-
1Academic Journal
المؤلفون: T. V. Markova, E. L. Dadali, S. S. Nikitin, A. F . Murtazina, O. L. Mironovich, I. V. Kanivets, Т. В. Маркова, Е. Л. Дадали, С. С. Никитин, А. Ф. Муртазина, О. Л. Миронович, И. В. Канивец
المصدر: Neuromuscular Diseases; Том 11, № 2 (2021); 48-55 ; Нервно-мышечные болезни; Том 11, № 2 (2021); 48-55 ; 2413-0443 ; 2222-8721 ; 10.17650/2222-8721-2021-11-2
مصطلحات موضوعية: механотранс‑ дукция, mechanosensitive receptor, gene PIEZO2, mutations, mechanotransduction, механочувствительный рецептор, ген PIEZO2, мутации
وصف الملف: application/pdf
Relation: https://nmb.abvpress.ru/jour/article/view/449/297; Bamshad M., Van Heest A.E., Pleasure D. Arthrogryposis: A review and update. J Bone Joint Surg Am 2009;91(Suppl 4): 40–6. PMID: 19571066. DOI:10.2106/JBJS.I.00281.; Bamshad M., Jorde L.B., Carey J.C. A revised and extended classification of the distal arthrogryposes. Am J Med Genet 1996;65(4):277–81. DOI:10.1002/(SICI)1096-8628(19961111)65:43.0.CO;2-M.; Coste B., Hogue G., Murray M.F. et al. Gain-of-function mutations in the mechanically activated ion channel Piezo2 cause a subtype of distal arthrogryposis. Proc Nat Acad Sci 2013;110:4667–72. PMID: 23487782. DOI:10.1073/pnas.1221400110.; Gordon H., Davies D., Berman M. Camptodactyly, cleft palate, and club foot. A syndrome showing the autosomaldominant pattern of inheritance. J Med Genet 1969;6:266–74. PMID: 5345097. DOI:10.1136/jmg.6.3.266.; Hall J.G., Reed S.D., Greene G. The distal arthrogryposes: delineation of new entities – review and nosologic discussion. Am J Med Genet 1982;11(2):185–239. PMID: 7039311. DOI:10.1002/ajmg.1320110208.; Marden P.M., Walker W.A. A new generalized connective tissue syndrome. Am J Dis Child 1966;112:225–8.; Delle Vedove A., Storbeck M., Heller R. et al. Biallelic loss of proprioceptionrelated PIEZO2 causes muscular atrophy with perinatal respiratory distress, arthrogryposis, and scoliosis. Am J Hum Genet 2016;99(5):1206–16. PMID: 27843126. DOI:10.1016/j.ajhg.2016.09.019.; Chesler A.T., Szczot M., BharuchaGoebel D. et al. The role of Piezo2 in human mechanosensation. New Eng J Med 2016;375:1355–64. PMID: 27653382. DOI:10.1056/NEJMoa1602812.9.; Ranade S.S., Woo S.H., Dubin A.E. et al. Piezo2 is the major transducer of mechanical forces for touch sensation in mice. Nature 2014;516:121–5. PMID: 25471886. DOI:10.1038/nature13980.; Woo S.H., Ranade S., Weyer A.D. et al. Piezo2 is required for Merkel-cell mechanotransduction. Nature 2014;509(7502):622–6. DOI:10.1038/nature13251.; Ikeda R., Cha M., Ling J. et al. Merkel cells transduce and encode tactile stimuli to drive abeta-afferent impulses. Cell 2014;157:664–75. DOI:10.1016/j.cell.2014.02.026.; Fang X-Z., Zhou T., Xu J-Q. et al. Structure, kinetic properties and biological function of mechanosensitive Piezo channels. Cell Biosci 2021;11(1):13. PMID: 33422128. DOI:10.1186/s13578-020-00522-z.; McMillin M.J., Beck A.E., Chong J.X. et al. Mutations in PIEZO2 cause Gordon syndrome, Marden–Walker syndrome, and distal arthrogryposis type 5. Am J Hum Genet 2014;94(5):734–44. PMID: 24726473. DOI:10.1016/j.ajhg.2014.03.015.; Mahmud A.A., Nahid N.A., Nassif C. et al. Loss of the proprioception and touch sensation channel PIEZO2 in siblings with a progressive form of contractures. Clin Genet 2017;91:470–5. PMID: 27607563. DOI:10.1111/cge.12850.; Nonomura K., Woo S-H., Chang R.B. et al. Piezo2 senses airway stretch and mediates lung inflation-induced apnoea. Nature 2017;541:176–18. PMID: 28002412. DOI:10.1038/nature20793.; Ma Y., Zhao Y., Cai Z., Hao X. Mutations in PIEZO2 contribute to Gordon syndrome, Marden–Walker syndrome and distal arthrogryposis: A bioinformatics analysis of mechanisms. Exp Ther Med 2019;17:3518–24. PMID: 30988732. DOI:10.3892/etm.2019.7381.; Haliloglu G., Becker K., Temucin C. et al. Recessive PIEZO2 stop mutation causes distal arthrogryposis with distal muscle weakness, scoliosis and proprioception defects. J Hum Genet 2016;15:1–5. PMID: 27974811. DOI:10.1038/jhg.2016.153.; https://nmb.abvpress.ru/jour/article/view/449
-
2Academic Journal
المؤلفون: G. E. Rudenskaya, O. L. Mironovich, A. F. Murtazina, O. A. Shchagina, Г. Е. Руденская, О. Л. Миронович, А. Ф. Муртазина, О. А. Щагина
المساهمون: The research was carried out within the state assignment of Ministry of Science and Higher Education of the Russia for Research Centre for Medical Genetics with usage of RCMG “Genome” NGS Core Unit., Авторы благодарят администрацию Тульской городской клинической больницы скорой медицинской помощи им. Д.Я. Ваныкина за предоставленные по ходатайству ФГБНУ «Медико-генетический научный центр им. академика Н.П. Бочкова» и с письменного разрешения семьи медицинские документы больного, находившегося ранее в отделении реанимации больницы.
