يعرض 1 - 8 نتائج من 8 نتيجة بحث عن '"ПЕНЕТРАНТНОСТЬ"', وقت الاستعلام: 0.42s تنقيح النتائج
  1. 1
    Academic Journal

    المساهمون: The work was supported by government funding within project No. 0259-2021-0015. The English language was corrected and certified by shevchuk-editing.com

    المصدر: Vavilov Journal of Genetics and Breeding; Том 25, № 6 (2021); 652-660 ; Вавиловский журнал генетики и селекции; Том 25, № 6 (2021); 652-660 ; 2500-3259 ; 2500-0462 ; 10.18699//VJ21.06

    وصف الملف: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/3139/1548; Beklemisheva V.R., Perelman P.L., Lemskaya N.A., Kulemzina A.I., Proskuryakova A.A., Burkanov V.N., Graphodatsky A.S. The ancestral carnivore karyotype as substantiated by comparative chromosome painting of three pinnipeds, the walrus, the Steller sea lion and the Baikal seal (Pinnipedia, Carnivora). PloS One. 2016;11(1): e0147647. DOI 10.1371/journal.pone.0147647.; Glagolev P.A., Ippolitova V.I. Anatomy of Farm Animals with the Basics of Histology and Embryology. Moscow: Kolos Publ., 1977. (in Russian); Gorbach D., Mote B., Totir L., Fernando R., Rothschild M. Polydactyl inheritance in the pig. J. Hered. 2010;101(4):469-475. DOI 10.1093/jhered/esq037.; Graphodatsky A.S., Perelman P.L., O’Brien S.J. Atlas of Mammalian Chromosomes. 2nd ed. N.Y.: Wiley-Blackwell. USA, 2020.; Graphodatsky A.S., Radzhabli S.I., Baranov O.K. Chromosomes of Farm and Laboratory Mammals: Atlas. Novosibirsk: Nauka Publ., 1988. (in Russian); Ivanchuk V.A. Biogenetic characteristics of rare and endangered breeds of pigs. Veterinariya Sel’skokhozyaystvennykh Zhivotnykh = Veterinary Medicine of Farm Animals. 2011;2:55-60. (in Russian); Kudryavtsev P.N. Breeding Business in Pig Husbandry. Moscow: OGIZ-Selkhozgiz Publ., 1948. (in Russian); Lakin G.F. Biometrics. Moscow: Vysshaya Shkola Publ., 1990. (in Russian); Lange A., Muller G.B. Polydactyly in development, inheritance, and evolution. Q. Rev. Biol. 2017;92(1):1-38. DOI 10.1086/690841.; Lebedev M.I., Zelenevsky N.V. Tutorial on the Anatomy of Farm Animals. St. Petersburg: Agropromizdat Publ., 1995. (in Russian); Malynicz G.L. Complete polydactylism in Papua New Guinea village pig, with otocephalic homozygous monsters. Ann. Genet. Sel. Anim. 1982;14(3):415-420. DOI 10.1186/1297-9686-14-3-415.; Nikitin S.V., Knyazev S.P., Shatokhin K.S. Miniature pigs of ICG as a model object for morphogenetic research. Rus. J. Genet. Appl. Res. 2014;4(6):511-522.; Ptak W. Polydactyly in wild boar. Acta Theriologica. 1963;6:312-314.; Seabright M. A rapid banding technique for human chromosomes. Lancet. 1971;2:971-972. DOI 10.1016/s0140-6736(71)90287-x.; Sokolov V.E. Taxonomy of Mammals. Pt. 3. Moscow: Vysshaya Shkola Publ., 1979. (in Russian); Stanyon R., Galleni L. A rapid fibroblast culture technique for high resolution karyotypes. Ital. J. Zool. 1991;58:81-83. DOI 10.1080/11250009109355732.; Tickhonov V.N., Kochneva M.L., Bobovich V.E. Introduction of karyotypic polymorphism (2n = 36, 37, 38) in genome of domestic pigs Sus scrofa domestica. Informatcionny Vestnik VOGiS = The Herald of Vavilov Society for Geneticists and Breeding Scientists. 2010;14(4):647-653. (in Russian); Wiesner E., Wheller Z. Veterinärmedizinische Pathogenetik. Jena, 1974. (Russ. ed.: Wiesner E., Wheller Z. Veterinary Pathogenetics. Moscow: Kolos Publ., 1979. (in Russian)); https://vavilov.elpub.ru/jour/article/view/3139

