يعرض 1 - 20 نتائج من 32 نتيجة بحث عن '"О. П. Ковтун"', وقت الاستعلام: 0.80s تنقيح النتائج
  1. 1
  2. 2
    Academic Journal

    المصدر: Current Pediatrics; Том 22, № 6 (2023); 521-527 ; Вопросы современной педиатрии; Том 22, № 6 (2023); 521-527 ; 1682-5535 ; 1682-5527

    وصف الملف: application/pdf

    Relation: https://vsp.spr-journal.ru/jour/article/view/3360/1354; van Erp TGM, Walton E, Hibar DP, et al. Cortical Brain Abnormalities in 4474 Individuals With Schizophrenia and 5098 Control Subjects via the Enhancing Neuro Imaging Genetics Through Meta Analysis (ENIGMA) Consortium. Biol Psychiatry. 2018;84(9): 644–654. doi: https://doi.org/10.1016/j.biopsych.2018.04.023; Opel N, Goltermann J, Hermesdorf M, et al. Cross-Disorder Analysis of Brain Structural Abnormalities in Six Major Psychiatric Disorders: A Secondary Analysis of Mega- and Meta-analytical Findings From the ENIGMA Consortium. Biol Psychiatry. 20201;88(9):678–686. doi: https://doi.org/10.1016/j.biopsych.2020.04.027; Vetter NC, Backhausen LL, Buse J, et al. Altered brain morphology in boys with attention deficit hyperactivity disorder with and without comorbid conduct disorder/oppositional defiant disorder. Hum Brain Mapp. 2020;41(4):973–983. doi: https://doi.org/10.1002/hbm.24853; Arribarat G, Peran P. Quantitative MRI markers in Parkinson’s disease and parkinsonian syndromes. Curr Opin Neurol. 2020;33(2):222–229. doi: https://doi.org/10.1097/WCO.0000000000000796; Dipietro L, Gonzalez-Mego P, Ramos-Estebanez C, et al. The evolution of Big Data in neuroscience and neurology. J Big Data. 2023; 10(1):116. doi: https://doi.org/10.1186/s40537-023-00751-2; Martínez K, Colom R. Imaging the Intelligence of Humans. In: The Cambridge Handbook of Intelligence and Cognitive Neuroscience. Barbey AK, Karama S, Haier RJ, eds. Cambridge University Press; 2021. pp. 44–69. doi: https://doi.org/10.1017/9781108635462; Gaser C. Structural MRI: Morphometry. In: Neuroeconomics. Reuter M, Montag C, eds. Springer Berlin, Heidelberg; 2016. pp. 399–409. doi: https://doi.org/10.1007/978-3-642-35923-1; Marquand AF, Kia SM, Zabihi M, et al. Conceptualizing mental disorders as deviations from normative functioning. Mol Psychiatry. 2019;24(10):1415–1424. doi: https://doi.org/10.1038/s41380-019-0441-1; Shah PJ, Ebmeier KP, Glabus MF, Goodwin GM. Cortical grey matter reductions associated with treatment-resistant chronic unipolar depression. Controlled magnetic resonance imaging study. Br J Psychiatry. 1998;172:527–532. doi: https://doi.org/10.1192/bjp.172.6.527; Hayashi T, Hou Y, Glasser MF, et al. The nonhuman primate neuroimaging and neuroanatomy project. Neuroimage. 2021;229: 117726. doi: https://doi.org/10.1016/j.neuroimage.2021.117726; Hoogman M, Muetzel R, Guimaraes JP, et al. Brain Imaging of the Cortex in ADHD: A Coordinated Analysis of Large-Scale Clinical and Population-Based Samples. Am J Psychiatry. 2019;176(7): 531–542. doi: https://doi.org/10.1176/appi.ajp.2019.18091033; Kong XZ, Postema MC, Guadalupe T, et al. Mapping brain asymmetry in health and disease through the ENIGMA consortium. Hum Brain Mapp. 2022;43(1):167–181. doi: https://doi.org/10.1002/hbm.25033; Grasby KL, Jahanshad N, Painter JN, et al. The genetic architecture of the human cerebral cortex. Science. 2020 Mar 20;367(6484):eaay6690. doi: https://doi.org/10.1126/science.aay6690; Bookheimer SY, Salat DH, Terpstra M, et al. The Lifespan Human Connectome Project in Aging: An overview. Neuroimage. 2019;185:335–348. doi: https://doi.org/10.1016/j.neuroimage.2018.10.009; Hoogman M, Bralten J, Hibar DP, et al. Subcortical brain volume differences in participants with attention deficit hyperactivity disorder in children and adults: a cross-sectional mega-analysis. Lancet Psychiatry. 2017;4(4):310–319. doi: https://doi.org/10.1016/S2215-0366(17)30049-4; van Rooij D, Anagnostou E, Arango C, et al. Cortical and Subcortical Brain Morphometry Differences Between Patients With Autism Spectrum Disorder and Healthy Individuals Across the Lifespan: Results From the ENIGMA ASD Working Group. Am J Psychiatry. 2018;175(4):359–369. doi: https://doi.org/10.1176/appi.ajp.2017.17010100; Nam KW, Castellanos N, Simmons A, et al. Alterations in cortical thickness development in preterm-born individuals: Implications for high-order cognitive functions. Neuroimage. 2015;115:64–75. doi: https://doi.org/10.1016/j.neuroimage.2015.04.015; Vargha -Khadem F, Watkins KE, Price CJ, et al. Neural basis of an inherited speech and language disorder. Proc Natl Acad Sci U S A. 1998;95(21):12695–12700. doi: https://doi.org/10.1073/pnas.95.21.12695; Wright IC, Ellison ZR, Sharma T, et al. Mapping of grey matter changes in schizophrenia. Schizophr Res. 1999;35(1):1–14. doi: https://doi.org/10.1016/s0920-9964(98)00094-2; Wright IC, McGuire PK, Poline JB, et al. A voxel-based method for the statistical analysis of gray and white matter density applied to schizophrenia. Neuroimage. 1995;2(4):244–252. doi: https://doi.org/10.1006/nimg.1995.1032; Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage. 1999;9(2):179–194. doi: https://doi.org/10.1006/nimg.1998.0395; Ai L, Craddock RC, Tottenham N, et al. Is it time to switch your T1W sequence? Assessing the impact of prospective motion correction on the reliability and quality of structural imaging. Neuroimage. 2021;226:117585. doi: https://doi.org/10.1016/j.neuroimage.2020.117585; Ashburner J, Friston KJ. Voxel-based morphometry — the methods. Neuroimage. 2000;11(6 Pt 1):805–821. doi: https://doi.org/10.1006/nimg.2000.0582; De Bellis MD, Keshavan MS, Beers SR, et al. Sex differences in brain maturation during childhood and adolescence. Cereb Cortex. 2001;11(6):552–557. doi: https://doi.org/10.1093/cercor/11.6.552; Backhausen LL, Herting MM, Tamnes CK, Vetter NC. Best Practices in Structural Neuroimaging of Neurodevelopmental Disorders. Neuropsychol Rev. 2022;32(2):400–418. doi: https://doi.org/10.1007/s11065-021-09496-2; Dong HM, Castellanos FX, Yang N, et al. Charting brain growth in tandem with brain templates at school age. Sci Bull (Beijing). 2020;65(22):1924–1934. doi: https://doi.org/10.1016/j.scib.020.07.027; Raznahan A, Shaw P, Lalonde F, et al. How does your cortex grow? J Neurosci. 2011;31(19):7174–7177. doi: https://doi.org/10.1523/JNEUROSCI.0054-11.2011; Greve DN. An Absolute Beginner’s Guide to Surface- and Voxel-based Morphometric Analysis. In: Proceedings of the International Society for Magnetic Resonance in Medicine. 2011. vol. 19. p. 33.; Noorde rmeer SDS, Luman M, Greven CU, et al. Structural Brain Abnormalities of Attention-Deficit/Hyperactivity Disorder With Oppositional Defiant Disorder. Biol Psychiatry. 2017;82(9): 642–650. doi: https://doi.org/10.1016/j.biopsych.2017.07.008; Whitwell JL. Voxel-based morphometry: an automated technique for assessing structural changes in the brain. J Neurosci. 2009; 29(31):9661–9664. doi: https://doi.org/10.1523/JNEUROSCI.2160-09.2009; Li Z, Zhang J, Wang F, et al. Surface-based morphometry study of the brain in benign childhood epilepsy with centrotemporal spikes. Ann Transl Med. 2020;8(18):1150. doi: https://doi.org/10.21037/atm-20-5845; Fischl B. FreeSurfer. Neuroimage. 2012;62(2):774–781. doi: https://doi.org/10.1016/j.neuroimage.2012.01.021; Winkler AM, Kochunov P, Blangero J, et al. Cortical thickness or grey matter volume? The importance of selecting the phenotype for imaging genetics studies. Neuroimage. 2010;53(3):1135–1146. doi: https://doi.org/10.1016/j.neuroimage.2009.12.028; Pua EPK, Barton S, Williams K, et al. Individualised MRI training for paediatric neuroimaging: A child-focused approach. Dev Cogn Neurosci. 2020;41:100750. doi: https://doi.org/10.1016/j.dcn.2019.100750; Raschle NM, Lee M, Buechler R, et al. Making MR imaging child’s play — pediatric neuroimaging protocol, guidelines and procedure. J Vis Exp. 2009;(29):1309. doi: https://doi.org/10.3791/1309; Reuter M, Tisdall MD, Qureshi A, et al. Head motion during MRI acquisition reduces gray matter volume and thickness estimates. Neuroimage. 2015;107:107–115. doi: https://doi.org/10.1016/j.neuroimage.2014.12.006; Tijsse n RH, Jansen JF, Backes WH. Assessing and minimizing the effects of noise and motion in clinical DTI at 3 T. Hum Brain Mapp. 2009;30(8):2641–2655. doi: https://doi.org/10.1002/hbm.20695; Barisano G, Sepehrband F, Ma S, et al. Clinical 7 T MRI: Are we there yet? A review about magnetic resonance imaging at ultra-high field. Br J Radiol. 2019;92(1094):20180492. doi: https://doi.org/10.1259/bjr.20180492; Backhausen LL, Herting MM, Buse J, et al. Quality Control of Structural MRI Images Applied Using FreeSurfer-A Hands-On Workflow to Rate Motion Artifacts. Front Neurosci. 2016;10:558. doi: https://doi.org/10.3389/fnins.2016.00558; Desikan RS, Ségonne F, Fischl B, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage. 2006;31(3):968–980. doi: https://doi.org/10.1016/j.neuroimage.2006.01.021; Destrieux C, Fischl B, Dale A, Halgren E. Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. Neuroimage. 2010;53(1):1–15. doi: https://doi.org/10.1016/j.neuroimage.2010.06.010; Ma J, Miller MI, Younes L. A bayesian generative model for surface template estimation. Int J Biomed Imaging. 2010:2010:974957. doi: https://doi.org/10.1155/2010/974957; Tsai CJ, Lin HY, Tseng IW, Gau SS. Brain voxel-based morphometry correlates of emotion dysregulation in attention-deficit hyperactivity disorder. Brain Imaging Behav. 2021;15(3):1388–1402. doi: https://doi.org/10.1007/s11682-020-00338-y; Paus T, Wong AP, Syme C, Pausova Z. Sex differences in the adolescent brain and body: Findings from the saguenay youth study. J Neurosci Res. 2017;95(1-2):362–370. doi: https://doi.org/10.1002/jnr.23825; Mills KL, Goddings AL, Herting MM, et al. Structural brain development between childhood and adulthood: Convergence across four longitudinal samples. Neuroimage. 2016;141:273–281. doi: https://doi.org/10.1016/j.neuroimage.2016.07.044; Vijayakumar N, Mills KL, Alexander-Bloch A, et al. Structural brain development: A review of methodological approaches and best practices. Dev Cogn Neurosci. 2018;33:129–148. doi: https://doi.org/10.1016/j.dcn.2017.11.008; Ingre M. Why small low-powered studies are worse than large high-powered studies and how to protect against “trivial” findings in research: comment on Friston (2012). Neuroimage. 2013;81: 496–498. doi: https://doi.org/10.1016/j.neuroimage.2013.03.030; https://vsp.spr-journal.ru/jour/article/view/3360

  3. 3
    Academic Journal

    المصدر: Meditsinskiy sovet = Medical Council; № 9 (2024); 74-86 ; Медицинский Совет; № 9 (2024); 74-86 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/8334/7354; Milgrom H, Fick RB Jr, Su JQ, Reimann JD, Bush RK, Watrous ML et al. Treatment of allergic asthma with monoclonal anti-IgE antibody. rhuMAb-E25 Study Group. N Engl J Med. 1999;341(26):1966–1973. https://doi.org/10.1056/NEJM199912233412603.; Humbert M, Beasley R, Ayres J, Slavin R, Hébert J, Bousquet J et al. Benefits of omalizumab as add-on therapy in patients with severe persistent asthma who are inadequately controlled despite best available therapy (GINA 2002 step 4 treatment): INNOVATE. Allergy. 2005;60(3):309–316. https://doi.org/10.1111/j.1398-9995.2004.00772.x.; Bousquet J, Siergiejko Z, Swiebocka E, Humbert M, Rabe KF, Smith N et al. Persistency of response to omalizumab therapy in severe allergic (IgE-mediated) asthma. Allergy. 2011;66(5):671–678. https://doi.org/10.1111/j.1398-9995.2010.02522.x.; Siergiejko Z, Świebocka E, Smith N, Peckitt C, Leo J, Peachey G, Maykut R. Oral corticosteroid sparing with omalizumab in severe allergic (IgE-mediated) asthma patients. Curr Med Res Opin. 2011;27(11):2223–2228. https://doi.org/10.1185/03007995.2011.620950.; Castro M, Corren J, Pavord ID, Maspero J, Wenzel S, Rabe KF et al. Dupilumab Efficacy and Safety in Moderate-to-Severe Uncontrolled Asthma. N Engl J Med. 2018;378(26):2486–2496. https://doi.org/10.1056/NEJMoa1804092.; Rabe KF, Nair P, Brusselle G, Maspero JF, Castro M, Sher L et al. Efficacy and Safety of Dupilumab in Glucocorticoid-Dependent Severe Asthma. N Engl J Med. 2018;378(26):2475–2485. https://doi.org/10.1056/NEJMoa1804093.; Wechsler ME, Ford LB, Maspero JF, Pavord ID, Papi A, Bourdin A et al. Long-term safety and efficacy of dupilumab in patients with moderate-to-severe asthma (TRAVERSE): an open-label extension study. Lancet Respir Med. 2022;10(1):11–25. https://doi.org/10.1016/S2213-2600(21)00322-2.; Canonica GW, Bartezaghi M, Marino R, Rigoni L. Prevalence of perennial severe allergic asthma in Italy and effectiveness of omalizumab in its management: PROXIMA - an observational, 2 phase, patient reported outcomes study. Clin Mol Allergy. 2015;13(1):10. https://doi.org/10.1186/s12948-015-0019-7.; Solidoro P, Patrucco F, de Blasio F, Brussino L, Bellocchia M, Dassetto D et al. Predictors of reversible airway obstruction with omalizumab in severe asthma: a real-life study. Ther Adv Respir Dis. 2019;13:1753466619841274. https://doi.org/10.1177/1753466619841274.; Humbert M, Bourdin A, Taillé C, Kamar D, Thonnelier C, Lajoinie A et al. Real-life omalizumab exposure and discontinuation in a large nationwide population-based study of paediatric and adult asthma patients. Eur Respir J. 2022;60(5):2103130. https://doi.org/10.1183/13993003.03130-2021.; Dupin C, Belhadi D, Guilleminault L, Gamez AS, Berger P, De Blay F et al. Effectiveness and safety of dupilumab for the treatment of severe asthma in a real-life French multi-centre adult cohort. Clin Exp Allergy. 2020;50(7):789–798. https://doi.org/10.1111/cea.13614.; Renner A, Marth K, Patocka K, Idzko M, Pohl W. Dupilumab rapidly improves asthma control in predominantly anti-IL5/IL5R pretreated Austrian real-life severe asthmatics. Immun Inflamm Dis. 2021;9(3):624–627. https://doi.org/10.1002/iid3.434.; Carpagnano GE, Scioscia G, Buonamico E, Lacedonia D, Diaferia F, Capozza E et al. Early effectiveness of type-2 severe asthma treatment with dupilumab in a real-life setting; a FeNO-driven choice that leads to winning management. Multidiscip Respir Med. 2022;17(1):797. Available at: https://www.researchgate.net/publication/358359986_Early_effectiveness_of_type-2_severe_asthma_treatment_with_dupilumab_in_a_real-life_setting_a_FeNO-driven_choice_that_leads_to_winning_management.; Hoshino M, Akitsu K, Kubota K, Ohtawa J. Efficacy of a house dust mite sublingual immunotherapy tablet as add-on dupilumab in asthma with rhinitis. Allergol Int. 2022;71(4):490–497. https://doi.org/10.1016/j.alit.2022.05.010.; Pose K, Laorden D, Hernández N, Villamañán E, Quirce S, Domínguez-Ortega J. Efficacy of Dupilumab for Severe Atopic Dermatitis Co-occurring With Asthma in a Real-World Setting. J Investig Allergol Clin Immunol. 2023;33(3):217–219. https://doi.org/10.18176/jiaci.0837.; Minagawa S, Araya J, Watanabe N, Fujimoto S, Watanabe J, Hara H et al. Real-life effectiveness of dupilumab in patients with mild to moderate bronchial asthma comorbid with CRSwNP. BMC Pulm Med. 2022;22(1):258. https://doi.org/10.1186/s12890-022-02046-3.; Cabon Y, Molinari N, Marin G, Vachier I, Gamez AS, Chanez P, Bourdin A. Comparison of anti-interleukin-5 therapies in patients with severe asthma: global and indirect meta-analyses of randomized placebo-controlled trials. Clin Exp Allergy. 2017;47(1):129–138. https://doi.org/10.1111/CEA.12853.; Edris A, De Feyter S, Maes T, Joos G, Lahousse L. Monoclonal antibodies in type 2 asthma: a systematic review and network meta-analysis. Respir Res. 2019;20(1):179. https://doi.org/10.1186/S12931-019-1138-3.; Henriksen DP, Bodtger U, Sidenius K, Maltbaek N, Pedersen L, Madsen H et al. Efficacy, adverse events, and inter-drug comparison of mepolizumab and reslizumab anti-IL-5 treatments of severe asthma - a systematic review and meta-analysis. Eur Clin Respir J. 2018;5(1):1536097. https://doi.org/10.1080/20018525.2018.1536097.; Ramonell RP, Iftikhar IH. Effect of Anti-IL5, Anti-IL5R, Anti-IL13 Therapy on Asthma Exacerbations: A Network Meta-analysis. Lung. 2020;198(1):95–103. https://doi.org/10.1007/S00408-019-00310-8.; Busse W, Chupp G, Nagase H, Albers FC, Doyle S, Shen Q et al. Anti-IL-5 treatments in patients with severe asthma by blood eosinophil thresholds: Indirect treatment comparison. J Allergy Clin Immunol. 2019;143(1):190–200. https://doi.org/10.1016/J.JACI.2018.08.031.; He LL, Zhang L, Jiang L, Xu F, Fei DS. Efficacy and safety of anti-interleukin-5 therapy in patients with asthma: A pairwise and Bayesian network meta-analysis. Int Immunopharmacol. 2018;64:223–231. https://doi.org/10.1016/J.INTIMP.2018.08.031.; Calzetta L, Matera MG, Rogliani P. Monoclonal antibodies in severe asthma: is it worth it? Expert Opin Drug Metab Toxicol. 2019;15(6):517–520. https://doi.org/10.1080/17425255.2019.1621837.; Nagase H, Suzukawa M, Oishi K, Matsunaga K. Biologics for severe asthma: The real-world evidence, effectiveness of switching, and prediction factors for the efficacy. Allergol Int. 2023;72(1):11–23. https://doi.org/10.1016/j.alit.2022.11.008.; Ito A, Miyoshi S, Toyota H, Suzuki Y, Uehara Y, Hattori S et al. The overlapping eligibility for bioligics in patients with severe asthma and phenotypes. Arerugi. 2022;71(3):210–220. https://doi.org/10.15036/arerugi.71.210.; Albers FC, Müllerová H, Gunsoy NB, Shin JY, Nelsen LM, Bradford ES et al. Biologic treatment eligibility for real-world patients with severe asthma: The IDEAL study. J Asthma. 2018;55(2):152–160. https://doi.org/10.1080/02770903.2017.1322611.; Kimura Y, Suzukawa M, Inoue N, Imai S, Akazawa M, Matsui H. Real-world benefits of biologics for asthma: Exacerbation events and systemic corticosteroid use. World Allergy Organ J. 2021;14(11):100600. https://doi.org/10.1016/j.waojou.2021.100600.; Akenroye A, Marshall J, Simon AL, Hague C, Costa R, Jamal-Allial A et al. Smaller Differences in the Comparative Effectiveness of Biologics in Reducing Asthma-Related Hospitalizations Compared With Overall Exacerbations. J Allergy Clin Immunol Pract. 2024;S2213-2198(24)00211–3. https://doi.org/10.1016/j.jaip.2024.02.034.; Menzies-Gow A, Bafadhel M, Busse WW, Casale TB, Kocks JWH, Pavord ID et al. An expert consensus framework for asthma remission as a treatment goal. J Allergy Clin Immunol. 2020;145(3):757–765. https://doi.org/10.1016/j.jaci.2019.12.006.; Belliveau PP. Omalizumab: a monoclonal anti-IgE antibody. MedGenMed. 2005;7(1):27. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1681435/.; Incorvaia C, Mauro M, Makri E, Leo G, Ridolo E. Two decades with omalizumab: what we still have to learn. Biologics. 2018;12:135–142. https://doi.org/10.2147/BTT.S180846.; Pelaia G, Vatrella A, Maselli R. The potential of biologics for the treatment of asthma. Nat Rev Drug Discov. 2012;11(12):958–972. https://doi.org/10.1038/nrd3792.; Manuyakorn W, Howarth PH, Holgate ST. Airway remodelling in asthma and novel therapy. Asian Pac J Allergy Immunol. 2013;31(1):3–10. Available at: https://pubmed.ncbi.nlm.nih.gov/23517388.; Akenroye AT, Segal JB, Zhou G, Foer D, Li L, Alexander GC et al. Comparative effectiveness of omalizumab, mepolizumab, and dupilumab in asthma: A target trial emulation. J Allergy Clin Immunol. 2023;151(5):1269–1276. https://doi.org/10.1016/j.jaci.2023.01.020.; Kaur R, Chupp G. Phenotypes and endotypes of adult asthma: Moving toward precision medicine. J Allergy Clin Immunol. 2019;144(1):1–12. https://doi.org/10.1016/j.jaci.2019.05.031.; Moore WC, Meyers DA, Wenzel SE, Teague WG, Li H, Li X et al. Identification of asthma phenotypes using cluster analysis in the Severe Asthma Research Program. Am J Respir Crit Care Med. 2010;181(4):315–323. https://doi.org/10.1164/rccm.200906-0896OC.; Mansur AH, Gonem S, Brown T, Burhan H, Chaudhuri R, Dodd JW et al. Biologic therapy practices in severe asthma; outcomes from the UK Severe Asthma Registry and survey of specialist opinion. Clin Exp Allergy. 2022;53(2):173–185. https://doi.org/10.1111/cea.14222.; Heaney LG, Perez de Llano L, Al-Ahmad M, Backer V, Busby J, Canonica GW et al. Eosinophilic and Noneosinophilic Asthma: An Expert Consensus Framework to Characterize Phenotypes in a Global Real-Life Severe Asthma Cohort. Chest. 2021;160(3):814–830. https://doi.org/10.1016/j.chest.2021.04.013.; Baan EJ, de Roos EW, Engelkes M, de Ridder M, Pedersen L, Berencsi K et al. Characterization of Asthma by Age of Onset: A Multi-Database Cohort Study. J Allergy Clin Immunol Pract. 2022;10(7):1825–1834. https://doi.org/10.1016/j.jaip.2022.03.019.; Deschildre A, Marguet C, Langlois C, Pin I, Rittié JL, Derelle J et al. Real-life long-term omalizumab therapy in children with severe allergic asthma. Eur Respir J. 2015;46(3):856–859. https://doi.org/10.1183/09031936.00008115.; Licari A, Castagnoli R, Denicolò C, Rossini L, Seminara M, Sacchi L et al. Omalizumab in Childhood Asthma Italian Study Group. Omalizumab in Children with Severe Allergic Asthma: The Italian Real-Life Experience. Curr Respir Med Rev. 2017;13(1):36–42. https://doi.org/10.2174/1573398X13666170426094536.; Milger K, Korn S, Feder C, Fuge J, Mühle A, Schütte W et al. Criteria for evaluation of response to biologics in severe asthma – the Biologics Asthma Response Score (BARS). Pneumologie. 2023;77:220–232. https://doi.org/10.1055/a-2102-8128.; Milger K, Suhling H, Skowasch D, Holtdirk A, Kneidinger N, Behr J et al. Response to Biologics and Clinical Remission in the Adult German Asthma Net Severe Asthma Registry Cohort. J Allergy Clin Immunol Pract. 2023;11(9):2701–2712. https://doi.org/10.1016/j.jaip.2023.05.047.; https://www.med-sovet.pro/jour/article/view/8334

