-
1Academic Journal
المؤلفون: A. A. Fedorova, O. V. Lefedova, S. A. Shlykov, А. А. Федорова, О. В. Лефедова, С. А. Шлыков
المساهمون: The study was carried out using the resources of the Center for Shared Use of Scientific Equipment of the Ivanovo State University of Chemistry and Technology with the support of the Ministry of Science and Higher Education of the Russian Federation, grant No. 075-15-2021-671., Исследование проведено с использованием ресурсов Центра коллективного пользования научным оборудованием Ивановского государственного химикотехнологического университета при поддержке Министерства науки и высшего образования Российской Федерации, соглашение № 075-15-2021-671.
المصدر: Fine Chemical Technologies; Vol 18, No 4 (2023); 315-327 ; Тонкие химические технологии; Vol 18, No 4 (2023); 315-327 ; 2686-7575 ; 2410-6593
مصطلحات موضوعية: квантово-химические расчеты, intramolecular proton transfer, hydrogen bond, IR spectroscopy, UV spectroscopy, quantum chemical calculations, внутримолекулярный перенос протона, водородная связь, ИК-спектроскопия, УФ-спектроскопия
وصف الملف: application/pdf
Relation: https://www.finechem-mirea.ru/jour/article/view/1988/1943; https://www.finechem-mirea.ru/jour/article/view/1988/1957; https://www.finechem-mirea.ru/jour/article/downloadSuppFile/1988/1068; Gérardy R., Monbaliu J.C. Preparation, Reactivity, and Synthetic Utility of Simple Benzotriazole Derivatives. In: Monbaliu J.C. (Ed.). The Chemistry of Benzotriazole Derivatives. Topics in Heterocyclic Chemistry. Cham.: Springer; 2016. V. 43. P. 1–66. https://doi.org/10.1007/7081_2015_179; Preschel M., Roeder M., Schlifke-Poschalko A., Zhang K. Novel process: Pat. US2012/0302760A1 USA. Publ. 29.11.2012.; Wood M.G., Pastor S.D., Lau J., DiFazio M., Suhadolnik J. Benzotriazoles containing phenyl groups substituted by heteroatoms and compositions stabilized therewith: Pat. US6800676 B2 USA. Publ. 04.04.2013.; Bossert J., Daniel C. Trans–cis photoisomerization of the styrylpyridine ligand in [Re(CO)3 (2,2′-bipyridine) (t-4-styrylpyridine)]+: role of the metal-to-ligand chargetransfer excited states. Chem. Eur. J. 2006.12(18):4835–4843. https://doi.org/10.1002/chem.200501082; Rachwal S., Wang P., Rachwal B., Zhang H., Yamamoto M. Highly-fluorescent and photo-stable chromophores for enhanced solar harvesting efficiency: Pat. WO2013/049062 A2 int. Publ. 04.04.2013.; Yokoyama N., Hayashi S., Kabasawa N., Taniguchi Y., Ichikawa M., Mochiduki S. Compound Having Benzotriazole Ring Structure and Organic Electrolumenescent Element: Pat. EP2409974 A1 Europe. Publ. 25.01.2012.; Ciorba S., Bartocci G., Galazzo G., Mazzacato U., Spaletti A. Photoisomerization mechanism of the cis-isomers of 1,2-distyrylbenzene and two hetero-analogues. J. Photochem. Photobiol. A: Chemistry. 2008;195(3):301–306. https://doi.org/10.1016/j.jphotochem.2007.10.016; Bajaj K., Sakhuja R. Benzotriazole: much more than just synthetic heterocyclic chemistry. In: Monbaliu J.C. (Ed.). The Chemistry of Benzotriazole Derivatives. Topics in Heterocyclic Chemistry. Cham.: Springer; 2016. V. 43. P. 235–284. https://doi.org/10.1007/7081_2015_198; Liu G.-B., Zhao H.-Y., Yang H.-J., Gao X., Li M.-K., Thiemann T. Preparation of 2-aryl-2H-benzotriazoles by zincmediated reductive cyclization o-nitrophenylazophenols in aqueous media without the use of organic solvents. Adv. Synt. Catalysis. 