  2. 2
    Academic Journal

    المصدر: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 66, № 3 (2021); 12-19 ; Российский вестник перинатологии и педиатрии; Том 66, № 3 (2021); 12-19 ; 2500-2228 ; 1027-4065 ; 10.21508/1027-4065-2021-66-3

    وصف الملف: application/pdf

    Relation: https://www.ped-perinatology.ru/jour/article/view/1400/1087; Wright C.F., FitzPatrick D.R., Firth H.V. Paediatric genomics: diagnosing rare disease in children. Nat Rev Genet. 2018; 19: 253–268. DOI:10.1038/nrg.2017.116; Boycott K.M., Rath A., Chong J.X., Hartley T., Alkuraya F.S., Baynam G. et al. International Cooperation to Enable the Diagnosis of All Rare Genetic Diseases. Am J Hum Genet. 2017; 100: 695–705. DOI:10.1016/j.ajhg.2017.04.003; Chong J.X., Buckingham K.J., Jhangiani S.N., Boehm C., Sobreira N., Smith J.D. et al. The Genetic Basis of Mendelian Phenotypes: Discoveries, Challenges, and Opportunities. Am J Hum Genet. 2015; 97: 199–215. DOI:10.1016/j.ajhg.2015.06.009; Щербакова Н.В., Воинова В.Ю., Школьникова М.А. Генетика и сердце: основания для внедрения генетического тестирования в клиническую практику. Педиатрия. 2020; 99 (3): 8–15. [Shcherbakova N.V., Voinova V.Yu., Shkolnikova M.A. Genetics and the heart: The basis for introducing genetic testing into clinical practice. Pediatriya Zhurnal Im GN Speranskogo. 2020; 99: 8–15. DOI:10.24110/0031-403X-2020-99-3-8-15 (in Russ.)]; Walsh R., Tadros R., Bezzina C.R. When genetic burden reaches threshold. Eur Heart J. 2020; 41: 3849–55. DOI:10.1093/eurheartj/ehaa269; Oon Y.Y., Koh K.T., Khaw C.S., Mohd Amin N.H., Ong T.K. Phenotypic variation among siblings with arrhythmogenic right ventricular cardiomyopathy. Med J Malaysia. 2019; 74: 328–330; Kose M.D., Canda E., Kağnıcı M., Uçar S.K., Onay H., Yıldırım Sozmen E. et al. Coexistence of Gaucher Disease and severe congenital neutropenia. Blood Cells Mol Dis. 2019; 76: 1–6. DOI:10.1016/j.bcmd.2018.07.001; Davidson B.A., Hassan S., Garcia E.J., Tayebi N., Sidransky E. Exploring genetic modifiers of Gaucher disease: The next horizon. Hum Mutat. 2018; 39: 1739–1751. DOI:10.1002/humu.23611; Rudnik-Schöneborn S., Barisić N., Eggermann K., Ortiz Brüchle N., Grđan P., Zerres K. Distally pronounced infantile spinal muscular atrophy with severe axonal and demyelinating neuropathy associated with the S230L mutation of SMN1. Neuromuscul Disord. 2016; 26: 132–135. DOI:10.1016/j.nmd.2015.12.003; Missaglia S., Tasca E., Angelini C., Moro L., Tavian D. Novel missense mutations in PNPLA2 causing late onset and clinical heterogeneity of neutral lipid storage disease with myopathy in three siblings. Mol Genet Metab. 2015; 115: 110–117. DOI:10.1016/j.ymgme.2015.05.001; Posey J.E., O’Donnell-Luria A.H., Chong J.X., Harel T., Jhangiani S.N., Coban Akdemir Z.H. et al. Insights into genetics, human biology and disease gleaned from family based genomic studies. Genet Med. 2019; 21: 798–812. DOI:10.1038/s41436-018-0408-7; Zareba W., Moss A.J., Locati E.H., Lehmann M.H., Peterson D.R., Hall W.J. et al. Modulating effects of age and gender on the clinical course of long QT syndrome by genotype. J Am Coll Cardiol. 