  4. 4
    Academic Journal

    المصدر: Meditsinskiy sovet = Medical Council; № 9 (2024); 47-61 ; Медицинский Совет; № 9 (2024); 47-61 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/8329/7349; Moore WC, Meyers DA, Wenzel SE, Teague WG, Li H, Li X et al. Identification of asthma phenotypes using cluster analysis in the Severe Asthma Research Program. Am J Respir Crit Care Med. 2010;181(4):315–323. https://doi.org/10.1164/rccm.200906-0896oc.; Haldar P, Pavord ID, Shaw DE, Berry MA, Thomas M, Brightling CE et al. Cluster analysis and clinical asthma phenotypes. Am J Respir Crit Care Med. 2008;178(3):218–224. https://doi.org/10.1164/rccm.200711-1754OC.; Lefaudeux D, De Meulder B, Loza MJ, Peffer N, Rowe A, Baribaud F et al. U-BIOPRED clinical adult asthma clusters linked to a subset of sputum omics. J Allergy Clin Immunol. 2017;139(6):1797–1807. https://doi.org/10.1016/j.jaci.2016.08.048.; Simpson JL, Scott R, Boyle MJ, Gibson PG. Inflammatory subtypes in asthma: assessment and identification using induced sputum. Respirology. 2006;11(1):54–61. https://doi.org/10.1111/j.1440-1843.2006.00784.x.; Yan X, Chu JH, Gomez J, Koenigs M, Holm C, He X et al. Noninvasive analysis of the sputum transcriptome discriminates clinical phenotypes of asthma. Am J Respir Crit Care Med. 2015;191(10):1116–1125. https://doi.org/10.1164/rccm.201408-1440OC.; Denton E, Price DB, Tran TN, Canonica GW, Menzies-Gow A, FitzGerald JM et al. Cluster Analysis of Inflammatory Biomarker Expression in the International Severe Asthma Registry. J Allergy Clin Immunol Pract. 2021;9(7):2680–2688.e7. https://doi.org/10.1016/j.jaip.2021.02.059.; Rupani H, Murphy A, Bluer K, Renwick C, McQuitty P, Jackson DJ et al. Biologics in severe asthma: Which one, When and Where? Clin Exp Allergy. 2021;51(9):1225–1228. https://doi.org/10.1111/cea.13989.; Nagase H, Suzukawa M, Oishi K, Matsunaga K. Biologics for severe asthma: The real-world evidence, effectiveness of switching, and prediction factors for the efficacy. Allergol Int. 2023;72(1):11–23. https://doi.org/10.1016/j.alit.2022.11.008.; Ito A, Miyoshi S, Toyota H, Suzuki Y, Uehara Y, Hattori S et al. The overlapping eligibility for biologics in patients with severe asthma and phenotypes. Arerugi. 2022;71(3):210–220. (In Japan.) https://doi.org/10.15036/arerugi.71.210.; Albers FC, Müllerová H, Gunsoy NB, Shin JY, Nelsen LM, Bradford ES et al. Biologic treatment eligibility for real-world patients with severe asthma: The IDEAL study. J Asthma. 2018;55(2):152–160. https://doi.org/10.1080/02770903.2017.1322611.; Астафьева НГ, Баранов АА, Вишнева ЕА, Дайхес НА, Жестков АВ, Ильина НИ и др. Аллергический ринит: клинические рекомендации. М.; 2020. 70 с. Режим доступа: https://cr.minzdrav.gov.ru/recomend/261_1.; Fokkens WJ, Lund VJ, Hopkins C, Hellings PW, Kern R, Reitsma S et al. European Position Paper on Rhinosinusitis and Nasal Polyps 2020. Rhinology. 2020;58(Suppl. 29):1–464. https://doi.org/10.4193/Rhin20.600.; Naumova V, Beltyukov E, Niespodziana K, Errhalt P, Valenta R, Karaulov A, Kiseleva D. Cumulative IgE-levels specific for respiratory allergens as biomarker to predict efficacy of anti-IgE-based treatment of severe asthma. Front Immunol. 2022;13:941492. https://doi.org/10.3389/fimmu.2022.941492.; Chen W, Sadatsafavi M, Tran TN, Murray RB, Wong CBN, Ali N et al. Characterization of Patients in the International Severe Asthma Registry with High Steroid Exposure Who Did or Did Not Initiate Biologic Therapy. J Asthma Allergy. 2022;15:1491–1510. https://doi.org/10.2147/JAA.S377174.; Mansur AH, Gonem S, Brown T, Burhan H, Chaudhuri R, Dodd JW et al. Biologic therapy practices in severe asthma; outcomes from the UK Severe Asthma Registry and survey of specialist opinion. Clin Exp Allergy. 2023;53(2):173–185. https://doi.org/10.1111/cea.14222.; Korn S, Milger K, Skowasch D, Timmermann H, Taube C, Idzko M et al. The German severe asthma patient: Baseline characteristics of patients in the German Severe Asthma Registry, and relationship with exacerbations and control. Respir Med. 2022;195:106793. https://doi.org/10.1016/j.rmed.2022.106793.; Heaney LG, Perez de Llano L, Al-Ahmad M, Backer V, Busby J, Canonica GW et al. Eosinophilic and Noneosinophilic Asthma: An Expert Consensus Framework to Characterize Phenotypes in a Global Real-Life Severe Asthma Cohort. Chest. 2021;160(3):814–830. https://doi.org/10.1016/j.chest.2021.04.013.; Baan EJ, de Roos EW, Engelkes M, de Ridder M, Pedersen L, Berencsi K et al. Characterization of Asthma by Age of Onset: A Multi-Database Cohort Study. J Allergy Clin Immunol Pract. 2022;10(7):1825–1834.e8. https://doi.org/10.1016/j.jaip.2022.03.019.; Quirce S, Heffler E, Nenasheva N, Demoly P, Menzies-Gow A, Moreira-Jorge A et al. Revisiting Late-Onset Asthma: Clinical Characteristics and Association with Allergy. J Asthma Allergy. 2020;13:743–752. https://doi.org/10.2147/JAA.S282205.; Principe S, Richards LB, Hashimoto S, Kroes JA, Van Bragt JJMH, Vijverberg SJ et al. Characteristics of severe asthma patients on biologics: a real-life European registry study. ERJ Open Res. 2023;9(3):00586-2022. https://doi.org/10.1183/23120541.00586-2022.; Lötvall J, Akdis CA, Bacharier LB, Bjermer L, Casale TB, Custovic A et al. Asthma endotypes: a new approach to classification of disease entities within the asthma syndrome. J Allergy Clin Immunol. 2011;127(2):355–360. https://doi.org/10.1016/j.jaci.2010.11.037.; Agache I, Akdis C, Jutel M, Virchow JC. Untangling asthma phenotypes and endotypes. Allergy. 2012;67(7):835–846. https://doi.org/10.1111/j.1398-9995.2012.02832.x.; Miljkovic D, Bassiouni A, Cooksley C, Ou J, Hauben E, Wormald PJ, Vreugde S. Association between group 2 innate lymphoid cells enrichment, nasal polyps and allergy in chronic rhinosinusitis. Allergy. 2014;69(9):1154–1161. https://doi.org/10.1111/all.12440.; Наумова ВВ, Бельтюков ЕК, Киселева ДВ, Абдуллаев ВХ. Способ диагностики аллергической тяжелой бронхиальной астмы. Патент RU 2786010 C1, 24.12.2022. Режим доступа: https://new.fips.ru/registers-docview/fips_servlet?DB=RUPAT&DocNumber=2786010&TypeFile=html.; Jackson DJ, Busby J, Pfeffer PE, Menzies-Gow A, Brown T, Gore R et al. Characterisation of patients with severe asthma in the UK Severe Asthma Registry in the biologic era. Thorax. 2021;76(3):220–227. https://doi.org/10.1136/thoraxjnl-2020-215168.; Lee JH, Kim HJ, Park CS, Park SY, Park SY, Lee H et al. Clinical Characteristics and Disease Burden of Severe Asthma According to Oral Corticosteroid Dependence: Real-World Assessment From the Korean Severe Asthma Registry (KoSAR). Allergy Asthma Immunol Res. 2022;14(4):412–423. https://doi.org/10.4168/aair.2022.14.4.412.; Tran TN, King E, Sarkar R, Nan C, Rubino A, O’Leary C et al. Oral corticosteroid prescription patterns for asthma in France, Germany, Italy and the UK. Eur Respir J. 2020;55(6):1902363. https://doi.org/10.1183/13993003.02363-2019.; Tran TN, MacLachlan S, Hicks W, Liu J, Chung Y, Zangrilli J et al. Oral Corticosteroid Treatment Patterns of Patients in the United States with Persistent Asthma. J Allergy Clin Immunol Pract. 2021;9(1):338–346.e3. https://doi.org/10.1016/j.jaip.2020.06.019.; Taube C, Bramlage P, Hofer A, Anderson D. Prevalence of oral corticosteroid use in the German severe asthma population. ERJ Open Res. 2019;5(4):00092-2019. https://doi.org/10.1183/23120541.00092-2019.; Graff S, Vanwynsberghe S, Brusselle G, Hanon S, Sohy C, Dupont LJ et al. Chronic oral corticosteroids use and persistent eosinophilia in severe asthmatics from the Belgian severe asthma registry. Respir Res. 2020;21(1):214. https://doi.org/10.1186/s12931-020-01460-7.; Wang E, Wechsler ME, Tran TN, Heaney LG, Jones RC, Menzies-Gow AN et al. Characterization of Severe Asthma Worldwide: Data From the International Severe Asthma Registry. Chest. 2020;157(4):790–804. https://doi.org/10.1016/j.chest.2019.10.053.; Kaur R, Chupp G. Phenotypes and endotypes of adult asthma: Moving toward precision medicine. J Allergy Clin Immunol. 2019;144(1):1–12. https://doi.org/10.1016/j.jaci.2019.05.031.; Наумова ВВ, Бельтюков ЕК, Киселева ДВ, Быкова ГА, Смоленская ОГ, Штанова АА, Степина ДА. Таргетная терапия тяжёлой бронхиальной астмы: смена биологического препарата в реальной клинической практике – причины и следствие. Российский аллергологический журнал. 2024;20(4):439–454. https://doi.org/10.36691/RJA15993.; https://www.med-sovet.pro/jour/article/view/8329

  5. 5
    Academic Journal

    المساهمون: Not specified, Отсутствует

    المصدر: Current Pediatrics; Том 22, № 2 (2023); 188-194 ; Вопросы современной педиатрии; Том 22, № 2 (2023); 188-194 ; 1682-5535 ; 1682-5527

    وصف الملف: application/pdf

    Relation: https://vsp.spr-journal.ru/jour/article/view/3185/1290; Simons SH, Tibboel D. Pain perception development and maturation. Semin Fetal Neonatal Med. 2006;11(4):227–231. doi: https://doi.org/10.1016/j.siny.2006.02.010; Andrews K, Fitzgerald M. Cutaneous flexion reflex in human neonates: a quantitative study of threshold and stimulus-response characteristics after single and repeated stimuli. Dev Med Child Neurol. 1999;41(10):696–703. doi: https://doi.org/10.1017/s0012162299001425; Carbajal R, Rousset A, Danan C, et al. Epidemiology and treatment of painful procedures in neonates in intensive care units. JAMA. 2008;300(1):60–70. doi: https://doi.org/10.1001/jama.300.1.60; Porter FL, Wolf CM, Miller JP. Procedural pain in newborn infants: the influence of intensity and development. Pediatrics. 1999; 104(1):e13. doi: https://doi.org/10.1542/peds.104.1.e13; Guinsburg R, Kopelman BI, Anand KJ, et al. Physiological, hormonal, and behavioral responses to a single fentanyl dose in intubated and ventilated preterm neonates. J Pediatr. 1998;132(6):954–959. doi: https://doi.org/10.1016/s0022-3476(98)70390-7; Craig KD, Whitfield MF, Grunau RVE, et al. Pain in the preterm neonate: behavioural and physiological indices. Pain. 1993;52(3): 287–299. doi: https://doi.org/10.1016/0304-3959(93)90162-I; Lago P, Boccuzzo G, Garetti E, et al. Pain management during invasive procedures at Italian NICUs: has anything changed in the last five years? J Matern Fetal Neonatal Med. 2013;26(3):303–305. doi: https://doi.org/10.3109/14767058.2012.733783; Roofthooft DW, Simons SH, Anand KJ, et al. Eight years later, are we still hurting newborn infants? Neonatology. 2014;105(3): 218–226. doi: https://doi.org/10.1159/000357207; COMMITTEE ON FETUS AND NEWBORN and SECTION ON ANESTHESIOLOGY AND PAIN MEDICINE. Prevention and Management of Procedural Pain in the Neonate: An Update. Pediatrics. 2016;137(2):e20154271. doi: https://doi.org/10.1542/peds.2015-4271; Barker DP, Rutter N. Stress, severity of illness, and outcome in ventilated preterm infants. Arch Dis Child Fetal Neonatal Ed. 1996; 75(3):F187–F190. doi: https://doi.org/10.1136/fn.75.3.f187; Hall RW, Boyle E, Young T. Do ventilated neonates require pain management? Semin Perinatol. 2007;31(5):289–297. doi: https://doi.org/10.1053/j.semperi.2007.07.002; Saarenmaa E, Huttunen P, Leppäluoto J, Fellman V. Alfentanil as procedural pain relief in newborn infants. Arch Dis Child Fetal Neonatal Ed. 1996;75(2):F103–F107. doi: https://doi.org/10.1136/fn.75.2.f103; Behnke J, Lemyre B, Czernik C, et al. Non-Invasive Ventilation in Neonatology. Dtsch Arztebl Int. 2019;116(11):177–183. doi: https://doi.org/10.3238/arztebl.2019.0177; Sand L, Szatkowski L, Kwok TC, et al. Observational cohort study of changing trends in non-invasive ventilation in very preterm infants and associations with clinical outcomes. Arch Dis Child Fetal Neonatal Ed. 2022;107(2):150–155. doi: https://doi.org/10.1136/archdischild-2021-322390; Walsh MC, Morris BH, Wrage LA, et al. Extremely low birthweight neonates with protracted ventilation: mortality and 18-month neurodevelopmental outcomes. J Pediatr. 2005;146(6):798–804. doi: https://doi.org/10.1016/j.jpeds.2005.01.047; Зиганшин И.М., Баялиева А.Ж., Бабинцева А.А., Шай марданова Г.Р. Эффективность искусственной вентиляции легких с гарантированным объемом у новорожденных // Российский вестник детской хирургии, анестезиологии и реаниматологии. — 2020. — Т. 10. — № 2. — С. 165–172. — doi: https://doi.org/10.17816/psaic611; Greco P, Nencini G, Piva I, et al. Pathophysiology of hypoxic-ischemic encephalopathy: a review of the past and a view on the future. Acta Neurol Belg. 2020;120(2):277–288. doi: https://doi.org/10.1007/s13760-020-01308-3; Williams EE, Greenough A. Lung Protection During Mechanical Ventilation in the Premature Infant. Clin Perinatol. 2021;48(4): 869–880. doi: https://doi.org/10.1016/j.clp.2021.08.006; Hummler H, Schulze A. New and alternative modes of mechanical ventilation in neonates. Semin Fetal Neonatal Med. 2009;14(1): 42–48. doi: https://doi.org/10.1016/j.siny.2008.08.006; Ancora G, Lago P, Garetti E, et al. Evidence-based clinical guidelines on analgesia and sedation in newborn infants undergoing assisted ventilation and endotracheal intubation. Acta Paediatr. 2019;108(2):208–217. doi: https://doi.org/10.1111/apa.14606; American Academy of Pediatrics Committee on Fetus and Newborn; American Academy of Pediatrics Section on Surgery; Canadian Paediatric Society Fetus and Newborn Committee, Batton DG, Barrington KJ, Wallman C. Prevention and management of pain in the neonate: an update. Pediatrics. 2006;118(5): 2231–2241. doi: https://doi.org/10.1542/peds.2006-2277; Vittinghoff M, Lönnqvist PA, Mossetti V, et al. Postoperative pain management in children: Guidance from the pain committee of the European Society for Paediatric Anaesthesiology (ESPA Pain Management Ladder Initiative). Paediatr Anaesth. 2018;28(6): 493–506. doi: https://doi.org/10.1111/pan.13373; Hohmeister J, Kroll A, Wollgarten-Hadamek I, et al. Cerebral processing of pain in school-aged children with neonatal nociceptive input: an exploratory fMRI study. Pain. 2010;150(2):257–267. doi: https://doi.org/10.1016/j.pain.2010.04.004; Taddio A, Shah V, Gilbert-MacLeod C, Katz J. Conditioning and hyperalgesia in newborns exposed to repeated heel lances. JAMA. 2002;288(7):857–861. doi: https://doi.org/10.1001/jama.288.7.857; Bellù R, Romantsik O, Nava C, et al. Opioids for newborn infants receiving mechanical ventilation. Cochrane Database Syst Rev. 2021;3(3):CD013732. doi: https://doi.org/10.1002/14651858.CD013732.pub2; Bellù R, de Waal K, Zanini R. Opioids for neonates receiving mechanical ventilation: a systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed. 2010;95(4):F241–F251. doi: https://doi.org/10.1136/adc.2008.150318; McPherson C, Miller SP, El-Dib M, et al. The influence of pain, agitation, and their management on the immature brain. Pediatr Res. 2020;88(2):168–175. doi: https://doi.org/10.1038/s41390-019-0744-6; Pillai Riddell RR, Racine NM, Gennis HG, et al. Non-pharmacological management of infant and young child procedural pain. Cochrane Database Syst Rev. 2015;2015(12):CD006275. doi: https://doi.org/10.1002/14651858.CD006275.pub3; Neonatology Branch of Chinese Medical Association; Editorial Board of Chinese Journal of Contemporary Pediatrics. Expert consensus on neonatal pain assessment and analgesia management (2020 edition). Zhongguo Dang Dai Er Ke Za Zhi. 2020;22(9): 923–930. doi: https://doi.org/10.7499/j.issn.1008-8830.2006181; Kassab M, Foster JP, Foureur M, Fowler C. Sweet-tasting solutions for needle-related procedural pain in infants one month to one year of age. Cochrane Database Syst Rev. 2012;12(12):CD008411. doi: https://doi.org/10.1002/14651858.CD008411.pub2; Shendurnikar N, Gandhi K. Analgesic effects of breastfeeding on heel lancing. Indian Pediatr. 2005;42(7):730–732.; Gomes Neto M, da Silva Lopes IA, Araujo ACCLM, et al. The effect of facilitated tucking position during painful procedure in pain management of preterm infants in neonatal intensive care unit: a systematic review and meta-analysis. Eur J Pediatr. 2020;179(5): 699–709. doi: https://doi.org/10.1007/s00431-020-03640-5; Cignacco E, Hamers JP, Stoffel L, et al. The efficacy of nonpharmacological interventions in the management of procedural pain in preterm and term neonates. A systematic literature review. Eur J Pain. 2007;11(2):139–152. doi: https://doi.org/10.1016/j.ejpain.2006.02.010; Ferber SG, Makhoul IR. Neurobehavioural assessment of skinto-skin effects on reaction to pain in preterm infants: a randomized, controlled within-subject trial. Acta Paediatr. 2008;97(2):171–176. doi: https://doi.org/10.1111/j.1651-2227.2007.00607.x; Ludington-Hoe SM, Hosseini R, Torowicz DL. Skin-to-skin contact (Kangaroo Care) analgesia for preterm infant heel stick. AACN Clin Issues. 2005;16(3):373–387. doi: https://doi.org/10.1097/00044067-200507000-00010; Nemergut ME, Yaster M, Colby CE. Sedation and analgesia to facilitate mechanical ventilation. Clin Perinatol. 2013;40(3): 539–558. doi: https://doi.org/10.1016/j.clp.2013.05.005; Weissman A, Aranovitch M, Blazer S, Zimmer EZ. Heel-lancing in newborns: behavioral and spectral analysis assessment of pain control methods. Pediatrics. 2009;124(5):e921–e926. doi: https://doi.org/10.1542/peds.2009-0598; Aldrink JH, Ma M, Wang W, et al. Safety of ketorolac in surgical neonates and infants 0 to 3 months old. J Pediatr Surg. 2011;46(6):1081–1085. doi: https://doi.org/10.1016/j.jpedsurg.2011.03.031; El-Mashad AE, El-Mahdy H, El Amrousy D, Elgendy M. Comparative study of the efficacy and safety of paracetamol, ibuprofen, and indomethacin in closure of patent ductus arteriosus in preterm neonates. Eur J Pediatr. 2017;176(2):233–240. doi: https://doi.org/10.1007/s00431-016-2830-7; Roofthooft DWE, Simons SHP, van Lingen RA, et al. Randomized Controlled Trial Comparing Different Single Doses of Intravenous Paracetamol for Placement of Peripherally Inserted Central Catheters in Preterm Infants. Neonatology. 2017;112(2):150–158. doi: https://doi.org/10.1159/000468975; Ohlsson A, Shah PS. Paracetamol (acetaminophen) for prevention or treatment of pain in newborns. Cochrane Database Syst Rev. 2020;1(1):CD011219. doi: https://doi.org/10.1002/14651858.CD011219.pub4; Rana D, Bellflower B, Sahni J, et al. Reduced narcotic and sedative utilization in a NICU after implementation of pain management guidelines. J Perinatol. 2017;37(9):1038–1042. doi: https://doi.org/10.1038/jp.2017.88; Truog R, Anand KJ. Management of pain in the postoperative neonate. Clin Perinatol. 1989;16(1):61–78.; Anderson BJ, Holford NH, Armishaw JC, Aicken R. Predicting concentrations in children presenting with acetaminophen overdose. J Pediatr. 1999;135(3):290–295. doi: https://doi.org/10.1016/s0022-3476(99)70122-8; Anderson BJ, van Lingen RA, Hansen TG, et al. Acetaminophen developmental pharmacokinetics in premature neonates and infants: a pooled population analysis. Anesthesiology. 2002;96(6):1336– 1345. doi: https://doi.org/10.1097/00000542-200206000-00012; Arana A, Morton NS, Hansen TG. Treatment with paracetamol in infants. Acta Anaesthesiol Scand. 2001;45(1):20–29. doi: https://doi.org/10.1034/j.1399-6576.2001.450104.x; van der Marel CD, Peters JW, Bouwmeester NJ, et al. Rectal acetaminophen does not reduce morphine consumption after major surgery in young infants. Br J Anaesth. 2007;98(3):372–379. doi: https://doi.org/10.1093/bja/ael371; Tinner EM, Hoesli I, Jost K, et al. Rectal paracetamol in newborn infants after assisted vaginal delivery may increase pain response. J Pediatr. 2013;162(1):62–66. doi: https://doi.org/10.1016/j.jpeds.2012.06.020; van den Anker JN, Tibboel D. Pain relief in neonates: when to use intravenous paracetamol. Arch Dis Child. 2011;96(6):573–574. doi: https://doi.org/10.1136/adc.2011.211060; Dani C, Lista G, Bianchi S, et al. Intravenous paracetamol in comparison with ibuprofen for the treatment of patent ductus arteriosus in preterm infants: a randomized controlled trial. Eur J Pediatr. 2021;180(3):807–816. doi: https://doi.org/10.1007/s00431-020-03780-8; Carbajal R, Eriksson M, Courtois E, et al. Sedation and analgesia practices in neonatal intensive care units (EUROPAIN): results from a prospective cohort study. Lancet Respir Med. 2015;3(10):796–812. doi: https://doi.org/10.1016/S2213-2600(15)00331-8; Donato J, Rao K, Lewis T. Pharmacology of Common Analgesic and Sedative Drugs Used in the Neonatal Intensive Care Unit. Clin Perinatol. 2019;46(4):673–692. doi: https://doi.org/10.1016/j.clp.2019.08.004; Olischar M, Palmer GM, Orsini F, et al. The addition of tramadol to the standard of i.v. acetaminophen and morphine infusion for postoperative analgesia in neonates offers no clinical benefit: a randomized placebo-controlled trial. Paediatr Anaesth. 2014;24(11):1149–1157. doi: https://doi.org/10.1111/pan.12477; Schmidt B, Adelmann C, Stützer H, et al. Comparison of sufentanil versus fentanyl in ventilated term neonates. Klin Padiatr. 2010;222(2):62–66. doi: https://doi.org/10.1055/s-0029-1225348; Anand KJ, Hall RW, Desai N, et al. Effects of morphine analgesia in ventilated preterm neonates: primary outcomes from the NEOPAIN randomised trial. Lancet. 2004;363(9422):1673–1682. doi: https://doi.org/10.1016/S0140-6736(04)16251-X; MacGregor R, Evans D, Sugden D, et al. Outcome at 5-6 years of prematurely born children who received morphine as neonates. Arch Dis Child Fetal Neonatal Ed. 1998;79(1):F40–F43. doi: https://doi.org/10.1136/fn.79.1.f40; Monk V, Moultrie F, Hartley C, et al. Oral morphine analgesia for preventing pain during invasive procedures in non-ventilated premature infants in hospital: the Poppi RCT. Southampton (UK): NIHR Journals Library; 2019.; Duong P, Tauzin M, Decobert F, et al. Continuous intravenous to oral morphine switch in very premature ventilated infants: A retrospective study on efficacy, efficiency, and tolerability. Paediatr Neonatal Pain. 2020;1(2):45–52. doi: https://doi.org/10.1002/pne2.12011; Saarenmaa E, Huttunen P, Leppäluoto J, et al. Advantages of fentanyl over morphine in analgesia for ventilated newborn infants after birth: A randomized trial. J Pediatr. 1999;134(2):144–150. doi: https://doi.org/10.1016/s0022-3476(99)70407-5; Franck LS, Vilardi J, Durand D, Powers R. Opioid withdrawal in neonates after continuous infusions of morphine or fentanyl during extracorporeal membrane oxygenation. Am J Crit Care. 1998;7(5):364–369.; Anand KJ, Willson DF, Berger J, et al. Tolerance and withdrawal from prolonged opioid use in critically ill children. Pediatrics. 2010;125(5): e1208–e1225. doi: https://doi.org/10.1542/peds.2009-0489; Ancora G, Lago P, Garetti E, et al. Efficacy and safety of continuous infusion of fentanyl for pain control in preterm newborns on mechanical ventilation. J Pediatr. 2013;163(3):645–651.e1. doi: https://doi.org/10.1016/j.jpeds.2013.02.039; Lago P, Benini F, Agosto C, Zacchello F. Randomised controlled trial of low dose fentanyl infusion in preterm infants with hyaline membrane disease. Arch Dis Child Fetal Neonatal Ed. 1998;79(3): F194–F197. doi: https://doi.org/10.1136/fn.79.3.f194; Orsini AJ, Leef KH, Costarino A, et al. Routine use of fentanyl infusions for pain and stress reduction in infants with respiratory distress syndrome. J Pediatr. 1996;129(1):140–145. doi: https://doi.org/10.1016/s0022-3476(96)70201-9; Puia-Dumitrescu M, Comstock BA, Li S, et al. Assessment of 2-Year Neurodevelopmental Outcomes in Extremely Preterm Infants Receiving Opioids and Benzodiazepines. JAMA Netw Open. 2021;4(7):e2115998. doi: https://doi.org/10.1001/jamanetworkopen.2021.15998; Jacobwitz M, Mulvihill C, Kaufman MC, et al. Ketamine for Management of Neonatal and Pediatric Refractory Status Epilepticus. Neurology. 2022;99(12):e1227–e1238. doi: https://doi.org/10.1212/WNL.0000000000200889; Samanta D. Ketamine in Refractory Neonatal Seizures. Pediatr Neurol. 2020;106:76. doi: https://doi.org/10.1016/j.pediatrneurol.2019.11.012; Hall RW, Shbarou RM. Drugs of choice for sedation and analgesia in the neonatal ICU. Clin Perinatol. 2009;36(2):15–26. doi: https://doi.org/10.1016/j.clp.2009.04.001; Mion G, Villevieille T. Ketamine pharmacology: an update (pharmacodynamics and molecular aspects, recent findings). CNS Neurosci Ther. 2013;19(6):370–380. doi: https://doi.org/10.1111/cns.12099; Poonai N, Canton K, Ali S, et al. Intranasal ketamine for procedural sedation and analgesia in children: A systematic review. PLoS One. 2017;12(3):e0173253. doi: https://doi.org/10.1371/journal.pone.0173253; Khoshrang H, Emir Alavi C, Rimaz S, et al. Efficacy of intranasal ketamine and midazolam for pediatric sedation: A double-blind, randomized clinical trial. Caspian J Intern Med. 2021;12(4): 539–543. doi: https://doi.org/10.22088/cjim.12.4.539; Green SM, Roback MG, Krauss B, et al. Predictors of emesis and recovery agitation with emergency department ketamine sedation: an individual-patient data meta-analysis of 8,282 children. Ann Emerg Med. 2009;54(2):171–180.e804. doi: https://doi.org/10.1016/j.annemergmed.2009.04.004; Buonsenso D, Barone G, Valentini P, et al. Utility of intranasal Ketamine and Midazolam to perform gastric aspirates in children: a double-blind, placebo controlled, randomized study. BMC Pediatr. 2014;14:67. doi: https://doi.org/10.1186/1471-2431-14-67; Stevens RA, Butler BD, Kokane SS, et al. Neonatal inhibition of Na+-K+-2Cl−-cotransporter prevents ketamine induced spatial learning and memory impairments. Neurotoxicol Teratol. 2017; 60:82–86. doi: https://doi.org/10.1016/j.ntt.2016.11.001; Huang H, Zhao C, Hu Q, et al. Neonatal Anesthesia by Ketamine in Neonatal Rats Inhibits the Proliferation and Differentiation of Hippocampal Neural Stem Cells and Decreases Neurocognitive Function in Adulthood via Inhibition of the Notch1 Signaling Pathway. Mol Neurobiol. 2021;58(12):6272–6289. doi: https://doi.org/10.1007/s12035-021-02550-3; Zhang Z, Bai H, Ma X, et al. Blockade of the NLRP3/caspase-1 axis attenuates ketamine-induced hippocampus pyroptosis and cognitive impairment in neonatal rats. J Neuroinflammation. 2021;18(1):239. doi: https://doi.org/10.1186/s12974-021-02295-9; de Tristan MA, Martin-Marchand L, Roué JM, et al. Association of Continuous Opioids and/or Midazolam During Early Mechanical Ventilation with Survival and Sensorimotor Outcomes at Age 2 Years in Premature Infants: Results from the French Prospective National EPIPAGE 2 Cohort. J Pediatr. 2021;232:38–47.e8. doi: https://doi.org/10.1016/j.jpeds.2020.12.069; Jacqz-Aigrain E, Daoud P, Burtin P, et al. Placebo-controlled trial of midazolam sedation in mechanically ventilated newborn babies. Lancet. 1994;344(8923):646–650. doi: https://doi.org/10.1016/s0140-6736(94)92085-0; Arya V, Ramji S. Midazolam sedation in mechanically ventilated newborns: a double blind randomized placebo controlled trial. Indian Pediatr. 2001;38(9):967–972.; Stevens MF, Werdehausen R, Gaza N, et al. Midazolam activates the intrinsic pathway of apoptosis independent of benzodiazepine and death receptor signaling. Reg Anesth Pain Med. 2011;36(4): 343–349. doi: https://doi.org/10.1097/AAP.0b013e318217a6c7; Duerden EG, Guo T, Dodbiba L, et al. Midazolam dose correlates with abnormal hippocampal growth and neurodevelopmental outcome in preterm infants. Ann Neurol. 2016;79(4):548–559. doi: https://doi.org/10.1002/ana.24601; Козлов И.А. Дексмедетомидин при анестезиолого-реаниматологическом обеспечении кардиохирургических вмешательств. Часть 1. Общие сведения об агонистах 2-адренорецепторов и их фармакодинамике // Кардиология и сердечно-сосудистая хирургия. — 2014. — Т. 7. — № 3. — С. 63–73.; Mahmoud M, Barbi E, Mason KP. Dexmedetomidine: What’s New for Pediatrics? A Narrative Review. J Clin Med. 2020;9(9):2724. doi: https://doi.org/10.3390/jcm9092724; O’Mara K, Gal P, Ransommd JL, et al. Successful use of dexmedetomidine for sedation in a 24-week gestational age neonate. Ann Pharmacother. 2009;43(10):1707–1713. doi: https://doi.org/10.1345/aph.1M245; Chrysostomou C, Schulman SR, Herrera Castellanos M, et al. A phase II/III, multicenter, safety, efficacy, and pharmacokinetic study of dexmedetomidine in preterm and term neonates. J Pediatr. 2014;164(2):276–282.e823. doi: https://doi.org/10.1016/j.jpeds.2013.10.002; Gertler R, Brown HC, Mitchell DH, Silvius EN. Dexmedetomidine: a novel sedative-analgesic agent. Proc (Bayl Univ Med Cent). 2001;14(1): 13–21. doi: https://doi.org/10.1080/08998280.2001.11927725; Sellas MN, Kyllonen KC, Lepak MR, Rodriguez RJ. Dexmedetomidine for the Management of Postoperative Pain and Sedation in Newborns. J Pediatr Pharmacol Ther. 2019;24(3):227–233. doi: https://doi.org/10.5863/1551-6776-24.3.227; Ren X, Ma H, Zuo Z. Dexmedetomidine Postconditioning Re duces Brain Injury after Brain Hypoxia-Ischemia in Neonatal Rats. J Neuroimmune Pharmacol. 2016;11(2):238–247. doi: https://doi.org/10.1007/s11481-016-9658-9; Ezzati M, Kawano G, Rocha-Ferreira E, et al. Dexmedetomidine Combined with Therapeutic Hypothermia Is Associated with Cardiovascular Instability and Neurotoxicity in a Piglet Model of Perinatal Asphyxia. Dev Neurosci. 2017;39(1-4):156–170. doi: https://doi.org/10.1159/000458438; Naveed M, Bondi DS, Shah PA. Dexmedetomidine Versus Fentanyl for Neonates With Hypoxic Ischemic Encephalopathy Undergoing Therapeutic Hypothermia. J Pediatr Pharmacol Ther. 2022;27(4): 352–357. doi: https://doi.org/10.5863/1551-6776-27.4.352; Cosnahan AS, Angert RM, Jano E, Wachtel EV. Dexmedetomidine versus intermittent morphine for sedation of neonates with ence phalopathy undergoing therapeutic hypothermia. J Perinatol. 2021;41(9): 2284–2291. doi: https://doi.org/10.1038/s41372-021-00998-8; O’Mara K, Gal P, Wimmer J, et al. Dexmedetomidine versus standard therapy with fentanyl for sedation in mechanically ventilated premature neonates. J Pediatr Pharmacol Ther. 2012;17(3): 252–262. doi: https://doi.org/10.5863/1551-6776-17.3.252; Morton SU, Labrecque M, Moline M, et al. Reducing Benzodiazepine Exposure by Instituting a Guideline for Dexmedetomidine Usage in the NICU. Pediatrics. 2021;148(5):e2020041566. doi: https://doi.org/10.1542/peds.2020-041566; Dersch-Mills DA, Banasch HL, Yusuf K, Howlett A. Dexmedetomidine Use in a Tertiary Care NICU: A Descriptive Study. Ann Pharmacother. 2019;53(5):464–470. doi: https://doi.org/10.1177/1060028018812089; Estkowski LM, Morris JL, Sinclair EA. Characterization of dexmedetomidine dosing and safety in neonates and infants. J Pediatr Pharmacol Ther. 2015;20(2):112–118. doi: https://doi.org/10.5863/1551-6776-20.2.112; Cortes-Ledesma C, Arruza L, Sainz-Villamayor A, MartínezOrgado J. Dexmedetomidine affects cerebral activity in preterm infants. Arch Dis Child Fetal Neonatal Ed. 2022;fetalneonatal-2021- 323411. doi: https://doi.org/10.1136/archdischild-2021-323411; van Dijkman SC, De Cock PAJG, Smets K, et al. Dose rationale and pharmacokinetics of dexmedetomidine in mechanically ventilated new-borns: impact of design optimisation. Eur J Clin Pharmacol. 2019;75(10):1393–1404. doi: https://doi.org/10.1007/s00228-019-02708-y; Chidambaran V, Costandi A, D’Mello A. Correction to: Propofol: A Review of its Role in Pediatric Anesthesia and Sedation. CNS Drugs. 2018;32(9):873. doi: https://doi.org/10.1007/s40263-018-0561-1; Fuentes R, Cortínez LI, Contreras V, et al. Propofol pharmacokinetic and pharmacodynamic profile and its elec troencephalographic interaction with remifentanil in children. Paediatr Anaesth. 2018;28(12):1078–1086. doi: https://doi.org/10.1111/pan.13486; Michelet R, Van Bocxlaer J, Allegaert K, Vermeulen A. The use of PBPK modeling across the pediatric age range using propofol as a case. J Pharmacokinet Pharmacodyn. 2018;45(6):765–785. doi: https://doi.org/10.1007/s10928-018-9607-8; Ulgey A, Güneş I, Bayram A, et al. Decreasing the need for mechanical ventilation after surgery for retinopathy of prematurity: sedoanalgesia vs. general anesthesia. Turk J Med Sci. 2015; 45(6):1292–1299. doi: https://doi.org/10.3906/sag-1401-24; Dekker J, Lopriore E, van Zanten HA, et al. Sedation during minimal invasive surfactant therapy: a randomised controlled trial. Arch Dis Child Fetal Neonatal Ed. 2019;104(4):F378–F383. doi: https://doi.org/10.1136/archdischild-2018-315015; Smits A, Thewissen L, Caicedo A, et al. Propofol Dose-Finding to Reach Optimal Effect for (Semi-)Elective Intubation in Neonates. J Pediatr. 2016;179:54–60.e9. doi: https://doi.org/10.1016/j.jpeds.2016.07.049; Slavik VC, Zed PJ. Combination ketamine and propofol for procedural sedation and analgesia. Pharmacotherapy. 2007;27(11): 1588–1598. doi: https://doi.org/10.1592/phco.27.11.1588; Jager MD, Aldag JC, Deshpande GG. A presedation fluid bolus does not decrease the incidence of propofol-induced hypotension in pediatric patients. Hosp Pediatr. 2015;5(2):85-91. doi: https://doi.org/10.1542/hpeds.2014-0075; https://vsp.spr-journal.ru/jour/article/view/3185

