يعرض 1 - 3 نتائج من 3 نتيجة بحث عن '"О. С. Тарасова"', وقت الاستعلام: 0.36s تنقيح النتائج
  1. 1
    Academic Journal

    المصدر: Translational Medicine; Том 10, № 4 (2023); 274-284 ; Трансляционная медицина; Том 10, № 4 (2023); 274-284 ; 2410-5155 ; 2311-4495

    وصف الملف: application/pdf

    Relation: https://transmed.almazovcentre.ru/jour/article/view/804/521; https://transmed.almazovcentre.ru/jour/article/downloadSuppFile/804/1770; https://transmed.almazovcentre.ru/jour/article/downloadSuppFile/804/1819; https://transmed.almazovcentre.ru/jour/article/downloadSuppFile/804/1828; Benjamin EJ, Muntner P, Alonso A, et al. Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association. Circulation. 2019; 139(10):e56–e528. DOI:10.1161/CIR.0000000000000659.; Дуданов И.П., Ордынец С.В., Лукинский И.А. и др. Экстракраниальная неатеросклеротическая патология сонной артерии в причинах развития острого ишемического инсульта. Research’n Practical Medicine Journal. 2017; 4(4):35–49]. DOI:10.17709/2409-2231-2017-4-4-4.; Зеленин В.B., Кудрявцев О.И., Меркулов Д.В. и др. Успешное лечение диссекции внутренней сонной артерии. Research’n Practical Medicine Journal. 2018; 5(2):121–129]. DOI:10.17709/24092231-2018-5-2-13.; Halliday A, Bulbulia R, Bonati LH, et al. Second asymptomatic carotid surgery trial (ACST-2): a randomised comparison of carotid artery stenting versus carotid endarterectomy. Lancet. 2021; 398(10305):1065–1073. DOI:10.1016/S0140-6736(21)01910-3.; Przewlocki T, Kablak-Ziembicka A, Pieniazek P, et al. Determinants of immediate and long-term results of subclavian and innominate artery angioplasty. Catheter Cardiovasc Interv. 2006; 67(4):519–526. DOI:10.1002/ccd.20695.; Wang J, Paritala PK, Mendieta JB, et al. Carotid Bifurcation With Tandem Stenosis-A Patient-Specific Case Study Combined in vivo Imaging, in vitro Histology and in silico Simulation. Front Bioeng Biotechnol. 2019; 7:349. DOI:10.3389/fbioe.2019.00349.; Illuminati G, Pizzardi G, Calio FG, et al. Results of subclavian to carotid artery bypass for occlusive disease of the common carotid artery: A retrospective cohort study. Int J Surg. 2018; 53:111–116. DOI:10.1016/j.ijsu.2018.03.038.; Ванюркин А.Г., Соболева А.В., Сусанин Н.В. и др. Эндоваскулярное лечение многоуровневых поражений брахиоцефальных артерий у асимптомных пациентов: серия клинических случаев. Патология кровообращения и кардиохирургия. 2022; 26(4):52–59]. DOI:10.21688/1681-3472-2022-4-52-59.; Sfyroeras GS, Karathanos C, Antoniou GA, et al. A meta-analysis of combined endarterectomy and proximal balloon angioplasty for tandem disease of the arch vessels and carotid bifurcation. J Vasc Surg. 2011; 54(2):534–540. DOI:10.1016/j.jvs.2011.04.022.; Clouse WD, Ergul EA, Cambria RP, et al. Retrograde stenting of proximal lesions with carotid endarterectomy increases risk. J Vasc Surg. 2016; 63(6):1517–1523. DOI:10.1016/j.jvs.2016.01.028.; Карпенко А.А., Стародубцев В.Б., Чернявский М.А. и др. Гибридные оперативные вмешательства при многоуровневых поражениях брахиоцефальных артерий у пациентов с сосудисто-мозговой недостаточностью. Ангиология и сосудистая хирургия. 2010; 16(4): 130–134].; Risty GM, Cogbill TH, Davis CA, et al. Carotidsubclavian arterial reconstruction: concomitant ipsilateral carotid endarterectomy increases risk of perioperative stroke. Surgery. 2007; 142(3):393–397. DOI:10.1016/j.surg.2007.03.014.; Matas M, Alvarez B, Ribo M, et al. Transcervical carotid stenting with flow reversal protection: experience in high-risk patients. J Vasc Surg. 2007; 46(1):49–54. DOI:10.1016/j.jvs.2007.02.070.; Sfyroeras GS, Moulakakis KG, Markatis F, et al. Results of carotid artery stenting with transcervical access. J Vasc Surg. 201; 58(5):1402–1407. DOI:10.1016/j.jvs.2013.07.111.; Alvarez B, Matas M, Ribo M, et al. Transcervical carotid stenting with flow reversal is a safe technique for high-risk patients older than 70 years. J Vasc Surg. 2012; 55(4):978–984. DOI:10.1016/j.jvs.2011.10.084.; DeCarlo C, Tanious A, Boitano LT, et al. Addition of common carotid intervention increases the risk of stroke and death after carotid artery stenting for asymptomatic patients. J Vasc Surg. 2021; 74(6):1919–1928. DOI:10.1016/j.jvs.2021.04.051.; https://transmed.almazovcentre.ru/jour/article/view/804

  2. 2
    Academic Journal

    المساهمون: The research was funded by Russian Science Foundation, project number 20-75- 00027., Обзор написан при поддержке Российского научного фонда (грант № 20-75-00027).

