يعرض 1 - 2 نتائج من 2 نتيجة بحث عن '"О. Ю. Муха"', وقت الاستعلام: 0.46s تنقيح النتائج
  1. 1
    Academic Journal

    المساهمون: This study did not have financial support from outside organizations., Данное исследование не имело финансовой поддержки от сторонних организаций.

    المصدر: Pharmacy & Pharmacology; Том 11, № 5 (2023); 432-442 ; Фармация и фармакология; Том 11, № 5 (2023); 432-442 ; 2413-2241 ; 2307-9266 ; 10.19163/2307-9266-2023-11-5

    وصف الملف: application/pdf

    Relation: https://www.pharmpharm.ru/jour/article/view/1396/1009; Zimmer Z., Fraser K., Grol-Prokopczyk H., Zajacova A. A global study of pain prevalence across 52 countries: examining the role of country-level contextual factors // Pain. – 2022. – Vol. 163, No. 9. – P. 1740–1750. DOI:10.1097/j.pain.0000000000002557; Daveluy A., Micallef J., Sanchez-Pena P., Miremont-Salamé G., Lassalle R., Lacueille C., Grelaud A., Corand V., Victorri-Vigneau C., Batisse A., Le Boisselier R. Ten-year trend of opioid and nonopioid analgesic use in the French adult population // Br J Clin Pharmacol. – 2021. – Vol. 87, No. 2. – P. 555–564. DOI:10.1111/bcp.14415; Pasternak G.W. Mu opioid pharmacology: 40 years to the promised land // Adv Pharmacol. – 2018. – Vol. 82. – P. 261–291. DOI:10.1016/bs.apha.2017.09.006; Dalefield M.L., Scouller B., Bibi R., Kivell B.M. The kappa opioid receptor: A promising therapeutic target for multiple pathologies // Front Pharmacol. – 2022. – Vol. 13. – Art. ID: 837671. DOI:10.3389/fphar.2022.837671; Khan M.I.H., Sawyer B.J., Akins N.S., Le H.V.A systematic review on the kappa opioid receptor and its ligands: New directions for the treatment of pain, anxiety, depression, and drug abuse // Eur J Med Chem. – 2022. – Vol. 243. – Art. ID: 114785. DOI:10.1016/j.ejmech.2022.114785; Vaidya B., Sifat A.E., Karamyan V.T., Abbruscato T.J. The neuroprotective role of the brain opioid system in stroke injury // Drug Discov Today. – 2018. – Vol. 23, No. 7. – P. 1385–1395. DOI:10.1016/j.drudis.2018.02.011; Paul A.K., Smith C.M., Rahmatullah M., Nissapatorn V., Wilairatana P., Spetea M., Gueven N., Dietis N. Opioid analgesia and opioid-induced adverse effects: A review // Pharmaceuticals. – 2021. – Vol. 14, No. 11. – Art. ID: 1091. DOI:10.3390/ph14111091; Gopalakrishnan L., Chatterjee O., Ravishankar N., Suresh S., Raju R., Mahadevan A., Prasad T.K. Opioid receptors signaling network // J Cell Commun Signal. – 2022. – Vol. 16, No. 3. – P. 475–483. DOI:10.1007/s12079-021-00653-z; Machelska H., Celik M.Ö. Advances in achieving opioid analgesia without side effects // Front Pharmacol. – 2018. – Vol. 9. – Art. ID: 1388. DOI:10.3389/fphar.2018.01388; Mores K.L., Cummins B.R., Cassell R.J., van Rijn R.M. A review of the therapeutic potential of recently developed G protein-biased kappa agonists // Front Pharmacol. – 2019. – Vol. 10. – Art. ID: 407. DOI:10.3389/fphar.2019.00407; Спасов А.А., Калитин К.Ю., Гречко О.Ю., Анисимова В.А. Противоэпилептическая активность нового производного бензимидазола РУ-1205 // Бюллетень экспериментальной биологии и медицины. – 2015. – Т. 160, № 9. – С. 320–323.; Kalitin K.Y., Grechko O.Y., Spasov A.A., Sukhov A.G., Anisimova V.A., Matukhno A.E. GABAergic mechanism of anticonvulsive effect of chemical agent RU-1205 // Bull Exp Biol Med. – 2018. – Vol. 164. – P. 629–635. DOI:10.1007/s10517-018-4047-4; Калитин К.Ю., Придворов Г.В., Спасов А.А., Муха О.Ю. Влияние каппа-опиоидных агонистов буторфанола и соединения РУ-1205 на биоэлектрическую активность мозга при глобальной ишемии // Вестник Волгоградского государственного медицинского университета. – 2022. – Т. 19, № 3. – С. 128–133. DOI:10.19163/1994-9480-2022-19-3-128-133; Liu-Chen L.Y., Huang P. Signaling underlying kappa opioid receptor-mediated behaviors in rodents // Front Neurosci. – 2022. – Vol. 16. – Art. ID: 964724. DOI:10.3389/fnins.2022.964724; Tortella F. C., Robles L., Holaday J. W. U50, 488, a highly selective kappa opioid: anticonvulsant profile in rats // J Pharmacol Exper Ther. – 1986. – Vol. 237, No. 1. – P. 49–53.; Lemos C., Salti A., Amaral I.M., Fontebasso V., Singewald N., Dechant G., Hofer A., El Rawas R. Social interaction reward in rats has anti-stress effects // Addict Biol. – 2021. – Vol. 26, No. 1. – Art. ID: e12878. DOI:10.1111/adb.12878; Ji G., Neugebauer V. Kappa opioid receptors in the central amygdala modulate spinal nociceptive processing through an action on amygdala CRF neurons // Molecul Brain. – 2020. – Vol. 13, No. 1. – P. 1–10. DOI:10.1186/s13041-020-00669-3; Zan G.Y., Wang Q., Wang Y.J., Chen J.C., Wu X., Yang C.H., Chai J.R., Li M., Liu Y., Hu X.W., Shu X.H. p38 mitogen-activated protein kinase activation in amygdala mediates κ opioid receptor agonist U50,488H-induced conditioned place aversion // Neurosci. – 2016. – Vol. 320. – P. 122–128. DOI:10.1016/j.neuroscience.2016.01.052; Yakhnitsa V., Ji G., Hein M., Presto P., Griffin Z., Ponomareva O., Navratilova E., Porreca F., Neugebauer V. Kappa opioid receptor blockade in the amygdala mitigates pain like-behaviors by inhibiting corticotropin releasing factor neurons in a rat model of functional pain // Front Pharmacol. – 2022. – Vol. 13. – Art. ID: 903978. DOI:10.3389/fphar.2022.903978; Dermitzaki E., Tsatsanis C., Gravanis A., Margioris A.N. Corticotropin-releasing hormone induces Fas ligand production and apoptosis in PC12 cells via activation of p38 mitogen-activated protein kinase // J Biologic Chem. – 2002. – Vol. 277, No. 14. – P. 12280–12287. DOI:10.1074/jbc.M111236200; Ona G. Sampedro F., Romero S., Valle M., Camacho V., Migliorelli C., Mañanas M.