Taylor A., Holmberg L., Agbaje O., Garmo H., Kabilan S., Purushotham A. Incidence of bone metastases and survival after a diagnosis of bone metastases in breast cancer patients. Cancer Epidemiol. 2014; 38(4): 427–34. doi:10.1016/j.canep.2014.05.005.; Dürr H.R., Müller P.E., Lenz T., Baur A., Jansson V., Refior H.J. Surgical treatment of bone metastases in patients with breast cancer. Clin Orthop Relat Res. 2002; (396): 191–6.; Ahn S.G., Lee H.M., Cho S.H., Lee S.A., Hwang S.H., Jeong J., Lee H.D. Prognostic factors for patients with bone-only metastasis in breast cancer. Yonsei Med J. 2013; 54(5): 1168–77. doi:10.3349/ymj.2013.54.5.1168.; Weiss R.J., Tullberg E., Forsberg J.A., Bauer H.C., Wedin R. Skeletal metastases in 301 breast cancer patients: patient survival and complications after surgery. Breast. 2014; 23(3): 286–90. doi:10.1016/j.breast.2014.02.012.; Hwang N., Nandra R., Grimer R.J., Carter S.R., Tillman R.M., Abudu A., Jeys L.M. Massive endoprosthetic replacement for bone metastases resulting from renal cell carcinoma: factors influencing patient survival. Eur J Surg Oncol. 2014; 40(4): 429–34. doi:10.1016/j.ejso.2013.08.001.; Oster G., Lamerato L., Glass A.G., Richert-Boe K.E., Lopez A., Chung K., Richhariya A., Dodge T., Wolff G.G., Balakumaran A., Edelsberg J. Natural history of skeletal-related events in patients with breast, lung, or prostate cancer and metastases to bone: a 15-year study in two large US health systems. Support Care Cancer. 2013; 21(12): 3279–86. doi:10.1007/s00520-013-1887-3.; Sugiura H., Yamada K., Sugiura T., Hida T., Mitsudomi T. Predictors of survival in patients with bone metastasis of lung cancer. Clin Orthop Relat Res. 2008; 466(3): 729–36. doi:10.1007/s11999-007-0051-0.; Weiss R.J., Wedin R. Surgery for skeletal metastases in lung cancer. Acta Orthop. 2011; 82: 96–101. doi:10.3109/17453674.2011.552779.; Harvey N., Ahlmann E.R., Allison D.C., Wang L., Menendez L.R. Endoprostheses last longer than intramedullary devices in proximal femur metastases. Clin Orthop Relat Res. 2012; 470(3): 684–91. doi:10.1007/s11999-011-2038-0.; Mavrogenis A.F., Pala E., Romagnoli C., Romantini M., Calabro T., Ruggieri P. Survival analysis of patients with femoral metastases. J Surg Oncol. 2012; 105(2): 135–41. doi:10.1002/jso.22061.; Wedin R., Hansen B.H., Laitinen M., Trovik C., Zaikova O., Bergh P., Kalén A., Schwarz-Lausten G., Vult von Steyern F., Walloe A., Keller J., Weiss R.J. Complications and survival after surgical treatment of 214 metastatic lesions of the humerus. J Shoulder Elbow Surg. 2012; 21(8): 1049–55. doi:10.1016/j.jse.2011.06.019.; Nakayama R., Horiuchi K., Susa M., Watanabe I., Watanabe K., Tsuji T., Matsumoto M., Toyama Y., Morioka H. Clinical outcome after bone metastasis (BM) surgery in patients with differentiated thyroid carcinoma (DTC): a retrospective study of 40 cases. Jpn J Clin Oncol. 2014; 44(10): 918–25. doi:10.1093/jjco/hyu099.; Liska F., Schmitz P., Harrasser N., Prodinger P., Rechl H., von Eisenhart-Rothe R. [Metastatic disease in long bones: Review of surgical treatment options]. Unfallchirurg 2018. 