المصدر: Neuromuscular Diseases; Том 11, № 1 (2021); 25-38 ; Нервно-мышечные болезни; Том 11, № 1 (2021); 25-38 ; 2413-0443 ; 2222-8721 ; 10.17650/2222-8721-2021-11-1
مصطلحات موضوعية: ген VCP, экзомное секвенирование, частая мутация, внутрисемейное разнообразие, мышечная дистрофия, болезнь Педжета, боковой амиотрофический склероз, exome sequencing, common mutation, intrаfamilial variability, muscular dystrophy, Paget disease, amyotrophic lateral sclerosis
وصف الملف: application/pdf
Relation: https://nmb.abvpress.ru/jour/article/view/424/286; Watts G.D., Wymer J., Kovach M.J. et al. Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin containing protein. Nat Genet 2004; 36(4):377–81. DOI:10.1038/ng1332. PMID: 15034582.; Kimonis V. Inclusion body myopathy with Paget disease of bone and/or frontotemporal dementia. 2007 May 25. In: GeneReviews®. Seattle: University of Washington, 1993–2020.; Sequence Variant Nomenclature v.2.15.11. Available at: http://varnomen.hgvs.org/ recommendations/DNA.; Genome aggregation database. Available at: https://gnomad.broadinstitute.org/.; Richards S., Aziz N., Bale S. et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015;17(5): 405–24. DOI:10.1038/gim.2015.30. PMID: 25741868.; Kim E.J., Park Y.E., Kim D.S. et al. Inclusion body myopathy with Paget disease of bone and frontotemporal dementia linked to VCP p.Arg155Cys in a Korean family. Arch Neurol 2011;68(6): 787–96. DOI:10.1001/archneurol.2010.376. PMID: 21320982.; Benatar M., Wuu J., Fernandez C. et al. Motor neuron involvement in multisystem proteinopathy: implications for ALS. Neurology 2013;80(20):1874–80. DOI:10.1212/WNL.0b013e3182929fc3. PMID: 23635965.; Mehta S., Khare M., Ramani R. et al. Genotype-phenotype studies of VCPassociated inclusion body myopathy with Paget disease of bone and/or frontotemporal dementia. Clin Genet 2013;83(5): 422–31. DOI:10.1111/cge.12000. PMID: 22909335.; Regensburger M., Türk M., Pagenstecher A. et al. VCP-related multisystem proteinopathy presenting as early-onset Parkinson disease. Neurology 2017;89:746–8. DOI:10.1212/WNL.0000000000004240. PMID: 28724584.; Al-Obeidi E., Al-Tahan S., Surampalli A. et al. Genotype-phenotype study in patients with valosin-containing protein mutations associated with multisystem proteinopathy. Clin Genet 2018;93(1):119–25. DOI:10.1111/cge.13095. PMID: 28692196.; Schröder R., Watts G.D., Mehta S.G. et al. Mutant valosin-containing protein causes a novel type of frontotemporal dementia. Ann Neurol 2005; 57(3):457–61. DOI:10.1002/ana.20407. PMID: 15732117.; Palmio J., Sandell S., Suominen T. et al. Distinct distal myopathy phenotype caused by VCP gene mutation in a Finnish family. Neuromuscul Disord 2011;21: 551–5. DOI:10.1016/j.nmd.2011.05.008. PMID: 21684747.; Weihl C.C., Temiz P., Miller S.E. et al. TDP-43 accumulation in inclusion body myopathy muscle suggests a common pathogenic mechanism with frontotemporal dementia. J Neurol Neurosurg Psychiat 2008;79(10):1186–9. DOI:10.1136/jnnp.2007.131334. PMID: 18796596.; Tan R., Devenney E., Dobson-Stone C. et al. Cerebellar integrity in the amyotrophic lateral sclerosis-frontotemporal dementia continuum. PLoS One 2014;9(8): e105632. DOI:10.1371/journal.pone. 0105632. PMID: 25144223.; Bocchetta M., Cardoso M.J., Cash D. et al. Patterns of regional cerebellar atrophy in genetic frontotemporal dementia. Neuroimage Clin 2016;11: 287–90. DOI:10.1016/j.nicl.2016.02.008. PMID: 26977398.; Chen Y., Kumfor F., Landin-Romero R. et al. The cerebellum in frontotemporal dementia: a meta-analysis of neuroimaging studies. Neuropsychol Rev 2019;29(4):450–64. DOI:10.1007/s11065-019-09414-7. PMID: 