Á., Antonijoan R.M., Puntes M., Coimbra J., Ballester M.R. The Kappa Opioid Receptor and the Sleep of Reason: Cortico-Subcortical Imbalance Following Salvinorin-A // Int J Neuropsychopharmacol. – 2022. – Vol. 25, No. 1. – P. 54–63. DOI:10.1093/ijnp/pyab063; Tejeda H.A., Hanks A.N., Scott L., Mejias-Aponte C., Hughes Z.A., O’donnell P. Prefrontal cortical kappa opioid receptors attenuate responses to amygdala inputs //Neuropsychopharmacol. – 2015. – Vol. 40, No. 13. – P. 2856–2864. DOI:10.1038/npp.2015.138; Jamali S., Dezfouli M.P., Kalbasi A., Daliri M.R., Haghparast A. Selective modulation of hippocampal theta oscillations in response to morphine versus natural reward // Brain Sci. – 2023. – Vol. 13, No. 2. – Art. ID: 322. DOI:10.3390/brainsci13020322; Ahmadi Soleimani S.M., Mohamadi M. A. H. M.H., Raoufy M.R., Azizi H., Nasehi M., Zarrindast M.R. Acute morphine administration alters the power of local field potentials in mesolimbic pathway of freely moving rats: Involvement of dopamine receptors // Neurosci Lett. – 2018. – Vol. 686. – P. 168–174. DOI:10.1016/j.neulet.2018.09.016; Reakkamnuan C., Cheaha D., Kumarnsit E. Nucleus accumbens local field potential power spectrums, phase-amplitude couplings and coherences following morphine treatment // Acta Neurobiol Exp (Wars). – 2017. – Vol. 77, No. 3. – P. 214–224. DOI:10.21307/ane-2017-055; Hein M., Ji G., Tidwell D., D’Souza P., Kiritoshi T., Yakhnitsa V., Navratilova E., Porreca F., Neugebauer V. Kappa opioid receptor activation in the amygdala disinhibits CRF neurons to generate pain-like behaviors // Neuropharmacolog. – 2021. – Vol. 185. – Art. ID: 108456. DOI:10.1016/j.neuropharm.2021.108456; Ittner A.A., Gladbach A., Bertz J., Suh L.S., Ittner L.M. p38 MAP kinase-mediated NMDA receptor-dependent suppression of hippocampal hypersynchronicity in a mouse model of Alzheimer’s disease // Acta Neuropathol Commun. – 2014. – Vol. 2. – P. 1–17. DOI:10.1186/s40478-014-0149-z; Zhang F., Wang F., Yue L., Zhang H., Peng W., Hu L. Cross-species investigation on resting state electroencephalogram // Brain Topogr. – 2019. – Vol. 32. – P. 808–824. DOI:10.1007/s10548-019-00723-x; Imperatori L.S., Cataldi J., Betta M., Ricciardi E., Ince R.A., Siclari F., Bernardi G. Cross-participant prediction of vigilance stages through the combined use of wPLI and wSMI EEG functional connectivity metrics // Sleep. – 2021. – Vol. 44, No. 5. – Art. ID: zsaa247. DOI:10.1093/sleep/zsaa247; Banks M.I., Krause B.M., Endemann C.M., Campbell D.I., Kovach C.K., Dyken M.E., Kawasaki H., Nourski K.V. Cortical functional connectivity indexes arousal state during sleep and anesthesia // Neuroimage. – 2020. – Vol. 211. – Art. ID: 116627. DOI:10.1016/j.neuroimage.2020.116627; Delgado-Sallent C., Nebot P., Gener T., Fath A.B., Timplalexi M., Puig M.V. Atypical, but not typical, antipsychotic drugs reduce hypersynchronized prefrontal-hippocampal circuits during psychosis-like states in mice: Contribution of 5-HT2A and 5-HT1A receptors // Cereb Cortex. – 2022. – Vol. 32, No. 16. – P. 3472–3487. DOI:10.1093/cercor/bhab427; Huang Y., Yi Y., Chen Q., Li H., Feng S., Zhou S., Zhang Z., Liu C., Li J., Lu Q., Zhang L. Analysis of EEG features and study of automatic classification in first-episode and drug-naïve patients with major depressive disorder // BMC Psychiatry. – 2023. – Vol. 23, No. 1. – Art. ID: 832. DOI:10.1186/s12888-023-05349-9; Desai R., Porob P., Rebelo P., Edla D.R., Bablani A. EEG data classification for mental state analysis using wavelet packet transform and gaussian process classifier // Wireless Personal Communications. – 2020. – Vol. 115, No. 3. – P. 2149–2169. DOI:10.1007/s11277-020-07675-7; Chinara S. Automatic classification methods for detecting drowsiness using wavelet packet transform extracted time-domain features from single-channel EEG signal // J Neurosci Methods. – 2021. – Vol. 347. – Art. ID: 108927. DOI:10.1016/j.jneumeth.2020.108927; Ieracitano C., Mammone N., Hussain A., Morabito F.C. A novel multi-modal machine learning based approach for automatic classification of EEG recordings in dementia // Neural Networks. – 2020. – Vol. 123. – P. 176–190. DOI:10.1016/j.neunet.2019.12.006; Zanettini C., Scaglione A., Keighron J.D., Giancola J.B., Lin S.C., Newman A.H., Tanda G. Pharmacological classification of centrally acting drugs using EEG in freely moving rats: an old tool to identify new atypical dopamine uptake inhibitors // Neuropharmacol. – 2019. – Vol. 161. – Art. ID: 107446. DOI:10.1016/j.neuropharm.2018.11.034; Shahabi M.S., Shalbaf A., Maghsoudi A. Prediction of drug response in major depressive disorder using ensemble of transfer learning with convolutional neural network based on EEG // Biocybernet Biomed Engineer. – 2021. – Vol. 41, No. 3. – P. 946–959. DOI:10.1016/j.bbe.2021.06.006; Rives M.L., Rossillo M., Liu-Chen L.Y., Javitch J.A. 6′-Guanidinonaltrindole (6′-GNTI) is a G protein-biased κ-opioid receptor agonist that inhibits arrestin recruitment // J Biologic Chem. – 2012. – Vol. 287, No. 32. – P. 27050–27054. DOI:10.1074/jbc.C112.387332; Kalitin K.Y., Spasov A.A., Mukha O.Y. Effects of kappa-opioid agonist U-50488 and p38 MAPK inhibitor SB203580 on the spike activity of pyramidal neurons in the basolateral amygdala // Research Ress Pharmacol. – 2024. – Vol. 10, No. 1. – P. 1–6. DOI:10.18413/rrpharmacology.10.400; Courtin J., Karalis N., Gonzalez-Campo C., Wurtz H., Herry C. Persistence of amygdala gamma oscillations during extinction learning predicts spontaneous fear recovery // Neurobiol Learn Memory. – 2014. – Vol. 113. – P. 82–89. DOI:10.1016/j.nlm.2013.09.015; https://www.pharmpharm.ru/jour/article/view/1396

  2. 2
    Academic Journal

    المساهمون: This study did not receive financial support from third parties., Данное исследование не имело финансовой поддержки от сторонних организаций.