121, 37–46. doi:10.1007/s00113-016-0282-1.; Wedin R., Bauer H.C.Surgical treatment of skeletal metastatic lesions of the proximal femur: endoprosthesis or reconstruction nail? J Bone Joint Surg Br. 2005; 87(12): 1653–7. doi:10.1302/0301-620X.87B12.16629.; Harrington K.D. The management of acetabular insufficiency secondary to metastatic malignant disease. J Bone Joint Surg Am. 1981 Apr;63(4):653-64. PMID: 6163784.; Tillman R.M., Myers G.J.C., Abudu A.T., Carter S.R., Grimer R.J. The three-pin modified ‘Harrington’ procedure for advanced metastatic destruction of the acetabulum. J Bone Joint Surg [Br]. 2008; 90-B: 84–7. doi:10.1302/0301-620X.90B1.19892.; Miller B.J., Soni E.E., Gibbs C.P., Scarborough M.T. Intramedullary nails for long bone metastases: why do they fail? Orthopedics. 2011; 34(4). doi:10.3928/01477447-20110228-12.; Weiss K.R., Bhumbra R., Biau D.J., Griffin A.M., Deheshi B., Wunder J.S., Ferguson P.C. Fixation of pathological humeral fractures by the cemented plate technique. J Bone Joint Surg Br. 2011; 93(8): 1093–7. doi:10.1302/0301-620X.93B8.26194.; Jacobs W.B., Perrin R.G. Evaluation and treatment of spinal metastases: an overview. Neurosurg Focus. 2001; 11(6). doi:10.3171/foc.2001.11.6.11.; Smith B.D., Smith G.L., Hurria A., Hortobagyi G.N., Buchholz T.A. Future of cancer incidence in the United States: burdens upon an aging, changing nation. J Clin Oncol. 2009; 27(17): 2758–65. doi:10.1200/JCO.2008.20.8983.; Fisher C.G., DiPaola C.P., Ryken T.C., Bilsky M.H., Shaffrey C.I., Berven S.H., Harrop J.S., Fehlings M.G., Boriani S., Chou D., Schmidt M.H., Polly D.W., Biagini R., Burch S., Dekutoski M.B., Ganju A., Gerszten P.C., Gokaslan Z.L., Groff M.W., Liebsch N.J., Mendel E., Okuno S.H., Patel S., Rhines L.D., Rose P.S., Sciubba D.M., Sundaresan N., Tomita K., Varga P.P., Vialle L.R., Vrionis F.D., Yamada Y., Fourney D.R. A novel classification system for spinal instability in neoplastic disease: an evidencebased approach and expert consensus from the Spine Oncology Study Group. Spine (Phila Pa 1976). 2010; 35(22): 1221–9. doi:10.1097/BRS.0b013e3181e16ae2.; Campos M., Urrutia J., Zamora T., Román J., Canessa V., Borghero Y., Palma A., Molina M. The Spine Instability Neoplastic Score: an independent reliability and reproducibility analysis. Spine J. 2014; 14(8): 1466–9. doi:10.1016/j.spinee.2013.08.044.; Arana E., Kovacs F.M., Royuela A., Asenjo B., Pérez-Ramírez Ú., Zamora J.; Spanish Back Pain Research Network Task Force for the Improvement of Inter-Disciplinary Management of Spinal Metastasis. Spine Instability Neoplastic Score: agreement across different medical and surgical specialties. Spine J. 2016; 16(5): 591–9. doi:10.1016/j.spinee.2015.10.006.; Laufer I., Rubin D.G., Lis E., Cox B.W., Stubblefield M.D., Yamada Y., Bilsky M.H. The NOMS framework: approach to the treatment of spinal metastatic tumors. Oncologist. 2013; 18(6): 744–51. doi:10.1634/theoncologist.2012-0293.; Ivanishvili Z., Fourney D.R. Incorporating the Spine Instability Neoplastic Score into a treatment strategy for spinal metastasis: LMNOP. Global Spine J. 2014; 4: 129–36. doi:10.1055/s-0034-1375560.; Lam T.C., Uno H., Krishnan M., Lutz S., Groff M., Cheney M., Balboni T. Adverse Outcomes After Palliative Radiation Therapy for Uncomplicated Spine Metastases: Role of Spinal Instability and SingleFraction Radiation Therapy. Int J Radiat Oncol Biol Phys. 2015; 93(2): 373–81. doi:10.1016/j.ijrobp.2015.06.006.; Lee S.H., Tatsui C.E., Ghia A.J., Amini B., Li J., Zavarella S.M., Tannir N.M., Brown P.D., Rhines L.D. Can the spinal instability neoplastic score prior to spinal radiosurgery predict compression fractures following stereotactic spinal radiosurgery for metastatic spinal tumor?: a post hoc analysis of prospective phase II single-institution trials. J Neurooncol. 