  6. 6
    Academic Journal

    المصدر: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 68, № 2 (2023); 53-59 ; Российский вестник перинатологии и педиатрии; Том 68, № 2 (2023); 53-59 ; 2500-2228 ; 1027-4065

    وصف الملف: application/pdf

    Relation: https://www.ped-perinatology.ru/jour/article/view/1801/1361; Walther F., Kuester D., Bieber A., Malzahn J., Rüdiger M., Schmitt J. Are birth outcomes in low risk birth cohorts related to hospital birth volumes? A systematic review. BMC Pregn Childbirth 2021; 21(1): 531–547. DOI:10.1186/s12884–021–03988-y; Helenius K., Longford N., Lehtonen L., Modi N., Gale C.; Neonatal Data Analysis Unit and the United Kingdom Neonatal Collaborative. Association of early postnatal transfer and birth outside a tertiary hospital with mortality and severe brain injury in extremely preterm infants: observational cohort study with propensity score matching. BMJ 2019; 367: l5678– 15689. DOI:10.1136/bmj.l5678; Hentschel R., Guenther K., Vach W., Bruder I. Risk-adjusted mortality of VLBW infants in high-volume versus low-volume NICUs. Arch Dis Child Fetal Neonatal Ed 2019; 104(4): F390–F395. DOI:10.1136/archdischild-2018–314956; Hossain S., Shah P.S., Ye X.Y., Darlow B.A., Lee S.K., Lui K.; Canadian Neonatal Network; Australian and New Zealand Neonatal Network. Outborns or Inborns: Where Are the Differences? A Comparison Study of Very Preterm Neonatal Intensive Care Unit Infants Cared for in Australia and New Zealand and in Canada. Neonatology 2016; 109(1): 76–84. DOI:10.1159/000441272; Marlow N., Bennett C., Draper E.S., Hennessy E.M., Morgan A.S., Costeloe K.L. Perinatal outcomes for extremely preterm babies in relation to place of birth in England: the EPICure 2 study. Arch Dis Child Fetal Neonatal Ed 2014; 99: F181–188. DOI:10.1136/archdischild-2013–305555; Gould J.B., Danielsen B.H., Bollman L., Hackel A., Murphy B. Estimating the quality of neonatal transport in California. J Perinatol 2013; 33(12): 964–970. DOI:10.1038/jp.2013.57; Александрович Ю.С., Гордеев В.И. Оценочные и прогностические шкалы в медицине критических состояний. Санкт-Петербург: Сотис, 2007; 140 c.; Буштырев В.А., Лаура Н.Б., Захарова И.И. Балльная оценка состояния здоровья недоношенных новорожденных с перинатальными инфекциями. Российский вестник перинатологии и педиатрии 2006; 51(3): 11–15.; Буштырев В.А., Будник В.А., Кузнецова Н.Б. Критерии транспортабельности недоношенных новорожденных. Акушерство и гинекология 2015; 7: 74–77.; Буштырев В.А., Землянская Н.В., Петренко Ю.В. Транспортировка нуждается в правилах. Педиатрия и неонатология 2017; 1(36): 71–75.; Aluvaala J., Collins G.S., Maina M., Berkley J.A., English M. A systematic review of neonatal treatment intensity scores and their potential application in low-resource setting hospitals for predicting mortality, morbidity and estimating resource use. Syst Rev 2017; 6(1): 248–260. DOI:10.1186/s13643–017–0649–6; Aluvaala J., Collins G., Maina B., Mutinda C., Waiyego M., Berkley J.A. et al. Prediction modelling of inpatient neonatal mortality in high-mortality settings. Arch Dis Child 2020; 106(5): 449–454. DOI:10.1136/archdischild-2020–319217; Garg B., Sharma D., Farahbakhsh N. Assessment of sickness severity of illness in neonates: review of various neonatal illness scoring systems. J Matern Fetal Neonatal Med 2018; 31(10): 1373–1380. DOI:10.1080/14767058.2017.1315665. PMID: 28372507; Lehtonen L., Gimeno A., Parra-Llorca A., Vento M. Early neonatal death: A challenge worldwide. Semin Fetal Neonatal Med 2017; 22(3): 153–160. DOI:10.1016/j.siny.2017.02.006; Zaigham M., Källén K., Olofsson P. Gestational age-related reference values for Apgar score and umbilical cord arterial and venous pH in preterm and term newborns. Acta Obstet Gynecol Scand 2019; 98(12): 1618–1623. DOI:10.1111/aogs.13689; Cnattingius S., Johansson S., Razaz N. Apgar Score and Risk of Neonatal Death among Preterm Infants. N Engl J Med 2020; 383(1): 49–57. DOI:10.1056/NEJMoa1915075; van Kaam A.H., Rimensberger P.C., Borensztajn D., De Jaegere A.P.; Neovent Study Group. Ventilation practic es in the neonatal intensive care unit: a crosssectional study. J Pediatr 2010; 157(5): 767 — 771.e1–3. DOI:10.1016/j.jpeds.2010.05.043; Schwarz C.E., Dempsey E.M. Management of Neonatal Hypotension and Shock. Semin Fetal Neonatal Med 2020; 25(5): 101–121. DOI:10.1016/j.siny.2020.101121; Durrmeyer X., Marchand-Martin L., Porcher R., Gascoin G., Roze J.C., Storme L. et al. Abstention or intervention for isolated hypotension in the first 3 days of life in extremely preterm infants: association with short-term outcomes in the EPIPAGE 2 cohort study. Arch Dis Child Fetal Neonatal Ed 2017; 102(6): 490–496. DOI:10.1136/archdischild-2016–312104; Lee J.K., Poretti A., Perin J., Huisman T., Parkinson C., Chavez-Valdez R. et al. Optimizing cerebral autoregulation may decrease neonatal regional hypoxic-ischemic brain injury. Dev Neurosci 2017; 39(1–4) :248–256. DOI:10.1159/000452833; Leung K.K.Y., Lee S.L., Wong M.S.R., Wong W.H., Yung T.C. Clinical outcomes of critically ill infants requiring interhospital transport to a paediatric tertiary centre in Hong Kong. Pediatr Respirol Crit Care Med 2019; 3: 28–35. DOI:10.4103/prcm.prcm_6_19; Wu T., Wang Y., Xiong T., Huang S., Tian T., Tang J. et al. Risk factors for the deterioration of periventricular-intraventricular hemorrhage in preterm infants. Sci Rep 2020; 10(1): 13609–13907. DOI:10.1038/s41598–020–70603-z; Glaser M.A., Hughes L.M., Jnah A., Newberry D. Neonatal Sepsis: A Review of Pathophysiology and Current Management Strategies. Adv Neonatal Care 2021; 21(1): 49–60. DOI:10.1097/ANC.0000000000000769; Cuevas Guaman M., Dahm P.H., Welty S.E. The challenge of accurately describing the epidemiology of bronchopulmonary dysplasia (BPD) based on the various current definitions of BPD. Pediatr Pulmonol 2021; 56(11): 3527–3532. DOI:10.1002/ppul.25434; https://www.ped-perinatology.ru/jour/article/view/1801

  7. 7
    Academic Journal

    المصدر: Meditsinskiy sovet = Medical Council; № 20 (2023); 18-27 ; Медицинский Совет; № 20 (2023); 18-27 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/7881/6996; Chung KF. Anti-IgE monoclonal antibody, omalizumab: a new treatment for allergic asthma. Expert Opin Pharmacother. 2004;5(2):439–446. https://doi.org/10.1517/14656566.5.2.439.; Viswanathan RK, Busse WW. How to compare the efficacy of biologic agents in asthma. Ann Allergy, Asthma Immunol. 2020;125(2):137–149. https://doi.org/10.1016/j.anai.2020.04.031.; Doroudchi A, Pathria M, Modena BD. Asthma biologics: Comparing trial designs, patient cohorts and study results. Ann Allergy Asthma Immunol. 2020;124(1):44–56. https://doi.org/10.1016/J.ANAI.2019.10.016.; Castro M, Corren J, Pavord ID, Maspero J, Wenzel S, Rabe KF et al. Dupilumab Efficacy and Safety in Moderate-to-Severe Uncontrolled Asthma. N Engl J Med. 2018;378(26):2486–2496. https://doi.org/10.1056/NEJMOA1804092.; Castro M, Zangrilli J, Wechsler ME, Bateman ED, Brusselle GG, Bardin P et al. Reslizumab for inadequately controlled asthma with elevated blood eosinophil counts: results from two multicentre, parallel, double-blind, randomised, placebo-controlled, phase 3 trials. Lancet Respir Med. 2015;3(5):355–366. https://doi.org/10.1016/S2213-2600(15)00042-9.; FitzGerald JM, Bleecker ER, Nair P, Korn S, Ohta K, Lommatzsch M et al. Benralizumab, an anti-interleukin-5 receptor α monoclonal antibody, as add-on treatment for patients with severe, uncontrolled, eosinophilic asthma (CALIMA): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet. 2016;388(10056):2128–2141. https://doi.org/10.1016/S0140-6736(16)31322-8.; Pavord ID, Korn S, Howarth P, Bleecker ER, Buhl R, Keene ON et al. Mepolizumab for severe eosinophilic asthma (DREAM): A multicentre, double-blind, placebo-controlled trial. Lancet. 2012;380(9842):651–659. https://doi.org/10.1016/S0140-6736(12)60988-X.; Cabon Y, Molinari N, Marin G, Vachier I, Gamez AS, Chanez P et al. Comparison of anti-interleukin-5 therapies in patients with severe asthma: global and indirect meta-analyses of randomized placebo-controlled trials. Clin Exp Allergy. 2017;47(1):129–138. https://doi.org/10.1111/CEA.12853.; Edris A, De Feyter S, Maes T, Joos G, Lahousse L. Monoclonal antibodies in type 2 asthma: a systematic review and network meta-analysis. Respir Res. 2019;20(1):179. https://doi.org/10.1186/S12931-019-1138-3.; Henriksen DP, Bodtger U, Sidenius K, Maltbaek N, Pedersen L, Madsen H et al. Efficacy, adverse events, and inter-drug comparison of mepolizumab and reslizumab anti-IL-5 treatments of severe asthma - a systematic review and meta-analysis. Eur Clin Respir J. 2018;5(1):1536097. https://doi.org/10.1080/20018525.2018.1536097.; Ramonell RP, Iftikhar IH. Effect of Anti-IL5, Anti-IL5R, Anti-IL13 Therapy on Asthma Exacerbations: A Network Meta-analysis. Lung. 2020;198(1):95–103. https://doi.org/10.1007/S00408-019-00310-8.; Busse W, Chupp G, Nagase H, Albers FC, Doyle S, Shen Q et al. Anti-IL-5 treatments in patients with severe asthma by blood eosinophil thresholds: Indirect treatment comparison. J Allergy Clin Immunol. 2019;143(1):190–200. https://doi.org/10.1016/J.JACI.2018.08.031.; He LL, Zhang L, Jiang L, Xu F, Fei DS. Efficacy and safety of anti-interleukin-5 therapy in patients with asthma: A pairwise and Bayesian network meta-analysis. Int Immunopharmacol. 2018;64:223–231. https://doi.org/10.1016/J.INTIMP.2018.08.031.; Calzetta L, Matera MG, Rogliani P. Monoclonal antibodies in severe asthma: is it worth it? Expert Opin Drug Metab Toxicol. 2019;15(6):517–520. https://doi.org/10.1080/17425255.2019.1621837.; Chung KF, Wenzel SE, Brozek JL, Bush A, Castro M, Sterk PJ et al. International ERS/ATS guidelines on definition, evaluation and treatment of severe asthma. Eur Respir J. 2014;43(2):343–373. https://doi.org/10.1183/09031936.00202013.; Milger K, Korn S, Feder C, Fuge J, Mühle A, Schütte W et al. Criteria for evaluation of response to biologics in severe asthma – the Biologics Asthma Response Score (BARS). Pneumologie. 2023;77(4):220–232. https://doi.org/10.1055/A-2014-4350.; Menzies-Gow A, Bafadhel M, Busse WW, Casale TB, Kocks JWH, Pavord ID et al. An expert consensus framework for asthma remission as a treatment goal. J Allergy Clin Immunol. 2020;145(3):757–765. https://doi.org/10.1016/J.JACI.2019.12.006.; Milger K, Suhling H, Skowasch D, Holtdirk A, Kneidinger N, Behr J et al. Response to Biologics and Clinical Remission in the Adult German Asthma Net Severe Asthma Registry Cohort. J Allergy Clin Immunol Pract. 2023;11(9):2701–2712. https://doi.org/10.1016/J.JAIP.2023.05.047.; Ненашева НА. Тяжелая эозинофильная бронхиальная астма: новые возможности терапии. Медицинский cовет. 2018;(15):44–52. https://doi.org/10.21518/2079-701X-2018-15-44-52.; Курбачева ОМ, Дынева МЕ, Ильина НИ. Дупилумаб: основные аспекты применения при T2-опосредованных заболеваниях. Медицинский cовет. 2021;(16):186–196. https://doi.org/10.21518/2079-701X-2021-16-186-196.; Harvey ES, Langton D, Katelaris C, Stevens S, Farah CS, Gillman A et al. Mepolizumab effectiveness and identification of super-responders in severe asthma. Eur Respir J. 2020;55(5)1902420. https://doi.org/10.1183/13993003.02420-2019.; Numata T, Nakayama K, Utsumi H, Kobayashi K, Yanagisawa H, Hashimoto M et al. Efficacy of mepolizumab for patients with severe asthma and eosinophilic chronic rhinosinusitis. BMC Pulm Med. 2019;19(1):1–9. https://doi.org/10.1186/S12890-019-0952-1.; Iftikhar IH, Schimmel M, Bender W, Swenson C, Amrol D. Comparative Efficacy of Anti IL-4, IL-5 and IL-13 Drugs for Treatment of Eosinophilic Asthma: A Network Meta-analysis. Lung. 2018;196(5):517–530. https://doi.org/10.1007/S00408-018-0151-5.; Akenroye A, Lassiter G, Jackson JW, Keet C, Segal J, Alexander GC et al. Comparative efficacy of mepolizumab, benralizumab, and dupilumab in eosinophilic asthma: A Bayesian network meta-analysis. J Allergy Clin Immunol. 2022;150(5):1097–1105. https://doi.org/10.1016/J.JACI.2022.05.024.; Pham DD, Lee JH, Kwon HS, Song WJ, Cho YS, Kim H et al. Prospective direct comparison of biological treatments on severe eosinophilic asthma: Findings from the PRISM study. Ann Allergy Asthma Immunol. 2023;1081–1206. https://doi.org/10.1016/j.anai.2023.05.029.; Tan L, Reibman J, Ambrose C, Chung Y, Desai P, Llanos JP et al. Clinical and economic burden of uncontrolled severe noneosinophilic asthma. Am J Manag Care. 2022;28(6):e212–e220. https://doi.org/10.37765/AJMC.2022.89159.; Kimura Y, Suzukawa M, Inoue N, Imai S, Akazawa M, Matsui H. Real-world benefits of biologics for asthma: Exacerbation events and systemic corticosteroid use. World Allergy Organ J. 2021;14(11):100600. https://doi.org/10.1016/J.WAOJOU.2021.100600.; Agache I, Beltran J, Akdis C, Akdis M, Canelo-Aybar C, Canonica GW et al. Efficacy and safety of treatment with biologicals (benralizumab, dupilumab, mepolizumab, omalizumab and reslizumab) for severe eosinophilic asthma. A systematic review for the EAACI Guidelines – recommendations on the use of biologicals in severe asthma. Allergy. 2020;75(5):1023–1042. https://doi.org/10.1111/ALL.14221.; Charles D, Shanley J, Temple SN, Rattu A, Khaleva E, Roberts G. Real-world efficacy of treatment with benralizumab, dupilumab, mepolizumab and reslizumab for severe asthma: A systematic review and meta-analysis. Clin Exp Allergy. 2022;52(5):616–627. https://doi.org/10.1111/CEA.14112.; Mareque M, Climente M, Martinez-Moragon E, Padilla A, Oyagüez I, Touron C et al. Cost-effectiveness of benralizumab versus mepolizumab and dupilumab in patients with severe uncontrolled eosinophilic asthma in Spain. J Asthma. 2023;60(6):1210–1220. https://doi.org/10.1080/02770903.2022.2139718.; Menzies-Gow A, Steenkamp J, Singh S, Erhardt W, Rowell J, Rane P et al. Tezepelumab compared with other biologics for the treatment of severe asthma: a systematic review and indirect treatment comparison. J Med Econ. 2022;25(1):679–690. https://doi.org/10.1080/13696998.2022.2074195.; Faverio P, Ronco R, Monzio Compagnoni M, Franchi M, Franco G, Bonaiti G et al. Effectiveness and economic impact of Dupilumab in asthma: a populationbased cohort study. Respir Res. 2023;24(1):70. https://doi.org/10.1186/S12931-023-02372-y.; Bleecker E, Blaiss M, Jacob-Nara J, Huynh L, Stanford R, Wang Z et al. Realworld effectiveness of dupilumab and other biologics on asthma exacerbations and steroid prescriptions: US-advantage study. Ann Allergy Asthma Immunol. 2022;129(5):S38. https://doi.org/10.1016/j.anai.2022.08.611.; Pelaia C, Lombardo N, Busceti MT, Piazzetta G, Crimi C, Calabrese C et al. Short-Term Evaluation of Dupilumab Effects in Patients with Severe Asthma and Nasal Polyposis. J Asthma Allergy. 2021;(14):1165–1172. https://doi.org/10.2147/JAA.S328988.; Eldaabossi SAM, Awad A, Anshasi N. Mepolizumab and dupilumab as a replacement to systemic glucocorticoids for the treatment of Chronic Eosinophilic Pneumonia and Allergic Bronchopulmonary Aspergillosis – Case series, Almoosa specialist hospital. Respir Med Case Rep. 2021;34:101520. https://doi.org/10.1016/J.RMCR.2021.101520.; Oda N, Miyahara N, Senoo S, Itano J, Taniguchi A, Morichika D et al. Severe asthma concomitant with allergic bronchopulmonary aspergillosis successfully treated with mepolizumab. Allergol Int. 2018;67(4):521–523. https://doi.org/10.1016/J.ALIT.2018.03.004.; Mümmler C, Kemmerich B, Behr J, Kneidinger N, Milger K. Differential response to biologics in a patient with severe asthma and ABPA: a role for dupilumab? Allergy Asthma Clin Immunol. 2020;16:55. https://doi.org/10.1186/S13223-020-00454-W.; Bateman ED, Khan AH, Xu Y, Guyot P, Chao J, Kamat S et al. Pairwise indirect treatment comparison of dupilumab versus other biologics in patients with uncontrolled persistent asthma. Respir Med. 2022;191:105991. https://doi.org/10.1016/J.RMED.2020.105991.; Nopsopon T, Lassiter G, Chen ML, Alexander GC, Keet C, Hong H et al. Comparative efficacy of tezepelumab to mepolizumab, benralizumab, and dupilumab in eosinophilic asthma: A Bayesian network meta-analysis. J Allergy Clin Immunol. 2023;151(3):747–755. https://doi.org/10.1016/J.JACI.2022.11.021.; Toma S, Hopkins C. Stratification of SNOT-22 scores into mild, moderate or severe and relationship with other subjective instruments. Rhinology. 2016;54(2):129–133. https://doi.org/10.4193/RHINO15.072.; Chong LY, Piromchai P, Sharp S, Snidvongs K, Webster KE, Philpott C et al. Biologics for chronic rhinosinusitis. Cochrane Database Syst Rev. 2021;3(3):CD013513. https://doi.org/10.1002/14651858.CD013513.PUB3.; Wu Q, Zhang Y, Kong W, Wang X, Yuan L, Zheng R et al. Which Is the Best Biologic for Nasal Polyps: Dupilumab, Omalizumab, or Mepolizumab? A Network Meta-Analysis. Int Arch Allergy Immunol. 2022;183(3):279–288. https://doi.org/10.1159/000519228.; Cai S, Xu S, Lou H, Zhang L. Comparison of Different Biologics for Treating Chronic Rhinosinusitis With Nasal Polyps: A Network Analysis. J Allergy Clin Immunol Pract. 2022;10(7):1876–1886. https://doi.org/10.1016/J.JAIP.2022.02.034.; Oykhman P, Paramo FA, Bousquet J, Kennedy DW, Brignardello-Petersen R, Chu DK. Comparative efficacy and safety of monoclonal antibodies and aspirin desensitization for chronic rhinosinusitis with nasal polyposis: A systematic review and network meta-analysis. J Allergy Clin Immunol. 2022;149(4):1286–1295. https://doi.org/10.1016/J.JACI.2021.09.009.; Mümmler C, Dünzelmann K, Kneidinger N, Barnikel M, Munker D, Gröger M et al. Real-life effectiveness of biological therapies on symptoms in severe asthma with comorbid CRSwNP. Clin Transl Allergy. 2021;11(5):e12049. https://doi.org/10.1002/CLT2.12049.; https://www.med-sovet.pro/jour/article/view/7881

  8. 8
    Academic Journal

    المصدر: Journal Infectology; Том 15, № 1 (2023); 78-85 ; Журнал инфектологии; Том 15, № 1 (2023); 78-85 ; 2072-6732 ; 10.22625/2072-6732-2023-15-1