2007;349(10):1637–1640. https://doi.org/10.1002/adsc.200700018; Baik W., Yoo C.H., Koo S., Kim H., Hwang Y.H., Kim B.H., Lee S.W. Photostimulated reductive cyclization of o-nitrophenylazo dyes using sodium hydroxide in isopropyl alcohol, a new synthesis of 2-aryl-2H-benzotriazoles. Heterocycles.1999;51(8):1779–1783. https://doi.org/10.3987/COM-99-8597; Zollinger H. Diazo Chemistry. I. Aromatic and Heteroaromatic Compounds. Weinheim; New York; Basel; Cambridge; Tokyo: VCH; 1994. 453 p.; Koutsimpelis A.G., Screttas C.G., IgglessiMarkopoulou O. Synthesis of new ultraviolet light absorbers based on 2-aryl-2H-benzotriazoles. Heterocycles. 2005;65(6):1393–1401. https://doi.org/10.3987/COM-04-10304; Frisch M.J., Trucks G.W., Schlegelv H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Montgomery J.A. Jr., Vreven T., Kudin T.K.N., Burant J.C., Millam J.M., Iyengar S.S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N.G., Petersson A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Naka iH., Klene M., Li X., Knox J.E., Hratchian H.P., Cross J.B., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Ayala P.Y., Morokuma K., Voth G.A., Salvador P., Dannenberg J.J., Zakrzewski V.G., Dapprich S., Daniels A.D., Strain M.C., Farkas O., Malick D.K., Rabuck A.D., Raghavachari K., Foresman J.B., Ortiz J.V., Cui Q., Baboul A.G., Clifford S., Cioslowski J., Stefanov B.B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R.L., Fox D.J., Keith T., Al-Laham M.A., Peng C.Y., Nanayakkara A., Challacombe M., Gill P. M.W., Johnson B., Chen W., Wong M.W., Gonzalez C., Pople J.A. Gaussian 03. Pittsburgh PA: Gaussian Inc.; 2003.; Akiyama T. Hydrogen-bond catalysis or brønstedacid catalysis? General considerations. In: Pihko P.M. (Ed.). Hydrogen Bonding in Organic Synthesis. Weinheim: VCH; 2009. P. 5–14. https://doi.org/10.1002/9783527627844.ch2; Zollinger H. Color Chemistry: Synthesis, Properties and Application of Organic Dyes and Pigments. 2nd rev. ed. Weinheim; New York: VCH.; 1991. 496 p.; Kim H.-D., Ishida H. A study on hydrogen-bonded network structure of polybenzoxazines. J. Phys. Chem. A. 2002;106(14):3271–3280. https://doi.org/10.1021/jp010606p; Özen A. S., Doruker P., Viyente V. Effect of cooperative hydrogen bonding in azo−hydrazone tautomerism of azo dyes. J. Phys. Chem. A. 2007;111(51):13506–13514. https://doi.org/10.1021/jp0755645; Lauwiner M., Roth R., Rys P. Reduction of aromatic nitro compounds with hydrazine hydrate in the presence of an iron oxide/hydroxide catalyst. III. Selective reduction of nitro groups in aromatic azo compounds. Appl. Catal. A: Gen. 1999;177(1):9–14. https://doi.org/10.1016/S0926-860X(98)00247-6; Hoang A., Nemtseva M.P., Lefedova O.V. Effect of individual solvents on the rates of hydrogenization for substituted nitro-, azo-, and nitroazobenzenes on skeletal nickel. Rus. J. Phys. Chem. A. 2017;91(11):2279–2282. https://doi.org/10.1134/S0036024417110085; Klopman G. Chemical Activity and Reaction Paths. New York: John Wiley & Sons Inc.; 1974. 369 p.; Zuenko M.A., Nemtseva M.P., Lefedova O.V., Nikolaev V.N. Liquid-phase hydrogenation of 2-nitro2′-hydroxy-5′-methylazobenzene on raney nickel at low temperatures. Rus. J. Phys. Chem. A. 2004;78(6):877–881.; Lefedova O. V., Hoang A., Filippov D.V. Hydrogen role in selectivity of substituted nitro-azobenenes hydrogenization on skeletal nickel in 2-propanol aqueous solutions. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. = Russ. J. Chem. & Chem. Tech. 2020;63(6):65–71. https://doi.org/10.6060/ivkkt.20206306.6057; https://www.finechem-mirea.ru/jour/article/view/1988