31428914.; McBride T.I. Paget’s disease and muscular dystrophy: report of an unusual association in one family. Scott Med J 1966;11:238–43. DOI:10.1177/003693306601100702. PMID: 5953945.; Varelas P.N., Bertoni T.E., Kapaki E., Papagerogiou C.T. Paget’s disease of bone and motor neuron disease. Muscle Nerve 1997;5:630. PMID: 9140378.; Tucker W.S.Jr., Hubbard W.H., Stryker T.D. et al. A new familial disorder of combined lower motor neuron degeneration and skeletal disorganization. Trans Assoc Am Phys 1982;95:126–34. PMID: 7182974.; Kimonis V.E., Kovach M.J., Waggoner B. et al. Clinical and molecular studies in a unique family with autosomal dominant limb-girdle muscular dystrophy and Paget disease of bone. Genet Med 2000;2: 232–41. DOI:10.1097/00125817200007000-00006. PMID: 11252708.; Kovach M.J., Waggoner B., Leal S.M. et al. Clinical delineation and localization to chromosome 9p13.3-p12 of a unique dominant disorder in four families: hereditary inclusion body myopathy, Paget disease of bone, and frontotemporal dementia. Mol Genet Metab 2001; 74(4):458–75. DOI:10.1006/mgme.2001.3256. PMID: 11749051.; The Human Gene Mutation Database. Available at: https://portal.biobaseinternational.com/.; Kim H.J., Kim N.C., Wang Y.D. et al. Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 2013;495:467–73. DOI:10.1038/nature11922. PMID: 23455423.; Haubenberger D., Bittner R.E., RauchShorny S. et al. Inclusion body myopathy and Paget disease is linked to a novel mutation in the VCP gene. Neurology 2005;65:1304–5. DOI:10.1212/01.wnl. 0000180407.15369.92. PMID: 16247064.; Van der Zee J., Pirici D., Van Langenhove T. et al. Clinical heterogeneity in 3 unrelated families linked to VCP p.Arg159His. Neurology 2009;73:626–32. DOI:10.1212/WNL.0b013e3181b389d9. PMID: 19704082.; Viassolo V., Previtali S.C., Schiatti E. et al. Inclusion body myopathy, Paget’s disease of the bone and frontotemporal dementia: recurrence of the VCP R155H mutation in an Italian family and implications for genetic counselling. Clin Genet 2008;74(1):54–60. DOI:10.1111/ j.1399-0004.2008.00984.x. PMID: 18341608.; Gu J.M., Ke Y.H., Yue H. et al. A novel VCP mutation as the cause of atypical IBMPFD in a Chinese family. Bone 2013;52:9–16. DOI:10.1016/j. bone.2012.09.012. PMID: 23000505.; Papadimas G.K., Paraskevas G.P., Zambelis T. et al. The multifaceted clinical presentation of VCP-proteinopathy in a Greek family. Acta Myol 2017;36(4):203–6. PMID: 29770363.; Sacconi S., Camaño P., de Greef J.C. et al. Patients with a phenotype consistent with facioscapulohumeral muscular dystrophy display genetic and epigenetic heterogeneity. J Med Genet 2012;49(1):41–6. DOI:10.1136/jmedgenet-2011-100101. PMID: 21984748.; Kimonis V.E., Mehta S.G., Fulchiero E.C. et al. Clinical studies in familial VCP myopathy associated with Paget disease of bone and frontotemporal dementia. Am J Med Genet Part A 2008;146A:745–57. DOI:10.1002/ajmg.a.31862. PMID: 18260132.; Johnson J.O., Mandrioli J., Benatar M. et al. Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron 2010;68:857–64. DOI:10.1016/j.neuron.2010.11.036. PMID: 21145000.; Jerath N., Crockett C., Moore S. et al. Rare manifestation of a c.290C>T, p.Gly97Glu VCP mutation. Case Rep Genet 2015;2015:239167.DOI:10.1155/2015/239167. PMID: 25878907.; De Souza P., Bortholin T., Dias B. et al. New genetic causes for complex hereditary spastic paraplegia. J Neurol Sci 2017; 379:283–92. DOI:10.1016/j.jns. 2017.06.019. PMID: 28716262.; DeJesus-Hernandez M., Desaro P., Johnston A. et al. Novel p.Ile151Val mutation in VCP in a patient of African American descent with sporadic ALS. Neurology 2011;77(11):1102–3. DOI:10.1212/WNL.0b013e31822e563c. PMID: 21880997.; Kelly L., Williams K., Solski J. et al. Mutation analysis of VCP in familial and sporadic amyotrophic lateral sclerosis. Neurobiol Аging 2012;33(7):1488.e15–6. DOI:10.1016/j.neurobiolaging.2011.11.022. PMID: 22196955.; Zou Z.Y., Liu M.S., Li X.G., Cui L.Y. Screening of VCP mutations in Chinese amyotrophic lateral sclerosis patients. Neurobiol Aging 2013;34(5):1519.e3–4. DOI:10.1016/j.neurobiolaging.2012. 