    وصف الملف: application/pdf

    Relation: https://journal.niidi.ru/jofin/article/view/1473/1041; Пащенков, М.В. Иммунный ответ против эпидемических коронавирусов / М.В. Пащенков, М.Р. Хаитов // Иммунология. – 2020. – Т. 41, № 1. – С. 5–18.; Смирнов, В.С. Врожденный иммунитет при коронавирусой инфекции / В.С. Смирнов, Aper А. Тотолян // Инфекции и иммунитет. – 2020. – Т.10, № 2. – С. 259–268.; Taru S. Dutt Comprehensive Immune Profiling Reveals CD56+ Monocytes and CD31+ Endothelial Cells Are In creased in Severe COVID-19 Disease / Taru S. Dutt, Stephanie M. LaVergne [at al.] / J Immunol February 1, 2022, 208 (3) 685- 696; doi: https://doi.org/10.4049/jimmunol.2100830; Харченко, Е.П. Коронавирус SARS-CoV-2: особенности структурных белков, контагиозность и возможные иммунные коллизии / Е.П. Харчекно // Эпидемиология и вакционопрофилактика. – 2020. – № 19 (2). – С. 13–30.; Namal, Liyanage Unique immune signatures predict potential cardiometabolic risk in sever COVID-19 patients and COVID-10 recovered individuals / Namal Liyanage, Manuja Gunasena, Yasasvi Wijewantha [et al.] // The Journal of Immunology, vol.206 no.1. 1 Supplement 20.18 [электронный ресурс] https:// www.jimmunol.org / content /206/1_Supplement / 20.18.; Tianyang, Mao Divers Functional Autoantibodies that Underlia Immune Perturbations in COVID-19 / Tianyang Mao, Eric Y. Wang, Jon Klein [at el.] // The Journal of Immunology, vol. 206 no. 1 Supplement 114.04 [электронный ресурс] https: // www.jimmunol.org / content / 206/1_ Supplement /114.04.; Lauren, A. The impact of Pre-existing Comorbidities and Therapeutic Interventions on COVID-19 / Lauren A. Callender Michelle Curran, Stephanie M.Bates // 2020 Aug 11;11:1991. doi:10.3389/fimmu.2020.01991; Baraniuk Chris. Does the Cold Protect You from COVID-19? / [Электронный ресурс].https://www.the-scientist. com/news-opinion/does-the…; Matthew, Zirui Tay. The trinity of COVID-19: immunity, inflammation and intervention / Matthew, Zirui Tay, Chec Meng Poh, Laurent Renia, Paul A.MacAry and Lisa F.P.Ng // doi:10.1038/s41577-020-0311-8.; Хайтович, А.Б. Патогенез COVID-19 / А.Б. Хайтович, П.А. Ермачкова // Таврический медико-биологический вестник. – 2020. – Т. 23, № 4. – С. 113–132.; Heldin, P. Regulation of hyaluronan biosynthesis and clinical impact of excessive hyaluronan production / Heldin, P., Lin C.Y., Kolliopoulos C., Chen Y.H., Skandalis S.S. // Matrix Biol. 2019; 78-79: 100-117. doi:10.1016%7C/j.matbio.2018.01.017.; Hendrickson, C.M., Matthay M.A. Viral pathogens and acute lung injury: investigations inspired by the SARS epidemic and the 2009 H1N1 influenza pandemic / Hendrickson, C.M., Matthay M.A. // Semin.Respir.Crit. CareMed., 2013, vol.34, no 4, pp.475-486.doi:10.1055/s-0033-1351122.; Бугоркова, С.А. Некоторые аспекты формирования иммунного ответа у пациентов с COVID-19 / С.А. Бугоркова // https:www.researchgate.net/publication/342546500_ Nekotorye_aspekty_formirovania_immunnogo_otveta_u_ pacientov_s_COVID-19.; Tincati, C. Heightened Circulating Interferon-Inducible Chemokines, and Activated Pro-Cytolytic Th1-Cell Phenotype Features Covid-19 / Tincati, C, Cannizzo ES, Giacomelli M, Badolato R, d’Arminio Monforte A and Marchetti G // Aggravation in the Second Week of Illness. Front. Immunol. 11:580987. doi:10.3389/fimmu.2020.; Lili, Li Interleukin-8 as a Biomarke for Disease Prognosis of Coronavirus Disease -2019 Patients / Lili Li, Jie Li, Meiling Gao [et all] // https://www.researchgate.net/publication/348346316_Interleukin-8_as_a_Biomarker_for_Disease_Prognosis_of_Coronavirus_Disease-2019_Patients; Ярец, Ю.И. Интерпретация результатов иммунограммы / Ю.И. Ярец. – Гомель: ГУ «РНПЦ РМиЭЧ», 2020. – 38 с.; Акинфеева, О.В. N KT-клетки: характерные свойства и функциональная значимость для регуляции иммунного ответа / О.В. Акинфеева, Л.Н. Бубнова, С.С. Бессмельцев // Онкогематология. – 2010. – № 4. – С. 39–43.; Мартынов, М.Ю. Эндотелиальная дисфункция при COVID- 19 и когнитивные нарушения / М.Ю. Мартынов, А.Н. Боголепова, А.Н. Ясманова // Журнал неврологии и психиатрии им. С.С. Корсакова. – 2021. – № 121(6). – С. 93–99.; https://journal.niidi.ru/jofin/article/view/1473

  9. 9
    Academic Journal

    المصدر: General Reanimatology; Том 19, № 2 (2023); 23-32 ; Общая реаниматология; Том 19, № 2 (2023); 23-32 ; 2411-7110 ; 1813-9779

    وصف الملف: application/pdf

    Relation: https://www.reanimatology.com/rmt/article/view/2231/1720; https://www.reanimatology.com/rmt/article/downloadSuppFile/2231/701; https://www.reanimatology.com/rmt/article/downloadSuppFile/2231/702; https://www.reanimatology.com/rmt/article/downloadSuppFile/2231/703; Gonzalez R.M., Gilleskie D. Infant mortality rate as a measure of a country's health: a robust method to improve reliability and comparability. Demography. 2017; 54 (2): 701-720. DOI:10.1007/s13524-017-0553-7. PMID: 28233234.; Walther F., Kuester D., Bieber A., Malzahn J., Rudiger M., Schmitt J. Are birth outcomes in low risk birth cohorts related to hospital birth volumes? A systematic review. BMC Pregnancy Childbirth. 2021; 21 (1): 531. DOI:10.1186/s12884-021-03988-y. PMID: 34315416.; Helenius K., Longford N., Lehtonen L., Modi N., Gale C.; Neonatal Data Analysis Unit and the United Kingdom Neonatal Collaborative. Association of early postnatal transfer and birth outside a tertiary hospital with mortality and severe brain injury in extremely preterm infants: observational cohort study with propensity score matching. BMJ. 2019; 367: l5678. DOI:10.1136/bmj.l5678. PMID: 31619384.; Hentschel R., Guenther K., Vach W., Bruder I. Risk-adjusted mortality of VLBW infants in high-volume versus low-volume NICUs. Arch Dis Child Fetal Neonatal Ed. 2019; 104 (4): F390-F395. DOI:10.1136/archdischild-2018-314956. PMID: 30297334.; Hossain S., Shah P.S., Ye X.Y., Darlow B.A., Lee S.K., Lui K.; Canadian Neonatal Network; Australian and New Zealand Neonatal Network. Outborns or inborns: where are the differences? A comparison study of very preterm neonatal intensive care unit infants cared for in Australia and New Zealand and in Canada. Neonatology. 2016; 109 (1): 76-84. DOI:10.1159/000441272. PMID: 26583768.; Fresson J., Guillemin F, Andre M, Abdouch A., Fontaine B., Vert P. Influence du mode de transfert sur le devenir a court terme des enfants a haut risque perinatal [Influence of the transfer mode on short-term outcome in neonates with high perinatal risk]. Arch Pediatr. 1997; 4 (3): 219-226. (in French). DOI:10.1016/s0929-693x(97)87234-x. PMID: 9181014.; Garg B., Sharma D., Farahbakhsh N. Assessment of sickness severity of illness in neonates: review of various neonatal illness scoring systems. J Matern Fetal Neonatal Med. 2018; 31 (10): 1373-1380. DOI:10.1080/14767058.2017.1315665. PMID: 28372507.; Буштырев В.А., Лаура Н.Б., Захарова И.И. Балльная оценка состояния здоровья недоношенных новорожденных с перинатальными инфекциями. Российский вестник перинатологии и педиатрии. 2006; 51 (3): 11-15. eLIBRARY ID: 9283640. EDN: HVDZYT.; Gray J.E., Richardson D.K., McCormick M.C., Workman-Daniels K., Goldmann D.A. Neonatal therapeutic intervention scoring system: a therapy-based severity-of-illness index. Pediatrics. 1992; 90 (4): 561-567. PMID: 1408510.; Lee S.K., Zupancic J.A., Pendray M., Thiessen P., Schmidt B., Whyte R., Shorten D. et al. Canadian Neonatal Network. Transport risk index of physiologic stability: a practical system for assessing infant transport care. J Pediatr. 2001; 139 (2): 220-226. DOI:10.1067/mpd.2001.11557620176. PMID: 11487747.; Ramaswamy V.V., Abiramalatha T., Bandyopadhyay T., Shaik N.B., Bandiya P., Nanda D., Pullattayil S.A.K. et al. ELBW and ELGAN outcomes in developing nations-systematic review and meta-analysis. PLoS One. 2021; 16 (8): e0255352. DOI:10.1371/journal.pone.0255352. PMID: 34352883.; World Health Organization. Preterm birth. Published Feb-ruary 19, 2018. Доступ 06 июня, 2022. https://www.who.int/news-room/fact-sheets/detail/preterm-birth.; Bouzada M.C.F., Reis Z.S.N., Brum N.F.F., Machado M.G.P., Rego M.A.S., Anchieta L.M., Romanelli R.M.C. Perinatal risk factors and Apgar score; Cnattingius S., Johansson S., Razaz N. Apgar score and risk of neonatal death among preterm infants. N Engl J Med. 2020; 383 (1): 49-57. DOI:10.1056/NEJMoa1915075. PMID: 32609981.; Obladen M. Mindestmengen in der Versorgung sehr untergewichtiger Fruhgeborener: Eine Literaturubersicht [Minimum patient volume in care for very low birthweight infants: a review of the literature. (in German.)]. Z Geburtshilfe Neonatol. 2007; 211 (3): 110-117. DOI:10.1055/s-2007-960745. PMID: 17541877.; Poets C.F., Bartels D.B., Wallwiener D. Volumen- und Ausstattungsmerkmale als peri- und neonatale Qualitatsindikatoren: Eine Ubersicht uber Daten der letzten 4 Jahre [Patient volume and facilities measurements as quality indicators of peri- and neonatal care: a review of data from the last 4 years. (in German)]. Z Geburtshilfe Neonatol. 2004; 208 (6): 220-225. DOI:10.1055/s-2004-835868. PMID: 15647985.; Lasswell S.M., Barfield W.D., Rochat R.W., Blackmon L. Perinatal regionalization for very low-birth-weight and very preterm infants: a meta-analysis. JAMA. 2010; 304 (9): 992-1000. DOI:10.1001/jama.2010.1226. PMID: 20810377.; Kumar P.P., Kumar C.D., Shaik F., Yadav S., Dusa S., Venkat-lakshmi A. Transported neonates by a specialist team — how STABLE are they. Indian J Pediatr. 2011; 78 (7): 860-862. DOI:10.1007/s12098-010-0362-0. PMID: 21286863.; Leung K.K.Y., Lee S.L., Wong M.S.R., Wong W.H.S., Yung T.C. Clinical outcomes of critically ill infants requiring inter-hospital transport to a paediatric tertiary centre in Hong Kong. Pediatr Respirol Crit Care Med. 2019; 3: 28-35. DOI:10.4103/prcm.prcm_6_19.; Singh Y., Katheria A.C., Vora F. Advances in diagnosis and management of hemodynamic instability in neonatal shock. Front Pediatr. 2018; 6: 2. DOI:10.3389/fped.2018.00002. PMID: 29404312.; de Waal K., Kluckow M. Superior vena cava flow: role, assessment and controversies in the management of perinatal perfusion. Semin Fetal Neonatal Med. 2020; 25 (5): 101122. DOI:10.1016/j.siny.2020.101122. PMID: 32467039.; Kluckow M., Evans N. Low superior vena cava flow and intraventricular haemorrhage in preterm infants. Arch Dis Child Fetal Neonatal Ed. 2000; 82 (3): F188-194. DOI:10.1136/fn.82.3.f188. PMID: 10794784.; Hunt R.W., Evans N., Rieger I., Kluckow M. Low superior vena cava flow and neurodevelopment at 3 years in very preterm infants. J Pediatr. 2004; 145 (5): 588-592. DOI:10.1016/j.jpeds.2004.06.056. PMID: 15520755.; Bravo M.C., López-Ortego P., Sánchez L., Díez J., Cabañas F., Pellicer A. Randomised trial of dobutamine versus placebo for low superior vena cava flow in preterm infants: long-term neurodevelopmental outcome. J Paediatr Child Health. 2021; 57 (6): 872-876. DOI:10.1111/jpc.15344. PMID: 33464688.; Xu X.-J., Li L-.N., Wu W.-Y. Importance of stabilization of the neonatal transport network in critically ill neonates. J Int Med Res. 2019; 47 (8): 3737-3744. DOI:10.1177/0300060519853948. PMID: 31307258.; Musialik-Swietlińska E., Bober K., Swietliński J., Górny J., Krawczyk R., Owsianka-Podleśny T. Ocena jakości przygotowania chorego noworodka w macierzystym oddziale noworodkowym do transportu miedzyszpitalnego [Evalu-ation of sick neonates' medical interventions in maternity units before transport to reference centres. (in Polish)]. Med Wieku Rozwoj. 2011; 15 (1): 84-90. PMID: 21786517.; Ganguly A., Makkar A., Sekar K. Volume targeted ventilation and high frequency ventilation as the primary modes of respiratory support for ELBW babies: what does the evidence say? Front Pediatr. 2020; 8: 27. DOI:10.3389/fped.2020.00027. PMID: 32117833.; Hsu J-.F., Yang M-.C., Chu S.-M., Yang L.-Y., Chiang M.-C., Lai M-.Y., Huang H.-R. et al. Therapeutic effects and outcomes of rescue high-frequency oscillatory ventilation for premature infants with severe refractory respiratory failure. Sci Rep. 2021; 11 (1): 8471. DOI:10.1038/s41598-021-88231-6. PMID: 33875758.; Ackermann B.W., Klotz D., Hentschel R., Thome U.H., van Kaam A.H. High-frequency ventilation in preterm infants and neonates. Pediatr Res. 2022 Feb 8. DOI:10.1038/s41390-021-01639-8. PMID: 35136198.; Iyer N.P., Mhanna M.J. Non-invasively derived respiratory severity score and oxygenation index in ventilated newborn infants. Pediatr Pulmonol. 2013; 48 (4): 364-369. DOI:10.1002/ppul.22607. PMID: 23359457.; Tan Y.-W., Ali K., Andradi G., Sasidharan L., Greenough A., Davenport M. Prognostic value of the oxygenation index to predict survival and timing of surgery in infants with congenital diaphragmatic hernia. J Pediatr Surg. 2019; 54 (8): 1567-1572. DOI:10.1016/j.jpedsurg.2018.11.014. PMID: 30679011.; Maneenil G., Premprat N., Janjindamai W., Dissaneevate S., Phatigomet M., Thatrimontrichai A. Correlation and prediction of oxygen index from oxygen saturation index in neonates with acute respiratory failure. Am J Perinatol. 2021 Nov 28. DOI:10.1055/a-1673-5251. PMID: 34666386.; Glaser M.A., Hughes L.M., Jnah A., Newberry D. Neonatal sepsis: a review of pathophysiology and current management strategies. Adv Neonatal Care. 2021; 21 (1): 49-60. DOI:10.1097/ANC.0000000000000769. PMID: 32956076.; Heron M. Deaths: leadingcCauses for 2013. Natl Vital Stat Rep. 2016; 65 (2): 1-95. PMID: 26906146.; Schrag S.J., Farley M.M., Petit S., Reingold A., Weston E.J., Pondo T., Jain J.H. et al. Epidemiology of invasive early-onset neonatal sepsis, 2005 to 2014. Pediatrics. 2016; 138 (6): e20162013. DOI:10.1542/peds.2016-2013. PMID: 27940705.; Dong Y., Speer C.P. Late-onset neonatal sepsis: recent developments. Arch Dis Child Fetal Neonatal Ed. 2015; 100 (3): F257-263. DOI:10.1136/archdischild-2014-306213. PMID: 25425653.; Wynn J.L., Polin R.A. A neonatal sequential organ failure assessment score predicts mortality to late-onset sepsis in preterm very low birth weight infants. Pediatr Res. 2020; 88 (1): 85-90. DOI:10.1038/s41390-019-0517-2. PMID: 31394566.; https://www.reanimatology.com/rmt/article/view/2231

  10. 10
    Academic Journal

    المصدر: CHILDREN INFECTIONS; Том 22, № 4 (2023); 20-27 ; ДЕТСКИЕ ИНФЕКЦИИ; Том 22, № 4 (2023); 20-27 ; 2072-8107

    وصف الملف: application/pdf

    Relation: https://detinf.elpub.ru/jour/article/view/883/638; Шакмаева М.А., Чернова Т.М., Тимченко В.Н., Начинкина Т.А., Тетю- шин К.В., Каплина Т.А., Субботина М.Д., Булина О.В., Афанасьева О.И. Особенности новой коронавирусной инфекции у детей разного возраста. Детские инфекции. 2021; 20(2): 5—9. doi.org/10.22627/2072-8107-2021-20-2-5-9; Ирфан О., Танг К., Арии М., Бхутта З.А. Эпидемиология, характеристика и влияние COVID-19 на детей, подростков и беременных женщин. Педиатрическая фармакология. 2020;17(4):352—359. doi.org/10.15690/pf.v17i4.2168; Кузник Б.И, Стуров В.Г. Особенности течения новой коронавирусной инфекции (SARS-CoV-2) у детей. Педиатрия им. Г.Н.Сперанского. 2020; 99(6):199—208. DOI:10.24110/0031-403X-2020-99-6-199-208; Краснова Е.И., Карпович Г.С., Комиссарова Т.В., Извекова И.Я., Михайленко М.А., Серова Ю.С., Шестаков А.Е. Особенности течения COVID-19 у детей различных возрастных групп. Педиатрия им. Г.Н. Сперанского. 2020; 99(6):141—147. DOI:10.24110/0031-403X-2020-99-6-141-147; Намазова-Баранова Л.С., Баранов А.А. COVID-19: что педиатры узнали об особенностях иммунного ответа на новую коронавирусную инфекцию за год борьбы с ней. Педиатрия им. Г.Н. Сперанского. 2020; 99(6):32—51. DOI:10.24110/0031-403X-2020-99-6-32-51; Мелехина Е.В., Горелов А.В., Музыка А.Д. Клинические особенности течения COVID-19 у детей различных возрастных групп. Обзор литературы к началу апреля 2020 года. Вопросы практической педиатрии. 2020; 15(2):7—20. DOI:10.20953/1817-7646-2020-2-7-20; Зверева Н.Н., Сайфуллин, Ртищев А.Ю., Шамшева О.В., Пшеничная Н.Ю. Коронавирусная инфекция у детей. Педиатрия. 2020; 99(2): 270— 278. DOI:10.24110/0031-403X-2020-99-2-270-278; Афонина Е.С., Михайлина Э.А. Особенности течения новой коронавирусной инфекции (COVID-19) у детей. Научно-образовательный журнал для студентов и преподавателей «StudNet». 2022; 3:1844—1848.; Намазова-Баранова Л.С. COVID-19 и дети. Пульмонология. 2020; 30(5):609—628. doi.org/10.18093/0869-0189-2020-30-5-609-628; Пащенков М.В., Хаитов М.Р. Иммунный ответ против эпидемических коронавирусов. Иммунология. 2020; 41(1):5—18. DOI:10.33029/0206-4952-2020-41-1-5-18; Смирнов В.С., Арег А.Тотолян. Врожденный иммунитет при коронавирусой инфекции. Инфекции и иммунитет. 2020; 10(2):259—268. doi:10.15789-7619-III-1440; Русинович Д.С., Никонов Е.Л., Намазова-Баранова Л.С. COVID-19 в Москве. Педиатрическая фармакология. 2020;17(2):95—102.; Горелов А.В., Николаева С.В., Акимкин В.Г. Новая коронавирусна инфекция COVID-19: особенности течения у детей в Российской Федерации. Педиатрия им. Г.Н. Сперанского. 2020; 99(6):57—62. DOI:10.24110/0031-403X-2020-99-6-57-62; Чернова Т.М., Тимченко Т.М., Баракина Е.В. Последствия COVID-19 у детей: результаты 12-месячного наблюдения. Журнал инфектологии. 2022;14(2):96—106. doi.org/10.22625/2072-6732-2022-14-2-96-106; Малых А.Л., Ибрагимов Б.А., Малых Д.А., Качагин А.А. Современные особенности течения новой коронавирусной инфекции у детей и подростков. Современные проблемы науки и образования. 2022; 2. doi:10.17513/spno.31545; Пащенко М.В., Хаитов М.Р. Иммунный ответ против эпидемических коронавирусов. Иммунология. 2020; 41(1):5—18. doi:10.33029/0206-4952-2020-41-1-5-18; Matthew Zirui Tay, Chec Meng Poh, Laurent Renia, Paul A. MacAry and Lisa F.P. Ng. The trinity of COVID-19: immunity, inflammation and intervention. doi:10.1038/s41577-020-0311-8.; Лобзин Ю.В., Вильниц А.А., Костик М.М., Бехтерева М.К., Ускова А.Н., Скрипченко Н.В., Бабаченко И.В., Иванов Д.О., Александрович Ю.С., Константинова Ю.Е., Дондурей Е.А., Конев А.И., Карасев В.В. Педиатрический мультисистемный воспалительный синдром, ассоциированный с новой коронавирусной инфекцией: нерешенные проблемы. Журнал инфектологии. 2021;13(1):13—20. doi.org/10.22625/2072-6732-2021-13-1-13-20; Морозова Н.Н., Цинзерлинг В.А., Семенова Н.Ю. Случай летального исхода от COVID-19 у ребенка грудного возраста. Журнал инфектологии. 2021;13(2):142—148. DOI:10.22625/2072-6732-2021-13-2-142-148; Старшинова А.А., Кушнарева Е.А., Малкова, Доагалюк И.Ф., Кудлай Д.А. Новая коронавирусная инфекция: особенности клинического течения, возможности диагностики, лечения и профилактики инфекции у взрослых и детей. Вопросы современной педиатрии. 2020;19(2):123—131. doi.org/10.15690/vsp.v19i2.2105; Абакушина Е.В., Кузьмина Е.Г., Коваленко Е.И. Основные свойства и функции NK-клеток человека. Иммунология. 2012; 4: 220—224.; Белых Н.А., Соловьева О.А., Аникеева Н.А. Эпидемиологические и клинико-лабораторные особенности COVID-19 у пациентов детского возраста. Педиатр. 2021; 12(6): 63—76. DOI:10.17816/PED12663-76; https://detinf.elpub.ru/jour/article/view/883

  11. 11
    Academic Journal

    المساهمون: Not specified, Отсутствует

    المصدر: Current Pediatrics; Том 21, № 1 (2022); 11-18 ; Вопросы современной педиатрии; Том 21, № 1 (2022); 11-18 ; 1682-5535 ; 1682-5527