    المصدر: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; Том 77, № 2 (2022); 76–88 ; Вестник Московского университета. Серия 16. Биология; Том 77, № 2 (2022); 76–88 ; 0137-0952

    وصف الملف: application/pdf

    Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/1129/584; Tykocki N.R., Boerman E.M., Jackson W.F. Smooth muscle ion channels and regulation of vascular tone in resistance arteries and arterioles // Compr. Physiol. 2017. Vol. 7. N 2. P. 485–581.; Gurney A., Manoury B. Two-pore potassium channels in the cardiovascular system // Eur. Biophys. J. 2009. Vol. 38. N 3. P. 305–318.; Shvetsova A.A., Gaynullina D.K., Schmidt N., Bugert P., Lukoshkova E.V, Tarasova O.S., Schubert R. TASK-1 channel blockade by AVE1231 increases vasocontractile responses and BP in 1- to 2-week-old but not adult rats // Br. J. Pharmacol. 2020. Vol. 177. N 22. P. 5148–5162.; Lloyd E.E., Marrelli S.P., Bryan R.M. cGMP does not activate two-pore domain K+ channels in cerebrovascular smooth muscle // Am. J. Physiol. – Heart Circ. Physiol. 2009. Vol. 296. № 6. P. 1774–1780.; Antigny F., Hautefort A., Meloche J., et al. Potassium channel subfamily K member 3 (KCNK3) contributes to the development of pulmonary arterial hypertension // Circulation. 2016. Vol. 133. N 14. P. 1371–1385.; Gardener M.J., Johnson I.T., Burnham M.P., Edward G., Heagerty A.M., Weston A.H. Functional evidence of a role for two-pore domain potassium channels in rat mesenteric and pulmonary arteries // Br. J. Pharmacol. 2004. Vol. 142. N 1. P. 192–202.; Ma L., Roman-Campos D., Austin E.D., et al. A novel channelopathy in pulmonary arterial hypertension // N. Engl. J. Med. 2013. Vol. 369. N 4. P. 351–361.; Navas Tejedor P., Tenorio Castaño J., Palomino Doza J., Arias Lajara P., Gordo Trujillo G., López Meseguer M., Román Broto A., Lapunzina Abadía P., Escribano Subía P. An homozygous mutation in KCNK3 is associated with an aggressive form of hereditary pulmonary arterial hypertension // Clin. Genet. 2017. Vol. 91. N 3. P. 453–457.; Zhang H.S., Liu Q., Piao C.M., Zhu Y., Li Q.Q., Du J., Gu H. Genotypes and phenotypes of Chinese pediatric patients with idiopathic and heritable pulmonary arterial hypertension – a single-center study // Can. J. Cardiol. 2019. Vol. 35. N 12. P. 1851–1856.; Haarman M.G., Kerstjens-Frederikse W.S., VissiaKazemier T.R., Breeman K.T.N., Timens W., Vos Y.J., Roofthooft M.T.R., Hillege H.L., Berger R.M.F. The genetic epidemiology of pediatric pulmonary arterial hypertension // J. Pediatr. 2020. Vol. 225. P. 65–73.e5.; Cox R.H., Fromme S. Functional expression profile of voltage-gated K+ channel subunits in rat small mesenteric arteries // Cell Biochem. Biophys. 2016. Vol. 74. N 2. P. 263–276.; Mackie A.R., Byron K.L. Cardiovascular KCNQ (Kv7) potassium channels: physiological regulators and new targets for therapeutic intervention // Mol. Pharmacol. 2008. Vol. 74. N 5. P. 1171–1179.; Cui J., Yang H., Lee U.S. Molecular mechanisms of BK channel activation // Cell. Mol. Life Sci. 2009. Vol. 66. N 5. P. 852–875.; Bi D., Toyama K., Lemaitre V., Takai J., Fan F., Jenkins D.P., Wulff H., Gutterman D.D., Park F., Miura H. The intermediate conductance calcium-activated potassium channel KCa3.1 regulates vascular smooth muscle cell proliferation via controlling calcium-dependent signaling // J. Biol. Chem. 2013. Vol. 288. N 22. P. 15843–15853.; Tharp D.L., Wamhoff B.R., Turk J.R., Bowles D.K. Upregulation of intermediate-conductance Ca2+-activated K+ channel (IKCa1) mediates phenotypic modulation of coronary smooth muscle // Am. J. Physiol. – Heart Circ. Physiol. 2006. Vol. 291. N 5. P. H2493–H2503.; Gebremedhin D., Kaldunski M., Jacobs E.R., Harder D.R., Roman R.J. Coexistence of two types of Ca2+- activated K+ channels in rat renal arterioles // Am. J. Physiol. 1996. Vol. 270. N 1. P. 69–81.; Sun W.T., Hou H.T., Chen H.X., Xue H.M., Wang J., He G.W., Yang Q. Calcium-activated potassium channel family in coronary artery bypass grafts // J. Thorac. Cardiovasc. Surg. 2021. Vol. 161. N 5. P. e399–e409.; Ledoux J., Werner M.E., Brayden J.E., Nelson M.T. Calcium-activated potassium channels and the regulation of vascular tone // Physiology. 2006. Vol. 21. N 1. P. 69–78.; Schubert R., Wesselman J.P.M., Nilsson H., Mulvany M.J. Noradrenaline-induced depolarization is smaller in isobaric compared to isometric preparations of rat mesenteric small arteries // Pflügers Arch. Eur. J. Physiol. 1996. Vol. 431. N 5. P. 794–796.; Shvetsova A.A., Gaynullina D.K., Tarasova O.S., Schubert R. Negative feedback regulation of vasocontraction by potassium channels in 10- to 15-day-old rats: Dominating role of Kv7 channels // Acta Physiol. 2019. Vol. 225. N 2: e13176.; Matsuda H., Saigusa A., Irisawa H. Ohmic conductance through the inwardly rectifying K channel and blocking by internal Mg2+ // Nature. 1987. Vol. 325. N 6100. P. 156–159.; Lopatin A.N., Makhina E.N., Nichols C.G. Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification // Nature. 1994. Vol. 372. N 6504. P. 366–369.; Filosa J.A., Bonev A.D., Straub S.V., Meredith A.L., Wilkerson M.K., Aldrich R.W., Nelson M.T. Local potassium signaling couples neuronal activity to vasodilation in the brain // Nat. Neurosci. 