10.002. PMID: 23102936.; Koppers M., van Blitterswijk M., Vlam L. et al. VCP mutations in familial and sporadic amyotrophic lateral sclerosis. Neurobiol Aging 2012;33(4):837.e7–13. DOI:10.1016/j.neurobiolaging.2011.10.006. PMID: 22078486.; Tiloca C., Ratti A., Pensato V. et al. Mutational analysis of VCP gene in familial amyotrophic lateral sclerosis. Neurobiol Aging 2012;33(3):630.e1–2. DOI:10.1016/j.neurobiolaging.2011.10.025. PMID: 22137929.; Abramzon Y., Johnson J., Scholz S. et al. Valosin-containing protein (VCP) mutations in sporadic amyotrophic lateral sclerosis. Neurobiol Aging 2012;33(9):2231. e1–6. DOI:10.1016/j.neurobiolaging.2012. 04.005. PMID: 22572540.; De Bot S., Schelhaas H., Kamsteeg E., van de Warrenburg B. Hereditary spastic paraplegia caused by a mutation in the VCP gene. Brain J Neurol 2012;135:e223. DOI:10.1093/brain/ aws201. PMID: 22991237.; Van de Warrenburg B., Schouten M., De Bot S. Clinical exome sequencing for cerebellar ataxia and spastic paraplegia uncovers novel gene-disease associations and unanticipated rare disorders. Eur J Hum Genet 2016;24(10):1460–6. DOI:10.1038/ejhg.2016.42. PMID: 27165006.; Shih Y.T., Hsueh Y.P. The involvement of endoplasmic reticulum formation and protein synthesis efficiency in VCPand ATL1-related neurological disorders. J Biomed Sci 2018;25(1):2. DOI:10.1186/ s12929-017-0403-3. PMID: 29310658.; Clemen C., Tangavelou K., Strucksberg K.-H. et al. Strumpellin is a novel valosincontaining protein binding partner linking hereditary spastic paraplegia to protein aggregation diseases. Brain 2010;133(10): 2920–41. DOI:10.1093/brain/awq222. PMID: 20833645.; Tesson C., Koht J., Stevanin G. Delving into the complexity of hereditary spastic paraplegias: how unexpected phenotypes and inheritance modes are revolutionizing their nosology. Hum Genet 2015;134:511–38. DOI:10.1007/s00439-015-1536-7. PMID: 25758904.; Gonzalez M.A., Feely S.M., Speziani F. et al. A novel mutation in VCP causes Charcot–Marie–Tooth type 2 disease. Brain 2014;137:2897–902. DOI:10.1093/brain/awu224. PMID: 25125609.; Gite J., Milko E., Brady L., Baker S. Phenotypic convergence in Charcot– Marie–Tooth 2Y with novel VCP mutation. Neuromuscul Disord 2020;30(3): 232–5. DOI:10.1016/j.nmd.2020.02.002. PMID: 32165109.; Chan N., Le C., Shieh P. et al. Valosincontaining protein mutation and Parkinson’s disease. Parkinsonism Relat Disord 2012;18:107–9. DOI:10.1016/j.parkreldis.2011.07.006. PMID: 21816654.; Spina S., Van Laar A., Murrell J. et al. Frontotemporal dementia associated with a valosin-containing protein mutation: report of three families. FASEB J 2008;22:58.4. DOI:10.1096/fasebj.22.1_supplement.58.4.; Fujimaki M., Kanai K., Funabe S. et al. Parkinsonism in a patient with valosincontaining protein gene mutation showing: a case report. J Neurol. 2017;264(6): 1284–6. DOI:10.1007/s00415-017-8467-2. PMID: 28364293.; Pirici D., Vandenberghe R., Rademakers R. et al. Characterization of ubiquitinated intraneuronal inclusions in a novel Belgian frontotemporal lobar degeneration family. J Neuropathol Exp Neurol 2006;65:289–301. DOI:10.1097/01.jnen.0000205147.39210.c7. PMID: 16651890.; Majounie E., Traynor B.J., Chiò A. et al. Mutational analysis of the VCP gene in Parkinson’s disease. Neurobiol Aging 2012;33:209. DOI:10.1016/j.neurobiolaging. 