    وصف الملف: application/pdf

    Relation: https://vsp.spr-journal.ru/jour/article/view/2840/1144; Hooper SB, Te Pas AB, Kitchen MJ. Respiratory transition in the newborn: A three-phase process. Arch Dis Child Fetal Neonatal Ed. 2016;101(3):F266–271. doi: https://doi.org/10.1136/archdischild-2013-305704; Реанимация и стабилизация состояния новорожденных детей в родильном зале: методическое письмо Министерства здравоохранения Российской Федерации от 04.03.2020 / под ред. проф. Е.Н. Байбариной. Available online: https://neonatology.pro/wp-content/uploads/2020/03/letter_resuscitation_newborn_delivery_2020.pdf. Accessed on February 16, 2022.; Ma X, Xu X, Chen C, et al. Epidemiology of respiratory distress and the illness severity in late preterm or term infants: A prospective multi-center study. Chin Med J (Engl). 2010; 123(20):2776–2780.; Edwards MO, Kotecha SJ, Kotecha S. Respiratory distress of the term newborn infant. Paediatr Respir Rev. 2013;14(1):29–36; quiz 36-7. doi: https://doi.org/10.1016/j.prrv.2012.02.002; Clark RH. The epidemiology of respiratory failure in neonates born at an estimated gestational age of 34 weeks or more. J Perinatol. 2005;25(4):251–257. doi: https://doi.org/10.1038/sj.jp.7211242; Sun H, Xu F, Xiong H, et al. Characteristics of respiratory distress syndrome in infants of different gestational ages. Lung. 2013;191(4):425–433. doi: https://doi.org/10.1007/s00408-013-9475-3; International Statistical Classification of Diseases and Related Health Problems 10th Revision (ICD-10)-WHO Version for 2019-covid-expanded. Chapter XVI. Certain conditions originating in the perinatal period (P00–P96). Available online: https://icd.who.int/browse10/2019/en#/P20-P29. Accessed on February 16, 2022.; Avery ME, Gatewood OB, Brumley G. Transient tachypnea of newborn. Possible delayed resorption of fluid at birth. Am J Dis Child. 1966;111(4):380–385. doi: https://doi.org/10.1001/archpedi.1966.02090070078010; Raju TN, Higgins RD, Stark AR, Leveno KJ. Optimizing care and outcome for late-preterm (near-term) infants: A summary of the workshop sponsored by the National Institute of Child Health and Human Development. Pediatrics. 2006;118(3):1207–1214. doi: https://doi.org/10.1542/peds.2006-0018; Kasap B, Duman N, Ozer E, et al. Transient tachypnea of the newborn: Predictive factor for prolonged tachypnea. Pediatr Int. 2008;50(1): 81–84. doi: https://doi.org/10.1111/j.1442-200X.2007.02535.x; Jain L. Respiratory morbidity in late-preterm infants: prevention is better than cure! Am J Perinatol. 2008;25(2):75–78. doi: https://doi.org/10.1055/s-2007-1022471; Spong CY. Defining “term” pregnancy: Recommendations from the defining “term” pregnancy workgroup. JAMA. 2013.;309(23): 2445–2446. doi: https://doi.org/10.1001/jama.2013.6235; Stewart DL, Barfield WD. Updates on an at-risk population: Late-preterm and early-term infants. Pediatrics. 2019;144(5): e20192760. doi: https://doi.org/10.1542/peds.2019-2760; Sengupta S, Carrion V, Shelton J, et al. Adverse neonatal outcomes associated with early-term birth. JAMA Pediatr. 2013;167(11):1053–1059. doi: https://doi.org/10.1001/jamapediatrics.2013.2581; Mahoney AD, Jain L. Respiratory disorders in moderately preterm, late preterm, and early term infants. Clin Perinatol. 2013;40(4): 665–678. doi: https://doi.org/10.1016/j.clp.2013.07.004; Consortium on Safe Labor; Hibbard JU, Wilkins I, Sun L, et al. Respiratory morbidity in late preterm births. JAMA. 2010;304(4): 419–425. doi: https://doi.org/10.1001/jama.2010.1015; Brown MJ, Olver RE, Ramsden CA, et al. Effects of adrenaline and of spontaneous labour on the secretion and absorption of lung liquid in the fetal lamb. J Physiol. 1983;344:137–152. doi: https://doi.org/10.1113/jphysiol.1983.sp014929; Joshi S, Kotecha S. Lung growth and development. Early Hum Dev. 2007;83(12):789–794. doi: https://doi.org/10.1016/j.earlhumdev.2007.09.007; McCray PB Jr, Bettencourt JD, Bastacky J. Developing bronchopulmonary epithelium of the human fetus secretes fluid. Am J Physiol. 1992;262(3 Pt 1):L270–L279. doi: https://doi.org/10.1152/ajplung.1992.262.3.L270; Matalon S, Bartoszewski R, Collawn JF. Role of epithelial sodium channels in the regulation of lung fluid homeostasis. Am J Physiol Lung Cell Mol Physiol. 2015;309(11):L1229–L1238. doi: https://doi.org/10.1152/ajplung.00319.2015; Wittekindt OH, Dietl P. Aquaporins in the lung. Pflugers Arch. 2019;471(4):519–532. doi: https://doi.org/10.1007/s00424-018-2232-y; Castorena-Torres F, Alcorta-García MR, Lara-Díaz VJ. Aquaporine-5 and epithelial sodium channel β-subunit gene expression in gastric aspirates in human term newborns. Heliyon. 2018;4(4):e00602. doi: https://doi.org/10.1016/j.heliyon.2018.e00602; Olver RE, Strang LB. Ion fluxes across the pulmonary epithelium and the secretion of lung liquid in the foetal lamb. J Physiol. 1974;241(2):327–357. doi: https://doi.org/10.1113/jphysiol.1974.sp010659; Hummler E, Barker P, Gatzy J, et al. Early death due to defective neonatal lung liquid clearance in alpha-ENaC-deficient mice. Nat Genet. 1996;12(3):325–328. doi: https://doi.org/10.1038/ng0396-325; Siew ML, Wallace MJ, Kitchen MJ, et al. Inspiration regulates the rate and temporal pattern of lung liquid clearance and lung aeration at birth. J Appl Physiol (1985). 2009;106(6):1888–1895. doi: https://doi.org/10.1152/japplphysiol.91526.2008; McGillick EV, Lee K, Yamaoka S, et al. Elevated airway liquid volumes at birth: a potential cause of transient tachypnea of the newborn. J Appl Physiol (1985). 2017;123(5):1204–1213. doi: https://doi.org/10.1152/japplphysiol.00464.2017; Jain L, Eaton DC. Physiology of fetal lung fluid clearance and the effect of labor. Semin Perinatol. 2006;30(1):34–43. doi: https://doi.org/10.1053/j.semperi.2006.01.006; Machado LU, Fiori HH, Baldisserotto M, et al. Surfactant deficiency in transient tachypnea of the newborn. J Pediatr. 2011;159(5): 750–754. doi: https://doi.org/10.1016/j.jpeds.2011.04.023; Weinberger B, Heck DE, Laskin DL, et al. Nitric oxide in the lung: therapeutic and cellular mechanisms of action. Pharmacol Ther. 1999;84(3):401–411. doi: https://doi.org/10.1016/s0163-7258(99)00044-3; Isik DU, Bas AY, Demirel N, et al. Increased asymmetric dimethylarginine levels in severe transient tachypnea of the newborn. J Perinatol. 2016;36(6):459–462. doi: https://doi.org/10.1038/jp.2016.9; Cummings JJ. Nitric oxide decreases lung liquid production in fetal lambs. J Appl Physiol (1985). 1997;83(5):1538–1544. doi: https://doi.org/10.1152/jappl.1997.83.5.1538; Tutdibi E, Gries K, Bücheler M, et al. Impact of labor on outcomes in transient tachypnea of the newborn: population-based study. Pediatrics. 2010;125(3):e577–e583. doi: https://doi.org/10.1542/peds.2009-0314; Ryan CA, Hughes P. Neonatal respiratory morbidity and mode of delivery at term: influence of timing of elective caesarean section. Br J Obstet Gynaecol. 1995;102(10):843–844. doi: https://doi.org/10.1111/j.1471-0528.1995.tb10861.x; Роды одноплодные, родоразрешение путем кесарева сечения: клинические рекомендации. — РОАГ, ААР, АААР; 2021. — С. 21.; ACOG committee opinion no. 559: Cesarean delivery on maternal request. Obstet Gynecol. 2013;121(4):904–907. doi: https://doi.org/10.1097/01.AOG.0000428647.67925.d3; Cordero L, Treuer SH, Landon MB, Gabbe SG. Management of infants of diabetic mothers. Arch Pediatr Adolesc Med. 1998;152(3):249–254. doi: https://doi.org/10.1001/archpedi.152.3.249; Pinter E, Peyman JA, Snow K, et al. Effects of maternal diabetes on fetal rat lung ion transport. Contribution of alveolar and bronchiolar epithelial cells to Na+, K(+)-ATPase expression. J Clin Invest. 1991;87(3):821–830. doi: https://doi.org/10.1172/JCI115085; McGillick EV, Lock MC, Orgeig S, et al. Maternal obesity mediated predisposition to respiratory complications at birth and in later life: understanding the implications of the obesogenic intrauterine environment. Paediatr Respir Rev. 2017;21:11–18. doi: https://doi.org/10.1016/j.prrv.2016.10.003; Mendola P, Männistö TI, Leishear K, et al. Neonatal health of infants born to mothers with asthma. J Allergy Clin Immunol. 2014;133(1): 85-90.e1–e4. doi: https://doi.org/10.1016/j.jaci.2013.06.012; Demissie K, Marcella SW, Breckenridge MB, et al. Maternal asthma and transient tachypnea of the newborn. Pediatrics. 1998;102(1Pt1):84–90. doi: https://doi.org/10.1542/peds.102.1.84; Badran EF, Abdalgani MM, Al-Lawama MA, et al. Effects of perinatal risk factors on common neonatal respiratory morbidities beyond 36 weeks of gestation. Saudi Med J. 2012;33(12): 1317–1323.; Dani C, Reali MF, Bertini G, et al. Risk factors for the development of respiratory distress syndrome and transient tachypnoea in newborn infants. Italian Group of Neonatal Pneumology. Eur Respir J. 1999;14(1):155–159. doi: https://doi.org/10.1034/j.1399-3003.1999.14a26.x; Yost GC, Young PC, Buchi KF. Significance of grunting respirations in infants admitted to a well-baby nursery. Arch Pediatr Adolesc Med. 2001;155(3):372–375. doi: https://doi.org/10.1001/archpedi.155.3.372; Приказ Министерства здравоохранения Российской Фе дерации от 10 мая 2017 г. № 203н «Об утверждении критериев оценки качества медицинской помощи». — С. 160. Available online: https://www.rncrr.ru/upload/Doc/N203.pdf. Accessed on February 16, 2022.; Silverman WA, Andersen DH. A controlled clinical trial of effects of water mist on obstructive respiratory signs, death rate and necropsy findings among premature infants. Pediatrics. 1956;17(1):1–10.; Wood DW, Downes JJ, Lecks HI. A clinical scoring system for the diagnosis of respiratory failure. Preliminary report on childhood status asthmaticus. Am J Dis Child. 1972;123(3):227–228. doi: https://doi.org/10.1001/archpedi.1972.02110090097011; Guglani L, Lakshminrusimha S, Ryan RM. Transient Tachypnea of the Newborn. Pediatr Rev. 2008;29(11):e59–e65. doi: https://doi.org/10.1542/pir.29-11-e59; Yurdakök M. Transient tachypnea of the newborn: what is new? J Matern Fetal Neonatal Med. 2010;23(Suppl 3):24–26. doi: https://doi.org/10.3109/14767058.2010.507971; Gizzi C, Klifa R, Pattumelli MG, et al. Continuous Positive Airway Pressure and the Burden of Care for Transient Tachypnea of the Neonate: Retrospective Cohort Study. Am J Perinatol. 2015;32(10): 939–943. doi: https://doi.org/10.1055/s-0034-1543988; Kurl S, Heinonen KM, Kiekara O. The first chest radiograph in neonates exhibiting respiratory distress at birth. Clin Pediatr (Phila). 1997;36(5):285–289. doi: https://doi.org/10.1177/000992289703600506; Alhassen Z, Vali P, Guglani L, et al. Recent Advances in Pathophysiology and Management of Transient Tachypnea of Newborn. J Perinatol. 2021;41(1):6–16. doi: https://doi.org/10.1038/s41372-020-0757-3; Mullowney T, Manson D, Kim R, et al. Primary ciliary dyskinesia and neonatal respiratory distress. Pediatrics. 2014;134(6): 1160–1166. doi: https://doi.org/10.1542/peds.2014-0808; Врожденная пневмония: клинические рекомендации. — Российская ассоциация специалистов перинатальной медицины, Российское общество неонатологов; 2017. [Vrozhdennaya pnevmoniya: Clinical guidelines. Russian association of perinatal medicine specialists, Russian Society of Neonatologists; 2017. (In Russ).] Available online: https://neonatology.pro/wp-content/uploads/2019/12/protokol_congenital_pneumonia_2017.pdf. Accessed on February 16, 2022.; Gooding CA, Gregory GA. Roentgenographic analysis of meconium aspiration of the newborn. Radiology. 1971;100(1): 131–140. doi: https://doi.org/10.1148/100.1.131; Aly H, Massaro A, Acun C, et al. Pneumothorax in the newborn: clinical presentation, risk factors and outcomes. J Matern Fetal Neonatal Med. 2014;27(4):402–406. doi: https://doi.org/10.3109/14767058.2013.818114; Sweet DG, Carnielli V, Greisen G, et al. European Consensus Guidelines on the Management of Respiratory Distress Syndrome — 2019 Update. Neonatology. 2019;115(4):432–450. doi: https://doi.org/10.1159/000499361; Терапевтическая гипотермия у новорожденных детей: клинические рекомендации. — Российская ассоциация специалистов перинатальной медицины, Российское общество неонатологов; 2019. Available online: https://neonatology.pro/wp-content/uploads/2019/02/protokol_hypothermia_2019.pdf. Accessed on February 16, 2022.; Wynn JL, Wong HR, Shanley TP, et al. Time for a neonatal-specific consensus definition for sepsis. Pediatr Crit Care Med. 2014;15(6): 523–528. doi: https://doi.org/10.1097/PCC.0000000000000157; Cleveland RH. A radiologic update on medical diseases of the newborn chest. Pediatr Radiol. 1995;25(8):631–637. doi: https://doi.org/10.1007/BF02011835; Liu J, Wang Y, Fu W, et al. Diagnosis of neonatal transient tachypnea and its differentiation from respiratory distress syndrome using lung ultrasound. Medicine (Baltimore). 2014;93(27):e197. doi: https://doi.org/10.1097/MD.0000000000000197; Ibrahim M, Omran A, AbdAllah NB, et al. Lung ultrasound in early diagnosis of neonatal transient tachypnea and its differentiation from other causes of neonatal respiratory distress. J Neonatal Perinatal Med. 2018;11(3):281–287. doi: https://doi.org/10.3233/NPM-181796; Copetti R, Cattarossi L. The “double lung point”: an ultrasound sign diagnostic of transient tachypnea of the newborn. Neonatology. 2007;91(3):203–209. doi: https://doi.org/10.1159/000097454; Sharma D, Farahbakhsh N. Role of chest ultrasound in neonatal lung disease: A review of current evidences. J Matern Fetal Neonatal Med. 2019;32(2):310–316. doi: https://doi.org/10.1080/14767058.2017.1376317; Sperandeo M, Rea G, Santantonio A, et al. Lung Ultrasonography in Diagnosis of Transient Tachypnea of the Newborn: Limitations and Pitfalls. Chest. 2016–150(4):977–978. doi: https://doi.org/10.1016/j.chest.2016.06.048; Gyamfi-Bannerman C, Thom EA, Blackwell SC, et al. NICHD Maternal-Fetal Medicine Units Network. Antenatal Betamethasone for Women at Risk for Late Preterm Delivery. N Engl J Med. 2016;374(14): 1311–1320. doi: https://doi.org/10.1056/NEJMoa1516783; Buchiboyina A, Jasani B, Deshmukh M, Patole S. Strategies for managing transient tachypnoea of the newborn — a systematic review. J Matern Fetal Neonatal Med. 2017;30(13):1524–1532. doi: https://doi.org/10.1080/14767058.2016.1193143; Mustafa SB, Isaac J, Seidner SR, et al. Mechanical stretch induces lung α-epithelial Na(+) channel expression. Exp Lung Res. 2014;40(8):380–391. doi: https://doi.org/10.3109/01902148.2014.934410; Володин Н.Н. Неонатология: национальное руководство / Российская ассоциация специалистов перинатальной медицины. — М.: ГЭОТАР-Медиа; 2019. — С. 202–203.; Ho JJ, Subramaniam P, Davis PG. Continuous distending pressure for respiratory distress in preterm infants. Cochrane Database Syst Rev. 2015;2015(7):CD002271. doi: https://doi.org/10.1002/14651858.CD002271.pub2; Subramaniam P, Ho JJ, Davis PG. Prphylactic nasal continu ous positive airway pressure for preventing morbidity and mortality in very preterm infants. Cochrane Database Syst Rev. 2016;(6):CD001243. doi: https://doi.org/10.1002/14651858.CD001243.pub3; Osman AM, El-Farrash RA, Mohammed EH. Early rescue Neopuff for infants with transient tachypnea of newborn: A randomized controlled trial. J Matern Fetal Neonatal Med. 2019;32(4):597–603. doi: https://doi.org/10.1080/14767058.2017.1387531; Celebi MY, Alan S, Kahvecioglu D, et al. Impact of Prophylactic Continuous Positive Airway Pressure on Transient Tachypnea of the Newborn and Neonatal Intensive Care Admission in Newborns Delivered by Elective Cesarean Section. Am J Perinatol. 2016;33(1):99–106. doi: https://doi.org/10.1055/s-0035-1560041; Rocha GM, Flor-De-Lima FS, Guimaraes HA. Persistent grunting respirations after birth. Minerva Pediatr. 2018;70(3):217–224. doi: https://doi.org/10.23736/S0026-4946.16.04490-X; Wilkinson D, Andersen C, O’Donnell CP, et al. High flow nasal cannula for respiratory support in preterm infants. Cochrane Database Syst Rev. 2016;2:CD006405. doi: https://doi.org/10.1002/14651858.CD006405.pub3; Beggs S, Wong ZH, Kaul S, et al. High-flow nasal cannula therapy for infants with bronchiolitis. Cochrane Database Syst Rev. 2014;(1):CD009609. doi: https://doi.org/10.1002/14651858.CD009609.pub2; Mayfield S, Jauncey-Cooke J, Hough JL, et al. High-flow nasal cannula therapy for respiratory support in children. Cochrane Database Syst Rev. 2014;2014(3):CD009850. doi: https://doi.org/10.1002/14651858.CD009850.pub2; Lampland AL, Plumm B, Meyers PA, et al. Observational study of humidified high-flow nasal cannula compared with nasal continuous positive airway pressure. J Pediatr. 2009;154(2):177–182. doi: https://doi.org/10.1016/j.jpeds.2008.07.021; Lemyre B, Laughon M, Bose C, et al. Early nasal intermittent positive pressure ventilation (NIPPV) versus early nasal continuous positive airway pressure (NCPAP) for preterm infants. Cochrane Database Syst Rev. 2016;12(12):CD005384. doi: https://doi.org/10.1002/14651858.CD005384.pub2; Lemyre B, Davis PG, De Paoli AG, Kirpalani H. Nasal intermittent positive pressure ventilation (NIPPV) versus nasal continuous positive airway pressure (NCPAP) for preterm neonates after extubation. Cochrane Database Syst Rev. 2017;2(2):CD003212. doi: https://doi.org/10.1002/14651858.CD003212.pub3; De Luca D, Dell’Orto V. Non-invasive high-frequency oscillatory ventilation in neonates: Review of physiology, biology and clinical data. Arch Dis Child Fetal Neonatal Ed. 2016;101(6):F565–F570. doi: https://doi.org/10.1136/archdischild-2016-310664; Fischer HS, Bohlin K, Bührer C, et al. Nasal high-frequency oscillation ventilation in neonates: A survey in five European countries. Eur J Pediatr. 2015;174(4):465–471. doi: https://doi.org/10.1007/s00431-014-2419-y; Bottino R, Pontiggia F, Ricci C, et al. Nasal high-frequency oscillatory ventilation and CO2 removal: A randomized controlled crossover trial. Pediatr Pulmonol. 2018;53(9):1245–1251. doi: https://doi.org/10.1002/ppul.24120; Klotz D, Schneider H, Schumann S, et al. Non-invasive high-frequency oscillatory ventilation in preterm infants: A randomised controlled cross-over trial. Arch Dis Child Fetal Neonatal Ed. 2018;103(4):F1–F5. doi: https://doi.org/10.1136/archdischild-2017-313190; Malakian A, Bashirnezhadkhabaz S, Aramesh MR, et al. Noninvasive high-frequency oscillatory ventilation versus nasal continuous positive airway pressure in preterm infants with respiratory distress syndrome: A randomized controlled trial. J Matern Fetal Neonatal Med. 2020;33(15):2601–2607. doi: https://doi.org/10.1080/14767058.2018.1555810; Moresco L, Romantsik O, Calevo MG, et al. Non-invasive respiratory support for the management of transient tachypnea of the newborn. Cochrane Database Syst Rev. 2020;4(4):CD013231. doi: https://doi.org/10.1002/14651858.CD013231.pub2; Demirel G, Uras N, Celik IH, et al. Nasal intermittent mandatory ventilation versus nasal continuous positive airway pressure for transient tachypnea of newborn: A randomized, prospective study. J Matern Fetal Neonatal Med. 2013;26(11):1099–1102. doi: https://doi.org/10.3109/14767058.2013.766707; Dumas De La Roque E, Bertrand C, Tandonnet O, et al. Nasal high frequency percussive ventilation versus nasal continuous positive airway pressure in transient tachypnea of the newborn: a pilot randomized controlled trial (NCT00556738). Pediatr Pulmonol. 2011;46(3):218–223. doi: https://doi.org/10.1002/ppul.21354; Gupta N, Bruschettini M, Chawla D. Fluid restriction in the management of transient tachypnea of the newborn. Cochrane Database Syst Rev. 2021;2(2):CD011466. doi: https://doi.org/10.1002/14651858.CD011466.pub2; Kassab M, Khriesat WM, Anabrees J. Diuretics for transient tachypnoea of the newborn. Cochrane Database Syst Rev. 2015; 2015(11):CD003064. doi: https://doi.org/10.1002/14651858.CD003064.pub3; Vaisbourd Y, Abu-Raya B, Zangen S, et al. Inhaled corticosteroids in transient tachypnea of the newborn: A randomized, placebocontrolled study. Pediatr Pulmonol. 2017;52(8):1043–1050. doi: https://doi.org/10.1002/ppul.23756; Byrjalsen A, Frøslev T, Telén Andersen AB, et al. Use of corticosteroids during pregnancy and risk of asthma in offspring: a nationwide Danish cohort study. BMJ Open. 2014;4(6):e005053. doi: https://doi.org/10.1136/bmjopen-2014-005053; Moresco L, Bruschettini M, Cohen A, et al. Salbutamol for transient tachypnea of the newborn. Cochrane Database Syst Rev. 2016;(5):CD011878. doi: https://doi.org/10.1002/14651858.CD011878.pub2; Babaei H, Dabiri S, Pirkashani LM, et al. Effects of salbutamol on the treatment of transient tachypnea of the newborn. Iranian Journal of Neonatology. 2019;10(1):42–49. doi: https://doi.org/10.22038/IJN.2018.31294.1430; Kao B, Stewart de Ramirez SA, Belfort MB, et al. Inhaled epinephrine for the treatment of transient tachypnea of the newborn. J Perinatol. 2008;28(3):205–210. doi: https://doi.org/10.1038/sj.jp.7211917; Vibede L, Vibede E, Bendtsen M, et al. Neonatal Pneumothorax: A Descriptive Regional Danish Study. Neonatology. 2017;111(4): 303–308. doi: https://doi.org/10.1159/000453029; Lakshminrusimha S, Keszler M. Persistent Pulmonary Hypertension of the Newborn. Neoreviews. 2015;16(12):e680–e692. doi: https://doi.org/10.1542/neo.16-12-e680; Ramachandrappa A, Rosenberg ES, Wagoner S, et al. Morbi dity and mortality in late preterm infants with severe hypoxic respiratory failure on extra-corporeal membrane oxygenation. J Pediatr. 2011;159(2):192–198.e3. doi: https://doi.org/10.1016/j.jpeds.2011.02.015; Birnkrant DJ, Picone C, Markowitz W, et al. Association of transient tachypnea of the newborn and childhood asthma. Pediatr Pulmonol. 2006;41(10):978–984. doi: https://doi.org/10.1002/ppul.20481; Liem JJ, Huq SI, Ekuma O, et al. Transient tachypnea of the newborn may be an early clinical manifestation of wheezing symptoms. J Pediatr. 2007;151(1):29–33. doi: https://doi.org/10.1016/j.jpeds.2007.02.021; Cakan M, Nalbantoğlu B, Nalbantoğlu A, et al. Correlation between transient tachypnea of the newborn and wheezing attack. Pediatr Int. 2011;53(6):1045–1050. doi: https://doi.org/10.1111/j.1442-200X.2011.03438.x; https://vsp.spr-journal.ru/jour/article/view/2840

  12. 12
    Academic Journal

    المساهمون: The authors express gratitude for the implementation of СРАР therapy according to the study protocol by the employees of neonatal intensive care unit: N.S. Militsina, O.I. Fedotova, M.M. Sabirov, K.A. Usanin, P.V. Spirin, T.S. Adylov, D.S. Saynulova, N.O. Rudakova, A.R. Fayruzova, N.V. Kalyakova, A.V. Pivovarova, M.V. Parfenova, M.D. Zel’skaya, and employees of the neonatal department: T.I. Ivanova, N.S. Kornet, N.Yu. Myasnikova, A.A. Maltseva, A.S. Tulenkova, A.I. Guseva, of the Ekaterinburg Clinical Perinatal Centre., Авторы выражают признательность за проведение СРАР-терапии по протоколу исследования сотрудникам отделения реанимации новорожденных Н.С. Милициной, О.И. Федотовой, М.М. Сабирову, К.А. Усанину, П.В. Спирину, Т.С. Адылову, Д.С. Сайнуловой, Н.О. Рудаковой, А.Р. Файрузовой, Н.В. Каляковой, А.В. Пивоваровой, М.В. Парфеновой, М.Д. Зельской и сотрудникам неонатального отделения ЕКПЦ Т.И. Ивановой, Н.С. Корнет, Н.Ю. Мясниковой, А.А. Мальцевой, А.С. Туленковой, А.И. Гусевой.

    المصدر: Current Pediatrics; Том 21, № 4 (2022); 282-292 ; Вопросы современной педиатрии; Том 21, № 4 (2022); 282-292 ; 1682-5535 ; 1682-5527

    وصف الملف: application/pdf

    Relation: https://vsp.spr-journal.ru/jour/article/view/3006/1204; Kumar A, Bhat BV. Epidemiology of respiratory distress of newborns. Indian J Pediatr. 1996;63(1):93–98. doi: https://doi.org/10.1007/BF02823875; Edwards MO, Kotecha SJ, Kotecha S. Respiratory distress of the term newborn infant. Paediatr Respir Rev. 2013;14(1):29–37. doi: https://doi.org/10.1016/j.prrv.2012.02.002; Sun H, Xu F, Xiong H, et al. Characteristics of respiratory distress syndrome in infants of different gestational ages. Lung. 2013;191(4): 425–433. doi: https://doi.org/10.1007/s00408-013-9475-3; Yost GC, Young PC, Buchi KF. Significance of grunting respirations in infants admitted to a well-baby nursery. Arch Pediatr Adolesc Med. 2001;155(3):372–375. doi: https://doi.org/10.1001/archpedi.155.3.372; Guglani L, Lakshminrusimha S, Ryan RM. Transient tachypnea of the newborn. Pediatr Rev. 2008;29(11):e59–e65. doi: https://doi.org/10.1542/pir.29-11-e59; Yurdakok M. Transient tachypnea of the newborn: what is new? J Matern Fetal Neonatal Med. 2010;23(Suppl 3):24–26. doi: https://doi.org/10.3109/14767058.2010.507971; Kahvecioğlu D, Cakır U, Yıldız D, et al. Transient tachypnea of the newborn: are there bedside clues for predicting the need of ventilation support? Turk J Pediatr. 2016;58(4):400–405. doi: https://doi.org/10.24953/turkjped.2016.04.009; Weintraub AS, Cadet CT, Perez R, et al. Antibiotic use in newborns with transient tachypnea of the newborn. Neonatology. 2013;103(3):235–240. doi: https://doi.org/10.1159/000346057; Malakian A, Bashirnezhadkhabaz S, Aramesh MR, Dehdashtian M. Noninvasive high-frequency oscillatory ventilation versus nasal continuous positive airway pressure in preterm infants with respiratory distress syndrome: a randomized controlled trial. J Matern Fetal Neonatal Med. 2020;33(15):2601–2607. doi: https://doi.org/10.1080/14767058.2018.1555810; Cakir U, Yildiz D, Okulu E, et al. A Comparative Trial of the Effectiveness of Nasal Interfaces Used to Deliver Continuous Positive Airway Pressure for a Brief Period in Infants With Transient Tachypnea of the Newborn. Arch Bronconeumol (Engl Ed). 2020;56(6): 373–379. doi: https://doi.org/10.1016/j.arbres.2019.07.027; Sharma D, Murki S, Maram S, et al. Comparison of delivered distending pressures in the oropharynx in preterm infant on bubble CPAP and on three different nasal interfaces. Pediatr Pulmonol. 2020;55(7):1631–1639. doi: https://doi.org/10.1002/ppul.24752; Rocha GM, Flor-De-Lima FS, Guimaraes HA. Persistent grunting respirations after birth. Minerva Pediatr. 2018;70(3):217–224. doi: https://doi.org/10.23736/S0026-4946.16.04490-X; Lakshminrusimha S, Keszler M. Persistent Pulmonary Hypertension of the Newborn. Neoreviews. 2015;16(12):e680–e692. doi: https://doi.org/10.1542/neo.16-12-e680; Ramachandrappa A, Rosenberg ES, Wagoner S, Jain L. Morbidity and mortality in late preterm infants with severe hypoxic respiratory failure on extra-corporeal membrane oxygenation. J Pediatr. 2011;159(2):192–198.e3. doi: https://doi.org/10.1016/j.jpeds.2011.02.015; Реанимация и стабилизация состояния новорожденных детей в родильном зале. Методическое письмо / под ред. проф. Е.Н. Байбариной. М., 2020 // Неонатология: Новости. Мнения. Обучение. — 2020. — Т. 8. — № 1. — С. 34–52. Доступно по: https://www.neonatology-nmo.ru/ru/jarticles_neonat/458.html?SSr=5801343be811ffffffff27c__07e404180b3a05-1749. Ссылка активна на 25.08.2022.; Неонатология: национальное руководство / под ред. Н.Н. Володина. Российская ассоциация специалистов перинатальной медицины. — М.: ГЭОТАР-Медиа; 2019. — С. 202–203.; Osman AM, El-Farrash RA, Mohammed EH. Early rescue Neopuff for infants with transient tachypnea of newborn: a randomized controlled trial. J Matern Fetal Neonatal Med. 2019;32(4):597–603. doi: https://doi.org/10.1080/14767058.2017.1387531; Celebi MY, Alan S, Kahvecioglu D, et al. Impact of Prophylactic Continuous Positive Airway Pressure on Transient Tachypnea of the Newborn and Neonatal Intensive Care Admission in Newborns Delivered by Elective Cesarean Section. Am J Perinatol. 2016;33(1): 99–106. doi: https://doi.org/10.1055/s-0035-1560041; McGillick EV, Te Pas AB, Croughan MK, et al. Increased end-expiratory pressures improve lung function in near-term newborn rabbits with elevated airway liquid volume at birth. J Appl Physiol (1985). 2021;131(3):997–1008. doi:10.1152/japplphysiol.00918.2020; Ковтун О.П., Шестак Е.В., Ксенофонтова О.Л. Анализ факторов риска, определяющих тяжесть течения транзиторного тахипноэ новорожденных и позволяющих прогнозировать тактику лечения // Российский вестник перинатологии и педиатрии. — 2022. — Т. 67. — № 2. — С. 71–75. — doi: https://doi.org/10.21508/1027-4065-2022-67-2-71-75; Шестак Е.В., Ковтун О.П. Прогнозирование тяжести течения транзиторного тахипноэ у доношенных новорожденных в родовом зале // Российский педиатрический журнал. — 2022. — Т. 25. — № 2. — С. 91–95. — doi: https://doi.org/10.46563/1560-9561-2022-25-2-91-95; Шестак Е.В., Ковтун О.П., Ксенофонтова О.Л. и др. Респираторные стратегии, влияющие на тяжесть течения транзиторного тахипноэ новорожденных // Врач. — 2022. — № 1. — С. 56–60. — doi: https://doi.org/10.29296/25877305-2022-01-09; Приказ Министерства здравоохранения Российской Федерации от 10 мая 2017 г. № 203н «Об утверждении критериев оценки качества медицинской помощи». Доступно по: http://www.consultant.ru/document/cons_doc_LAW_216975. Ссылка активна на 19.09.2022.; Оксигенотерапия у детей: руководство для медицинских работников. Копенгаген: Европейское региональное бюро ВОЗ; 2020.; Morgenstern J. The 2015 ILCOR/AHA/ERC advanced life support guidelines (ACLS). In: First10EM. October 21, 2015. Available online: https://first10em.com/acls-2015. Accessed on August 25, 2022.; Приказ Министерства здравоохранения Свердловской области от 10 марта 2022 г. № 440-п «О совершенствовании медицинской помощи новорожденным детям на территории Свердловской области» (с изменениями и дополнениями). Доступно по: https://base.garant.ru/403702590. Ссылка активна на 25.08.2022.; Birnkrant DJ, Picone C, Markowitz W, et al. Association of transient tachypnea of the newborn and childhood asthma. Pediatr Pulmonol. 2006;41(10):978–984. doi: https://doi.org/10.1002/ppul.20481; Cakan M, Nalbantoglu B, Nalbantoglu A, et al. Correlation between transient tachypnea of the newborn and wheezing attack. Pediatr Int. 2011;53(6):1045–1050. doi: https://doi.org/10.1111/j.1442-200X.2011.03438.x; Heinonen S, Suvari L, Gissle M, et al. Transient tachypnea of the newborn is associated with an increased risk of hospitalization due to respiratory syncytial virus bronchiolitis. Pediatr Infect Dis J. 2019;38(4):419–421. doi: https://doi.org/10.1097/INF.0000000000002057; Jain L. Respiratory morbidity in late-preterm infants: prevention is better than cure! Am J Perinatol. 2008;25(2):75–78. doi: https://doi.org/10.1055/s-2007-1022471; Raju TN, Higgins RD, Stark AR, Leveno KJ. Optimizing care and outcome for late-preterm (near-term) infants: a summary of the workshop sponsored by the National Institute of Child Health and Human Development. Pediatrics. 2006;118(3):1207–1214. doi: https://doi.org/10.1542/peds.2006-0018; Kasap B, Duman N, Ozer E, et al. Transient tachypnea of the newborn: predictive factor for prolonged tachypnea. Pediatr Int. 2008;50(1):81–84. doi: https://doi.org/10.1111/j.1442-200X.2007.02535.x; Gerhardt T, Bancalari E. Chestwall compliance in full-term and premature infants. Acta Paediatr Scand. 1980;69(3):359–364. doi: https://doi.org/10.1111/j.1651-2227.1980.tb07093.x; Adler SM, Wyszogrodski I. Pneumothorax as a function of gestational age: Clinical and experimental studies. J Pediatr. 1975;87(5):771–775. doi: https://doi.org/10.1016/s0022-3476(75)80307-6; Duong HH, Mirea L, Shah PS, et al. Pneumothorax in neonates: Trends, predictors and outcomes. J Neonatal Perinatal Med. 2014;7(1):29–38. doi: https://doi.org/10.3233/NPM-1473813; Smithhart W, Wyckoff MH, Kapadia V, et al. Delivery Room Continuous Positive Airway Pressure and Pneumothorax. Pediatrics. 2019;144(3):e20190756. doi: https://doi.org/10.1542/peds.2019-0756; Hishikawa K, Goishi K, Fujiwara T, et al. Pulmonary air leak associated with CPAP at term birth resuscitation. Arch Dis Child Fetal Neonatal Ed. 2015;100(5):F382–F387. doi: https://doi.org/10.1136/archdischild-2014-307891; Imbulana DI, Manley BJ, Dawson JA, et al. Nasal injury in preterm infants receiving non-invasive respiratory support: a systematic review. Arch Dis Child Fetal Neonatal Ed. 2018;103(1):F29–F35. doi: https://doi.org/10.1136/archdischild-2017-313418; https://vsp.spr-journal.ru/jour/article/view/3006