2006. Vol. 9. N 11. P. 1397–1403.; Foster M.N., Coetzee W.A. KATP channels in the cardiovascular system // Physiol. Rev. 2016. Vol. 96. N 1. P. 177–252.; Tinker A., Aziz Q., Li Y., Specterman M. ATP-sensitive potassium channels and their physiological and pathophysiological roles // Compr. Physiol. 2018. Vol. 8. N 4. P. 1463–1511.; Tucker S.J., Gribble F.M., Zhao C., Trapp S., Ashcroft F.M. Truncation of Kir6.2 produces ATP-sensitive K+ channels in the absence of the sulphonylurea receptor // Nature. 1997. Vol. 387. N 6629. P. 179–183.; Ammalia C., Moorhouse A., Gribble F., Ashfield R., Proks P., Smith P.A., Sakura H., Coles B., Ashcroft S.L.H., Ashcroft F.M. Promiscuous coupling between the sulphonylurea receptor and inwardly rectifying potassium channels // Nature. 1996. Vol. 379. N 6565. P. 545–548.; Gurney A.M., Osipenko O.N., MacMillan D., McFarlane K.M., Tate R.J., Kempsill F.E.J. Two-pore domain K channel, TASK-1, in pulmonary artery smooth muscle cells // Circ. Res. 2003. Vol. 93. N 10. P. 957–964.; Goldstein S.A.N., Bockenhauer D., O’Kelly I., Zilberberg N. Potassium leak channels and the KCNK family of two-p-domain subunits // Nat. Rev. Neurosci. 2001. Vol. 2. N 3. P. 175–184.; Gardener M.J., Johnson I.T., Burnham M.P., Edward, G., Heagerty A.M., Weston A.H. Functional evidence of a role for two-pore domain potassium channels in rat mesenteric and pulmonary arteries // Br. J. Pharmacol. 2004. Vol. 142. N 1. P. 192–202.; Lopes C.M.B., Gallagher P.G., Buck M.E., Butler M.H., Goldstein S.A.N. Proton block and voltage gating are potassium-dependent in the cardiac leak channel Kcnk3 // J. Biol. Chem. 2000. Vol. 275. N 22. P. 16969–16978.; Duprat F., Lesage F., Fink M., Reyes R., Heurteaux C., Lazdunski M. TASK, a human background K+ channel to sense external pH variations near physiological pH // EMBO J. 1997. Vol. 16. N 17. P. 5464–5471.; Olschewski A., Li Y., Tang B., Hanze J., Eul B., Bohle R.M., Wilhelm J., Morty R.E., Brau M.E., Weir E.K., Kwapiszewska G., Klepetko W., Seeger W., Olschewski H. Impact of TASK-1 in human pulmonary artery smooth muscle cells // Circ. Res. 2006. Vol. 98. N 8. P. 1072–1080.; Yuill K., Ashmole I., Stanfield P.R. The selectivity filter of the tandem pore potassium channel TASK-1 and its pH-sensitivity and ionic selectivity // Pflugers Arch. Eur. J. Physiol. 2004. Vol. 448. N 1. P. 63–69.; Morton M.J., O’Connell A.D., Sivaprasadarao A., Hunter M. Determinants of pH sensing in the two-pore domain K+ channels TASK-1 and -2 // Pflügers Arch. – Eur. J. Physiol. 2003. Vol. 445. N 5. P. 577–583.; Bao L., Cox D.H. Gating and ionic currents reveal how the BKCa channel’s Ca2+ sensitivity is enhanced by its β1 subunit // J. Gen. Physiol. 2005. Vol. 126. N 4. P. 393–412.; Jepps T.A., Carr G., Lundegaard P.R., Olesen S.-P., Greenwood I.A. Fundamental role for the KCNE4 ancillary subunit in Kv7.4 regulation of arterial tone // J. Physiol. 2015. Vol. 593. N 24. P. 5325–5340.; O’Kelly I., Goldstein S.A.N. Forward transport of K2P3.1: mediation by 14-3-3 and COPI, modulation by p11 // Traffic. 2008. Vol. 9. N 1. P. 72–78.; Renigunta V., Fischer T., Zuzarte M., Kling S., Zou X., Siebert K., Limberg M.M., Rinné S., Decher N., Schlichthörl G., Daut J. Cooperative endocytosis of the endosomal SNARE protein syntaxin-8 and the potassium channel TASK-1 // Mol. Biol. Cell. 2014. Vol. 25. N 12. P. 1877–1891.; Kiyoshi H., Yamazaki D., Ohya S., Kitsukawa M., Muraki K., Saito S., Ohizumi Y., Imaizumi Y. Molecular and electrophysiological characteristics of K+ conductance sensitive to acidic pH in aortic smooth muscle cells of WKY and SHR // Am. J. Physiol. – Heart Circ. Physiol. 2006. Vol. 291. N 6. P. H2723–H2734.; White R., Ho W.S.V., Bottrill F.E., Ford W.R., Hiley C.R. Mechanisms of anandamide-induced vasorelaxation in rat isolated coronary arteries // Br. J. Pharmacol. 2001. Vol. 134. N 4. P. 921–929.; Van den Bossche I., Vanheel B. Influence of cannabinoids on the delayed rectifier in freshly dissociated smooth muscle cells of the rat aorta // Br. J. Pharmacol. 2000. Vol. 131. N 1. P. 85–93.; Martín P., Enrique N., Palomo A.R.R., Rebolledo A., Milesi V. Bupivacaine inhibits large conductance, voltage- and Ca2+- activated K+ channels in human umbilical artery smooth muscle cells // Channels. 2012. Vol. 6. N 3. P. 174–180.; Patel A.J., Honoré E., Lesage, F., Fink M., Romey G., Lazdunski M. Inhalational anesthetics activate two-poredomain background K+ channels // Nat. Neurosci. 1999. Vol. 2. N 5. P. 422–426.; Buljubasic N., Rusch N.J., Marijic J., Kampine J.P., Bosnjak Z.J. Effects of halothane and isoflurane on calcium and potassium channel currents in canine coronary arterial cells // Anesthesiology. 1992. Vol. 76. N 6. P. 990–998.; Kiper A.K., Rinné S., Rolfes C., Ramírez D., Seebohm G., Netter M.F., González W., Decher N. Kv1.5 blockers preferentially inhibit TASK-1 channels: TASK-1 as a target against atrial fibrillation and obstructive sleep apnea? // Pflugers Arch. Eur. J. Physiol. 