    المصدر: Pharmacy & Pharmacology; Том 11, № 1 (2023); 4-18 ; Фармация и фармакология; Том 11, № 1 (2023); 4-18 ; 2413-2241 ; 2307-9266 ; undefined

    وصف الملف: application/pdf

    Relation: https://www.pharmpharm.ru/jour/article/view/1256/944; https://www.pharmpharm.ru/jour/article/view/1256/943; Григорьев Е.В., Шукевич Д.Л., Плотников Г.П., Хуторная М.В., Цепокина А., Радивилко А.С. Нейровоспаление в критических состояниях: механизмы и протективная роль гипотермии // Фундаментальная и клиническая медицина. – 2016. – Т. 1, № 3. – С. 88–96.; Denny L., Al Abadey A., Robichon K., Templeton N., Prisinzano T.E., Kivell B.M., La Flamme A.C. Nalfurafine reduces neuroinflammation and drives remyelination in models of CNS demyelinating disease // Clinical & translational immunology. – 2021. – Vol. 10, No. 1. – Art. ID: e1234. DOI:10.1002/cti2.1234; Campos A.C.P., Antunes G.F., Matsumoto M., Pagano R.L., Martinez R.C.R. Neuroinflammation, pain and depression: an overview of the main findings // Frontiers in Psychology. – 2020. – Vol. 11. – Art. ID: 1825. DOI:10.3389/fpsyg.2020.01825; Zindler E., Zipp F. Neuronal injury in chronic CNS inflammation // Best. Pract. Res. Clin. Anaesthesiol. – 2010. – Vol. 24, No.4. – P. 551–562. DOI:10.1016/j.bpa.2010.11.001; Boche D., Perry V.H., Nicoll J.A. Review: activation patterns of microglia and their identification in the human brain // Neuropathol. Appl. Neurobiol. – 2013. – Vol. 39, No. 1. – P. 3–18. DOI:10.1111/nan.12011; Ahn J.J., Abu-Rub M., Miller R.H. B Cells in Neuroinflammation: New Perspectives and Mechanistic Insights // Cells. – 2021. – Vol. 10, No. 7. –Art. ID: 1605. DOI:10.3390/cells10071605; Lenz K.M., Nelson L.H. Microglia and Beyond: Innate Immune Cells As Regulators of Brain Development and Behavioral Function // Front Immunol. – 2018. – Vol. 9. – Art. ID: 698. DOI:10.3389/fimmu.2018.00698; DiSabato D.J., Quan N., Godbout J.P. Neuroinflammation: the devil is in the details // J. Neurochem. – 2016. – Vol. 139, Suppl. 2. – P. 136–153. DOI:10.1111/jnc.13607; Wang W.Y., Tan M.S., Yu J.T., Tan L. Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease // Ann. Transl. Med. – 2015. – Vol. 3, No. 10. – Art. ID: 136. DOI:10.3978/j.issn.2305-5839.2015.03.49; Wang Q., Liu Y., Zhou J. Neuroinflammation in Parkinson’s disease and its potential as therapeutic target // Transl. Neurodegener. – 2015. – Vol. 4. – Art. ID: 19. DOI:10.1186/s40035-015-0042-0; Levey D.F., Stein M.B., Wendt F.R., Pathak G.A., Zhou H., Aslan M., Quaden R., Harrington K.M., Nuñez Y.Z., Overstreet C., Radhakrishnan K., Sanacora G., McIntosh A.M., Shi J., Shringarpure S.S.; 23andMe Research Team; Million Veteran Program; Concato J., Polimanti R., Gelernter J. Bi-ancestral depression GWAS in the Million Veteran Program and meta-analysis in >1.2 million individuals highlight new therapeutic directions // Nat. Neurosci. – 2021. – Vol. 24, No. 7. – P. 954–963. DOI:10.1038/s41593-021-00860-2; Wittenberg G.M., Greene J., Vértes P.E., Drevets W.C., Bullmore E.T. Major Depressive Disorder Is Associated With Differential Expression of Innate Immune and Neutrophil-Related Gene Networks in Peripheral Blood: A Quantitative Review of Whole-Genome Transcriptional Data From Case-Control Studies // Biol. Psychiatry. – 2020. – Vol. 88, No. 8. – P. 625–637. DOI:10.1016/j.biopsych.2020.05.006; Hodes G.E., Pfau M.L., Leboeuf M., Golden S.A., Christoffel D.J., Bregman D., Rebusi N., Heshmati M., Aleyasin H., Warren B.L., Lebonté B., Horn S., Lapidus K.A., Stelzhammer V., Wong E.H., Bahn S., Krishnan V., Bolaños-Guzman C.A., Murrough J.W., Merad M., Russo S.J. Individual differences in the peripheral immune system promote resilience versus susceptibility to social stress // Proc. Natl. Acad. Sci. U S A. – 2014. – Vol. 111, No. 45. – P. 16136–16141. DOI:10.1073/pnas.1415191111; Troubat R., Barone P., Leman S., Desmidt T., Cressant A., Atanasova B., Brizard B., El Hage W., Surget A., Belzung C., Camus V. Neuroinflammation and depression: A review // Eur. J. Neurosci. – 2021. – Vol. 53, No. 1. – P. 151–171. DOI:10.1111/ejn.14720; Lotrich F.E. Major depression during interferon-alpha treatment: vulnerability and prevention // Dialogues Clin. Neurosci. – 2009. – Vol. 11, No. 4. – P. 417–425. DOI:10.31887/DCNS.2009.11.4/felotrich; Khansari P.S., Sperlagh B. Inflammation in neurological and psychiatric diseases // Inflammopharmacology. – 2012. – Vol. 20, No. 3. – P. 103–107. DOI:10.1007/s10787-012-0124-x; Liu L., Xu Y., Dai H., Tan S., Mao X., Chen Z. Dynorphin activation of kappa opioid receptor promotes microglial polarization toward M2 phenotype via TLR4/NF-κB pathway // Cell Biosci. – 2020. – Vol. 10. – Art. ID: 42. DOI:10.1186/s13578-020-00387-2; Kip E., Parr-Brownlie L.C. Reducing neuroinflammation via therapeutic compounds and lifestyle to prevent or delay progression of Parkinson’s disease // Ageing Res. Rev. – 2022. – Vol. 78. – Art. ID: 101618. DOI:10.1016/j.arr.2022.101618; Tangherlini G., Kalinin D.V., Schepmann D., Che T., Mykicki N., Ständer S., Loser K., Wünsch B. Development of Novel Quinoxaline-Based κ-Opioid Receptor Agonists for the Treatment of Neuroinflammation // J. Med. Chem. – 2019. – Vol. 62, No. 2. – P. 