  13. 13
    Academic Journal

    المصدر: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 67, № 4 (2022); 27-32 ; Российский вестник перинатологии и педиатрии; Том 67, № 4 (2022); 27-32 ; 2500-2228 ; 1027-4065

    وصف الملف: application/pdf

    Relation: https://www.ped-perinatology.ru/jour/article/view/1671/1259; Gould J.B., Danielsen B.H., Bollman L., Hackel A., Murphy B. Estimating the quality of neonatal transport in California. J Perinatol 2013; 33(12): 964-970. DOI:10.1038/jp.2013.57; Александрович Ю.С., Гордеев В.И. Оценочные и прогностические шкалы в медицине критических состояний. Ст-Петербург: Сотис, 2007; 140.; Буштырев В.А., Лаура Н.Б., Захарова И.И. Балльная оценка состояния здоровья недоношенных новорожденных с перинатальными инфекциями. Российский вестник перинатологии и педиатрии 2006; 51(3): 11-15.; Буштырев В.А., Будник В.А., Кузнецова Н.Б. Критерии транспортабельности недоношенных новорожденных. Акушерство и гинекология 2015; 7: 74-77.; Буштырев В.А., Землянская Н.В., Петренко Ю.В. Транспортировка нуждается в правилах. StatusPraesens. Педиатрия и неонатология. 2017; 1(36): 71-75.; Trevisanuto D., Cavallin F., Loddo C., Brombin L., Lolli E., Doglioni N., Baraldi E. Servizio Trasporto Emergenza Neonatale STEN Group. Trends in neonatal emergency transport in the last two decades. Eur J Pediatr 2021; 180(2): 635-641. DOI:10.1007/s00431-020-03908-w; Van Handel M., Swaab H., de Vries L.S., Jongmans M.J. Long-term cognitive and behavioral consequences of neonatal encephalopathy following perinatal asphyxia: a review. Eur J Pediatr 2007; 166(7): 645-654. DOI:10.1007/s00431- 007-0437-8; Khalil N., Blunt H.B., Li Z., Hartman T. Neonatal early onset sepsis in Middle Eastern countries: a systematic review. Arch Dis Child 2020; 105(7): 639-647. DOI:10.1136/archdischild-2019-317110; Van Erkel A.R., Pattynama P.M.T. Receiver Operating Characteristic (ROC) analysis: basic principles and applications in radiology. Eur J Radiol 1998; 27: 88-94; Lee S.K., Zupancic J.A.F., Pendray M., Thiessen P., Schmidt B., Whyte R., Stewart S. Transport risk index of physiologic stability: A practical system for assessing infant transport care. J Pediatr 2001; 139(2): 220-226. DOI:10.1067/mpd.2001.115576; Broughton S.J., Berry A., Jacobe S. The Mortality Index for Neonatal Transportation Score: A New Mortality Prediction Model for Retrieved Neonates. Pediatrics. 2004; 114(4): e424-8. DOI:10.1542/peds.2003-0960-L; Lucas da Silva P.S., Euzébio de Aguiar V., Reis M.E. Assessing Outcome in Interhospital Infant Transport: The Transport Risk Index of Physiologic Stability Score at Admission. Am J Perinatol 2012; 29(7): 509-514. DOI:10.1055/s-0032-1310521; Luna-Hernández G., Varela-Cardoso M., Palacios-Blanco J.C. Utility of a physiologic stability index based on Transport Risk Index of Physiologic Stability (TRIPS) for the evaluation of infants transferred to a specialized hospital. Bol Med Hosp Infant Mex 2015; 72(1): 45-54. DOI:10.1016/j.bmhimx.2015.01.008; Gould J.B., Danielsen B.H., Bollman L., Hackel A., Murphy B.J. Estimating the quality of neonatal transport in California. J Perinatol 2013; 33(12): 964-970. DOI:10.1038/jp.2013.57; Lee S.K., Aziz K., Dunn M., Clarke M., Kovacs L., Ojah C., Ye X.Y. Canadian Neonatal Network. Transport Risk Index of Physiologic Stability, version II (TRIPS-II): a simple and practical neonatal illness severity score. Am J Perinatol 2013; 30(5): 395-400. DOI:10.1055/s-0032-1326983; https://www.ped-perinatology.ru/jour/article/view/1671

  14. 14
    Academic Journal

    المصدر: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 67, № 2 (2022); 71-75 ; Российский вестник перинатологии и педиатрии; Том 67, № 2 (2022); 71-75 ; 2500-2228 ; 1027-4065

    وصف الملف: application/pdf

    Relation: https://www.ped-perinatology.ru/jour/article/view/1621/1223; Володин Н.Н. Неонатология. Национальное руководство. Российская ассоциация специалистов перинатальной медицины. М.: ГЭОТАР-Медиа, 2019; 750.; Avery M.E., Gatewood O.B., Brumley G. Transient Tachypnea of Newborn. Am J Dis Child 1966; 111(4): 380–385. DOI: 10,1001/archpedi.1966,02090070078010; Sengupta S., Carrion V., Shelton J., Wynn R.J., Ryan R.M., Singhal K., Lakshminrusimha S. Adverse neonatal outcomes associated with early-term birth. JAMA Pediatr 2013; 167(11): 1053–1059. DOI: 10,1001/jamapediatrics.2013,2581; Moresco L., Romantsik O., Calevo M.G., Bruschettini M. Non-invasive respiratory support for the management of transient tachypnea of the newborn. Cochrane Database Syst Rev 2020; 4(4): CD013231. DOI: 10,1002/14651858.CD013231.pub2; Методическое письмо Министерства здравоохранения Российской Федерации. ≪Реанимация и стабилизация состояния новорожденных детей в родильном зале≫. 2020. Под ред. проф. Е.Н. Байбариной https://neonatology.pro/wp-content/uploads/2020/03/letter_resuscitation_newborn_delivery_2020.pdf/ Ссылка активна на 16.02.2022; Мостовой А.В., Карпова А.Л. Применение CPAP-терапии в неонатологии: от простого к сложному. Детские болезни сердца и сосудов 2015; 4: 13–23.; Buchiboyina A., Jasani B., Deshmukh M., Patole S. Strategies for managing transient tachypnoea of the newborn — a systematic review. J Matern Neonatal Med 2017; 30(13): 1524– 1532. DOI: 10,1080/14767058,2016,1193143; Osman A.M., El-Farrash R.A., Mohammed E.H. Early rescue Neopuff for infants with transient tachypnea of newborn: a randomized controlled trial. J Matern Neonatal Med 2019; 32(4): 597–603. DOI: 10,1080/14767058,2017,1387531; Gizzi C., Klifa R., Pattumelli M.G., Massenzi L., Taveira M., Shankar-Aguilera S., De Luca D. Continuous Positive Airway Pressure and the Burden of Care for Transient Tachypnea of the Neonate: Retrospective Cohort Study. Am J Perinatol 2015; 32(10): 939–943. DOI: 10,1055/s-0034–1543988; Kayıran S.M., Erçin S., Kayıran P., Gursoy T., Gurakan B. Relationship between thyroid hormone levels and transient tachypnea of the newborn in late-preterm, early-term, and term infants. J Matern Neonatal Med 2019; 32(8): 1342– 1346. DOI: 10,1080/14767058,2017,1405386; https://www.ped-perinatology.ru/jour/article/view/1621

  15. 15
    Academic Journal

    المساهمون: Not specified, Не указан

    المصدر: Pediatric pharmacology; Том 19, № 1 (2022); 45-55 ; Педиатрическая фармакология; Том 19, № 1 (2022); 45-55 ; 2500-3089 ; 1727-5776

    مصطلحات موضوعية: дети, croup, epiglottitis, children, круп, эпиглоттит

    وصف الملف: application/pdf

    Relation: https://www.pedpharma.ru/jour/article/view/2118/1342; Wall SR, Wat D, Spiller OB, et al. The viral aetiology of croup and recurrent croup. Arch Dis Child. 2009;94(5):359–360. doi: https://doi.org/10.1136/adc.2008.142984; Worrall G. Croup. Can Fam Physician. 2008;54(4):573–574.; Aravapalli S, Sahai S. Haemophilus influenzae type b epiglottitis in a 3-year-old boy. Consult Pediatr. 2013;12(6):263–265.; Guardiani E, Bliss M, Harley E. Supraglottitis in the era following widespread immunization against Haemophilus influenzae type B: evolving principles in diagnosis and management. Laryngoscope. 2010;120(11):2183–2188. doi: https://doi.org/10.1002/lary.21083; Bjornson CL, Johnson DW. Croup in children. CMAJ. 2013; 185(15):1317–1323. doi: https://doi.org/10.1503/cmaj.121645; Bjornson C, Russell K, Vandermeer B, et al. Nebulized epinephrine for croup in children. Cochrane Database Syst Rev. 2013;10:CD006619. doi: https://doi.org/10.1002/14651858.CD006619.pub3.; Tovar Padua LJ, Cherry JD. Croup and Epiglottitis (Supraglottitis). In: Feigin and Cherry’s textbook of pediatric infectious diseases. Cherry J, Harrison G, Kaplan S, et al., eds. 8th ed. Philadelphia: Elsevier, Inc; 2019. pp. 175–190.; Takeuchi M, Yasunaga H, Horiguchi H, Fushimi K. The burden of epiglottitis among Japanese children before the Haemophilus influenzae type b vaccination era: an analysis using a nationwide administrative database. J Infect Chemother. 2013;19(5):876–879. doi: https://doi.org/10.1007/s10156-013-0585-x; Toward Optimized Practice Working Group for Croup. Guideline for the diagnosis and management of croup. Alberta, Canada; 2003. Revised 2008. Available online: www.topalbertadoctors.org/download/252/croup_guideline.pdf. Accessed on July 24, 2014.; Thompson M, Vodicka TA, Blair PS, et al. Duration of symptoms of respiratory tract infections in children: systematic review. BMJ. 2013;347:f7027. doi: https://doi.org/10.1136/bmj.f7027; Sasidaran K, Bansal A, Singhi S. Acute upper airway obstruction. Indian J Pediatr. 2011;78(10):1256–1261. doi: https://doi.org/10.1007/s12098-011-0414-0; Woods CR. Croup: Clinical features, evaluation, and diagnosis. In: UpToDate®. Available online: https://www.uptodate.com. Accessed on December 17, 2021.; Defendi GL. Croup Workup. In: Medscape. Available online: https://emedicine.medscape.com/article/962972-workup. Accessed on December 17, 2021.; Stoney PJ, Chakrabarti MK. Experience of pulse oximetry in children with croup. J Laryngol Otol. 1991;105(4):295–298. doi: https://doi.org/10.1017/s002221510011566x; Schondelmeyer AC, Dewan ML, Brady PW, et al. Cardiorespiratory and Pulse Oximetry Monitoring in Hospitalized Children: A Delphi Process. Pediatrics. 2020;146(2):e20193336. doi: https://doi.org/10.1542/peds.2019-3336; Lee PK, Booth AWG, Vidhani K. Spontaneous Respiration Using Intravenous Anesthesia and High-Flow Nasal Oxygen (STRIVE Hi) Management of Acute Adult Epiglottitis: A Case Report. A A Pract. 2018; 10(4):73–75. doi: https://doi.org/10.1213/XAA.0000000000000635; Kim KH, Kim YH, Lee JH, et al. Accuracy of objective parameters in acute epiglottitis diagnosis. A case-control study. Medicine (Baltimore). 2018; 97(37):e12256. doi: https://doi.org/10.1097/MD.0000000000012256; Petrocheilou A, Tanou K, Kalampouka E, et al. Viral croup: diagnosis and a treatment algorithm. Pediatr Pulmonol. 2014; 49(5):421–429. doi: https://doi.org/10.1002/ppul.22993; Smith DK, Andrew Mcdermott J, Sullivan JF. Croup: Diagnosis and Management. Am Fam Physician. 2018;97(9):575–580.; Оказание стационарной помощи детям. Руководство по лечению наиболее распространенных болезней у детей: карманный справочник. — 2-е изд. — М.: Всемирная организация здравоохранения; 2013. — 452 с.; Руководство по амбулаторно-клинической педиатрии / под ред. А.А. Баранов. — 2-е изд. — М.: ГЭОТАР-Медиа; 2009.; Kenealy T, Arroll B. Antibiotics for the common cold and acute purulent rhinitis. Cochrane Database Syst Rev. 2013;2013(6):CD000247. doi: https://doi.org/10.1002/14651858.CD000247.pub3; Jefferson T, Jones MA, Doshi P, et al. Neuraminidase inhibitors for preventing and treating influenza in healthy adults and children. Cochrane Database Syst Rev. 2014;2014(4):CD008965. doi: https://doi.org/10.1002/14651858.CD008965.pub4; Ruf BR, Szucs T. Reducing the burden of influenza-associated complications with antiviral therapy. Infection. 2009;37(3): 186–196. doi: https://doi.org/10.1007/s15010-009-8241-1; Singh M, Singh M. Heated, humidified air for the common cold. Cochrane Database Syst Rev. 2013;(6):CD001728. doi: https://doi.org/10.1002/14651858.CD001728.pub5; Bourchier D, Dawson KP, Fergusson DM. Humidification in viral croup: a controlled trial. Aust Paediatr J. 1984;20(4):289–291. doi: https://doi.org/10.1111/j.1440-1754.1984.tb00096.x; Neto GM, Kentab O, Klassen TP, Osmond MH. A randomized controlled trial of mist in the acute treatment of moderate croup. Acad Emerg Med. 2002;9(9):873–879.; Gates A, Gates M, Vandermeer B, et al. Glucocorticoids for croup in children. Cochrane Database Syst Rev. 2018;8(8):CD001955. doi: https://doi.org/10.1002/14651858.CD001955.pub4; Garbutt JM, Conlon B, Sterkel R, et al. The comparative effectiveness of prednisolone and dexamethasone for children with croup: a community-based randomized trial. Clin Pediatr (Phila). 2013;52(11): 1014–1021. doi: https://doi.org/10.1177/0009922813504823; Bjornson CL, Johnson DW. Croup in the paediatric emergency department. Paediatr Child Health. 2007l;12(6):473–477. doi: https://doi.org/10.1093/pch/12.6.473; Elliott AC, Williamson GR. A Systematic Review and Comprehensive Critical Analysis Examining the Use of Prednisolone for the Treatment of Mild to Moderate Croup. Open Nurs J. 2017;11:241–261. doi: https://doi.org/10.2174/1874434601711010241; Государственный реестр лекарственных средств. Доступно по: https://grls.rosminzdrav.ru. Ссылка активна на 17.12.2021.; Geelhoed GC, Macdonald WB. Oral and inhaled steroids in croup: a randomized, placebo-controlled trial. Pediatr Pulmonol. 1995;20(6): 355–361. doi: https://doi.org/10.1002/ppul.1950200604; Kawaguchi A, Joffe A. Evidence for Clinicians: Nebulized epinephrine for croup in children. Paediatr Child Health. 2015;20(1):19–20. doi: https://doi.org/10.1093/pch/20.1.19; Pineau PM, Gautier J, Pineau A, et al. Intubation decision criteria in adult epiglottitis. Eur Ann Otorhinolaryngol Head Neck Dis. 2021; 138(5):329–332. doi: https://doi.org/10.1016/j.anorl.2020.12.001; Kivekäs I, Rautiainen M. Epiglottitis, Acute Laryngitis, and Croup. In: Infections of the Ears, Nose, Throat, and Sinuses. Durand ML, Deschler DG, eds. Cham: Springer; 2018. pp. 247–255. doi: https://doi.org/10.1007/978-3-319-74835-1_20; Alamri NA, Alkhateeb MA, Aboalfaraj AT, et al. An Overview on Acute Epiglottitis Diagnosis and management in Primary Health Care Center: A Literature Review. Pharmacophore. 2020; 11(5):141–144.; Woods CR. Epiglottitis (supraglottitis): Management In: UpToDate®. Available online: https://www.uptodate.com. Accessed on December 17, 2021.; Gompf SG. Epiglottitis Treatment & Management. In: Medscape. Available online: https://emedicine.medscape.com/article/763612-treatment. Accessed on December 17, 2021.; Gompf SG. Epiglottitis Medication. In: Medscape. Available online: https://emedicine.medscape.com/article/763612-medication. Accessed on December 17, 2021.; Ceftriaxone (Rx). In: Medscape. Available online: https://reference.medscape.com/drug/rocephin-ceftriaxone-342510. Accessed on December 17, 2021.; Иванчик Н.В., Сухорукова М.В., Чагарян А.Н. и др. Антибиотикорезистентность клинических штаммов Haemophilus influenzae в России: результаты многоцентрового эпидемиологического исследования «ПеГАС 2014–2017» / / Клиническая микробиология и антимикробная химиотерапия. — 2019. — Т. 21. — № 4. — С. 317–323. doi: https://doi.org/10.36488/cmac.2019.4.317-323; Sobol SE, Zapata S. Epiglottitis and croup. Otolaryngol Clin North Am. 2008;41(3):551–566, ix. doi: https://doi.org/10.1016/j.otc.2008.01.012; Jefferson T, Del Mar CB, Dooley L, et al. Physical interventions to interrupt or reduce the spread of respiratory viruses. Cochrane Database Syst Rev. 2011;2011(7):CD006207. doi: https://doi.org/10.1002/14651858.CD006207.pub4; Eichner M, Schwehm M, Eichner L, Gerlier L. Direct and indirect effects of influenza vaccination. BMC Infect Dis. 2017;17(1):308. doi: https://doi.org/10.1186/s12879-017-2399-4; Prutsky GJ, Domecq JP, Elraiyah T, et al. Influenza vaccines licensed in the United States in healthy children: a systematic review and network meta-analysis (Protocol). Syst Rev. 2012;1:65. doi: https://doi.org/10.1186/2046-4053-1-65; Butler DF, Myers AL. Changing Epidemiology of Haemophilus influenzae in Children. Infect Dis Clin North Am. 2018;32(1): 119–128. doi: https://doi.org/10.1016/j.idc.2017.10.005; Cooper T, Kuruvilla G, Persad R, El-Hakim H. Atypical croup: association with airway lesions, atopy, and esophagitis. Otolaryngol Head Neck Surg. 2012;147(2):209–204. doi: https://doi.org/10.1177/0194599812447758; https://www.pedpharma.ru/jour/article/view/2118

  16. 16
    Academic Journal

    المصدر: Neurology, Neuropsychiatry, Psychosomatics; Vol 14, No 3 (2022); 12-18 ; Неврология, нейропсихиатрия, психосоматика; Vol 14, No 3 (2022); 12-18 ; 2310-1342 ; 2074-2711 ; 10.14412/2074-2711-2022-3

    وصف الملف: application/pdf

    Relation: https://nnp.ima-press.net/nnp/article/view/1818/1407; https://nnp.ima-press.net/nnp/article/view/1818/1408; Wafa HA, Wolfe CDA, Emmett E, et al. Burden of Stroke in Europe: Thirty-Year Projections of Incidence, Prevalence, Deaths, and Disability-Adjusted Life Years. Stroke. 2020 Aug;51(8):2418-27. doi:10.1161/STROKEAHA.120.029606. Epub 2020 Jul 10.; Lindsay MP, Norrving B, Sacco RL, et al. World Stroke Organization (WSO): Global Stroke Fact Sheet 2019. Int J Stroke. 2019 Oct;14(8):806-17. doi:10.1177/1747493019881353; Самородская ИВ, Зайратьянц ОВ, Перхов ВИ и др. Динамика показателей смертности населения от острого нарушения мозгового кровообращения в России и США за 15-летний период. Архив патологии. 2018;80(2):30-7. doi:10.17116/patol201880230-37; ВОЗ публикует статистику о ведущих причинах смертности и инвалидности во всем мире за период 2000–2019 гг. Режим доступа: https://www.who.int/ru/news/item/09-12-2020-who-reveals-leading-causes-of-deathand-disability-worldwide-2000-2019; Bejot Y, Bailly H, Durier J, Giroud M. Epidemiology of stroke in Europe and trends for the 21st century. Presse Med. 2016 Dec;45(12 Pt 2):e391-e398. doi:10.1016/j.lpm.2016.10.003. Epub 2016 Nov 2.; Virani SS, Alonso A, Aparicio HJ, et al. American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics-2021 Update: A Report From the American Heart Association. Circulation. 2021 Feb 23;143(8):e254-e743. doi:10.1161/CIR.0000000000000950. Epub 2021 Jan 27.; Ekker MS, Boot EM, Singhal AB, et al. Epidemiology, aetiology, and management of ischaemic stroke in young adults. Lancet Neurol. 2018 Sep;17(9):790-801. doi:10.1016/S1474-4422(18)30233-3; Hathidara MY, Saini V, Malik AM. Stroke in the Young: a Global Update. Curr Neurol Neurosci Rep. 2019 Nov 25;19(11):91. doi:10.1007/s11910-019-1004-1; Bejot Y, Delpont B, Giroud M. Rising stroke incidence in young adults: more epidemiological evidence, more questions to be answered. J Am Heart Assoc. 2016 May 11;5(5):e003661. doi:10.1161/JAHA.116.003661; Добрынина ЛА, Калашникова ЛА, Павлова ЛН. Ишемический инсульт в молодом возрасте. Журнал неврологии и психиатрии им. С.С.Корсакова. 2011;111(3):4-8.; Palleiro O, Lopez B. Etiologic subtypes of ischemic stroke in young adults aged 18 to 45 years: a study of a series of 93 patients. Rev Clin Esp. 2007 Apr;207(4):158-65. doi:10.1157/13101843; Austin H, Chimowitz MI, Hill HA, et al. Cryptogenic stroke in relation to genetic variation in clotting factors and other genetic polymorphisms among young men and women. Stroke. 2002;33:2762-8. doi:10.1161/01.str.0000038094.79901.3b; Putaala J, Metso AJ, Metso TM, et al. Analysis of 1008 consecutive patients aged 15 to 49 with first-ever ischemic stroke: the Helsinki young stroke registry. Stroke. 2009;40(4):1195-203. doi:10.1161/STROKEAHA.108.529883; Montanaro VV, Freitas DD, Ruiz MC, et al. Ischemic stroke in young adults: Profile of SARAH Hospital Brasilia from 2008 to 2012. Neurologist. 2017;22(2):61-3. doi:10.1097/NRL.0000000000000110; Калашникова ЛА, Добрынина ЛА. Ишемический инсульт в молодом возрасте. Журнал неврологии и психиатрии им. С.С. Корсакова. Спецвыпуски. 2017;117(8-2):3-12. doi:10.17116/jnevro2017117823-12; Cabral NL, Freire AT, Conforto AB, et al. Increase of stroke incidence in young adults in a middle-income country: a 10-year population- based study. Stroke. 2017 Nov;48(11):2925-30. doi:10.1161/STROKEAHA.117.018531. Epub 2017 Oct 6.; Шкловский ВМ, Лукашевич ИП, Ременник АЮ и др. Роль генетических факторов и связанных с ними нарушений фолатного цикла в развитии ишемического инсульта. Журнал неврологии и психиатрии им. С.С. Корсакова. Спецвыпуски. 2016;116(8- 2):30-2. doi:10.17116/jnevro20161168230-32; Ibrahim-Verbaas CA, Fornage M, Bis JC, et al. Predicting stroke through genetic risk functions: the CHARGE risk score project. Stroke. 2014 Feb;45(2):403-12. doi:10.1161/STROKEAHA.113.003044. Epub 2014 Jan 16.; National Institutes of Health, National Institute of Neurological Disorders and Stroke. Stroke Scale. Available from: https://www.ninds.nih.gov/sites/default/files/NIH_Stroke_Scale_Booklet.pdf; Wilson JL, Hareendran A, Grant M, et al. Improving the assessment of outcomes in stroke: use of a structured interview to assign grades on the modified Rankin Scale. Stroke. 2002 Sep;33(9):2243-6. doi:10.1161/01.str.0000027437.22450.bd; Приказ Министерства здравоохранения Российской Федерации «Порядок оказания медицинской помощи больным с острыми нарушениями мозгового кровообращения» № 928н от 15 ноября 2012 г. Режим доступа: https://minzdrav.gov.ru/documents/9104-poryadok-okazaniya-meditsinskoy-pomoschibolnym-s-ostrymi-narusheniyami-mozgovogokrovoobrascheniya-utv-prikazom-ministerstvazdravoohraneniya-rossiyskoy-federatsii-ot-15-noyabrya-2012-g-928n; Момот АП, Ройтман ЕВ, Елыкомов ВА. Протокол ведения Всероссийского регистра «Генетические факторы риска тромбоза у жителей, проживающих на территории РФ, клиническое фенотипирование и тромбопрофилактика тромбоэмболических осложнений в онтогенезе». Тромбоз, гемостаз и реология. 2010;(3):30-78.; Kenet G, Lütkhoff LK, Albisetti M, et al. Impact of thrombophilia on risk of arterial ischemic stroke or cerebral sinovenous thrombosis in neonates and children: a systematic review and meta-analysis of observational studies. Circulation. 2010 Apr 27;121(16):1838-47. doi:10.1161/CIRCULATIONAHA.109.913673. Epub 2010 Apr 12.; https://nnp.ima-press.net/nnp/article/view/1818

  17. 17
    Academic Journal

    المؤلفون: Alexander A. Baranov, Leyla S. Namazova-Baranova, Anna A. Alexeeva, Eduard T. Ambarchian, Lianna K. Aslamazyan, Natalia G. Astafieva, Larisa A. Balykova, Irina A. Belyaeva, Vilya A. Bulgakova, Irina V. Vakhlova, Nato D. Vashakmadze, Elena A. Vishneva, Ekaterina G. Getiya, Natalia I. Il'ina, Elena V. Kaytukova, Elena M. Kamaltynova, Georgiy A. Karkashadze, Olga P. Kovtun, Elena V. Komarova, Tatiana V. Kulichenko, Oksana M. Kurbacheva, Yuliya G. Levina, Svetlana G. Makarova, Nikolay N. Murashkin, Yuliya V. Nesterova, Gennady A. Novik, Svetlana G. Piskunova, Larisa Yu. Popova, Tatyana E. Privalova, Lilia R. Selimzyanova, Natalia S. Sergienko, Elena N. Serebryakova, Ekaterina D. Stasiy, Mikhail A. Tkachenko, Tatiana V. Turti, Natalia V. Ustinova, Olga S. Fedorova, Daria S. Fomina, Denis S. Fugol, Daria S. Chemakina, Irina M. Shepeleva, Kamilla E. Efendieva, А. А. Баранов, Л. С. Намазова-Баранова, А. А. Алексеева, Э. Т. Амбарчян, Л. К. Асламазян, Н. Г. Астафьева, Л. А. Балыкова, И. А. Беляева, В. А. Булгакова, И. В. Вахлова, Н. Д. Вашакмадзе, Е. А. Вишнёва, Е. Г. Гетия, Н. И. Ильина, Е. В. Кайтукова, Е. М. Камалтынова, Г. А. Каркашадзе, О. П. Ковтун, Е. В. Комарова, Т. В. Куличенко, О. М. Курбачева, Ю. Г. Левина, С. Г. Макарова, Н. Н. Мурашкин, Ю. В. Нестерова, Г. А. Новик, С. Г. Пискунова, Л. Ю. Попова, Т. Е. Привалова, Л. Р. Селимзянова, Н. С. Сергиенко, Е. Н. Серебрякова, Е. Д. Стасий, М. А. Ткаченко, Т. В. Турти, Н. В. Устинова, О. С. Федорова, Д. С. Фомина, Д. С. Фуголь, Д. С. Чемакина, И. М. Шепелева, К. Е. Эфендиева