2016; 126(3): 509–17. doi:10.1007/s11060-015-1990-z.; Bollen L., Wibmer C., Van der Linden Y.M., Pondaag W., Fiocco M., Peul W.C., Marijnen C.A., Nelissen R.G., Leithner A., Dijkstra S.P. Predictive Value of Six Prognostic Scoring Systems for Spinal Bone Metastases: An Analysis Based on 1379 Patients. Spine (Phila Pa 1976). 2016; 41(3): 155–62. doi:10.1097/BRS.0000000000001192.; Choi D., Fox Z., Albert T., Arts M., Balabaud L., Bunger C., Buchowski J.M., Coppes M.H., Depreitere B., Fehlings M.G., Harrop J., Kawahara N., Martin-Benlloch J.A., Massicotte E.M., Mazel C., Oner F.C., Peul W., Quraishi N., Tokuhashi Y., Tomita K., Verlaan J.J., Wang M., Crockard H.A. Prediction of Quality of Life and Survival After Surgery for Symptomatic Spinal Metastases: A Multicenter Cohort Study to Determine Suitability for Surgical Treatment. Neurosurgery. 2015; 77(5): 698–708. doi:10.1227/NEU.0000000000000907.; Verlaan J.J., Choi D., Versteeg A., Albert T., Arts M., Balabaud L., Bunger C., Buchowski J.M., Chung C.K., Coppes M.H., Crockard H.A., Depreitere B., Fehlings M.G., Harrop J., Kawahara N., Kim E.S., Lee C.S., Leung Y., Liu Z., Martin-Benlloch A., Massicotte E.M., Mazel C., Meyer B., Peul W., Quraishi N.A., Tokuhashi Y., Tomita K., Ulbricht C., Wang M., Oner F.C. Characteristics of Patients Who Survived < 3 Months or > 2 Years After Surgery for Spinal Metastases: Can We Avoid Inappropriate Patient Selection? J Clin Oncol. 2016; 34(25): 3054–61. doi:10.1200/JCO.2015.65.1497.; Laufer I., Zuckerman S.L., Bird J.E., Bilsky M.H., Lazáry Á., Quraishi N.A., Fehlings M.G., Sciubba D.M., Shin J.H., Mesfin A., Sahgal A., Fisher C.G. Predicting Neurologic Recovery after Surgery in Patients with Deficits Secondary to MESCC: Systematic Review. Spine (Phila Pa 1976). 2016; 224–30. doi:10.1097/BRS.0000000000001827.; Gerszten P.C., Mendel E., Yamada Y. Radiotherapy and radiosurgery for metastatic spine disease: what are the options, indications, and outcomes? Spine (Phila Pa 1976). 2009; 34(22): 78–92. doi:10.1097/BRS.0b013e3181b8b6f5.; Chang J.H., Shin J.H., Yamada Y.J., Mesfin A., Fehlings M.G., Rhines L.D., Sahgal A. Stereotactic Body Radiotherapy for Spinal Metastases: What are the Risks and How Do We Minimize Them? Spine (Phila Pa 1976). 2016; 238–45. doi:10.1097/BRS.0000000000001823.; Zuckerman S.L., Laufer I., Sahgal A., Yamada Y.J., Schmidt M.H., Chou D., Shin J.H., Kumar N., Sciubba D.M. When Less Is More: The indications for MIS Techniques and Separation Surgery in Metastatic Spine Disease. Spine (Phila Pa 1976). 2016; 246–53. doi:10.1097/BRS.0000000000001824.; Бухаров А.В., Алиев М.Д., Державин В.А., Ядрина А.В. Стратегия персонализированного хирургического лечения онкологических больных с метастазами в костях. Онкология. Журнал им. П.А. Герцена. 2020. 9(3): 61–5. doi:10.17116/onkolog2020903161.; https://www.siboncoj.ru/jour/article/view/2095