893–907. DOI:10.1021/acs.jmedchem.8b01609; Peng J., Sarkar S., Chang S.L. Opioid receptor expression in human brain and peripheral tissues using absolute quantitative real-time RT-PCR // Drug Alcohol. Depend. – 2012. – Vol. 124, No. 3. – P. 223–228. DOI:10.1016/j.drugalcdep.2012.01.013; Stein C., Schäfer M., Machelska H. Attacking pain at its source: new perspectives on opioids // Nat. Med. – 2003. – Vol. 9, No. 8. – P. 1003–1008. DOI:10.1038/nm908; Kalitin K.Y., Grechko O.U., Spasov A.A., Anisimova V.A. Anticonvulsant Effect of Novel Benzimidazole Derivative (RU-1205) in Chronic Intermittent Ethanol Vapor Exposure Model in Mice // Eksp. Klin. Farmakol. – 2015. – Vol. 78, No. 4. – P. 3–5.; Paton K.F., Atigari D.V., Kaska S., Prisinzano T., Kivell B.M. Strategies for Developing κ Opioid Receptor Agonists for the Treatment of Pain with Fewer Side Effects // J. Pharmacol. Exp. Ther. – 2020. – Vol. 375, No. 2. – P. 332–348. DOI:10.1124/jpet.120.000134; Hauser K.F., Aldrich J.V., Anderson K.J., Bakalkin G., Christie M.J., Hall E.D., Knapp P.E., Scheff S.W., Singh I.N., Vissel B., Woods A.S., Yakovleva T., Shippenberg T.S. Pathobiology of dynorphins in trauma and disease // Front. Biosci. – 2005. – Vol. 10. – P. 216–235. DOI:10.2741/1522; Rogers T.J. Kappa Opioid Receptor Expression and Function in Cells of the Immune System // Handb. Exp. Pharmacol. – 2022. – Vol. 271. – P. 419–433. DOI:10.1007/164_2021_441; Schank J.R., Goldstein A.L., Rowe K.E., King C.E., Marusich J.A., Wiley J.L., Carroll F.I., Thorsell A., Heilig M. The kappa opioid receptor antagonist JDTic attenuates alcohol seeking and withdrawal anxiety // Addict. Biol. – 2012. – Vol. 17, No. 3. – P. 634–647. DOI:10.1111/j.1369-1600.2012.00455.x; Al-Hasani R., Bruchas M.R. Molecular mechanisms of opioid receptor-dependent signaling and behavior // Anesthesiology. – 2011. – Vol. 115, No. 6. – P. 1363–1381. DOI:10.1097/ALN.0b013e318238bba6; Bruchas M.R., Chavkin C. Kinase cascades and ligand-directed signaling at the kappa opioid receptor // Psychopharmacology (Berl). – 2010. – Vol. 210, No. 2. – P. 137–147. DOI:10.1007/s00213-010-1806-y; Machelska H., Stein C. Leukocyte-derived opioid peptides and inhibition of pain // J. Neuroimmune Pharmacol. – 2006. – Vol. 1, No. 1. – P. 90–97. DOI:10.1007/s11481-005-9002-2; Borniger J.C., Hesp Z.C. Enhancing Remyelination through a Novel Opioid-Receptor Pathway // J. Neurosci. – 2016. – Vol. 36, No. 47. – P. 11831–11833. DOI:10.1523/JNEUROSCI.2859-16.2016; Macdonald R.L., Werz M.A. Dynorphin A decreases voltage-dependent calcium conductance of mouse dorsal root ganglion neurons // J. Physiol. – 1986. – Vol. 377. – P. 237–249. DOI:10.1113/jphysiol.1986.sp016184; Rusin K.I., Giovannucci D.R., Stuenkel E.L., Moises H.C. Kappa-opioid receptor activation modulates Ca2+ currents and secretion in isolated neuroendocrine nerve terminals // J. Neurosci. – 1997. – Vol. 17, No. 17. – P. 6565–6574. DOI:10.1523/JNEUROSCI.17-17-06565.1997; Gannon R.L., Terrian D.M. Kappa opioid agonists inhibit transmitter release from guinea pig hippocampal mossy fiber synaptosomes // Neurochem. Res. – 1992. – Vol. 17, No. 8. – P. 741–747. DOI:10.1007/BF00969007; Li R., Zhou Y., Zhang S., Li J., Zheng Y., Fan X. The natural (poly)phenols as modulators of microglia polarization via TLR4/NF-κB pathway exert anti-inflammatory activity in ischemic stroke // Eur. J. Pharmacol. – 2022. – Vol. 914. – Art. ID: 174660. DOI:10.1016/j.ejphar.2021.174660; Missig G., Fritsch E.L., Mehta N., Damon M.E., Jarrell E.M., Bartlett A.A., Carroll F.I., Carlezon W.A. Jr. Blockade of kappa-opioid receptors amplifies microglia-mediated inflammatory responses // Pharmacol. Biochem. Behav. – 2022. – Vol. 212. – Art. ID: 173301. DOI:10.1016/j.pbb.2021.173301; Parkhill A.L., Bidlack J.M. Reduction of lipopolysaccharide-induced interleukin-6 production by the kappa opioid U50,488 in a mouse monocyte-like cell line // Int. Immunopharmacol. – 2006. – Vol. 6, No. 6. – P. 1013-1019. DOI:10.1016/j.intimp.2006.01.012; Tan Y.L., Yuan Y., Tian L. Microglial regional heterogeneity and its role in the brain // Mol. Psychiatry. – 2020. – Vol. 25, No. 2. – P. 351–367. DOI:10.1038/s41380-019-0609-8; Saunders A., Macosko E.Z., Wysoker A., Goldman M., Krienen F.M., de Rivera H., Bien E., Baum M., Bortolin L., Wang S., Goeva A., Nemesh J., Kamitaki N., Brumbaugh S., Kulp D., McCarroll S.A. Molecular Diversity and Specializations among the Cells of the Adult Mouse Brain // Cell. – 2018. – Vol. 174, No. 4. – P. 1015–1030.e16. DOI:10.1016/j.cell.2018.07.028; Carlezon W.A. Jr., Kim W., Missig G., Finger B.C., Landino S.M., Alexander A.J., Mokler E.L., Robbins J.O., Li Y., Bolshakov V.Y., McDougle C.J., Kim K.S. Maternal and early postnatal immune activation produce sex-specific effects on autism-like behaviors and neuroimmune function in mice // Sci. Rep. – 2019. – Vol. 9, No. 1. – Art. ID: 16928. DOI:10.1038/s41598-019-53294-z; Conway S.M., Puttick D., Russell S., Potter D., Roitman M.F., Chartoff E.H. Females are less sensitive than males to the motivational- and dopamine-suppressing effects of kappa opioid receptor activation // Neuropharmacology. – 2019. – Vol. 146. – P. 