2011.07.011. PMID: 21920633.; Siuda J., Fujioka S., Wszolek Z. Parkinsonian syndrome in familial frontotemporal dementia. Parkinsonism Relat Disord 2014;20(9):957–64. DOI:10.1016/j.parkreldis.2014.06.004. PMID: 24998994.; Alieva A., Rudenok M., Filatova E. et al. VCP expression decrease as a biomarker of preclinical and early clinical stages of Parkinson’s disease. Sci Rep 2020;10(1):827. DOI:10.1038/s41598-020-57938-3. PMID: 31964996.; Hübbers C.U., Clemen C.S., Kesper K. et al. Pathological consequences of VCP mutations on human striated muscle. Brain 2007;130:381–93. DOI:10.1093/brain/awl238. PMID: 16984901.; Miller T.D., Jackson A.P., Barresi R. et al. Inclusion body myopathy with Paget disease and frontotemporal dementia (IBMPFD): clinical features including sphincter disturbance in a large pedigree. J Neurol Neurosurg Psychiatry 2009;80:583–4. DOI:10.1136/jnnp.2008.148676. PMID: 19372299.; Руденская Г.Е., Захарова Е.Ю. Наследственные нейрометаболические болезни юношеского и взрослого возраста. М.: ГЭОТАР-Медиа, 2018. 380 c. [Rudenskaya G.E., Zakharova E.Yu. Hereditary neurometabolic disorders in young and adult age. Moscow: GEOTAR-Media, 2018. 380 p. (In Russ.)].; https://nmb.abvpress.ru/jour/article/view/424
-
3Academic Journal
المؤلفون: O. A. Shchagina, O. P. Ryzhkova, A. L. Chukhrova, T. V. Milovidova, P. Gundorova, O. L. Mironovich, A. A. Orlova, M. D. Orlova, A. V. Poliakov, О. А. Щагина, О. П. Рыжкова, А. Л. Чухрова, Т. Б. Миловидова, П. Гундорова, О. Л. Миронович, А. А. Орлова, М. Д. Орлова, А. В. Поляков
المصدر: Neuromuscular Diseases; Том 10, № 4 (2020); 12-26 ; Нервно-мышечные болезни; Том 10, № 4 (2020); 12-26 ; 2413-0443 ; 2222-8721 ; 10.17650/2222-8721-2020-10-4
مصطلحات موضوعية: наследственная периферическая нейропатия, HMSN, Charcot–Marie–Tooth disease, CMT, whole exome sequencing, WES, inherited peripheral neuropathy, болезнь Шарко–Мари–Тута, полноэкзомное секвенирование
وصف الملف: application/pdf
Relation: https://nmb.abvpress.ru/jour/article/view/404/279; Barreto L.C.L.S., Oliveira F.S., Nunes P.S. et al. Epidemiologic study of Charcot–Marie–Tooth disease: a systematic review. Neuroepidemiology 2016;46(3):157–65. DOI:10.1159/000443706. PMID: 26849231.; Baets J., Timmerman V. Inherited peripheral neuropathies: a myriad of genes and complex phenotypes. Brain 2011;134(6):1587–90. DOI:10.1093/brain/awr114.; Drew A.P., Zhu D., Kidambi A. et al. Improved inherited peripheral neuropathy genetic diagnosis by whole-exome sequencing. Mol Genet Genomic Med 2015;3(2):143–54. DOI:10.1002/mgg3.126. PMID: 25802885.; Hartley T., Wagner J.D., WarmanChardon J. et al. Whole-exome sequencing is a valuable diagnostic tool for inherited peripheral neuropathies: Outcomes from a cohort of 50 families. Clin Genet 2018;93(2):301–9. DOI:10.1111/cge.13101. PMID: 28708278.; Schabhüttl M., Wieland T., Senderek J. et al. Whole-exome sequencing in patients with inherited neuropathies: outcome and challenges. J Neurol 2014;(261):970–82. DOI:10.1007/s00415-014-7289-8. PMID: 24627108.; Gonzaga-Jauregui C., Harel T., Gambin T. et al. Exome sequence analysis suggests that genetic burden contributes to phenotypic variability and complex neuropathy. Cell Rep 2015;12(7):1169–83. DOI:10.1016/j.celrep.2015.07.023. PMID: 26257172.; Richards S., Aziz N., Bale S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015;(17):405–23. DOI:10.1038/gim.2015.30. PMID: 25741868.; Щагина О.А., Дадали Е.Л., Федотов В.П., Поляков А.В. Спектр мутаций в гене MFN2 у больных наследственной моторно-сенсорной нейропатией II А типа. Медицинская генетика 2006;5(9):21–6.; Дадали Е.