2015. Vol. 467. N 5. P. 1081–1090.; Wirth K.J., Brendel J., Steinmeyer K., Linz D.K., Rütten H., Gögelein H. In vitro and in vivo effects of the atrial selective antiarrhythmic compound AVE1231 // J. Cardiovasc. Pharmacol. 2007. Vol. 49. N 4. P. 197–206.; Ehrlich J.R., Ocholla H., Ziemek D., Rütten H., Hohnloser S.H., Gögelein H. Characterization of human cardiac Kv1.5 inhibition by the novel atrial-selective antiarrhythmic compound AVE1231 // J. Cardiovasc. Pharmacol. 2008. Vol. 51. N 4. P. 380–387.; Lambert M., Capuano V., Boet A., et al. Characterization of Kcnk3-mutated rat, a novel model of pulmonary hypertension // Circ. Res. 2019. Vol. 125. N 7. P. 678–695.; Yamaguchi K., Takasugi T., Fujita H., Mori M., Oyamada Y., Suzuki K., Miyata A., Aoki T., Suzuki Y. Endothelial modulation of pH-dependent pressor response in isolated perfused rabbit lungs // Am. J. Physiol. – Heart Circ. Physiol. 1996. Vol. 270. N 39. P. 252–258.; Balasubramanyan N., Halla T.R., Ghanayem N.S., Gordon J.B. Endothelium-independent and -dependent vasodilation in alkalotic and acidotic piglet lungs // Pediatr. Pulmonol. 2000. Vol. 30. N 3. P. 241–248.; Post J.M., Hume J.R., Archer S.L., Weir E.K. Direct role for potassium channel inhibition in hypoxic pulmonary vasoconstriction // Am. J. Physiol. 1992. Vol. 262. N 4. P. C882–C890.; Nagaraj C., Tang B., Bálint Z., Wygrecka M., Hrzenjak A., Kwapiszewska G., Stacher E., Lindenmann J., Weir E.K., Olschewski H., Olschewski A. Src tyrosine kinase is crucial for potassium channel function in human pulmonary arteries // Eur. Respir. J. 2013. Vol. 41. N 1. P. 85–95.; Mackay C.E., Knock G.A. Control of vascular smooth muscle function by Src-family kinases and reactive oxygen species in health and disease // J. Physiol. 2015. Vol. 593. N 17. P. 3815–3828.; Wu W., Platoshyn O., Firth A.L., Yuan J.X.J. Hypoxia divergently regulates production of reactive oxygen species in human pulmonary and coronary artery smooth muscle cells // Am. J. Physiol. – Lung Cell. Mol. Physiol. 2007. Vol. 293. N 4. P. 952–959.; Manoury B., Lamalle C., Oliveira R., Reid J., Gurney A.M. Contractile and electrophysiological properties of pulmonary artery smooth muscle are not altered in TASK-1 knockout mice // J. Physiol. 2011. Vol. 589. N 13. P. 3231–3246.; Murtaza G., Mermer P., Goldenberg A., Pfeil U., Paddenberg R., Weissmann N., Lochnit G., Kummer W. TASK-1 potassium channel is not critically involved in mediating hypoxic pulmonary vasoconstriction of murine intra-pulmonary arteries // PLoS One. 2017. Vol. 12. N 3: e0174071.; Pandit L.M., Lloyd E.E., Reynolds J.O., Lawrence W.S., Reynolds C., Wehrens X.H.T., Bryan R.M. TWIK-2 channel deficiency leads to pulmonary hypertension through a rho-kinase-mediated process // Hypertension. 2014. Vol. 64. N 6. P. 1260–1265.; Wiedmann F., Beyersdorf C., Zhou X.B., Kraft M., Foerster K.I., El-Battrawy I., Lang S., Borggrefe M., Haefeli W.E., Frey N., Schmidt C. The experimental TASK-1 potassium channel inhibitor A293 can be employed for rhythm control of persistent atrial fibrillation in a translational large animal model // Front. Physiol. 2021. Vol. 11: 629421.; Lazarenko V., Shvetsova, A., Gaynullina, D., Schubert R. P.35 TASK-1 channels play an anticontractile role in rat septal coronary artery under pharmacological blockade of endothelium // Artery Res. 2020. Vol. 26. P. S58.; Shvetsova A.A., Gaynullina D.K., Tarasova O.S., Schubert R. Remodeling of arterial tone regulation in postnatal development: focus on smooth muscle cell potassium channels // Int. J. Mol. Sci. 2021. Vol. 22. N 11: 5413.; Shvetsova A., Lazarenko V., Gaynullina D., Tarasova O., Schubert R. TASK-1 channels emerge as contributors to tone regulation in renal arteries at alkaline pH // Front. Physiol. 2022. Vol. 13: 895863.; Lockett M.F. Effects of changes in pO2 and pCO2 and pH on the total vascular resistance of perfused cat kidneys // J. Physiol. 1967. Vol. 193. N 3. P. 671–678.; Giaid A., Yanagisawa M., Langleben D., Michel R.P., Levy R., Shennib H., Kimura S., Masaki T., Duguid W.P., Stewart D.J. Expression of endothelin-1 in the lungs of patients with pulmonary hypertension // N. Engl. J. Med. 1993. Vol. 328. N 24. P. 1732–1739.; Tang B., Li Y., Nagaraj C., Morty R.E., Gabor S., Stacher E., Voswinckel R., Weissmann N., Leithner K., Olschewski H., Olschewski A. Endothelin-1 inhibits background two-pore domain channel TASK-1 in primary human pulmonary artery smooth muscle cells // Am. J. Respir. Cell Mol. Biol. 2009. Vol. 41. N 4. P. 476–483.; Schiekel J., Lindner M., Hetzel A., Wemhöner K., Renigunta V., Schlichthörl G., Decher N., Oliver D., Daut J. The inhibition of the potassium channel TASK-1 in rat cardiac muscle by endothelin-1 is mediated by phospholipase C // Cardiovasc. Res. 2013. Vol. 97. N 1. P. 97–105.; Lopes C.M.B., Rohács T., Czirják G., Balla T., Enyedi P., Logothetis D.E. PIP2 hydrolysis underlies agonist-induced inhibition and regulates voltage gating of two-pore domain K+ channels // J. Physiol. 2005. Vol. 564. N 1. P. 117–129.; Czirják G., Petheo G.L., Spät A., Enyedi P. Inhibition of TASK-1 potassium channel by phospholipase C // Am. J. Physiol. – Cell Physiol. 