231–241. DOI:10.1016/j.neuropharm.2018.12.002; Bardou I., Kaercher R.M., Brothers H.M., Hopp S.C., Royer S., Wenk G.L. Age and duration of inflammatory environment differentially affect the neuroimmune response and catecholaminergic neurons in the midbrain and brainstem // Neurobiol. Aging. – 2014. – Vol. 35, No. 5. – P. 1065–1073. DOI:10.1016/j.neurobiolaging.2013.11.006; Kotanidou A., Xagorari A., Bagli E., Kitsanta P., Fotsis T., Papapetropoulos A., Roussos C. Luteolin reduces lipopolysaccharide-induced lethal toxicity and expression of proinflammatory molecules in mice // Am. J. Respir. Crit. Care Med. – 2002. – Vol. 165, No. 6. – P. 818–823. DOI:10.1164/ajrccm.165.6.2101049; Aviello G., Borrelli F., Guida F., Romano B., Lewellyn K., De Chiaro M., Luongo L., Zjawiony J.K., Maione S., Izzo A.A., Capasso R. Ultrapotent effects of salvinorin A, a hallucinogenic compound from Salvia divinorum, on LPS-stimulated murine macrophages and its anti-inflammatory action in vivo // J. Mol. Med. (Berl). – 2011. – Vol. 89, No. 9. – P. 891–902. DOI:10.1007/s00109-011-0752-4; Cario E., Podolsky D.K. Differential alteration in intestinal epithelial cell expression of toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease // Infect. Immun. – 2000. – Vol. 68, No. 12. – P. 7010–7017. DOI:10.1128/IAI.68.12.7010-7017.2000; Krstic D., Knuesel I. Deciphering the mechanism underlying late-onset Alzheimer disease // Nat. Rev. Neurol. – 2013. – Vol. 9, No. 1. – P. 25–34. DOI:10.1038/nrneurol.2012.236; Krstic D., Madhusudan A., Doehner J., Vogel P., Notter T., Imhof C., Manalastas A., Hilfiker M., Pfister S., Schwerdel C., Riether C., Meyer U., Knuesel I. Systemic immune challenges trigger and drive Alzheimer-like neuropathology in mice // J. Neuroinflammation. – 2012. – Vol. 9. – Art. ID: 151. DOI:10.1186/1742-2094-9-151; Town T., Jeng D., Alexopoulou L., Tan J., Flavell R.A. Microglia recognize double-stranded RNA via TLR3 // J. Immunol. – 2006. – Vol. 176, No. 6. – P. 3804–3812. DOI:10.4049/jimmunol.176.6.3804; De Miranda J., Yaddanapudi K., Hornig M., Villar G., Serge R., Lipkin WI. Induction of Toll-like receptor 3-mediated immunity during gestation inhibits cortical neurogenesis and causes behavioral disturbances // mBio. – 2010. – Vol. 1, No. 4. – Art. ID: e00176–10. DOI:10.1128/mBio.00176-10; Giridharan V.V., Scaini G., Colpo G.D., Doifode T., Pinjari O.F., Teixeira A.L., Petronilho F., Macêdo D., Quevedo J., Barichello T. Clozapine Prevents Poly (I:C) Induced Inflammation by Modulating NLRP3 Pathway in Microglial Cells // Cells. – 2020. – Vol. 9, No. 3. – Art. ID: 577. DOI:10.3390/cells9030577; de Oliveira A.C., Yousif N.M., Bhatia H.S., Hermanek J., Huell M., Fiebich B.L. Poly (I:C) increases the expression of mPGES-1 and COX-2 in rat primary microglia // J. Neuroinflammation. – 2016. – Vol. 13. – Art. ID: 11. DOI:10.1186/s12974-015-0473-7; Steer S.A., Moran J.M., Christmann B.S., Maggi L.B. Jr., Corbett J.A. Role of MAPK in the regulation of double-stranded RNA- and encephalomyocarditis virus-induced cyclooxygenase-2 expression by macrophages // J. Immunol. – 2006. – Vol. 177, No. 5. – P. 3413–3420. DOI:10.4049/jimmunol.177.5.3413; Kato H., Takeuchi O., Sato S., Yoneyama M., Yamamoto M., Matsui K., Uematsu S., Jung A., Kawai T., Ishii K.J., Yamaguchi O., Otsu K., Tsujimura T., Koh C.S., Reis e Sousa C., Matsuura Y., Fujita T., Akira S. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses // Nature. – 2006. – Vol. 441, No. 7089. – P. 101–105. DOI:10.1038/nature04734; Rajan J.V., Warren S.E., Miao E.A., Aderem A. Activation of the NLRP3 inflammasome by intracellular poly I:C // FEBS Lett. – 2010. – Vol. 584, No. 22. – P. 4627–4632. DOI:10.1016/j.febslet.2010.10.036; Ren H., Han R., Chen X., Liu X., Wan J., Wang L., Yang X., Wang J. Potential therapeutic targets for intracerebral hemorrhage-associated inflammation: An update // J. Cereb. Blood Flow Metab. – 2020. – Vol. 40, No. 9. – P. 1752–1768. DOI:10.1177/0271678X20923551; Moore T.C., Petro T.M. IRF3 and ERK MAP-kinases control nitric oxide production from macrophages in response to poly-I:C // FEBS Lett. – 2013. – Vol. 587, No. 18. – P. 3014–3020. DOI:10.1016/j.febslet.2013.07.025; Miller S.D., Karpus W.J., Davidson T.S. Experimental autoimmune encephalomyelitis in the mouse // Current protocols in immunology. – 2010 Feb. – Vol. 88, No. 1. – P. 1–20. DOI:10.1002/0471142735.im1501s88; Shahi S.K., Freedman S.N., Dahl R.A., Karandikar N.J., Mangalam A.K. Scoring disease in an animal model of multiple sclerosis using a novel infrared-based automated activity-monitoring system // Sci. Rep. – 2019. – Vol. 9, No. 1. – Art. ID: 19194. DOI:10.1111/j.1476-5381.2011.01302.x; Constantinescu C.S., Farooqi N., O’Brien K., Gran B. Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS) // Br. J. Pharmacol. – 2011. – Vol. 164, No. 4. – P. 1079–1106. DOI:10.1111/j.1476-5381.2011.01302.x; Like A.A., Rossini A.A. Streptozotocin-induced pancreatic insulitis: new model of diabetes mellitus // Science. – 1976. – Vol. 193, No. 4251. – P. 415–417. DOI:10.1126/science.180605; Lenzen S. The mechanisms of alloxan-and streptozotocin-induced diabetes // Diabetologia. – 2008. – Vol. 51, No. 2. – P. 216–226. DOI:10.1007/s00125-007-0886-7; Wang J.Q., Yin J., Song Y.F., Zhang L., Ren Y.X., Wang D.G., Gao L.P., Jing Y.H. Brain aging and AD-like pathology in streptozotocin-induced diabetic rats // J. Diabetes Res. – 2014. – Vol. 2014. – Art. ID: 796840. DOI:10.1155/2014/796840; Turk J., Corbett J.A., Ramanadham S., Bohrer A., McDaniel M.L. Biochemical evidence for nitric oxide formation from streptozotocin in isolated pancreatic islets // Biochem. Biophys. Res. Commun. – 1993. – Vol. 197, No. 3. – P. 1458–1464. DOI:10.1006/bbrc.1993.2641; Takasu N., Komiya I., Asawa T., Nagasawa Y., Yamada T. Streptozocin- and alloxan-induced H2O2 generation and DNA fragmentation in pancreatic islets. H2O2 as mediator for DNA fragmentation // Diabetes. – 1991. – Vol. 40, No. 9. – P. 1141–1145. DOI:10.2337/diab.40.9.1141; Nazem A., Sankowski R., Bacher M., Al-Abed Y. Rodent models of neuroinflammation for Alzheimer’s disease // J. Neuroinflammation. – 2015. – Vol. 12. – Art. ID: 74. DOI:10.1186/s12974-015-0291-y; Chen Y., Liang Z., Blanchard J., Dai C.L., Sun S., Lee M.H., Grundke-Iqbal I., Iqbal K., Liu F., Gong C.X. A non-transgenic mouse model (icv-STZ mouse) of Alzheimer’s disease: similarities to and differences from the transgenic model (3xTg-AD mouse) // Molecular neurobiology. – 2013. – Vol. 47. – P. 711–725. DOI:10.1007/s12035-012-8375-5; Liu P., Zou L.B., Wang L.H., Jiao Q., Chi T.Y., Ji X.F., Jin G. Xanthoceraside attenuates tau hyperphosphorylation and cognitive deficits in intracerebroventricular-streptozotocin injected rats // Psychopharmacology. – 2014. – Vol. 231. – P. 345–356. DOI:10.1007/s00213-013-3240-4; Grieb P. Intracerebroventricular streptozotocin injections as a model of Alzheimer’s disease: in search of a relevant mechanism // Mol. Neurobiol. – 2016. – Vol. 53. – P. 1741–1752. DOI:10.1007/s12035-015-9132-3; Dai H., Wang P., Mao H., Mao X., Tan S., Chen Z. Dynorphin activation of kappa opioid receptor protects against epilepsy and seizure-induced brain injury via PI3K/Akt/Nrf2/HO-1 pathway // Cell Cycle. – 2019. – Vol. 18, No. 2. – P. 226–237. DOI:10.1080/15384101.2018.1562286; McNay E.C., Pearson-Leary J. GluT4: A central player in hippocampal memory and brain insulin resistance // Exp. Neurol. – 2020. – Vol. 323. – Art. ID: 113076. DOI:10.1016/j.expneurol.2019.113076; Shang Y., Guo F., Li J., Fan R., Ma X., Wang Y., Feng N., Yin Y., Jia M., Zhang S., Zhou J., Wang H., Pei J. Activation of κ-opioid receptor exerts the glucose-homeostatic effect in streptozotocin-induced diabetic mice // J. Cell Biochem. – 2015. – Vol. 116, No. 2. – P. 252–259. DOI:10.1002/jcb.24962; Kong C., Miao F., Wu Y., Wang T. Oxycodone suppresses the apoptosis of hippocampal neurons induced by oxygen-glucose deprivation/recovery through caspase-dependent and caspase-independent pathways via κ- and δ-opioid receptors in rats // Brain Res. – 2019. – Vol. 1721. – Art. ID: 146319. DOI:10.1016/j.brainres.2019.146319; Schattauer S.S., Bedini A., Summers F., Reilly-Treat A., Andrews M.M., Land B.B., Chavkin C. Reactive oxygen species (ROS) generation is stimulated by κ opioid receptor activation through phosphorylated c-Jun N-terminal kinase and inhibited by p38 mitogen-activated protein kinase (MAPK) activation // J. Biol. Chem. – 2019. – Vol. 294, No. 45. – P. 16884–16896. DOI:10.1074/jbc.RA119.009592; Tapia R., Peña F., Arias C. Neurotoxic and synaptic effects of okadaic acid, an inhibitor of protein phosphatases // Neurochem. Res. – 1999. – Vol. 24, No. 11. – P. 1423–1430. DOI:10.1023/a:1022588808260; Sontag J.M., Sontag E. Protein phosphatase 2A dysfunction in Alzheimer’s disease // Front. Mol. Neurosci. – 2014. – Vol. 7. – Art. ID: 16. DOI:10.3389/fnmol.2014.00016; Arendt T., Holzer M., Fruth R., Brückner M.K., Gärtner U. Phosphorylation of tau, Abeta-formation, and apoptosis after in vivo inhibition of PP-1 and PP-2A // Neurobiol. Aging. – 1998. – Vol. 19, No. 1. – P. 3–13. DOI:10.1016/s0197-4580(98)00003-7; Lee J., Hong H., Im J., Byun H., Kim D. The formation of PHF-1 and SMI-31 positive dystrophic neurites in rat hippocampus following acute injection of okadaic acid // Neurosci. Lett. – 2000. – Vol. 282, No. 1-2. – P. 49–52. DOI:10.1016/s0304-3940(00)00863-6; Kamat P.K., Rai S., Nath C. Okadaic acid induced neurotoxicity: an emerging tool to study Alzheimer’s disease pathology // Neurotoxicology. – 2013. – Vol. 37. – P. 163–172. DOI:10.1016/j.neuro.2013.05.002; Costa A.P., Tramontina A.C., Biasibetti R., Batassini C., Lopes M.W., Wartchow K.M., Bernardi C., Tortorelli L.S., Leal R.B., Gonçalves C.A. Neuroglial alterations in rats submitted to the okadaic acid-induced model of dementia. // Behav. Brain Res. – 2012. – Vol. 226, No. 2. – P. 420–427. DOI:10.1016/j.bbr.2011.09.035; Kamat P.K., Tota S., Saxena G., Shukla R., Nath C. Okadaic acid (ICV) induced memory impairment in rats: a suitable experimental model to test anti-dementia activity // Brain Res. – 2010. – Vol. 1309. – P. 66–74. DOI:10.1016/j.brainres.2009.10.064; Kamat P.K., Rai S., Swarnkar S., Shukla R., Ali S., Najmi A.K., Nath C. Okadaic acid-induced Tau phosphorylation in rat brain: role of NMDA receptor // Neuroscience. – 2013. – Vol. 238. – P. 97–113. DOI:10.1016/j.neuroscience.2013.01.075; Kumar