  15. 15
  16. 16
    Academic Journal

    المصدر: Health, physical culture and sports; Vol 25 No 1 (2022): Health, Physical Culture and Sports; 70-80 ; Здоровье человека, теория и методика физической культуры и спорта; Том 25 № 1 (2022): Здоровье человека, теория и методика физической культуры и спорта; 70-80 ; 2414-0244

    وصف الملف: application/pdf

  17. 17
    Academic Journal
  18. 18
    Academic Journal

    المصدر: ИННОВАЦИОННЫЕ НАУЧНЫЕ ИССЛЕДОВАНИЯ, 6-3(8), 199-203, (2021-09-26)

  19. 19
    Academic Journal

    وصف الملف: application/pdf

    Relation: Scopus; Кочнев Е. Я., Люлин С. В., Мухтяев С. В., Мещерягина И. А. Малоинвазивные технологии лечения остеомиелита позвоночника. Сибирское медицинское обозрение. 2021;(1):104-110.; http://elib.usma.ru/handle/usma/6978

  20. 20
    Academic Journal

    المصدر: Siberian journal of oncology; Том 20, № 4 (2021); 57-63 ; Сибирский онкологический журнал; Том 20, № 4 (2021); 57-63 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2021-20-4

    وصف الملف: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/1865/884; Choi D., Bilsky M., Fehlings M., Fisher C., Gokaslan Z. Spine Oncology-Metastatic Spine Tumors. Neurosurgery. 2017 Mar 1; 80(3S): S131–S137. doi:10.1093/neuros/nyw084.; Georgy B.A. Metastatic spinal lesions: state-of-the-art treatment options and future trends. Am J Neuroradiol. 2008 Oct; 29(9): 1605–11. doi:10.3174/ajnr.A1137.; Harel R., Angelov L. Spine metastases: current treatments and future directions. Eur J Cancer. 2010 Oct; 46(15): 2696–707. doi:10.1016/j.ejca.2010.04.025.; Sciubba D.M., Petteys R.J., Dekutoski M.B., Fisher C.G., Fehlings M.G., Ondra S.L., Rhines L.D., Gokaslan Z.L. Diagnosis and management of metastatic spine disease. A review. J Neurosurg Spine. 2010 Jul; 13(1): 94–108. doi:10.3171/2010.3.SPINE09202.; Cole J.S., Patchell R.A. Metastatic epidural spinal cord compression. Lancet Neurol. 2008 May; 7(5): 459–66. doi:10.1016/S1474-4422(08)70089-9.; Wu J., Zheng W., Xiao J.R., Sun X., Liu W.Z., Guo Q. Health-related quality of life in patients with spinal metastases treated with or without spinal surgery: a prospective, longitudinal study. Cancer. 2010 Aug 15; 116(16): 3875–82. doi:10.1002/cncr.25126.; Feiz-Erfan I., Rhines L.D., Weinberg J.S. The role of surgery in the management of metastatic spinal tumors. Semin Oncol. 2008 Apr; 35(2): 108–17. doi:10.1053/j.seminoncol.2007.12.005.; Falicov A., Fisher C.G., Sparkes J., Boyd M.C., Wing P.C., Dvorak M.F. Impact of surgical intervention on quality of life in patients with spinal metastases. Spine (Phila Pa 1976). 2006 Nov 15; 31(24): 2849–56. doi:10.1097/01.brs.0000245838.37817.40.; Yang S.B., Cho W., Chang U.K. Analysis of prognostic factors relating to postoperative survival in spinal metastases. J Korean Neurosurg Soc. 2012 Mar; 51(3): 127–34. doi:10.3340/jkns.2012.51.3.127.; Chen B., Xiao S., Tong X., Xu S., Lin X. Comparison of the Therapeutic Efficacy of Surgery with or without Adjuvant Radiotherapy versus Radiotherapy Alone for Metastatic Spinal Cord Compression: A Meta-Analysis. World Neurosurg. 2015; 83(6): 1066–73. doi:10.1016/j.wneu.2014.12.039.; Kim J.M., Losina E., Bono C.M., Schoenfeld A.J., Collins J.E., Katz J.N., Harris M.B. Clinical outcome of metastatic spinal cord compression treated with surgical excision ± radiation versus radiation therapy alone: a systematic review of literature. Spine (Phila Pa 1976). 2012 Jan 1; 37(1): 78–84. doi:10.1097/BRS.0b013e318223b9b6.; Карпенко В.Ю., Бухаров А.В., Державин В.А. Хирургическое лечение при солитарном поражении позвоночного столба. Онкология. Журнал им. П.А. Герцена. 2017; 6(1): 12–18. doi:10.17116/onkolog20176112-18.; Бухаров А.В., Алиев М.Д., Державин В.А., Ядрина А.В. Стратегия персонализированного хирургического лечения онкологических больных с метастазами в костях. Онкология. Журнал им. П.А. Герцена. 