2001. Vol. 281. N 2. P. 700–708.; Gabriel L., Lvov A., Orthodoxou D., Rittenhouse A.R., Kobertz W.R., Melikian H.E. The acid-sensitive, anestheticactivated potassium leak channel, KCNK3, is regulated by 14-3-3β-dependent, protein kinase C (PKC)-mediated endocytic trafficking // J. Biol. Chem. 2012. Vol. 287. N 39. P. 32354–32366.; Matsuoka H., Harada K., Mashima K., Inoue M. Muscarinic receptor stimulation induces TASK1 channel endocytosis through a PKC-Pyk2-Src pathway in PC12 cells // Cell. Signal. 2020. Vol. 65: 109434.; Seyler C., Duthil-Straub E., Zitron E., Gierten J., Scholz E.P., Fink R.H.A., Karle C.A., Becker R., Katus H.A., Thomas D. TASK1 (K2P3.1) K+ channel inhibition by endothelin-1 is mediated through Rho kinase-dependent phosphorylation // Br. J. Pharmacol. 2012. Vol. 165. N 5. P. 1467–1475.; Lincoln T.M., Dey N.B., Boerth N.J., Cornwell T.L., Soff G.A. Nitric oxide – cyclic GMP pathway regulates vascular smooth muscle cell phenotypic modulation: Implications in vascular diseases // Acta Physiologica Scandinavica. 1998. Vol. 164. N 4. P. 507–515.; Zhou F., Rao F., Deng Y.Q., Yang H., Kuang S.J., Wu F.L., Wu S.L., Xue Y.M., Wu X.M., Deng C.Y. Atorvastatin ameliorates the contractile dysfunction of the aorta induced by organ culture // Naunyn. Schmiedebergs. Arch. Pharmacol. 2019. Vol. 392. N 1. P. 19–28.; Puzdrova V.A., Kudryashova T.V., Gaynullina D.K., Mochalov S.V., Aalkjaer C., Nilsson H., Vorotnikov A.V., Schubert R., Tarasova O.S. Trophic action of sympathetic nerves reduces arterial smooth muscle Ca2+ sensitivity during early post-natal development in rats // Acta Physiol. 2014. Vol. 212. N 2. P. 128–141.; Mochalov S.V., Tarasova N.V., Kudryashova T.V., Gaynullina D.K., Kalenchuk V.U., Borovik A.S., Vorotnikov A.V., Tarasova O.S., Schubert R. Higher Ca2+-sensitivity of arterial contraction in 1-week-old rats is due to a greater Rho-kinase activity // Acta Physiol. 2018. Vol. 12. N 10: e13044.; Hayoz S., Bychkov R., Serir K., Docquier M., Bény J.L. Purinergic activation of a leak potassium current in freshly dissociated myocytes from mouse thoracic aorta // Acta Physiol. 2009. Vol. 195. N 2. P. 247–258.; Borkowski K.R., Gros R., Schneider H. Vascular β-adrenoceptor-mediated responses in hypertension and ageing in rats // J. Auton. Pharmacol. 1992. Vol. 12. N 6. P. 389–455.; Bieger D., Parai K., Ford C.A., Tabrizchi R. β-Adrenoceptor mediated responses in rat pulmonary artery: Putative role of TASK-1 related K channels // Naunyn. Schmiedebergs. Arch. Pharmacol. 2006. Vol. 373. N 3. P. 186–196.; Гайнуллина Д.К., Кирюхина О.О., Тарасова О.С. Оксид азота в эндотелии сосудов: регуляция продукции и механизмы действия // Усп. физиол. наук. 2013. Т. 44. № 4. P. 88–102.; Cunningham K.P., Holden R.G., EscribanoSubias P.M., Cogolludo A., Veale E.L., Mathie A. Characterization and regulation of wild-type and mutant TASK-1 two pore domain potassium channels indicated in pulmonary arterial hypertension // J. Physiol. 2019. Vol. 597. N 4. P. 1087–1101.; https://vestnik-bio-msu.elpub.ru/jour/article/view/1129

  3. 3
    Academic Journal

    المساهمون: Обзор написан при финансовой поддержке Российского фонда фундаментальных исследований (проект № 19-315-90027).

    المصدر: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; Том 75, № 4 (2020); 226-236 ; Вестник Московского университета. Серия 16. Биология; Том 75, № 4 (2020); 226-236 ; 0137-0952

    وصف الملف: application/pdf

    Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/932/528; Hulbert A.J. Thyroid hormones and their effects: a new perspective // Biol. Rev. 2000. Vol. 75. N 4. P. 519–631.; Vasudevan N., Ogawa S., Pfaff D. Estrogen and thyroid hormone receptor interactions: physiological flexibility by molecular specificity // Physiol. Rev. 2002. Vol. 82. N 4. P. 923–944.; Vassy R. Nicolas P., Yin Y.L., Perret G.Y. Nongenomic effect of triiodothyronine on cell surface betaadrenoceptors in cultured embryonic cardiac myocytes // Proc. Soc. Exp. Biol. Med. 1997. Vol. 214. N 4. P. 352–358.; Hammes S.R., Davis P.J. Overlapping nongenomic and genomic actions of thyroid hormone and steroids // Best Pract. Res. Clin. Endocrinol. Metab. 2015. Vol. 29. N 4. P. 581–593.; Davis P.J., Davis F.B., Lin H.Y., Mousa S.A., Zhou M., Luidens M.K. Translational implications of nongenomic actions of thyroid hormone initiated at its integrin receptor // Am. J. Physiol. Endocrinol. Metab. 2009. Vol. 297. N 6. P. E1238–E1246.; Flamant F., Cheng S., Hollenberg A., Moeller L.C., Samarut J., Wondisford F.E., Yen P.M., Refetoff S. Thyroid hormone signaling pathways: Time for a more precise nomenclature // Endocrinology. 2017. Vol. 158. N 7. P. 2052–2057.; Davis P.J., Leonard, J.L., Lin H.Y., Leinung M., Mousa S.A. Molecular basis of nongenomic actions of thyroid hormone // Vitam. Horm. 2018. Vol. 106. P. 67–96.; Louzada R.A., Carvalho D.P. Similarities and differences in the peripheral actions of thyroid hormones and their metabolites // Front. Endocrinol. 2018. Vol. 9: 394; Schroeder A., Jimenez R., Young B., Privalsky M.L. The ability of thyroid hormone receptors to sense T4 as an agonist depends on receptor isoform and on cellular cofactors // Mol. Endocrinol. 