    المصدر: Pediatric pharmacology; Том 17, № 6 (2020); 536-546 ; Педиатрическая фармакология; Том 17, № 6 (2020); 536-546 ; 2500-3089 ; 1727-5776

    وصف الملف: application/pdf

    Relation: https://www.pedpharma.ru/jour/article/view/1925/1199; Пищевая аллергия: клинические рекомендации. — М.: Союз педиатров России; 2018. — 50 с. Доступно по: https://www.pediatr-russia.ru/information/klin-rek/deystvuyushchie-klinicheskie-rekomendatsii/Пищевая%20аллергия%20дети%20СПР%20_2019%20испр.pdf. Ссылка активна на 16.12.2020.; Koletzko S, Niggemann B, Arato A, et al. Diagnostic approach and management of cow’s-milk protein allergy in infants and children: ESPGHAN GI Committee practical guidelines. J Pediatr Gastroenterol Nutr. 2012;55(2):221–229. doi:10.1097/MPG.0b013e31825c9482; Fiocchi A, Brozek J, Schünemann H, et al. World allergy organization (WAO) diagnosis and rationale for action against cow’s milk allergy (DRACMA) guidelines. Pediatr Allergy Immunol. 2010;21(Suppl 21):1–125. doi:10.1111/j.1399-3038.2010.01068.x; Аллергия к белкам коровьего молока у детей: клинические рекомендации. — М.: Союз педиатров России; 2016. — 52 с.; Monaci L, Tregoat V, van Hengel AJ, Anklam E. Milk allergens, their characteristics and their detection in food: A review. Eur Food Res Technol. 2006;223(2):149–179. doi:10.1007/s00217-005-0178-8; Пампура А.Н., Боровик Т.Э., Захарова И.Н. и др. Оправдано ли применение козьего молока у детей с пищевой аллергией к белкам коровьего молока? // Российский вестник перинатологии и педиатрии. — 2012. — Т. 57. — № 4–1. — С. 138–145.; Намазова-Баранова Л.С. Аллергия у детей: от теории к практике. — М.: Союз педиатров России; 2011. — 668 c.; Matricardi PM, Kleine-Tebbe J, Hoffmann HJ, et al. EAACI Molecular Allergology User’s Guide. Pediatr Allergy Immunol. 2016;27(Suppl 23):1–250. doi:10.1111/pai.12563; Venter C, Brown T, Meyer R, et al. Better recognition, diagnosis and management of non-IgEmediated cow’s milk allergy in infancy: IMAP — An international interpretation of the MAP (Milk Allergy in Primary Care) guideline. Clin Transl Allergy. 2017;7:26. doi:10.1186/s13601-017-0162-y; Новик Г.А., Халева Е.Г., Жданова М.В., Бычкова Н.В. Открытое проспективное контролируемое пострегистрационное исследование эффективности и безопасности длительного применения аминокислотной смеси у детей первого года жизни с аллергией к белкам коровьего молока // Вестник Российской академии медицинских наук. — 2016. — Т. 71. — № 6. — С. 446–457. doi:10.15690/vramn757; Høst A, Koletzko B, Dreborg S, et al. Dietary products used in infants for treatment and prevention of food allergy. Joint Statement of the European Society for Paediatric Allergology and Clinical Immunology (ESPACI) Committee on Hypoallergenic Formulas and the European Society for Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) Committee on Nutrition. Arch Dis Child. 1999;81(1):80–84. doi:10.1136/adc.81.1.80; Boissieu D de, Matarazzo P, Dupont C. Allergy extensively hydro-lyzed cow milk proteins in infants: Identification and treatment with an amino acid-based formula. J Pediatr. 1997;131(5):744–747. doi:10.1016/s0022-3476(97)70104-5; Caffarelli C, Plebani A, Poiesi C, et al. Determination of aller-genicity to three cow’s milk hydrolysates and an amino acid-derived formula in children with cow’s milk allergy. Clin Exp Allergy. 2002;32(1):74–79. doi:10.1046/j.0022-0477.2001.01262.x; Isolauri E, Sütas Y, Mäkinen-Kiljunen S, et al. Efficacy and safety of hydrolyzed cow milk and amino acid-derived formulas in infants with cow milk allergy. J Pediatr. 1995;127(4):550–557. doi:10.1016/s0022-3476(95)70111-7; Latcham F, Merino F, Lang A, et al. A consistent pattern of minor immunodeficiency and subtle enteropathy in children with multiple food allergy. J Pediatr. 2003;143(1):39–47. doi:10.1016/S0022-3476(03)00193-8; Vanderhoof J, Moore N, Boissieu D. De Evaluation of an amino acid-based formula in infants not responding to extensively hydrolyzed protein formula. J Pediatr Gastroenterol Nutr. 2016;63(5):531–533. doi:10.1097/MPG.0000000000001374; Błażowski ŁKR. Alergia na białka mleka krowiego – teoria i prak-tyka. Stand Med Pediatr. 2017;14:695–712; Lozinsky AC, Meyer R, Anagnostou K, et al. Cow’s Milk Protein Allergy from Diagnosis to Management: A Very Different Journey for General Practitioners and Parents. Children (Basel). 2015;(2):317– 329. doi:10.3390/children2030317; Muraro A, Werfel T, Hoffmann-Sommergruber K, et al. EAACI Food Allergy and Anaphylaxis Guidelines: Diagnosis and management of food allergy. Allergy. 2014;69(8):1008–1025. doi:10.1111/all.12429; Vanderhoof JA, Murray ND, Kaufman SS, et al. Intolerance to protein hydrolysate infant formulas: an underrecognized cause of gastrointestinal symptoms in infants. J Pediatr. 1997;131(5):741– 744. doi:10.1016/s0022-3476(97)70103-3; Luyt D, Ball H, Makwana N, et al. BSACI guideline for the diagnosis and management of cow’s milk allergy. Clin Exp Allergy. 2014;44(5):642–672. doi:10.1111/cea.12302.; Lambers TT, Gloerich J, van Hoffen E, et al. Clustering analyses in peptidomics revealed that peptide profiles of infant formulae are descriptive. Food Sci Nutr. 2015;3(1):81–90. doi:10.1002/fsn3.196; Meyer R, Groetch M, Venter C. When Should Infants with Cow’s Milk Protein Allergy Use an Amino Acid Formula? A Practical Guide. J Allergy Clin Immunol Pract. 2018;6(2):383–399. doi:10.1016/j.jaip.2017.09.003; Niggemann B, Binder C, Dupont C, et al. Prospective, controlled, multi-center study on the effect of an amino-acid-based formula in infants with cow’s milk allergy/intolerance and atopic dermatitis. Pediatr Allergy Immunol. 2001;12(2):78–82. doi:10.1034/j.1399-3038.2001.012002078.x; Hill DJ, Murch SH, Rafferty K, et al. The efficacy of amino acid-based formulas in relieving the symptoms of cow’s milk allergy: A systematic review. Clin Exp Allergy. 2007; 37(6):808–822. doi:10.1111/j.1365-2222.2007.02724.x; Boissieu D de, Dupont C. Time course of allergy to extensively hydrolyzed cow’s milk proteins in infants. J Pediatr. 2000;136(1):119–120. doi:10.1016/s0022-3476(00)90063-5; Boissieu D de, Dupont C. Allergy to extensively hydrolyzed cow’s milk proteins in infants: Safety and duration of amino acid-based formula. J Pediatr. 2002;141(2):271–273. doi:10.1067/mpd.2002.126299; Berry MJ, Adams J, Voutilainen H, et al. Impact of elimination diets on growth and nutritional status in children with multiple food allergies. Pediat Allergy Immunol. 2015;26(2):133–138. doi:10.1111/pai.12348; Meyer R. Nutritional disorders resulting from food allergy in children. Pediatr Allergy Immunol. 2018;29(7):689–704. doi:10.1111/pai.12960; Flammarion S, Santos C, Guimber D, et al. Diet and nutritional status of children with food allergies. Pediatr Allergy Immunol. 2011;22(2):161–165. doi:10.1111/j.1399-3038.2010.01028.x; Mehta H, Groetch M, Wang J. Growth and nutritional concerns in children with food allergy. Cur Opin Allergy Clin Immunol. 2013;13(3):275–279. doi:10.1097/ACI.0b013e328360949d; Meyer R, De Koker C, Dziubak R, et al. Malnutrition in children with food allergies in the UK. J Hum Nutr Diet. 2014;27(3):227–235. doi:10.1111/jhn.12149; Caubet J-C, Szajewska H, Shamir R, Nowak-Węgrzyn A. Non-IgE-mediated gastrointestinal food allergies in children. Pediatr Allergy Immunol. 2017;28(1):6–17. doi:10.1111/pai.12659; Nowak-Węgrzyn A, Katz Y, Mehr SS, Koletzko S. Non-IgE-mediated gastrointestinal food allergy. J Allergy Clin Immunol. 2015;135(5):1114–1124. doi:10.1016/j.jaci.2015.03.025; Nowak-Węgrzyn A, Chehade M, Groetch ME, et al. International consensus guidelines for the diagnosis and management of food protein-induced enterocolitis syndrome: Executive summary — Workgroup Report of the Adverse Reactions to Foods Committee, American Academy of Allergy, Asthma & Immunology. J Allergy Clin Immunol. 2017;139(4):1111–1126.e4. doi:10.1016/j.jaci.2016.12.966; Papadopoulou A, Koletzko S, Heuschkel R, et al. Management guidelines of eosinophilic esophagitis in childhood. J Pediatr Gastroenterol Nutr. 2014;58(1):107–118. doi:10.1097/MPG.0b013e3182a80be1; Ridolo E, Melli V, De’Angelis G1, Martignago I. Eosinophilic disorders of the gastro-intestinaltract: an update. Clin Mol Allergy. 2016;14;17. doi:10.1186/s12948-016-0055-y; McLeish CM, MacDonald A, Booth IW. Comparison of an elemental with a hydrolysed whey formula in intolerance to cows’ milk. Arch Dis Child. 1995;73(3):211–215. doi:10.1136/adc.73.3.211; Beck C, Koplin J, Dharmage S, et al. Persistent Food Allergy and Food Allergy Coexistent with Eczema Is Associated with Reduced Growth in the First 4 Years of Life. J Allergy Clin Immunol Pract. 2016;4(2):248–256.e3. doi:10.1016/j.jaip.2015.08.009; Katz Y, Goldberg MR, Rajuan N, et al. The prevalence and natural course of food protein-induced enterocolitis syndrome to cow’s milk: A large-scale, prospective population-based study. J Allergy Clin Immunol. 2011;127(3):647–653.e1-3. doi:10.1016/j.jaci.2010.12.1105; Caubet JC, Ford LS, Sickles L, et al. Clinical features and resolution of food protein-induced enterocolitis syndrome: 10-year experience. J Allergy Clin Immunol. 2014;134(2):382–389. doi:10.1016/j.jaci.2014.04.008; Järvinen KM, Nowak-Węgrzyn A. Food protein-induced enterocolitis syndrome (FPIES): Current management strategies and review of the literature. J Allergy Clin Immunol Pract. 2013;1(4):317–322. doi:10.1016/j.jaip.2013.04.004; Blanc S, Deboissieu D, Kalach N, et al. Half Cow’s Milk-Induced Food Protein Induced Enterocolitis Syndrome (FPIES) Require Amino Acid Feeding. J Allergy Clin Immunol. 2016;137(2):AB229 doi:10.1016/j.jaci.2015.12.881; Vila Sexto L. Latest insights on food protein–induced enterocolitis syndrome: An emerging medical condition. J Investig Allergol Clin Immunol. 2018; 28(1):13–23. doi:10.18176/jiaci.0192; Macdougall CF, Cant AJ, Colver AF. How dangerous is food allergy in childhood? The incidence of severe and fatal allergic reactions across the UK and Ireland. Arch Dis Child. 2002;86(4):236– 239. doi:10.1136/adc.86.4.236; Sotto D, Tounian P, Baudon JJ, et al. Allergy to cow’s milk protein hydrolysates: apropos of 8 cases. Arch Pediatr. 1999;6(12):1279–1285. doi:10.1016/s0929-693x(00)88889-2; Sova C, Feuling M, Baumler M, et al. Systematic review of nutrient intake and growth in children with multiple IgE-mediated food allergies. Nutr Clin Pract. 2013;28(6):669–675. doi:10.1177/0884533613505870; Vieira MC, Morais MB, Spolidoro JVN, et al. A survey on clinical presentation and nutritional status of infants with suspected cow’ milk allergy. BMC Pediatr. 2010;10:25. doi:10.1186/1471-2431-10-25; Crookston BT, Schott W, Cueto S, et al. Postinfancy growth, schooling, and cognitive achievement: Young lives 1–4. Am J Clin Nutr. 2013;98(6):1555–1563. doi:10.3945/ajcn.113.067561; Dewey KG, Begum K. Long-term consequences of stunting in early life. Matern Child Nutr. 2011;7 Suppl 3(Suppl 3):5–18. doi:10.1111/j.1740-8709.2011.00349.x; Arvola T, Moilanen E, Vuento R, Isolauri E. Weaning to hypoallergenic formula improves gut barrier function in breast-fed infants with atopic eczema. J Pediatr Gastroenterol Nutr. 2004;38(1):92–96. doi:10.1097/00005176-200401000-00020; Borschel MW, Antonson DL, Murray ND, et al. Two single group, prospective, baselinecontrolled feeding studies in infants and children with chronic diarrhea fed a hypoallergenic free amino acid-based formula. BMC Pediatr. 2014;14:136. doi:10.1186/1471-2431-14-136; Borschel MW, Ziegler EE, Wedig RT, Oliver JS. Growth of healthy term infants fed an extensively hydrolyzed casein-based or free amino acid-based infant formula: A randomized, double-blind, controlled trial. Clin Pediatr. 2013;52(10):910–917. doi:10.1177/0009922813492883; Colson D, Kalach N, Soulaines P, et al. The Impact of Dietary Therapy on Clinical and Biologic Parameters of Pediatric Patients with Eosinophilic Esophagitis. J Allergy Clin Immunol Pract. 2014;2(5):587–593. doi:10.1016/j.jaip.2014.05.012; GP Infant Feeding Network (GPIFN) UK and the MAP Guideline team The Milk Allergy in Primary Care (MAP) Guideline; 2019.; South East London Guideline for the Management of cows’ milk protein allergy in Primary Care. South East London Area Prescribing Committee; 2021. pp 1–14; Kemp AS, Hill DJ, Allen KJ, et al. Guidelines for the use of infant formulas to treat cows milk protein allergy: An Australian consensus panel opinion. Med J Aust. 2008; 188(2):109–112; Sicherer SH, Noone SA, Koerner CB, et al. Hypoallergenicity and efficacy of an amino acid-based formula in children with cow’s milk and multiple food hypersensitivities. J Pediatr. 2001;138(5):688– 693. doi:10.1067/mpd.2001.113007; https://www.pedpharma.ru/jour/article/view/1925

  18. 18
    Academic Journal

    المؤلفون: Alexander A. Baranov, Leyla S. Namazova-Baranova, Anna A. Alexeeva, Eduard T. Ambarchian, Lianna K. Aslamazyan, Natalia G. Astafieva, Larisa A. Balykova, Irina A. Belyaeva, Vilya A. Bulgakova, Irina V. Vakhlova, Nato D. Vashakmadze, Elena A. Vishneva, Ekaterina G. Getiya, Natalia I. Il’ina, Elena V. Kaytukova, Elena M. Kamaltynova, Georgiy A. Karkashadze, Olga P. Kovtun, Elena V. Komarova, Tatiana V. Kulichenko, Oksana M. Kurbacheva, Yuliya G. Levina, Svetlana G. Makarova, Nikolay N. Murashkin, Yuliya V. Nesterova, Gennady A. Novik, Svetlana G. Piskunova, Larisa Yu. Popova, Tatyana E. Privalova, Lilia R. Selimzyanova, Natalia S. Sergienko, Elena N. Serebryakova, Ekaterina D. Stasiy, Mikhail A. Tkachenko, Tatiana V. Turti, Natalia V. Ustinova, Olga S. Fedorova, Daria S. Fomina, Denis S. Fugol’, Daria S. Chemakina, Irina M. Shepeleva, Kamilla E. Efendieva, А. А. Баранов, Л. С. Намазова-Баранова, А. А. Алексеева, Э. Т. Амбарчян, Л. К. Асламазян, Н. Г. Астафьева, Л. А. Балыкова, И. А. Беляева, В. А. Булгакова, И. В. Вахлова, Н. Д. Вашакмадзе, Е. А. Вишнёва, Е. Г. Гетия, Н. И. Ильина, Е. В. Кайтукова, Е. М. Камалтынова, Г. А. Каркашадзе, О. П. Ковтун, Е. В. Комарова, Т. В. Куличенко, О. М. Курбачева, Ю. Г. Левина, С. Г. Макарова, Н. Н. Мурашкин, Ю. В. Нестерова, Г. А. Новик, С. Г. Пискунова, Л. Ю. Попова, Т. Е. Привалова, Л. Р. Селимзянова, Н. С. Сергиенко, Е. Н. Серебрякова, Е. Д. Стасий, М. А. Ткаченко, Т. В. Турти, Н. В. Устинова, О. С. Федорова, Д. С. Фомина, Д. С. Фуголь, Д. С. Чемакина, И. М. Шепелева, К. Е. Эфендиева

    المصدر: Pediatric pharmacology; Том 18, № 1 (2021); 38-47 ; Педиатрическая фармакология; Том 18, № 1 (2021); 38-47 ; 2500-3089 ; 1727-5776

    وصف الملف: application/pdf

    Relation: https://www.pedpharma.ru/jour/article/view/1946/1216; Lucendo AJ, Molina-Infante J, Arias Á, et al. Guidelines on eosinophilic esophagitis: evidence-based statements and recommendations for diagnosis and management in children and adults. United European Gastroenterol J. 2017;5(3):335–358. doi:10.1177/2050640616689525; Dellon ES, Liacouras CA, Molina-Infante J, et al. Updated International Consensus Diagnostic Critria for Eosinophilic Esophagitis: Proceedings of the AGREE Conference.Gastroenterology. 2018;155(4):1022–1033.e10. doi:10.1053/j.gastro.2018.07.009; Hirano I, Chan ES, Rank MA, et al. AGA institute and the joint task force on allergy-immunology practice parameters clinical guidelines for the management of eosinophilic esophagitis. Gastroenterology. 2020;158(6):1776–1786. doi:10.1053/j.gastro.2020.02.038; Liacouras CA, Spergel JM, Ruchelli E, et al. Eosinophilic esophagitis: A 10-year experience in 381 children. Clin Gastroenterol Hepatol. 2005;3(12):1198–1206. doi:10.1016/s1542-3565(05)00885-2; Markowitz JE, Spergel JM, Ruchelli E, Liacouras CA. Elemental diet is an effective treatment for eosinophilic esophagitis in children and adolescents. Am J Gastroenterol. 2003;98(4):777–782. doi:10.1111/j.1572-0241.2003.07390.x; Rosen R, Vandenplas Y, Singendonk M, et al. Pediatric Gastroesophageal Reflux Clinical Practice Guidelines: Joint Recommendations of the North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition and the European Society for Pediatric Gastroenterology, Hepatology, and Nutrition. J Pediatr Gastroenterol Nutr. 2018;66(3):516–554. doi:10.1097/MPG.0000000000001889; Antunes C, Aleem A, Curtis SA. Gastroesophageal Reflux Disease. Treasure Island, FL: StatPearls Publishing; 2020.; Клинические рекомендации по диагностике и лечению гастроэзофагеальной рефлюксной болезни. — М.: Российская гастроэнтерологическая ассоциация; 2017.; Гастроэзофагеальная рефлюксная болезнь у детей: клинические рекомендации. — М.: Союз педиатров России; 2016. — 37 с.; Dagli U, Kalkan IH. The role of lifestyle changes in gastroesophageal reflux diseases treatment. Turk J Gastroenterol. 2017;28(1):33–37. doi:10.5152/tjg.2017.10; Hill DJ, Heine RG, Cameron DJ, et al. Role of food protein intolerance in infants with persistent distress attributed to reflux esophagitis. J Pediatr. 2000;136(5):641–647. doi:10.1067/mpd.2000.104774; Miele E, Staiano A, Tozzi A, et al. Clinical Response to Amino AcidBased Formula in Neurologically Impaired Children with Refractory Esophagitis. J Pediatr Gastroenterol Nutr. 2002;35(3):314–319. doi:10.1097/00005176-200209000-00014; Seeras K, Siccardi MA. Nissen Fundoplication (Anti-reflux Procedure) StatPearls. Treasure Island (FL): StatPearls Publishing; 2020.; Клининческие рекомендации по диагностике и лечению болезни Крона. — М.: Ассоциация колопроктологов России; Российская гастроэнтерологическая ассоциация; 2017.; Torres J, Mehandru S, Colombel J-F, Peyrin-Biroulet L. Crohn’s disease. Lancet. 2017;389(10080):1741–1755. doi:10.1016/S0140-6736(16)31711-1; Gajendran M, Loganathan P, Catinella AP, Hashash JG. A comprehensive review and update on Crohn’s disease. Dis Mon. 2018;64(2):20–57. doi:10.1016/j.disamonth.2017.07.001; Главнов П.В., Лебедева Н.Н., Кащенко В.А., Варзин С.А. Язвенный колит и болезнь Крона. Современное состояние проблемы этиологии, ранней диагностики и лечения (обзор литературы) // Вестник Санкт-Петербургского университета. Медицина. — 2015. — №. 4. — С. 48–72.; Levine A, Griffiths A, Markowitz J, et al. Pediatric modification of the Montreal classification for inflammatory bowel disease: The Paris classification. Inflamm Bowel Dis. 2011;17(6):1314–1321. doi:10.1002/ibd.21493; Fukuda Y, Kosaka T, Okui M, et al. Efficacy of nutritional therapy for active Crohn’s disease. J Gastroenterol. 1995;30(Suppl 8):83–87.; Zoli G, Carè M, Parazza M, et al. A randomized controlled study comparing elemental diet and steroid treatment in Crohn’s disease. Aliment Pharmacol Ther. 1997;11(4):735–740. doi:10.1046/j.1365-2036.1997.t01-1-00192.x; Ó Cuív P, Begun J, Keely S, et al. Towards an integrated understanding of the therapeutic utility of exclusive enteral nutrition in the treatment of Crohn’s disease. Food Funct. 2016;7(4):1741–1751. doi:10.1039/c5fo01196e; Alhagamhmad MH. Enteral Nutrition in the Management of Crohn’s Disease: Reviewing Mechanisms of Actions and Highlighting Potential Venues for Enhancing the Efficacy. Nutr Clin Pract. 2018;33(4):483–492. doi:10.1002/ncp.10004; Osina VA, Kuz’mina TN. Enteral nutrition in the therapy of gastrointestinal diseases (according to materials of the European Association of Parenteral and Enteral Nutrition). Eksp Klin Gastroenterol. 2007;(3):92–98; Lochs H, Dejong C, Hammarqvist F, et al. ESPEN Guidelines on Enteral Nutrition: Gastroenterology. Clin Nutr. 2006;25(2):260–274. doi:10.1016/j.clnu.2006.01.007; Mansfield JC, Giaffer MH, Holdsworth CD. Controlled trial of oligopeptide versus amino acid diet in treatment of active Crohn’s disease. Gut. 1995;36(1):60–66. doi:10.1136/gut.36.1.60; Verma S, Brown S, Kirkwood B, Giaffer MH, et al. Polymeric versus elemental diet as primary treatment in active Crohn’s disease: a randomized, double-blind trial. Am J Gastroenterol. 2000;95(3):735–739. doi:10.1111/j.1572-0241.2000.01527.x; Ohara N, Mizushima T, Iijima H, et al. Adherence to an elemental diet for preventing postoperative recurrence of Crohn’s disease. Surg Today. 2017;47(12):1519–1525. doi:10.1007/s00595-017-1543-5.; Sugita N, Watanabe K, Kamata N, et al. Efficacy of a concomitant elemental diet to reduce the loss of response to adalimumab in patients with intractable Crohn’s disease. J Gastroenterol Hepatol. 2018;33(3):631–637. doi:10.1111/jgh.13969; Язвенный колит у детей: клинические рекомендации. — М.: Союз педиатров России; 2016. — 53 с.; Matsuoka K, Kobayashi T, Ueno F, et al. Evidence-based clinical practice guidelines for inflammatory bowel disease. J Gastroenterol. 2018;53(3):305–353. doi:10.1007/s00535-018-1439-1; Язвенный колит у взрослых: клинические рекомендации. — М.: Российская гастроэнтерологическая ассоциация; Ассоциация колопроктологов России; 2016.; Rufo PA, Bousvaros A. Current Therapy of Inflammatory Bowel Disease in Children. Pediatric Drugs. 2006;8(5):279–302. doi:10.2165/00148581-200608050-00002; Turner D, Ruemmele FM, Orlanski-Meyer E, et al. Management of paediatric ulcerative colitis, part 1: Ambulatory CareAn Evidencebased Guideline from European Crohn’s and Colitis Organization and European Society of Paediatric Gastroenterology, Hepatology and Nutrition. J Pediatr Gastroenterol Nutr. 2018;67(2):257–291. doi:10.1097/MPG.0000000000002035; Durchschein F, Petritsch W, Hammer HF. Diet therapy for inflammatory bowel diseases: The established and the new. World J Gastroenterol. 2016;22(7):2179–2194. doi:10.3748/wjg.v22.i7.2179; Ballesteros Pomar MD, Vidal Casariego A, Calleja Fernández A, et al. Impact of nutritional treatment in the evolution of inflammatory bowel disease. Nutr Hosp. 2010;25(2):181–192.; McLaughlin SD, Culkin A, Cole J, et al. Exclusive elemental diet impacts on the gastrointestinal microbiota and improves symptoms in patients with chronic pouchitis. J Crohns Colitis. 2013;7(6): 460–466. doi:10.1016/j.crohns.2012.07.009; https://www.pedpharma.ru/jour/article/view/1946

  19. 19
    Academic Journal

    المصدر: Pediatric pharmacology; Том 18, № 5 (2021); 423-429 ; Педиатрическая фармакология; Том 18, № 5 (2021); 423-429 ; 2500-3089 ; 1727-5776