A., Seghal N., Naidu P.S., Padi S.S., Goyal R. Colchicines-induced neurotoxicity as an animal model of sporadic dementia of Alzheimer’s type // Pharmacol. Rep. – 2007. – Vol. 59, No. 3. – P. 274–283.; Ding G., Li D., Sun Y., Chen K., Song D. Healthcare Engineering JO. Retracted: κ-Opioid Receptor Agonist Ameliorates Postoperative Neurocognitive Disorder by Activating the Ca2+/CaMKII/CREB Pathway // J. Healthc. Eng. – 2022. – Vol. 2022. – Art. ID: 9841213. DOI:10.1155/2022/9841213; Tilson H.A., Rogers B.C., Grimes L., Harry G.J., Peterson N.J., Hong J.S., Dyer R.S. Time-dependent neurobiological effects of colchicine administered directly into the hippocampus of rats // Brain Res. – 1987. – Vol. 408, No. 1–2. – P. 163–172. DOI:10.1016/0006-8993(87)90368-4; Sil S., Ghosh T. Role of cox-2 mediated neuroinflammation on the neurodegeneration and cognitive impairments in colchicine induced rat model of Alzheimer’s Disease // J. Neuroimmunol. – 2016. – Vol. 291. – P. 115–124. DOI:10.1016/j.jneuroim.2015.12.003; Zeng S., Zhong Y., Xiao J., Ji J., Xi J., Wei X., Liu R. Kappa Opioid Receptor on Pulmonary Macrophages and Immune Function // Transl. Perioper. Pain Med. – 2020. – Vol. 7, No. 3. – P. 225-233. DOI:10.31480/2330-4871/117; Alboni S., Cervia D., Sugama S., Conti B. Interleukin 18 in the CNS // J. Neuroinflammation. – 2010. – Vol. 7. – Art. ID: 9. DOI:10.1186/1742-2094-7-9; Shaftel S.S., Kyrkanides S., Olschowka J.A., Miller J.N., Johnson R.E., O’Banion M.K. Sustained hippocampal IL-1 beta overexpression mediates chronic neuroinflammation and ameliorates Alzheimer plaque pathology // J. Clin. Invest. – 2007. – Vol. 117, No. 6. – P. 1595–1604. DOI:10.1172/JCI31450; Matousek S.B., Ghosh S., Shaftel S.S., Kyrkanides S., Olschowka J.A., O’Banion M.K. Chronic IL-1β-mediated neuroinflammation mitigates amyloid pathology in a mouse model of Alzheimer’s disease without inducing overt neurodegeneration // J. Neuroimmune Pharmacol. – 2012. – Vol. 7, No. 1. – P. 156–164. DOI:10.1007/s11481-011-9331-2; Moore A.H., Wu M., Shaftel S.S., Graham K.A., O’Banion M.K. Sustained expression of interleukin-1beta in mouse hippocampus impairs spatial memory // Neuroscience. – 2009. – Vol. 164, No. 4. – P. 1484–1495. DOI:10.1016/j.neuroscience.2009.08.073; Morgan D.O. Cyclin-dependent kinases: engines, clocks, and microprocessors // Annu. Rev. Cell Dev. Biol. – 1997. – Vol. 13. – P. 261–291. DOI:10.1146/annurev.cellbio.13.1.261; Kamei H., Saito T., Ozawa M., Fujita Y., Asada A., Bibb J.A., Saido T.C., Sorimachi H., Hisanaga S. Suppression of calpain-dependent cleavage of the CDK5 activator p35 to p25 by site-specific phosphorylation // J. Biol. Chem. – 2007. – Vol. 282, No. 3. – P. 1687–1694. DOI:10.1074/jbc.M610541200; Patrick G.N., Zukerberg L., Nikolic M., de la Monte S., Dikkes P., Tsai L.H. Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration // Nature. – 1999. – Vol. 402, No. 6762. – P. 615–622. DOI:10.1038/45159; Lee M.S., Kwon Y.T., Li M., Peng J., Friedlander R.M., Tsai L.H. Neurotoxicity induces cleavage of p35 to p25 by calpain // Nature. – 2000. – Vol. 405, No. 6784. – P. 360–364. DOI:10.1038/35012636; Ahlijanian M.K., Barrezueta N.X., Williams R.D., Jakowski A., Kowsz K.P., McCarthy S., Coskran T., Carlo A., Seymour P.A., Burkhardt J.E., Nelson R.B., McNeish J.D. Hyperphosphorylated tau and neurofilament and cytoskeletal disruptions in mice overexpressing human p25, an activator of cdk5 // Proc. Natl. Acad. Sci. USA. – 2000. – Vol. 97, No. 6. – P. 2910–2915. DOI:10.1073/pnas.040577797; Sundaram J.R., Chan E.S., Poore C.P., Pareek T.K., Cheong W.F., Shui G., Tang N., Low C.M., Wenk M.R., Kesavapany S. Cdk5/p25-induced cytosolic PLA2-mediated lysophosphatidylcholine production regulates neuroinflammation and triggers neurodegeneration // J. Neurosci. – 2012. – Vol. 32, No. 3. – P. 1020–1034. DOI:10.1523/JNEUROSCI.5177-11.2012; Fischer A., Sananbenesi F., Pang P.T., Lu B., Tsai L.H. Opposing roles of transient and prolonged expression of p25 in synaptic plasticity and hippocampus-dependent memory // Neuron. – 2005. – Vol. 48, No. 5. – P. 825–838. DOI:10.1016/j.neuron.2005.10.033; Muyllaert D., Terwel D., Kremer A., Sennvik K., Borghgraef P., Devijver H., Dewachter I., Van Leuven F. Neurodegeneration and neuroinflammation in cdk5/p25-inducible mice: a model for hippocampal sclerosis and neocortical degeneration // Am. J. Pathol. – 2008. – Vol. 172, No. 2. – P. 470–485. DOI:10.2353/ajpath.2008.070693; De Rosa R., Garcia A.A., Braschi C., Capsoni S., Maffei L., Berardi N., Cattaneo A. Intranasal administration of nerve growth factor (NGF) rescues recognition memory deficits in AD11 anti-NGF transgenic mice // Proc. Natl. Acad. Sci. USA. – 2005. – Vol. 102, No. 10. – P. 3811–3816. DOI:10.1073/pnas.0500195102; Capsoni S., Giannotta S., Cattaneo A. Beta-amyloid plaques in a model for sporadic Alzheimer’s disease based on transgenic anti-nerve growth factor antibodies // Mol. Cell Neurosci. – 2002. – Vol. 21, No. 1. – P. 15–28. DOI:10.1006/mcne.2002.1163; D’Onofrio M., Arisi I., Brandi R., Di Mambro A., Felsani A., Capsoni S., Cattaneo A. Early inflammation and immune response mRNAs in the brain of AD11 anti-NGF