2014. Vol. 28. N 5. P. 745–757.; Cao X., Kambe F., Moeller L.C., Refetoff S., Seo H. Thyroid hormone induces rapid activation of Akt/protein kinase B-mammalian target of rapamycin-p70S6K cascade through phosphatidylinositol 3-kinase in human fibroblasts // Mol. Endocrinol. 2005. Vol. 19. N 1. P. 102–112.; Moeller L.C., Dumitrescu A.M., Refetoff S. Cytosolic action of thyroid hormone leads to induction of hypoxiainducible factor-1α and glycolytic genes // Mol. Endocrinol. 2005. Vol. 19. N 12. P. 2955–2963.; Hiroi Y., Kim H.H., Ying H., Furuya F., Huang Z., Simoncini T., Noma K., Ueki K., Nguyen N., Scanlan T.S., Moskowitz M.A., Cheng S.Y., Liao J.K. Rapid nongenomic actions of thyroid hormone // Proc. Natl. Acad. Sci. U.S.A. 2006. Vol. 103. N 38. P. 14104–14109.; Plateroti M., Gauthier K., Domon-Dell C., Freund J., Samarut J., Chassande O. Functional interference between thyroid hormone receptor alpha (TRalpha) and natural truncated TRDeltaalpha isoforms in the control of intestine development // Mol. Cell. Biol. 2001. Vol. 21. N 14. P. 4761–4772.; Chassande O., Fraichard A., Gauthier K., Flamant F., Legrand C., Savatier P., Laudet V., Samarut J. Identification of transcripts initiated from an internal promoter in the c-erbAα locus that encode inhibitors of retinoic acid receptor-α and triiodothyronine receptor activities // Mol. Endocrinol. 1997. Vol. 11. N 9. P. 1278–1290.; Siegrist-Kaiser C.A., Juge-Aubry C., Tranter M.P., Ekenbarger D.M., Leonard J.L. Thyroxine-dependent modulation of actin polymerization in cultured astrocytes. A novel, extranuclear action of thyroid hormone // J. Biol. Chem. 1990. Vol. 265. N 9. P. 5296–5302.; Davis P.J., Leonard J.L., Davis F.B. Mechanisms of nongenomic actions of thyroid hormone // Front. Neuroendocrinol. 2008. Vol. 29. N 2. P. 211–218.; Cheng S.Y., Leonard J.L., Davis P.J. Molecular aspects of thyroid hormone actions // Endocr. Rev. 2010. Vol. 31. N 2. P. 139–170.; Lanni A., Moreno M., Goglia F. Mitochondrial actions of thyroid hormone // Compr. Physiol. 2016. Vol. 6. N 4. P. 1591–1607.; Wrutniak C., Cassar-Malek I., Marchal S., Rascle A., Heusser S., Keller J., Flechon J., Dauca M., Samarut J., Ghysdael J., Cabello G. A 43-kDa protein related to c-Erb A α1 is located in the mitochondrial matrix of rat liver // J. Biol. Chem. 1995. Vol. 270. N 27. P. 16347–16354.; Pessemesse L., Lepourry L., Bouton K., Levin J., Cabello G., Wrutniak-Cabello C., Casas F. P28, a truncated form of TRα1 regulates mitochondrial physiology // FEBS Lett. 2014. Vol. 588. N 21. P. 4037–4043.; Botta J., Mendoza D., Morero R.D., Farias R.N. High affinity L-triidothyronine binding sites on washed rat erythrocyte membranes // J. Biol. Chem. 1983. Vol. 258. N 11. P. 6690–6692.; Lin H.Y., Davis F.B., Gordinier J.K., Martion L.J., Davis P.J. Thyroid hormone induces activation of mitogenactivated protein kinase in cultured cells // Am. J. Physiol. Cell Physiol. 1999. Vol. 276. N 5. P. C1014–C1024.; Kalyanaraman H., Schwappacher R., Joshua J., Zhuang S., Scott B.T., Klos M., Casteel D.E., Frangos J.A., Dillmann W., Boss G.R., Pilz R.B. Nongenomic thyroid hormone signaling occurs through a plasma membranelocalized receptor // Sci. Signal. 2014. Vol. 7. N 326: ra48.; Bergh J.J., Lin H., Lansing L., Mohamed S.N., Davis F.B., Mousa S., Davis P.J. Integrin αVβ3 contains a cell surface receptor site for thyroid hormone that is linked to activation of mitogen-activated protein kinase and induction of angiogenesis // Endocrinology. 2005. Vol. 146. N 7. P. 2864–2871.; LaFoya B., Munroe J.A., Miyamoto A., Detweiler M.A., Crow J.J., Gazdik T., Albig A.R. Beyond the matrix: The many non-ECM ligands for integrins // Int. J. Mol. Sci. 2018. Vol. 19. N 2: 449.; Hynes R.O. Integrins: Versatility, modulation, and signaling in cell adhesion // Cell. 1992. Vol. 69. N 1. P. 11–25.; Xiong J.-P., Stehle T., Zhang R., Joachimiak A., Frech M., Goodman S.L., Arnaout M.A. Crystal structure of the extracellular segment of integrin αVβ3 in complex with an Arg-Gly-Asp ligand // Science. 2002. Vol. 296. N 5565. P. 151–155.; Freindorf M., Furlani T.R., Kong J., Cody V., Davis F.B., Davis P.J. Combined QM/MM study of thyroid and steroid hormone analogue interactions with integrin // J. Biomed. Biotechnol. 2012. Vol. 2012: 959057.; Lin H.Y., Sun M., Tang H., Lin C., Luidens M.K., Mousa S.A., Incerpi S., Drusano G.L., Davis F.B., Davis P.J. L-thyroxine vs. 3,5,3′-triiodo-L-thyronine and cell proliferation: Activation of mitogen-activated protein kinase and phosphatidylinositol 3-kinase // Am. J. Physiol. Cell Physiol. 2009. Vol. 296. N 5. P. C980–C991.; Uzair I.D., Grand J.C., Flamini M.I., Sanchez A.M. Molecular actions of thyroid hormone on breast cancer cell migration and invasion via cortactin/N-WASP // Front. Endocrinol. 