    وصف الملف: application/pdf

    Relation: https://www.pedpharma.ru/jour/article/view/2068/1309; Cosma A, Whitehead R, Neville F, et al. Trends in bullying victimization in Scottish adolescents 1994–2014: changing associations with mental well-being. Int J Public Health. 2017;62(6):639–646. doi:10.1007/s00038-017-0965-6; Roberson AJ, Renshaw TL. Structural Validity of the HBSC Bullying Measure: Self-Report Rating Scales of Youth Victimization and Perpetration Behavior. J Psychoeduc Assess. 2017;36(6):628–643. doi:10.1177/0734282917696932; Ганузин В.М., Черная Н.Л. Школа без педагогического насилия — необходимое условие сохранения здоровья обучающихся // Вопросы школьной и университетской медицины и здоровья. — 2013. — № 2.— С. 38–40.; Лебедева О.В., Фомина Н.В. Отношение к соматическому здоровью как показатель развития психологического здоровья личности (на материале изучения различных возрастных групп испытуемых) // Вестник Нижегородского университета им. Н.И. Лобачевского. — 2014. — Т. 36. — № 4. — С. 150–158. — (Социальные науки).; Тарасова С.Ю., Осницкий А.К., Ениколопов С.Н. Социально-психологические аспекты буллинга: взаимосвязь агрессивности и школьной тревожности // Психологическая наука и образование PSYEDU.RU. — 2016. — Т. 8. — № 4. — С. 102–116. doi:10.17759/psyedu.2016080411; ВОЗ. Состояние здоровья детей и подростков в Европе. — Всемирная организация здравоохранения; 2018. — 255 с.; Карауш И.С., Куприянова И.Е., Кузнецова А.А. Кибербуллинг и суицидальное поведение подростков // Суицидология. — 2020. — Т. 11. — №1. — С. 117–129. doi:10.32878/suiciderus.20-11-01(38)-117-129; Кучма В.Р., Соколова С.Б. Поведенческие риски, опасные для здоровья школьников XXI века: монография. — М.: ФГАУ «НМИЦ здоровья детей» Минздрава России, 2017.; Неравенства в период взросления: гендерные и социально-экономические различия в показателях здоровья и благополучия детей и подростков. Исследование «Поведение детей школьного возраста в отношении здоровья» (HBSC): международный отчет по результатам исследования 2013/2014 гг. / под ред. J. Inchley, D. Currie, T. Youngи др. Копенгаген: Европейское региональное бюро ВОЗ; 2016.; В центре внимания здоровье и благополучие подростков. Результаты исследования «Поведение детей школьного возраста в отношении здоровья» (HBSC) 2017/2018 гг. в Европе и Канаде. Международный отчет. Том 1. Основные результаты / под ред. J. Inchley, D.Currie, S. Budisavljevic и др. Копенгаген: Европейское региональное бюро ВОЗ, 2020.; Бутовская М.Л., Русакова Г.С. Буллинг и буллеры в современной российской школе // Этнографическое обозрение. — 2016. — № 2. — С. 99–115.; Elgar FJ, Mc KinnonB, Walsh SD, et al. Structural determinants of youth bullying and fighting in 79 countries. J Adolesc Health. 2015;57(6):643–650. doi:10.1016/j.jadohealth.2015.08.007; Arnarsson A, Bjarnason T. The Problem with Low-Prevalence of Bullying. Int J Environ Res Public Health. 2018;15(7):1535. doi:10.3390/ijerph1507153; Hartley JEK, Leven K, Currie C. A new version of the HBSC Family Affluence Scale — FAS III: Scottish qualitative findings from the international FAS Development Study. Child Indic Res. 2015;9: 233–245. doi:10.1007/s12187-015-325-3; Levin KA, Currie C. Reliability and validity of an adapted version of the cantril ladder for use with adolescent samples. Soc Indic Res. 2013;119:1047–1063. doi:10.1007/s11205-013-0507-4; Shanon RA, Bergren MD, Matthews A. Frequentvisitors: somatizationin school-age children and implications for schoolnurses. J Sch Nurs. 2010;26(3):169–182. doi:10.1177/1059840509356777; Wood JJ, Lynne-Landsman SD, Langer DA, et al. School attendance problems and youth psychopathology: structural cross-lagged regression models in three longitudinal data sets. Child Development. 2012;83(1):351–366. doi:10.1111/j.1467-8624.2011.01677.x; Волкова Е.Н., Волкова И.В. Кибербуллинг как способ социального реагирования подростков на ситуацию буллинга // Вестник Мининского университета. — 2017. — № 3. — С. 1–11. doi:10.26795/2307-1281-2017-3-17; Намазова-Баранова Л.С., Ковтун О.П., Ануфриева Е.В., Набойченко Е.С. Значение поведенческих детерминант в формировании избыточной массы тела и ожирения у подростков // Профилактическая медицина. — 2019. — Т. 22. — № 4–2. — С. 43–48. doi:10.17116/profmed20192204243; Набойченко Е.С., Ануфриева Е.В., Устинова Н.А. Психологические факторы, влияющие на формирование избыточной массы тела у подростков // Детская и подростковая реабилитация. — 2019. — № 3. — С. 38–44.; Соколова С.Б. Распространенность факторов, влияющих на здоровье, у обучающихся, участвовавших в буллинге одноклассников // Современная модель медицинского обеспечения детей в образовательных организациях: материалы VI Национального конгресса по школьной и университетской медицине с международным участием (Екатеринбург, 9–10 октября 2018 г.). — Екатеринбург: УГМУ, 2018. — С. 186–189. doi:10.17323/1814-9545-2019-2-78-97; Цымбаленко Н. Буллинг. Как остановить травлю ребенка. — СПб.: Питер; 2019. — 160 с. — (Родителям о детях).; https://www.pedpharma.ru/jour/article/view/2068

  20. 20
    Academic Journal

    المساهمون: Not specified, Не указан

    المصدر: Pediatric pharmacology; Том 18, № 3 (2021); 245-263 ; Педиатрическая фармакология; Том 18, № 3 (2021); 245-263 ; 2500-3089 ; 1727-5776

    وصف الملف: application/pdf

    Relation: https://www.pedpharma.ru/jour/article/view/2023/1269; Намазова-Баранова Л. С. Аллергия у детей: от теории к практике. — М.: Союз педиатров России; 2010–2011. — 668 с.; Muraro A, Werfel T, Hoffmann-Sommergruber K, et al. EAACI food allergy and anaphylaxis guidelines: diagnosis and management of food allergy. Allergy. 2014;69(8):1008–1025. doi:10.1111/all.12429; Баранов А. А., Намазова-Баранова Л.С., Боровик Т. Э. и др. Пищевая аллергия / под ред. А. А. Баранова, Л. С. НамазовойБарановой, Т. Э. Боровик, С. Г. Макаровой. — М.: Педиатръ; 2013. — 160 с. — (Болезни детского возраста от А до Я).; Prescott S, Allen K J. Food allergy: riding the second wave of allergy epidemic. Pediatr Allergy Immunol. 2011;22(1):156–160. doi:10.1111/j.1399-3038.2011.01145.x; Fiocchi A, Brozek J, Sch nemann H, et al. World Allergy Organization (WAO) Diagnosis and Rationale for Action against Cow’s Milk Allergy (DRACMA) Guidelines. Pediatr Allergy Immunol. 2010:21(Suppl.21):1–125. doi:10.1111/j.1399-3038.2010.01068.x; Koletzko S, Niggemann B, Arato A, et al. Diagnostic approach and management of cow’s-milk protein allergy in infants and children: ESPGHAN GI Committee practical guidelines. J Pediatr Gastroenterol Nutr. 2012;55(2):221–229. doi:10.1097/MPG.0b013e31825c9482; Ford LS, Bloom KA, Nowak-W grzyn AH, et al. Basophil reactivity, wheal size, and immunoglobulin levels distinguish degrees of cow’s milk tolerance. J Allergy Clin Immunol. 2013;131(1):180–186.e1–e3. doi:10.1016/j.jaci.2012.06.003; Matricardi PM, Kleine-Tebbe J, Hoffmann HJ, et al. EAACI Molecular Allergology User’s Guide. Pediatr Allergy Immunol. 2016;27(Suppl 23):1–250. doi:10.1111/pai.12563; Макарова С. Г., Лаврова Т. Е., Вишнёва Е.А. и др. Первичная профилактика как эффективный ответ на эпидемию аллергических болезней // Педиатрическая фармакология. — 2015. — Т. 12. — № 1. — С. 67–74. doi:10.15690/pf.v12i1.1249; Lemon-Mulé H, Sampson HA, Sicherer SH, et al. Immunologic changes in children with egg allergy ingesting extensively heated egg. J Allergy Clin Immunol. 2008;122(5):977–983.e1. doi:10.1016/j.jaci.2008.09.007; Ando H, Movérare R, Kondo Y, et al. Utility of ovomucoid-specific IgE concentrations in predicting symptomatic egg allergy. J Allergy Clin Immunol. 2008;122(3):583–588. doi:10.1016/j.jaci.2008.06.016; Abrams EM, Sicherer SH. Diagnosis and management of food allergy. CMAJ. 2016;188(15):1087–1093. doi:10.1503/cmaj.160124; Savage JH, Kaeding AJ, Matsui EC, Wood RA. The natural history of soy allergy. J Allergy Clin Immunol. 2010;125(3):683–686. doi:10.1016/j.jaci.2009.12.994; Mittag D, Vieths S, Vogel L, et al. Soybean allergy in patients allergic to birch pollen: clinical investigation and molecular characterization of allergens. J Allergy Clin Immunol. 2004;113(1):148–154. doi:10.1016/j.jaci.2003.09.030; Holzhauser T, Wackermann O, Ballmer-Weber BK, et al. Soybean (Glycine max) allergy in Europe: Gly m 5 (beta-conglycinin) and Gly m 6 (glycinin) are potential diagnostic markers for severe allergic reactions to soy. J Allergy Clin Immunol. 2009;123(2):452–458. doi:10.1016/j.jaci.2008.09.034; De Swert LF, Gadisseur R, Sjölander S, et al. Secondary soy allergy in children with birch pollen allergy may cause both chronic and acute symptoms. Pediatr Allergy Immunol. 2012;23(2):117–123. doi:10.1111/j.1399-3038.2011.01218.x; Hao GD, Zheng YW, Wang ZX, et al. High correlation of specific IgE sensitization between birch pollen, soy and apple allergens indicates pollen-food allergy syndrome among birch pollen allergic patients in northern China. J Zhejiang Univ Sci B. 2016;17(5):399–404. doi:10.1631/jzus.B1500279; Grabenhenrich LB, Dölle S, Moneret-Vautrin A, et al. Anaphylaxis in children and adolescents: The European Anaphylaxis Registry. J Allergy Clin Immunol. 2016;137(4):1128–1137.e1. doi:10.1016/j.jaci.2015.11.015; Clark AT, Ewan PW. The development and progression of allergy to multiple nuts at different ages. Pediatr Allergy Immunol. 2005;16(6):507–511. doi:10.1111/j.1399-3038.2005.00310.x; Scibilia J, Rossi CM, Losappio LM, et al. Favorable Prognosis of Wheat Allergy in Adults. J Investig Allergol Clin Immunol. 2019;29(2):118–123. doi:10.18176/jiaci.0296; Koike Y, Yanagida N, Sato S, et al. Predictors of Persistent Wheat Allergy in Children: A Retrospective Cohort Study. Int Arch Allergy Immunol. 2018;176(3–4):249–254. doi:10.1159/000489337; Nowak-Węgrzyn A, Wood RA, Nadeau KC, et al. Multicenter, randomized, double-blind, placebo-controlled clinical trial of vital wheat gluten oral immunotherapy. J Allergy Clin Immunol. 2019;143(2):651–661.e9. doi:10.1016/j.jaci.2018.08.041; Davis CM, Gupta RS, Aktas ON, et al. Clinical Management of Seafood Allergy. J Allergy Clin Immunol Pract. 2020;8(1):37–44. doi:10.1016/j.jaip.2019.10.019; Simon RA. Allergic and asthmatic reactions to food additives. Sicherer SH, Feldweg AM, eds. UpToDate. July 21, 2019. Available online: https://www.uptodate.com/contents/allergic-and-asthmatic-reactions-to-food-additives. Accessed on February 14, 2021.; Esmaeilzedeh H, Esmaeilzadeh E, Faramarzi M, et al. Salicylate Food Intolerance and Aspirin Hypersensitivity in Nasal Polyposis. Iran J Immunol. 2017;14(1):81–88.; Venter C, Patil V, Grundy J, et al. Prevalence and cumulative incidence of food hyper-sensitivity in the first 10 years of life. Pediatr Allergy Immunol. 2016:27(5):452–458. doi:10.1111/pai.12564; Wieser H, Koehler P, Scherf KA. The Two Faces of Wheat. Front Nutr. 2020;7:517313. doi:10.3389/fnut.2020.517313; Vahedi K, Mascart F, Mary JY, et al. Reliability of antitransglutaminase antibodies as predictors of gluten-free diet compliance in adult celiac disease. Am J Gastroenterol. 2003;98(5):1079–1087. doi:10.1111/j.1572-0241.2003.07284.x; Al-Toma A, Volta U, Auricchio R, et al. European Society for the Study of Coeliac Disease (ESsCD) guideline for coeliac disease and other gluten-related disorders. United European Gastroenterol J. 2019;7(5):583–613. doi:10.1177/2050640619844125; Kim YH, Kim YS, Park Y, et al. Investigation of Basophil Activation Test for Diagnosing Milk and Egg Allergy in Younger Children. J Clin Med. 2020;9(12):3942. doi:10.3390/jcm9123942; Duan L, Celik A, Hoang JA, et al. Basophil activation test shows high accuracy in the diagnosis of peanut and tree nut allergy: The Markers of Nut Allergy Study. Allergy. 2020. Online ahead of print. doi:10.1111/all.14695; Santos AF, Bergmann M, Brough HA, et al. Basophil Activation Test Reduces Oral Food Challenges to Nuts and Sesame. J Allergy Clin Immunol Pract. 2021:9(5):2016–2027.е6. doi:10.1016/j.jaip.2020.12.039; Berni Canani R, Pezzella V, Amoroso A, et al. Diagnosing and Treating Intolerance to Carbohydrates in Children. Nutrients. 2016;8(3):157. doi:10.3390/nu8030157; Tomczonek-Moruś J, Wojtasik A, Zeman K, et al. 13910C>T and 22018G>A LCT gene polymorphisms in diagnosing hypolactasia in children. United European Gastroenterol J. 2019;7(2):210–216. doi:10.1177/2050640618814136; Деев И. А., Петровская М. И., Намазова-Баранова Л.С. и др. sIgG4 и другие предикторы формирования толерантности при пищевой аллергии у детей раннего возраста // Педиатрическая фармакология. — 2015. — Т. 12. — № 3. — С. 283–295. doi:10.15690/pf.v12i3.1352; Hahn J, Hoess A, Friedrich DT, et al. Unnecessary abdominal interventions in patients with hereditary angioedema. J Dtsch Dermatol Ges. 2018;16(12):1443–1449. doi:10.1111/ddg.13698; Hirano I, Furuta GT. Approaches and Challenges to Management of Pediatric and Adult Patients With Eosinophilic Esophagitis. Gastroenterology. 2020;158(4):840–851. doi:10.1053/j.gastro.2019.09.052; Soares-Weiser K, Takwoingi Y, Panesar SS, et al. The diagnosis of food allergy: a systematic review and meta-analysis. Allergy. 2014;69(1):76–86. doi:10.1111/all.12333; Sicherer SH, Wood RA, Vickery BP, et al. Impact of Allergic Reactions on Food-Specific IgE Concentrations and Skin Test Results. J Allergy Clin Immunol Pract. 2016;4(2):239–245.e4. doi:10.1016/j.jaip.2015.11.015; Sato S, Yanagida N, Ebisawa M. How to diagnose food allergy. Curr Opin Allergy Clin Immunol. 2018;18(3):214–221. doi:10.1097/ACI.0000000000000441; Cuomo B, Indirli GC, Bianchi A, et al. Specific IgE and skin prick tests to diagnose allergy to fresh and baked cow’s milk according to age: a systematic review. Ital J Pediatr. 2017;43(1):93. doi:10.1186/s13052-017-0410-8; Tian M, Zhou Y, Zhang W, Cui Y. Der p 1 and Der p 2 specific immunoglobulin E measurement for diagnosis of Dermatophagoides pteronyssinus allergy: A systematic review and meta-analysis. Allergy Asthma Proc. 2017;38(5):333–342. doi:10.2500/aap.2017.38.4073; Nevis IF, Binkley K, Kabali C. Diagnostic accuracy of skinprick testing for allergic rhinitis: a systematic review and meta-analysis. Allergy Asthma Clin Immunol. 2016;12:20. doi:10.1186/s13223-016-0126-0; Liu Y, Peng J, Zhou Y, Cui Y. Comparison of atopy patch testing to skin prick testing for diagnosing mite-induced atopic dermatitis: a systematic review and meta-analysis. Clin Transl Allergy. 2017;7:41. doi:10.1186/s13601-017-0178-3; Molina-Infante J, Arias Á, Alcedo J, et al. Step-up empiric elimination diet for pediatric and adult eosinophilic esophagitis: The 2–4–6 study. J Allergy Clin Immunol. 2018;141(4):1365–1372. doi:10.1016/j.jaci.2017.08.038; Rajani PS, Martin H, Groetch M, Järvinen KM. Presentation and Management of Food Allergy in Breastfed Infants and Risks of Maternal Elimination Diets. J Allergy Clin Immunol Pract. 2020;8(1):52–67. doi:10.1016/j.jaip.2019.11.007; Kagalwalla AF, Wechsler JB, Amsden K, et al. Efficacy of a 4-Food Elimination Diet for Children With Eosinophilic Esophagitis. Clin Gastroenterol Hepatol. 2017;15(11):1698–1707.e7. doi:10.1016/j.cgh.2017.05.048; Robey RC, Wilcock A, Bonin H, et al. Hereditary Alpha-Tryptasemia: UK Prevalence and Variability in Disease Expression. J Allergy Clin Immunol Pract. 2020;8(10):3549–3556. doi:10.1016/j.jaip.2020.05.057; Боровик Т. Э., Макарова С. Г., Бушуева Т. В., Сергеева С. Н. Оценка клинической эффективности смеси на основе высокогидролизованного казеина в диетотерапии тяжелых форм непереносимости белков коровьего молока у детей // Педиатрическая фармакология. — 2012. — Т. 9. — № 1. — С. 45–48. doi:10.15690/pf.v9i1.172; Niggemann B, von Berg A, Bollrath C, et al. Safety and efficacy of a new extensively hydrolyzed formula for infants with cow’s milk protein allergy. Pediatr Allergy Immunol. 2008;19(4):348–354. doi:10.1111/j.1399-3038.2007.00653.x; Berni Canani R, Nocerino R, Terrin G, et al. Formula selection for management of children with cow’s milk allergy influences the rate of acquisition of tolerance: a prospective multicenter study. J Pediatr. 2013;163(3):771–777.e1. doi:10.1016/j.jpeds.2013.03.008; Canani RB, Nocerino R, Frediani T, et al. Amino Acid-based Formula in Cow’s Milk Allergy: Long-term Effects on Body Growth and Protein Metabolism. J Pediatr Gastroenterol Nutr. 2017;64(4):632–638. doi:10.1097/MPG.0000000000001337; Cantani A, Micera M. Immunogenicity of hydrolysate formulas in children (part 1). Analysis of 202 reactions. J Investig Allergol Clin Immunol. 2000;10(5):261–276.; Berni Canani R, Di Costanzo M, Bedogni G, et al. Extensively hydrolyzed casein formula containing Lactobacillus rhamnosus GG reduces the occurrence of other allergic manifestations in children with cow’s milk allergy: 3-year randomized controlled trial. J Allergy Clin Immunol. 2017;139(6):1906–1913.e4. doi:10.1016/j.jaci.2016.10.050; Dupont C, Bradatan E, Soulaines P, et al. Tolerance and growth in children with cow’s milk allergy fed a thickened extensively hydrolyzed casein-based formula. BMC Pediatr. 2016;16:96. doi:10.1186/s12887-016-0637-3; Клиническая диетология детского возраста: руководство для врачей / под ред. Т. Э. Боровик, К. С. Ладодо. — 2-е изд. — М.: МИА; 2015. — 718 с.; Chandra RK. Five-year follow-up of high-risk infants with family history of allergy who were exclusively breast-fed or fed partial whey hydrolysate, soy, and conventional cow’s milk formulas. J Pediatr Gastroenterol Nutr. 1997;24(4):380–388. doi:10.1097/00005176-199704000-00005; Goldsmith AJ, Koplin JJ, Lowe AJ, et al. Formula and breast feeding in infant food allergy: A population-based study. J Paediatr Child Health. 2016;52(4):377–384. doi:10.1111/jpc.13109; Inuo C, Tanaka K, Nakajima Y, et al. Tolerability of partially and extensively hydrolysed milk formulas in children with cow’s milk allergy. Asia Pac J Clin Nutr. 2019;28(1):49–56. doi:10.6133/apjcn.201903_28(1).0008; Halken S. Prevention of allergic disease in childhood: clinical and epidemiological aspects of primary and secondary allergy prevention. Pediatr Allergy Immunol. 2004;15(Suppl 16):4–5, 9–32. doi:10.1111/j.1399-3038.2004.0148b.x; Fitzsimons R, van der Poel LA, Thornhill W, et al. Antihistamine use in children. Arch Dis Child Educ Pract Ed. 2015;100(3):122–131. doi:10.1136/archdischild-2013-304446; Verdu E, Blanc-Brisset I, Meyer G, et al. Second-generation antihistamines: a study of poisoning in children. Clin Toxicol (Phila). 2020;58(4):275–283. doi:10.1080/15563650.2019.1634812; Akdis CA, Akdis M, Bieber T, et al. Diagnosis and treatment of atopic dermatitis in children and adults: European Academy of Allergology and Clinical Immunology/American Academy of Allergy, Asthma and Immunology/PRACTALL Consensus Report. Allergy. 2006;61(8):969–987. doi:10.1111/j.1398-9995.2006.01153.x; Wollenberg A, Barbarot S, Bieber T, et al. Consensus-based European guidelines for treatment of atopic eczema (atopic dermatitis) in adults and children: part II. J Eur Acad Dermatol Venereol. 2018;32(6):850–878. doi:10.1111/jdv.14888; Patriarca G, Schiavino D, Pecora V, et al. Food allergy and food intolerance: diagnosis and treatment. Intern Emerg Med. 2009;4(1):11–24. doi:10.1007/s11739-008-0183-6; Kobernick AK, Burks AW. Active treatment for food allergy. Allergol Int. 2016;65(4):388–395. doi:10.1016/j.alit.2016.08.002; Pacor ML, Di Lorenzo G, Corrocher R. Efficacy of leukotriene receptor antagonist in chronic urticaria. A double-blind, placebo-controlled comparison of treatment with montelukast and cetirizine in patients with chronic urticaria with intolerance to food additive and/ or acetylsalicylic acid. Clin Exp Allergy. 2001;31(10):1607–1614. doi:10.1046/j.1365-2222.2001.01189.x; Simons FE. Prevention of acute urticaria in young children with atopic dermatitis. J Allergy Clin Immunol. 2001;107(4):703–706. doi:10.1067/mai.2001.113866; Sarinho E, Lins MDGM. Severe forms of food allergy. J Pediatr (Rio J). 2017;93(Suppl 1):53–59. doi:10.1016/j.jped.2017.06.021; Clausen SS, Stahlman SL. Food-allergy anaphylaxis and epinephrine autoinjector prescriptionfills, active component service members, U. S. Armed Forces, 2007–2016. MSMR. 2018;25(7):23–29.; Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention, 2020. Available online: www.ginasthma.org/gina-reports. Accessed on February 14, 2021.; Wollenberg A, Barbarot S, Bieber T, et al. Consensus-based European guidelines for treatment of atopic eczema (atopic dermatitis) in adults and children: part I. J Eur Acad Dermatol Venereol. 2018;32(5):657–682. doi:10.1111/jdv.14891; Businco L, Benincori N, Nini G, et al. Double-blind crossover trial with oral sodium cromoglycate in children with atopic dermatitis due to food allergy. Ann Allergy. 1986;57(6):433–438.; Zur E, Kaczmarski M, Nowowiejska B. The effectiveness of oral sodium cromoglycate in the treatment of food allergy in children. Przeglad Pediatryczny. 2002;32:300–307.; Gerrard JW. Oral cromoglycate: its value in the treatment of adverse reactions to foods. Ann Allergy. 1979;42(3):135–138.; Spira C, Andr C. Food allergy. Results of a multicenter study. Allerg Immunol (Paris). 1988;20(4):147–151.; Ortolani C, Pastorello E, Zanussi C. Prophylaxis of adverse reactions to foods. A double-blind study of oral sodium cromoglycate for the prophylaxis of adverse reactions to foods and additives. Ann Allergy. 1983;50(2):105–109.; Ellul-Micallef R. Effect of oral sodium cromoglycate and ketotifen in fish-induced bronchial asthma. Thorax. 1983;38(7):527–530. doi:10.1136/thx.38.7.527; Lee TH, Chan JKC, Lau PC, et al. Peanut allergy and oral immunotherapy. Hong Kong Med J. 2019;25(3):228–234. doi:10.12809/hkmj187743; Nurmatov U, Dhami S, Arasi S, et al. Allergen immunotherapy for IgE-mediated food allergy: a systematic review and meta-analysis. Allergy. 2017;72(8):1133–1147. doi:10.1111/all.13124; Wood RA. Oral Immunotherapy for Food Allergy. J Investig Allergol Clin Immunol. 2017;27(3):151–159. doi:10.18176/jiaci.0143; Ebisawa M, Ito K, Fujisawa T, et al. Japanese guidelines for food allergy 2020. Allergol Int. 2020;69(3):370–386. doi:10.1016/j.alit.2020.03.004; Kramer MS, Kakuma R. Maternal dietary antigen avoidance during pregnancy or lactation, or both, for preventing or treating atopic disease in the child. Evid Based Child Health. 2014;9(2):447–483. doi:10.1002/ebch.1972; Greer FR, Sicherer SH, Burks AW, et al. The Effects of Early Nutritional Interventions on the Development of Atopic Disease in Infants and Children: The Role of Maternal Dietary Restriction, Breastfeeding, Hydrolyzed Formulas, and Timing of Introduction of Allergenic Complementary Foods. Pediatrics. 2019;143(4):e20190281. doi:10.1542/peds.2019-0281; Boyle RJ, Ierodiakonou D, Khan T, et al. Hydrolysed formula and risk of allergic or autoimmune disease: systematic review and meta-analysis. BMJ. 2016;352:i974. doi:10.1136/bmj.i974; Schroer B, Groetch M, Mack DP, Venter C. Practical Challenges and Considerations for Early Introduction of Potential Food Allergens for Prevention of Food Allergy. J Allergy Clin Immunol Pract. 2021;9(1):44–56.e1. doi:10.1016/j.jaip.2020.10.031; Sicherer SH, Sampson HA. Food allergy: A review and update on epidemiology, pathogenesis, diagnosis, prevention, and management. J Allergy Clin Immunol. 2018;141(1):41–58. doi:10.1016/j.jaci.2017.11.003; Pabst O, Mowat AM. Oral tolerance to food protein. Mucosal Immunol. 2012;5(3):232–239. doi:10.1038/mi.2012.4; Fritsche R, Pahud JJ, Pecquet S, Pfeifer A. Induction of systemic immunologic tolerance to beta-lactoglobulin by oral administration of a whey protein hydrolysate. J Allergy Clin Immunol. 1997;100(2):266–73. doi:10.1016/s0091-6749(97)70235-5; Koletzko S. Hydrolysed formula and risk of allergic or autoimmune disease: systematic review and meta-analysis. BMJ. 2016;352:i974. doi:10.1136/bmj.i974; EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2014. Scientific Opinion on the essential composition of infant and follow-on formulae. EFSA Journal. 2014;12(7):3760. doi:10.2903/j.efsa.2014.3760; Sauser J, Nutten S, de Groot N, et al. Partially Hydrolyzed Whey Infant Formula: Literature Review on Effects on Growth and the Risk of Developing Atopic Dermatitis in Infants from the General Population. Int Arch Allergy Immunol. 2018;177(2):123–134. doi:10.1159/000489861; Szajewska H, Horvath A. Meta-analysis of the evidence for a partially hydrolyzed 100% whey formula for the prevention of allergic diseases. Curr Med Res Opin. 2010;26(2):423–437. doi:10.1185/03007990903510317; Alexander DD, Cabana MD. Partially hydrolyzed 100% whey protein infant formula and reduced risk of atopic dermatitis: a metaanalysis. J Pediatr Gastroenterol Nutr. 2010;50(4):422–430. doi:10.1097/MPG.0b013e3181cea52b; Szajewska H, Horvath A. A partially hydrolyzed 100% whey formula and the risk of eczema and any allergy: an updated meta-analysis. World Allergy Organ J. 201726;10(1):27. doi:10.1186/s40413-017-0158-z; Gappa M, Filipiak-Pittroff B, Libuda L, et al. Long-term effects of hydrolyzed formulae on atopic diseases in the GINI study. Allergy. 2020. Online ahead of print. doi:10.1111/all.14709.; Samady W, Campbell E, Aktas ON, et al. Recommendations on Complementary Food Introduction Among Pediatric Practitioners. JAMA Netw Open. 2020;3(8):e2013070. doi:10.1001/jamanetworkopen.2020.13070; Bischoff SC, Barbara G, Buurman W, et al. Intestinal permeability — a new target for disease preventionand therapy. BMC Gastroenterol. 2014;14:189. doi:10.1186/s12876-014-0189-7; Carlier FM, Sibille Y, Pilette C. The epithelial barrier and immunoglobulin A system in allergy. Clin Exp Allergy. 2016;46(11):1372–1388. doi:10.1111/cea.12830; Luissint A C, Parkos C A, Nusrat A. Inflammation and the Intestinal Barrier: Leukocyte-Epithelial Cell Interactions, Cell Junction Remodeling, and Mucosal Repair. Gastroenterology. 2016;151(4):616–632. doi:10.1053/j.gastro.2016.07.008; Приходченко Н. Г. Клинико-патогенетические механизмы формирования аллергии к белку коровьего молока у детей первого года жизни: дис. … докт. мед. наук. — Владивосток; 2020.; Патент № 2018115906 Российская Федерация, МПК G01N 33/53 (2006.01). Способ оценки эффективности этапной элиминационной диетотерапии гастроинтестинальной пищевой аллергии у детей: № 2018115906: заявл. 2018.04.26: опубл. 2019.05.29 / Шуматова Т.А., Приходченко Н.Г., Ни А. и др. — 11 с. Доступно по: https://www1.fips.ru/registers-doc-view/fips_servlet?DB=RUPAT&DocNumber=2689796&TypeFile=html. Ссылка активная на 16.05.2021.; https://www.pedpharma.ru/jour/article/view/2023