Л., Щагина О.А., Федотов В.П. Клинико-генетические особенности моторно-сенсорной нейропатии IIА типа. Анналы клинической и экспериментальной неврологии 2007;1(4):10–5.; Миловидова Т.Б., Дадали Е.Л., Федотов В.П. и др. Клинико-генетичекие корреляции при наследственной моторно-сенсорной нейропатии, вызванной мутациями в гене МРZ (P0). Журнал неврологии и психиатрии им. С.С. Корсакова 2011;111(12):48–55.; Latour P., Thauvin-Robinet C., BaudeletMéry C. et al. A major determinant for binding and aminoacylation of tRNAAla in cytoplasmic alanyl-trna synthetase is mutated in dominant axonal charcotmarie-tooth disease. Am J Hum Genet 2010;86(1):77–82. DOI:10.1016/j.ajhg.2009.12.005. PMID: 20045102.; Shchagina O.A., Milovidova T.B., Murtazina A.F. et al. HINT1 gene pathogenic variants: the most common cause of recessive hereditary motor and sensory neuropathies in Russian patients. Mol Biol Rep 2020;(47):1331–7. DOI:10.1007/s11033-019-05238-z.; Дадали Е.Л., Никитин С.С., Курбатов С.А. и др. Клинико-генетические характеристики аутосомно-рецессивной аксональной нейропатии с нейромиотонией у больных из России. Нервно-мышечные болезни 2017;7(3): 47–55. DOI:10.17650/2222-8721-2017-7-3-47-55.; https://nmb.abvpress.ru/jour/article/view/404
-
4Academic Journal
المؤلفون: S. S. Nikitin, V. N. Grigoryeva, K. A. Mashkovich, O. L. Mironovich, N. V. Ryadninskaya, A. V. Polyakov, С. С. Никитин, В. Н. Григорьева, К. А. Машкович, О. Л. Миронович, Н. В. Ряднинская, А. В. Поляков
المصدر: Neuromuscular Diseases; Том 9, № 4 (2019); 51-56 ; Нервно-мышечные болезни; Том 9, № 4 (2019); 51-56 ; 2413-0443 ; 2222-8721 ; 10.17650/2222-8721-2019-9-4
مصطلحات موضوعية: мультисистемное поражение, spinal and bulbar muscular atrophy, Kennedy’s disease, motor neuron disease, myotonia, myopathy, multiple system involvement, спинальная и бульбарная мышечная атрофия, болезнь Кеннеди, болезнь мотонейрона, миотония, миопатия
وصف الملف: application/pdf
Relation: https://nmb.abvpress.ru/jour/article/view/353/252; Atsuta N., Watanabe H., Ito M. et al. Natural history of spinal and bulbar muscular atrophy (SBMA): a study of 223 Japanese patients. Brain 2006; 129(6):1446–55. PMID: 16621916. DOI:10.1093/brain/awl096.; Tomczykiewicz K., Wrodycka B., Sułek A. Kennedy’s disease – case report. Pol Merkur Lekarski 2005;18(105):307–9. PMID: 15997639.; Fratta P., Nirmalananthan N., Masset L. et al. Correlation of clinical and molecular features in spinal bulbar muscular atrophy. Neurology 2014;82(23):2077–84. PMID: 24814851. DOI:10.1212/WNL.0000000000000507.; Щагина О.А., Миронович О.Л., Забненкова В.В. и др. Экспансия GAG-повторов в экзоне 1 гена AR у больных спинальной амиотрофией. Медицинская генетика 2017;16(9):31–6.; Jokela M.E., Udd B. Diagnostic clinical, electrodiagnostic and muscle pathology features of spinal and bulbar muscular atrophy. J Mol Neurosci 2016;58(3):330–4. PMID: 26572533. DOI:10.1007/s12031-015-0684-5.; Querin G., Bertolin C., Da Re E. et al. Non-neural phenotype of spinal and bulbar muscular atrophy: results from a large cohort of Italian patients. J Neurol Neurosurg Psychiatry 2016;87(8):810–6. PMID: 26503015. DOI:10.1136/jnnp-2015-311305.; Pennuto M., Gozes I. Introduction to the special issue on spinal and bulbar muscular atrophy. J Mol Neurosci 2016;58(3): 313–6. PMID: 26875173. DOI:10.1007/s12031-016-0720-0.; Araki A., Katsuno M., Suzuki K. et al. Brugada syndrome in spinal and bulbar muscular atrophy. Neurology 2014;82(20):1813–21. PMID: 24759840. DOI:10.1212/WNL.0000000000000434.; Sperfeld A.D., Karitzky J., Brummer D. et al. X-linked bulbospinal