2003; 42: 103–109. DOI:10.1016/s0735-1097(03)00554-0; Austin E.D., Loyd J.E., Phillips J.A. 3rd. Genetics of pulmonary arterial hypertension. Semin Respir Crit Care Med 2009; 30: 386–398. DOI:10.1055/s-0029-1233308; van der Werf C., Nederend I., Hofman N., van Geloven N., Ebink C., Frohn-Mulder I.M.E. et al. Familial evaluation in catecholaminergic polymorphic ventricular tachycardia: disease penetrance and expression in cardiac ryanodine receptor mutation-carrying relatives. Circ Arrhythm Electrophysiol. 2012; 5: 748–756. DOI:10.1161/CIRCEP.112.970517; Schwartz P.J., Crotti L., George A.L.J. Modifier genes for sudden cardiac death. Eur Heart J. 2018; 39: 3925–3931. DOI:10.1093/eurheartj/ehy502; Turner H., Jackson L. Evidence for penetrance in patients without a family history of disease: a systematic review. Eur J Hum Genet. 2020; 28: 539–550. DOI:10.1038/s41431-019-0556-5; Tuke M.A., Ruth K.S., Wood A.R., Beaumont R.N., Tyrrell J., Jones S.E. et al. Mosaic Turner syndrome shows reduced penetrance in an adult population study. Genet Med. 2019; 21: 877–886. DOI:10.1038/s41436-018-0271-6; Nollet E.E., Westenbrink B.D., de Boer R.A., Kuster D.W.D., van der Velden J. Unraveling the Genotype-Phenotype Relationship in Hypertrophic Cardiomyopathy: Obesity-Related Cardiac Defects as a Major Disease Modifier. J Am Heart Assoc. 2020; 9: e018641. DOI:10.1161/JAHA.120.018641; Weeke P.E., Kellemann J.S., Jespersen C.B., Theilade J., Kanters J.K., Hansen M.S. et al. Long-term proarrhythmic pharmacotherapy among patients with congenital long QT syndrome and risk of arrhythmia and mortality. Eur Heart J. 2019; 40: 3110–3117. DOI:10.1093/eurheartj/ehz228; Lorenzini M., Norrish G., Field E., Ochoa J.P., Cicerchia M., Akhtar M.M. et al. Penetrance of Hypertrophic Cardiomyopathy in Sarcomere Protein Mutation Carriers. J Am Coll Cardiol. 2020; 76: 550–559. DOI:10.1016/j.jacc.2020.06.011; Hey T.M., Rasmussen T.B., Madsen T., Aagaard M.M., Harbo M., Mølgaard H. et al. Pathogenic RBM20-Variants Are Associated With a Severe Disease Expression in Male Patients With Dilated Cardiomyopathy. Circ Heart Fail. 2019; 12: e005700. DOI:10.1161/CIRCHEARTFAILURE.118.005700; Van Rijsingen I.A.W., Nannenberg E.A., Arbustini E., Elliott P.M., Mogensen J., Hermans-van Ast J.F. et al. Gender-specific differences in major cardiac events and mortality in lamin A/C mutation carriers. Eur J Heart Fail. 2013; 15: 376–384. DOI:10.1093/eurjhf/hfs191; Page S.P., Kounas S., Syrris P., Christiansen M., Frank-Hansen R., Andersen P.S. et al. Cardiac myosin binding protein-C mutations in families with hypertrophic cardiomyopathy: disease expression in relation to age, gender, and long term outcome. Circ Cardiovasc Genet. 2012; 5: 156–166. DOI:10.1161/CIRCGENETICS.111.960831; Coll M., Pérez-Serra A., Mates J., Del Olmo B., Puigmulé M., Fernandez-Falgueras A. et al. Incomplete Penetrance and Variable Expressivity: Hallmarks in Channelopathies Associated with Sudden Cardiac Death. Biology (Basel). 2017; 7: 3. DOI:10.3390/biology7010003; Gifford C.A., Ranade S.S., Samarakoon R., Salunga H.T., de Soysa T.Y., Huang Y. et al. Oligogenic inheritance of a human heart disease involving a genetic modifier. Science. 2019; 364: 865–870. DOI:10.1126/science.aat5056; Kuzmin E., VanderSluis B., Wang W., Tan G., Deshpande R., Chen Y. et al. Systematic analysis of complex genetic interactions. Science. 