mice // Neurobiol. Aging. – 2011. – Vol. 32, No. 6. – P. 1007–1022. DOI:10.1016/j.neurobiolaging.2009.05.023; Zhang P., Yang M., Chen C., Liu L., Wei X., Zeng S. Toll-Like Receptor 4 (TLR4)/Opioid Receptor Pathway Crosstalk and Impact on Opioid Analgesia, Immune Function, and Gastrointestinal Motility // Front. Immunol. – 2020. – Vol. 11. – Art. ID: 1455. DOI:10.3389/fimmu.2020.01455; Flanders K.C., Ren R.F., Lippa C.F. Transforming growth factor-betas in neurodegenerative disease // Prog. Neurobiol. – 1998. – Vol. 54, No. 1. – P. 71–85. DOI:10.1016/s0301-0082(97)00066-x; Unsicker K., Krieglstein K. TGF-betas and their roles in the regulation of neuron survival // Adv. Exp. Med. Biol. – 2002. – Vol. 513. – P. 353–374. DOI:10.1007/978-1-4615-0123-7_13; Wyss-Coray T., Lin C., Yan F., Yu G.Q., Rohde M., McConlogue L., Masliah E., Mucke L. TGF-beta1 promotes microglial amyloid-beta clearance and reduces plaque burden in transgenic mice // Nat. Med. – 2001. – Vol. 7, No. 5. – P. 612–618. DOI:10.1038/87945; Buckwalter M.S., Wyss-Coray T. Modelling neuroinflammatory phenotypes in vivo // J. Neuroinflammation. – 2004. – Vol. 1, No. 1. – Art. ID: 10. DOI:10.1186/1742-2094-1-10; Grammas P., Ovase R. Cerebrovascular transforming growth factor-beta contributes to inflammation in the Alzheimer’s disease brain // Am. J. Pathol. – 2002. – Vol. 160, No. 5. – P. 1583–1587. DOI:10.1016/s0002-9440(10)61105-4; Ueberham U., Ueberham E., Brückner M.K., Seeger G., Gärtner U., Gruschka H., Gebhardt R., Arendt T. Inducible neuronal expression of transgenic TGF-beta1 in vivo: dissection of short-term and long-term effects // Eur. J. Neurosci. – 2005. – Vol. 22, No. 1. – P. 50–64. DOI:10.1111/j.1460-9568.2005.04189.x; Kovacs Z.I., Kim S., Jikaria N., Qureshi F., Milo B., Lewis B.K., Bresler M., Burks S.R., Frank J.A. Disrupting the blood-brain barrier by focused ultrasound induces sterile inflammation // Proc. Natl. Acad. Sci. U S A. – 2017. – Vol. 114, No. 1. – P. 75–84. DOI:10.1073/pnas.1614777114; Kaplan A., Li M.J., Malani R. Treatments on the Horizon: Breast Cancer Patients with Central Nervous System Metastases // Curr. Oncol. Rep. – 2022. – Vol. 24, No. 3. – P. 343–350. DOI:10.1007/s11912-022-01206-2; Aryal M., Arvanitis C.D., Alexander P.M., McDannold N. Ultrasound-mediated blood-brain barrier disruption for targeted drug delivery in the central nervous system // Adv. Drug. Deliv. Rev. – 2014. – Vol. 72. – P. 94–109. DOI:10.1016/j.addr.2014.01.008; Lozano D., Gonzales-Portillo G.S., Acosta S., de la Pena I., Tajiri N., Kaneko Y., Borlongan C.V. Neuroinflammatory responses to traumatic brain injury: etiology, clinical consequences, and therapeutic opportunities // Neuropsychiatr. Dis. Treat. – 2015. – Vol. 11. – P. 97–106. DOI:10.2147/NDT.S65815; Woodcock T., Morganti-Kossmann M.C. The role of markers of inflammation in traumatic brain injury // Front. Neurol. – 2013. – Vol. 4. – Art. ID: 18. DOI:10.3389/fneur.2013.00018; Tweedie D., Rachmany L., Kim D.S., Rubovitch V., Lehrmann E., Zhang Y., Becker K.G., Perez E., Pick C.G., Greig N.H. Mild traumatic brain injury-induced hippocampal gene expressions: The identification of target cellular processes for drug development // J. Neurosci. Methods. – 2016. – Vol. 272. – P. 4–18. DOI:10.1016/j.jneumeth.2016.02.003; Tweedie D., Rachmany L., Rubovitch V., Li Y., Holloway H.W., Lehrmann E., Zhang Y., Becker K.G., Perez E., Hoffer B.J., Pick C.G., Greig N.H. Blast traumatic brain injury-induced cognitive deficits are attenuated by preinjury or postinjury treatment with the glucagon-like peptide-1 receptor agonist, exendin-4 // Alzheimers Dement. – 2016. – Vol. 12, No. 1. – P. 34–48. DOI:10.1016/j.jalz.2015.07.489; Harry G.J. Microglia during development and aging // Pharmacol. Ther. – 2013. – Vol. 139, No. 3. – P. 313–326. DOI:10.1016/j.pharmthera.2013.04.013; Zhu Y.J., Peng K., Meng X.W., Ji F.H. Attenuation of neuroinflammation by dexmedetomidine is associated with activation of a cholinergic anti-inflammatory pathway in a rat tibial fracture model // Brain Res. – 2016. – Vol. 1644. – P. 1–8. DOI:10.1016/j.brainres.2016.04.074; Shultz S.R., Sun M., Wright D.K., Brady R.D., Liu S., Beynon S., Schmidt S.F., Kaye A.H., Hamilton J.A., O’Brien T.J., Grills B.L., McDonald S.J. Tibial fracture exacerbates traumatic brain injury outcomes and neuroinflammation in a novel mouse model of multitrauma // J. Cereb. Blood Flow. Metab. – 2015. – Vol. 35, No. 8. – P. 1339–1347. DOI:10.1038/jcbfm.2015.56; Schindeler A., McDonald M.M., Bokko P., Little D.G. Bone remodeling during fracture repair: The cellular picture // Semin. Cell Dev. Biol. – 2008. – Vol. 19, No. 5. – P. 459–466. DOI:10.1016/j.semcdb.2008.07.004; Сабиров Д.М., Росстальная А.Л., Махмудов М.А. Эпидемиологические особенности черепно-мозгового травматизма // Вестник экстренной медицины. – 2019. – Т. 12, № 2. – С. 61–66.; Dewan M.C., Rattani A., Gupta S., Baticulon R.E., Hung Y.C., Punchak M., Agrawal A., Adeleye A.O., Shrime M.G., Rubiano A.M., Rosenfeld J.V., Park K.B. Estimating the global incidence of traumatic brain injury // J. Neurosurg. – 2018. – P. 1–18. DOI:10.3171/2017.10.JNS17352; https://www.pharmpharm.ru/jour/article/view/1256