2019. Vol. 10: 139.; Davis P.J., Shih A., Lin H., Martino L.J., Davis F.B. Thyroxine promotes association of mitogen-activated protein kinase and nuclear thyroid hormone receptor (TR) and causes serine phosphorylation of TR // J. Biol. Chem. 2000. Vol. 275. N 48. P. 38032–38039.; Cao H.J., Lin H., Luidens M.K., Davis F.B., Davis P.J. Cytoplasm-to-nucleus shuttling of thyroid hormone receptor-β1 (Trβ1) is directed from a plasma membrane integrin receptor by thyroid hormone // Endocr. Res. 2009. Vol. 34. N 1–2. P. 31–42.; Lin H., Shih A., Davis F.B., Davis P.J. Thyroid hormone promotes the phosphorylation of STAT3 and potentiates the action of epidermal growth factor in cultured cells // Biochemistry. 1999. Vol. 338. N 2. P. 427–432.; Liu X., Zheng N., Shi Y., Yuan J., Lanying L. Thyroid hormone induced angiogenesis through the integrin αvβ3/protein kinase D/histone deacetylase 5 signaling pathway // J. Mol. Endocrinol. 2014. Vol. 52. N 3. P. 245–254.; Lei J., Ingbar D.H. Src kinase integrates PI3K/Akt and MAPK/ERK1/2 pathways in T3-induced Na-KATPase activity in adult rat alveolar cells // Am. J. Physiol. Cell Mol. Physiol. 2011. Vol. 301. N 5. P. L765–L771.; Axelband F., Dias J., Ferrão F.M., EinickerLamas M. Nongenomic signaling pathways triggered by thyroid hormones and their metabolite 3-iodothyronamine on the cardiovascular system // J. Cell. Physiol. 2010. Vol. 226. N 1. P. 21–28.; Farwell A.P., Dubord-Tomasetti S.A., Pietrzykowski A.Z., Stachelek S.J., Leonard J.L. Regulation of cerebellar neuronal migration and neurite outgrowth by thyroxine and 3,3′,5′-triiodothyronine // Dev. Brain Res. 2005. Vol. 154. N 1. P. 121–135.; Lin H., Su Y., Hsieh M., Lin S., Meng R., London D., Lin C., Tang H., Hwang J., Davis F.B., Mousa S.A., Davis P.J. Nuclear monomeric integrin αv in cancer cells is a coactivator regulated by thyroid hormone // FASEB J. 2013. Vol. 27. N 8. P. 3209–3216.; Oliveira M., Olimpio R.M.C, Sibio M.T., Moretto F.C.F., Luvizotto R.A.M. Nogueira C.R. Short-term effects of triiodothyronine on thyroid hormone receptor alpha by PI3K pathway in adipocytes, 3T3-L1 // Arq. Bras. Endocrinol. Metabol. 2014. Vol. 58. N 8. P. 833–837.; Lin H.-Y., Hopkins R., Cao H.J., Tang H., Alexander C., Davis F.B., Davis P.J. Acetylation of nuclear hormone receptor superfamily members: thyroid hormone causes acetylation of its own receptor by a mitogen-activated protein kinase-dependent mechanism // Steroids. 2005. Vol. 70. N 5–7. P. 444–449.; Sánchez-Pacheco A., Martinez-Iglesias O., MendezPertuz M., Aranda A. Residues K128, 132, and 134 in the thyroid hormone receptor-α are essential for receptor acetylation and activity // Endocrinology. 2009. Vol. 150. N 11. P. 5143–5152.; Scapin S., Leoni S., Spagnuolo S., Gnocchi D., De Vito P., Luly P., Pedersen J.Z., Incerpi S. Short-term effects of thyroid hormones during development: Focus on signal transduction // Steroids. 2010. Vol. 75. N 8–9. P. 576–584.; Danzi S., Klein I. Thyroid disease and the cardiovascular system // Endocrinol. Metab. Clin. 2014. Vol. 43. N 2. P. 517–528.; Vargas F., Moreno J.M., Rodriguez-Gomez I., Wangensteen R., Osuna A., Alvarez-Guerra M., GarcisEstan J. Vascular and renal function in experimental thyroid disorders // Eur. J. Endocrinol. 2006. Vol. 154. N 2. P. 197–212.; Heron M.I., Rakusan K. Short- and long-term effects of neonatal hypo- and hyperthyroidism on coronary arterioles in rat // Am. J. Physiol. 1996. Vol. 271. N 5. P. H1746–H1754.; Rodriguez-Gomez I., Banegas I., Wangensteen R., Quesada A., Jimenez R., Gomez-Morales M., Francisco O’Valle, Duarte J., Vargas F. Influence of thyroid state on cardiac and renal capillary density and glomerular morphology in rats // J. Endocrinol. 2013. Vol. 216. N 1. P. 43–51.; Селиванова Е.К., Тарасова О.С. Программирующее влияние тиреоидных гормонов на сердечно-сосудистую систему // Валеология. 2016. № 4. С. 60–67.; Тарасова О.С., Софронова С.И., Гайнуллина Д.Г., Борзых А.А., Мартьянов А.А. Регуляция продукции оксида азота эндотелием сосудов при физической нагрузке: роль тиреоидных гормонов // Авиакосм. эколог. мед. 2015. Т. 49. № 2. С. 55–62.; McAllister R.M., Grossenburg V. D., Delp M.D., Laughlin M.H. Effects of hyperthyroidism on vascular contractile and relaxation responses // Am. J. Physiol. Endocrinol. Metab. 1998. Vol. 274. N 5. P. E946–E953.; Khorshidi-Behzadi M., Alimoradi H., HaghjooJavanmard S., Sharifi M.R., Rahimi N., Dehpour A.R. The effect of chronic hyperthyroidism and restored euthyroid state by methimazole therapy in rat small mesenteric arteries // Eur. J. Pharmacol. 2013. Vol. 701. N 1–3. P. 20–26.; Honda H., Iwata T., Mochizuki T., Kogo H. Changes in vascular reactivity induced by acute hyperthyroidism in isolated rat aortae // Gen. Pharmacol. Vasc. Syst. 2000. Vol. 34. N 6. P. 429–434.; Deng J., Zhao R., Zhang Z., Wang J. Changes in vasoreactivity of rat large- and medium-sized arteries induced by hyperthyroidism // Exp. Toxicol. Pathol. 2010. Vol. 62. N 3. P. 317–322.; Гайнуллина Д.К., Селиванова Е.К., Шарова А.П., Тарасова О.С. Повышение констрикторного влияния Rho-киназы в артериях скелетных мышц и сердца при хроническом гипотиреозе у крыс // Бюлл. сиб. мед. 2018. Т. 17. № 4. С. 23–32.; Iwata T., Honda H. Acute hyperthyroidism alters adrenoceptor- and muscarinic receptor-mediated responses in isolated rat renal and femoral arteries // Eur. J. Pharmacol. 2004. Vol. 493. N 1–3. P. 191–199.; Zwaveling J., Pfaffendorf M., van Zwieten P.A. The direct effects of thyroid hormones on rat mesenteric resistance arteries // Fundam. Clin. Pharmacol. 