2018; 360: eaao1729. DOI:10.1126/science.aao1729; Lee I., Lehner B., Vavouri T., Shin J., Fraser A.G., Marcotte E.M. Predicting genetic modifier loci using functional gene networks. Genome Res. 2010; 20: 1143–1153. DOI:10.1101/gr.102749.109; Uppu S., Krishna A., Gopalan R.P. A Review on Methods for Detecting SNP Interactions in High-Dimensional Genomic Data. IEEE/ACM Trans Comput Biol Bioinforma. 2018; 15: 599–612. DOI:10.1109/TCBB.2016.2635125; Madhukar N.S., Elemento O., Pandey G. Prediction of Genetic Interactions Using Machine Learning and Network Properties. Front Bioeng Biotechnol. 2015; 3: 172. DOI:10.3389/fbioe.2015.00172; Veitia R.A., Caburet S., Birchler J.A. Mechanisms of Mendelian dominance. Clin Genet. 2018; 93: 419–428. DOI:10.1111/cge.13107; Aubart M., Gazal S., Arnaud P., Benarroch L., Gross M-S., Buratti J. et al. Association of modifiers and other genetic factors explain Marfan syndrome clinical variability. Eur J Hum Genet. 2018; 26: 1759–1772. DOI:10.1038/s41431-018-0164-9; Maroilley T., Tarailo-Graovac M. Uncovering Missing Heritability in Rare Diseases. Genes (Basel). 2019; 10: 275. DOI:10.3390/genes10040275; Senol-Cosar O., Schmidt R.J., Qian E., Hoskinson D., Mason-Suares H., Funke B. et al. Considerations for clinical curation, classification, and reporting of low-penetrance and low effect size variants associated with disease risk. Genet Med. 2019; 21: 2765–2773. DOI:10.1038/s41436-019-0560-8; Arking D.E., Pulit S.L., Crotti L., van der Harst P., Munroe P.B., Koopmann T.T. et al. Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization. Nat Genet. 2014; 46: 826–836. DOI:10.1038/ng.3014; Lahtinen A.M., Marjamaa A., Swan H., Kontula K. KCNE1 D85N polymorphism--a sex-specific modifier in type 1 long QT syndrome? BMC Med Genet. 2011; 12: 11. DOI:10.1186/1471-2350-12-11; Nishio Y., Makiyama T., Itoh H., Sakaguchi T., Ohno S., Gong Y-Z. et al. D85N, a KCNE1 polymorphism, is a disease-causing gene variant in long QT syndrome. J Am Coll Cardiol. 2009; 54: 812–819. DOI:10.1016/j.jacc.2009.06.005; Lane C.M., Giudicessi J.R., Ye D., Tester D.J., Rohatgi R.K., Bos J.M. et al. Long QT syndrome type 5-Lite: Defining the clinical phenotype associated with the potentially proarrhythmic p.Asp85Asn-KCNE1 common genetic variant. Hear Rhythm. 2018; 15: 1223–1230. DOI:10.1016/j.hrthm.2018.03.038; Amin A.S., Giudicessi J.R., Tijsen A.J., Spanjaart A.M., Reckman Y.J., Klemens C.A. et al. Variants in the 3’ untranslated region of the KCNQ1-encoded Kv7.1 potassium channel modify disease severity in patients with type 1 long QT syndrome in an allele-specific manner. Eur Heart J. 2012; 33: 714–723. DOI:10.1093/eurheartj/ehr473; Rahit K.M.T.H., Tarailo-Graovac M. Genetic Modifiers and Rare Mendelian Disease. Genes (Basel). 2020; 11: 239. DOI:10.3390/genes11030239; Lappalainen T., Scott A.J., Brandt M., Hall I.M. Genomic Analysis in the Age of Human Genome Sequencing. Cell. 2019; 177: 70–84. DOI:10.1016/j.cell.2019.02.032; Scalco R.S., Morrow J.M., Booth S., Chatfield S., Godfrey R., Quinlivan R. Misdiagnosis is an important factor for diagnostic delay in McArdle disease. Neuromuscul Disord. 