neuronopathy: Kennedy disease. Arch Neurol 2002;59(12):1921–6. PMID: 12470181. DOI:10.1001/archneur.59.12.1921.; Rhodes L.E., Freeman B.K., Auh S. et al. Clinical features of spinal and bulbar muscular atrophy. Brain 2009;132(12):3242–51. PMID: 19846582. DOI:10.1093/brain/awp258.; Hanajima R., Terao Y., Nakatani-Enomoto S. et al. Postural tremor in X-linked spinal and bulbar muscular atrophy. Mov Disord 2009;24(14):2063–9. PMID: 19746452. DOI:10.1002/mds.22566.; Katsuno M., Tanaka F., Adachi H. et al. Pathogenesis and therapy of spinal and bulbar muscular atrophy (SBMA). Prog Neurobiol 2012;99(3):246–56. PMID: 22609045. DOI:10.1016/j.pneurobio.2012.05.007.; Kouyoumdjian J.A., Morita M.P., Araújo R.G. X-linked spinal and bulbar muscular atrophy (Kennedy’s disease) with long-term electrophysiological evaluation: case report. Arq Neuropsiquiatr 2005;63(1):154–9. PMID:15830083. DOI:10.1590/s0004-282x2005000100028.; Araki K., Nakanishi H., Nakamura T. et al. Myotonia-like symptoms in a patient with spinal and bulbar muscular atrophy. Neuromuscul Disord 2015;25(11):913–5. PMID: 26363965. DOI:10.1016/j.nmd.2015.08.006.; Yu Z., Dadgar N., Albertelli M. et al. Androgen-dependent pathology demonstrates myopathic contribution to the Kennedy disease phenotype in a mouse knock-in model. J Clin Invest 2006;116(10):2663–72. PMID: 16981011. DOI:10.1172/JCI28773.; Monks D.A., Johansen J.A., Mo K. et al. Overexpression of wild-type androgen receptor in muscle recapitulates polyglutamine disease. Proc Natl Acad Sci USA 2007;104(46):18259–64. PMID: 17984063. DOI:10.1073/pnas.0705501104.; Mo K., Razak Z., Rao P. et al. Microarray analysis of gene expression by skeletal muscle of three mouse models of Kennedy disease/spinal bulbar muscular atrophy. PLoS One 2010;5(9):e12922. PMID: 20886071. DOI:10.1371/journal.pone.0012922.; Adachi H., Katsuno M., Minamiyama M. et al. Widespread nuclear and cytoplasmic accumulation of mutant androgen receptor in SBMA patients. Brain 2005;128:659–70. PMID: 1565942. DOI:10.1093/brain/awh381.; Chahin N., Sorenson E.J. Serum creatine kinase levels in spinobulbar muscular atrophy and amyotrophic lateral sclerosis. Muscle Nerve 2009;40:126–9. PMID: 19533663. DOI:10.1002/mus.21310.; Pennuto M., Greensmith L., Pradat P.F. et al. 210th ENMC International Workshop: Research and clinical management of patients with spinal and bulbar muscular atrophy, 27–29 March, 2015, Naarden, The Netherlands. Neuromuscul Disord 2015;25(10): 802–12. PMID: 26206601. DOI:10.1016/j.nmd.2015.06.462.; Soraru G., D’Ascenzo C., Polo A. et al. Spinal and bulbar muscular atrophy: skeletal muscle pathology in male patients and heterozygous females. J Neurol Sci 2008;264:100–5. PMID: 17854832. DOI:10.1016/j.jns.2007.08.012.; Querin G., D’Ascenzo C., Peterle E. et al. Pilot trial of clenbuterol in spinal and bulbar muscular atrophy. Neurology 2013;80:2095–8. PMID: 23645595. DOI:10.1212/WNL.0b013e318295d766.; Vogel H. Neurogenic Muscle Pathology. In: H.H. Goebel, C.A. Sewry, R.O. Weller, editors. Muscle disease. Pathology and genetics, 2nd edition Hoboken: Wiley Blackwell; 2013. P. 68–78.; https://nmb.abvpress.ru/jour/article/view/353
-
5Academic Journal
المؤلفون: E. L. Dadali, A. O. Borovikov, O. A. Shchagina, O. L. Mironovich, Е. Л. Дадали, А. О. Боровиков, О. А. Щагина, О. Л. Миронович
المساهمون: The research was carried out within the state assignment of Ministry of Science and Higher Education of the Russian Federation for RCMG, supported in part by RFBR (project No. 17-01-12345)., Работа выполнена в рамках государственного задания Министерства науки и высшего образования России в 2020 году (№ 17-01-12345).