1997. Vol. 11. N 1. P. 41–46.; Gaynullina D.K., Sofronova S.I., Selivanova E.K., Shvetsova A.A., Borzykh A.A., Sharova A.P., Kostyunina D.S., Martyanov A.A., Tarasova O.S. NO-mediated anticontractile effect of the endothelium is abolished in coronary arteries of adult rats with antenatal/early postnatal hypothyroidism // Nitric Oxide. 2017. Vol. 63. P. 21–28.; Luidens M.K., Mousa S.A., Davis F.B., Lin H.Y., Davis P.J. Thyroid hormone and angiogenesis // Vascul. Pharmacol. 2010. Vol. 52. N 3–4. P. 142–145.; Yoshida T., Gong J., Xu Z., Wei Y., Duh E.J. Inhibition of pathological retinal angiogenesis by the integrin αvβ3 antagonist tetraiodothyroacetic acid (tetrac) // Exp. Eye Res. 2012. Vol. 94. N 1. P. 41–48.; Mousa S.A., Bergh J.J., Dier E., Rebbaa A., O’Connor L.J., Yalcin M., Aljada A., Dyskin E., Davis F.B., Lin H., Davis P.J. Tetraiodothyroacetic acid, a small molecule integrin ligand, blocks angiogenesis induced by vascular endothelial growth factor and basic fibroblast growth factor // Angiogenesis. 2008. Vol. 11. N 2. P. 183–190.; Millard M., Odde S., Neamati N. Integrin targeted therapeutics // Theranostics. 2012. Vol. 1. P. 154–188.; Yoneda K., Takasu N., Higa S., Oshiro C., Oshiro Y., Shimabukuro M., Asahi T. Direct effects of thyroid hormones on rat coronary artery: nongenomic effects of triiodothyronine and thyroxine // Thyroid. 1998. Vol. 8. N 7. P. 609–613.; Barreto-Chaves M.L., De Souza Monteiro P., Fürstenau C.R. Acute actions of thyroid hormone on blood vessel biochemistry and physiology // Curr. Opin. Endocrinol. Diabetes Obes. 2011. Vol. 18. N 5. P. 300–303.; Lozano-Cuenca J., Lopez-Canales O.A., AguilarCarrasco J.C., Villagrana-Zesati J.R., Lopez-Mayorga R.M., Castillo-Henkel E.F., Lopez-Canales J.S. Pharmacological study of the mechanisms involved in the vasodilator effect produced by the acute application of triiodothyronine to rat aortic rings // Brazilian J. Med. Biol. Res. 2016. Vol. 49. N 8. P. 1–9.; Gachkar S., Nock S., Geissler C., Oelkrug R., Johann K., Resch J., Rahman A., Arner A., Kirchner H., Mittag J. Aortic effects of thyroid hormone in male mice // J. Mol. Endocrinol. 2019. Vol. 62. N 3. P. 91–99.; Colantuoni A., Marchiafava P.L., Lapi D., Forini F.S., Iervasi G. Effects of tetraiodothyronine and triiodothyronine on hamster cheek pouch microcirculation // Am. J. Physiol. Heart Circ. Physiol. 2005. Vol. 288. N 4. P. H1931–H1936.; Kimura K., Shirozaki Y., Jujo S., Shizuma T., Fukuyama N. Nakazawa H. Triiodothyronine acutely increases blood flow in the ventricles and kidneys of anesthesized rabbits // Thyroid. 2006. Vol. 16. N 4. P. 357–360.; Krasner J.L., Wendling W.W., Cooper S.C., Chen D., Hellman S.K., Eldridge C.J., McClurken J.B., Jeevanandam V., Carlsson C. Direct effects of triiodothyronine on human internal mammary artery and saphenous veins // J. Cardiothorac. Vasc. Anesth. 1997. Vol. 11. N 4. P. 463–466.; Schmidt B.M.W., Martin N., Georgens A.C., Tillman H., Feuring M., Christ M., Wehling M. Nongenomic cardiovascular effects of triiodothyronine in euthyroid male volunteers // J. Clin. Endocrinol. Metab. 2002. Vol. 87. N 4. P. 1681–1686.; Cai Y., Manio M.M., Leung G.P.H., Xu A., Tang E.H.C., Vanhoutte P.M. Thyroid hormone affects both endothelial and vascular smooth muscle cells in rat arteries // Eur. J. Pharmacol. 2015. Vol. 747. P. 18–28.; Liu K.L., Lo M., Canaple L., Gauthier K., Carmine P., Beylot M. Vascular function of the mesenteric artery isolated from thyroid hormone receptor-α knockout mice // J. Vasc. Res. 2014. Vol. 51. N 5. P. 350–359.; Park K.W., Dai H.B., Ojamaa K., Lowenstein E., Klein I., Sellke F.W. The direct vasomotor effect of thyroid hormones on rat skeletal muscle resistance arteries // Anesth. Analg. 1997. Vol. 85. N 4. P. 734–738.; Selivanova E., Gaynullina D., Tarasova O. Endothelium and Rho-kinase are not essential for nongenomic relaxatory effects of thyroxine in rat skeletal muscle arteries // Acta Physiol. (Oxf.). 2019. Vol. 227. N S721. P. 119.; Carrillo-Sepulveda M.A., Ceravolo G.S., Fortes Z.B., Carvalho M.H., Tostes R.C., Laurindo F.R. Webb R.C., Barreto-Chaves M.L.M. Thyroid hormone stimulates NO production via activation of the PI3K/Akt pathway in vascular myocytes // Cardiovasc. Res. 2010. Vol. 85. N 3. P. 560–570.; Гайнуллина Д.К., Кирюхина О.О., Тарасова О.С. Оксид азота в эндотелии сосудов: регуляция продукции и механизмы действия // Усп. физиол. наук. 2013. Т. 44. № 4. С. 88–102.; Ojamaa K., Klemperer J.D., Klein I. Acute effects of thyroid hormone on vascular smooth muscle // Thyroid. 1996. Vol. 6. N 5. P. 505–512.; Flamant F., Samarut J. Thyroid hormone receptors: Lessons from knockout and knock-in mutant mice // Trends Endocrinol. Metab. 2003. Vol. 14. N 2. P. 85–90.; Aoki T., Tsunekawa K., Araki O., Ogiwara T., Nara M., Sumino H., Kimura T., Murakami M. Type 2 iodothyronine deiodinase activity is required for rapid stimulation of PI3K by thyroxine in human umbilical vein endothelial cells // Endocrinology. 2015. Vol. 156. N 11. P. 4312–4324.; https://vestnik-bio-msu.elpub.ru/jour/article/view/932