2020; 9(3): 61–65. doi:10.17116/onkolog2020903161.; Liu T., Wang S., Liu H., Meng B., Zhou F., He F., Shi X., Yang H. Detection of vertebral metastases: a meta-analysis comparing MRI, CT, PET, BS and BS with SPECT. J Cancer Res Clin Oncol. 2017 Mar; 143(3): 457–465. doi:10.1007/s00432-016-2288-z.; Tabouret E., Gravis G., Cauvin C., Loundou A., Adetchessi T., Fuentes S. Long-term survivors after surgical management of metastatic spinal cord compression. Eur Spine J. 2015 Jan; 24(1): 209–15. doi:10.1007/s00586-014-3676-1.; Tokuhashi Y., Matsuzaki H., Toriyama S., Kawano H., Ohsaka S. Scoring system for the preoperative evaluation of metastatic spine tumor prognosis. Spine (Phila Pa 1976). 1990 Nov; 15(11): 1110–3. doi:10.1097/00007632-199011010-00005.; Bauer H., Tomita K., Kawahara N., Abdel-Wanis M.E., Murakami H. Surgical strategy for spinal metastases. Spine (Phila Pa 1976). 2002 May 15; 27(10): 1124–6. doi:10.1097/00007632-200205150-00027.; Serlin R.C., Mendoza T.R., Nakamura Y., Edwards K.R., Cleeland C.S. When is cancer pain mild, moderate or severe? Grading pain severity by its interference with function. Pain. 1995 May; 61(2): 277–284. doi:10.1016/0304-3959(94)00178-H.; Frankel H.L., Hancock D.O., Hyslop G., Melzak J., Michaelis L.S., Ungar G.H., Vernon J.D., Walsh J.J. The value of postural reduction in the initial management of closed injuries of the spine with paraplegia and tetraplegia. I. Paraplegia. 1969 Nov; 7(3): 179–92. doi:10.1038/sc.1969.30.; Chong S., Shin S.H., Yoo H., Lee S.H., Kim K.J., Jahng T.A.,Gwak H.S. Single-stage posterior decompression and stabilization for metastasis of the thoracic spine: prognostic factors for functional outcome and patients’ survival. Spine J. 2012 Dec; 12(12): 1083–92. doi:10.1016/j.spinee.2012.10.015.; Cho D.C., Sung J.K. Palliative surgery for metastatic thoracic and lumbar tumors using posterolateral transpedicular approach with posterior instrumentation. Surg Neurol. 2009 Apr; 71(4): 424–33. doi:10.1016/j.surneu.2008.02.049.; Han X.X., Tao F., Wang G.W., Li L.L., Zhang C., Ren Z.W., Ma Y.L. Effect of combined treatment including surgery and postoperative adjuvant therapy on spinal metastases of Tomita type 7. Clin Neurol Neurosurg. 2019 Jun; 181: 112–118. doi:10.1016/j.clineuro.2019.04.007.; Sailhan F., Prost S., Zairi F., Gille O., Pascal-Mousselard H., Bennis S., Charles Y.P., Blondel B., Fuentes S.; French Spine Society (SFCR). Retrospective multicenter study by the French Spine Society of surgical treatment for spinal metastasis in France. Orthop Traumatol Surg Res. 2018 Sep; 104(5): 589–595. doi:10.1016/j.otsr.2018.06.006.; Miscusi M., Polli F.M., Forcato S., Ricciardi L., Frati A., Cimatti M., De Martino L., Ramieri A., Raco A. Comparison of minimally invasive surgery with standard open surgery for vertebral thoracic metastases causing acute myelopathy in patients with short- or mid-term life expectancy: surgical technique and early clinical results. J Neurosurg Spine. 2015 May; 22(5): 518–25. doi:10.3171/2014.10.SPINE131201.; Schairer W.W., Carrer A., Sing D.C., Chou D., Mummaneni P.V. Hu S.S., Berven S.H., Burch S., Tay B., Deviren V., Ames C. Hospital readmission rates after surgical treatment of primary and metastatic tumors of the spine. Spine (Phila Pa 1976). 2014 Oct 1; 39(21): 1801–8. doi:10.1097/BRS.0000000000000517.; Lau D., Chan A.K., Theologis A.A., Chou D., Mummaneni P.V., Burch S., Berven S., Deviren V., Ames C. Costs and readmission rates for the resection of primary and metastatic spinal tumors: a comparative analysis of 181 patients. J Neurosurg Spine. 2016 Sep; 25(3): 366–78. doi:10.3171/2016.2.SPINE15954.; Sarkiss C.A., Hersh E.H., Ladner T.R., Lee N., Kothari P., Lakomkin N., Caridi J.M. Risk Factors for Thirty-Day Morbidity and Mortality in Extradural Lumbar Spine Tumor Resection. World Neurosurg. 2018 Jun; 114: e1101–e1106. doi:10.1016/j.wneu.2018.03.155.; https://www.siboncoj.ru/jour/article/view/1865