المصدر: Neuromuscular Diseases; Том 10, № 4 (2020); 38-42 ; Нервно-мышечные болезни; Том 10, № 4 (2020); 38-42 ; 2413-0443 ; 2222-8721 ; 10.17650/2222-8721-2020-10-4
مصطلحات موضوعية: NR2F1, whole-exome sequencing, секвенирование экзома
وصف الملف: application/pdf
Relation: https://nmb.abvpress.ru/jour/article/view/406/281; Brown K.K., Alkuraya F.S., Matos M. et al. NR2F1 deletion in a patient with a de novo paracentric inversion, inv(5)(q15q33.2), and syndromic deafness. Am J Med Genet A 2009;149A(5):931–8. DOI:10.1002/ajmg.a.32764. PMID: 2777524.; Bosch D.G., Boonstra F.N., GonzagaJauregui C. et al. NR2F1 mutations cause optic atrophy with intellectual disability. Am J Hum Genet 2014;94(2):303–9. DOI:10.1016/j.ajhg.2014.01.002. PMID: 3928641.; Yamaguchi H., Zhou C., Lin S.C. et al. The nuclear orphan receptor COUP-TFI is important for differentiation of oligodendrocytes. Dev Biol 2004;266(2):238–51. DOI:10.1016/j.ydbio.2003.10.038. PMID: 14738874.; Al-Kateb H., Shimony J.S., Vineyard M. et al. NR2F1 haploinsufficiency is associated with optic atrophy, dysmorphism and global developmental delay. Am J Med Genet A 2013;161A(2):377–81. DOI:10.1002/ajmg.a.35650. PMID: 23300014.; Dimassi S., Labalme A., Ville D. et al. Whole-exome sequencing improves the diagnosis yield in sporadic infantile spasm syndrome. Clin Genet 2016;89(2): 198–204. DOI:10.1111/cge.12636. PMID: 26138355.; Kaiwar C., Zimmermann M.T., Ferber M.J. et al. Novel NR2F1 variants likely disrupt DNA binding: molecular modeling in two cases, review of published cases, genotypephenotype correlation, and phenotypic expansion of the Bosch-Boonstra-Schaaf optic atrophy syndrome. Cold Spring Harb Mol Case Stud 2017;3(6):a002162. DOI:10.1101/mcs.a002162. PMID: 5701304.; Park S.E., Lee J.S., Lee S.T. et al. Targeted panel sequencing identifies a novel NR2F1 mutations in a patient with BoschBoonstra-Schaaf optic atrophy syndrome. Ophthalmic Genet 2019;40(4):359–61. DOI:10.1080/13816810.2019.1650074. PMID: 31393201.; Chen C.A., Wang W., Pedersen S.E. et al. Nr2f1 heterozygous knockout mice recapitulate neurological phenotypes of Bosch-Boonstra-Schaaf optic atrophy syndrome and show impaired hippocampal synaptic plasticity. Hum Mol Genet 2020;29(5):705–15. DOI:10.1093/hmg/ddz233. PMID: 31600777.; Fazzi E., Signorini S.G., Bova S.M. et al. Spectrum of visual disorders in children with cerebral visual impairment. J Child Neurol 2007;22(3):294–301. DOI:10.1177/08830738070220030801. PMID: 17621499.; Bojanek E.K., Mosconi M.W., Guter S. et al. Clinical and neurocognitive issues associated with Bosch-Boonstra-Schaaf optic atrophy syndrome: A case study. Am J Med Genet A 2020;182(1):213–8. DOI:10.1002/ajmg.a.61409. PMID: 31729143.; Layat I., Challe G., LeHoanget et al. Neuro-ophthalmological conditions: study of the clinical care pathway. J Fr Ophtalmol 2017;40(6):e169–75. DOI:10.1016/j.jfo.2017.05.004. PMID: 28599960.; Hozjan I. Optic Nerve Hypoplasia: More Than Meets the Eye. J Pediatr Nurs 2017;34:98–100. DOI:10.1016/j.pedn.2017.03.011. PMID: 28410859.; Birkebaek N.H., Patel L., Wright N.B. et al. Endocrine status in patients with optic nerve hypoplasia: relationship to midline central nervous system abnormalities and appearance of the hypothalamic-pituitary axis on magnetic resonance imaging. J Clin Endocrinol Metab 2003;88(11): 5281–6. DOI:10.1210/jc.2003-030527. PMID: 14602762.; Sweney M.T., Newcomb T.M., Swoboda K.J. The expanding spectrum of neurological phenotypes in children with ATP1A3 mutations, alternating hemiplegia of childhood, rapid-onset dystonia-parkinsonism, CAPOS and beyond. Pediatr Neurol 2015;52(1):56–64. DOI:10.1016/j.pediatrneurol.2014.09.015. PMID: 4352574.; Sferra, A., Baillat G., Rizza T. et al. TBCE mutations cause early-onset progressive encephalopathy with distal spinal muscular atrophy. Am J Hum Genet 2016;99(4):974–83. DOI:10.1016/j.ajhg.2016.08.006. PMID: 5065657.; https://nmb.abvpress.ru/jour/article/view/406
-
6Academic Journal
المؤلفون: S. Sh. Khayat, L. F. Kurilo, I. A. Kuznetsova, O. L. Mironovich, A. V. Polyakov, V. B. Chernykh, С. Ш. Хаят, Л. Ф. Курило, И. А. Кузнецова, О. Л. Миронович, А. В. Поляков, В. Б. Черных
المصدر: Medical Genetics; Том 19, № 3 (2020); 98-100 ; Медицинская генетика; Том 19, № 3 (2020); 98-100 ; 2073-7998
مصطلحات موضوعية: gametogenesis, нарушение формирования пола, половая аутоидентификация, гаметогенез, transsexualism, disorders of sex development, gender identity
وصف الملف: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/850/522; https://www.medgen-journal.ru/jour/article/view/850