2017; 27: 852–865. DOI:10.1016/j.nmd.2017.04.013; Graf J., Schwitalla J.C., Albrecht P., Veltkamp R., Berlit P., Hartung H-P. et al. Misdiagnoses and delay of diagnoses in Moyamoya angiopathy-a large Caucasian case series. J Neurol. 2019; 266: 1153–1159. DOI:10.1007/s00415-019-09245-9; Van Leeuwen J., Pons C., Boone C., Andrews B.J. Mechanisms of suppression: The wiring of genetic resilience. Bioessays. 2017; 39: 10.1002/bies.201700042. DOI:10.1002/bies.201700042; Visscher P.M., Wray N.R., Zhang Q., Sklar P., McCarthy M.I., Brown M.A. et al. 10 Years of GWAS Discovery: Biology, Function, and Translation. Am J Hum Genet. 2017; 101: 5–22. DOI:10.1016/j.ajhg.2017.06.005; Kolder I.C.R.M., Tanck M.W.T., Postema P.G., Barc J., Sinner M.F., Zumhagen S. et al. Analysis for Genetic Modifiers of Disease Severity in Patients With Long-QT Syndrome Type 2. Circ Cardiovasc Genet. 2015; 8: 447–456. DOI:10.1161/CIRCGENETICS.114.000785; Lahrouchi N., Tadros R., Crotti L., Mizusawa Y., Postema P.G., Beekman L. et al. Transethnic Genome-Wide Association Study Provides Insights in the Genetic Architecture and Heritability of Long QT Syndrome. Circulation 2020; 142: 324– 338. DOI:10.1161/CIRCULATIONAHA.120.045956; Esslinger U., Garnier S., Korniat A., Proust C., Kararigas G., Müller-Nurasyid M. et al. Exome-wide association study reveals novel susceptibility genes to sporadic dilated cardiomyopathy. PLoS One. 2017; 12: e0172995. DOI:10.1371/journal.pone.0172995; Aung N., Vargas J.D., Yang C., Cabrera C.P., Warren H.R., Fung K. et al. Genome-Wide Analysis of Left Ventricular Image-Derived Phenotypes Identifies Fourteen Loci Associated With Cardiac Morphogenesis and Heart Failure Development. Circulation. 2019; 140: 1318–1330. DOI:10.1161/CIRCULATIONAHA.119.041161; Tadros R., Francis C., Xu X., Vermeer A.M.C., Harper A.R., Huurman R. et al. Shared genetic pathways contribute to risk of hypertrophic and dilated cardiomyopathies with opposite directions of effect. Nat Genet. 2021; 53: 128–134. DOI:10.1038/s41588-020-00762-2; Wijeyeratne Y.D., Tanck M.W., Mizusawa Y., Batchvarov V., Barc J., Crotti L. et al. SCN5A Mutation Type and a Genetic Risk Score Associate Variably With Brugada Syndrome Phenotype in SCN5A Families. Circ Genomic Precis Med. 2020; 13: e002911. DOI:10.1161/CIRCGEN.120.002911; Khera A.V., Chaffin M., Aragam K.G., Haas M.E., Roselli C., Choi S.H. et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat Genet. 2018; 50: 1219–1224. DOI:10.1038/s41588-018-0183-z; https://www.ped-perinatology.ru/jour/article/view/1400

  3. 3
    Academic Journal

    المصدر: Medical Genetics; Том 18, № 8 (2019); 21-28 ; Медицинская генетика; Том 18, № 8 (2019); 21-28 ; 2073-7998

    وصف الملف: application/pdf

  4. 4
    Academic Journal
  5. 5
    Academic Journal

    وصف الملف: application/pdf

    Relation: Здоровье для всех : материалы VIII международной научно-практической конференции, посвященной 10-летию научно-исследовательской лаборатории лонгитудинальных исследований, Пинск, 18 - 19 апреля 2019 г. / Министерство образования Республики Беларусь [и др.]; редкол.: К.К. Шебеко [и др.]. – Пинск: ПолесГУ, 2019. – С. 136-142.; https://rep.polessu.by/handle/123456789/16162

  6. 6
  7. 7
  8. 8