يعرض 1 - 10 نتائج من 10 نتيجة بحث عن '"О. Бейлерли А."', وقت الاستعلام: 0.44s تنقيح النتائج
  1. 1
    Academic Journal

    المصدر: Advances in Molecular Oncology; Том 8, № 4 (2021); 29-41 ; Успехи молекулярной онкологии; Том 8, № 4 (2021); 29-41 ; 2413-3787 ; 2313-805X ; 10.17650/2313-805X-2021-8-4

    وصف الملف: application/pdf

    Relation: https://umo.abvpress.ru/jour/article/view/387/241; Soni N., Priya S., Bathla G. Texture analysis in cerebral gliomas: a review of the literature. Am J Neuroradiol 2019;40(6):928–34. DOI:10.3174/ajnr.A6075.; Malzkorn B., Reifenberger G. Integrated diagnostics of diffuse astrocytic and oligodendroglial tumors. Pathologe 2019;40(Suppl 1):9–17. DOI:10.1007/s00292-019-0581-8.; Wood M.D., Halfpenny A.M., Moore S.R. Applications of molecular neurooncology – a review of diffuse glioma integrated diagnosis and emerging molecular entities. Diagn Pathol 2019;14(1):29. DOI:10.1186/s13000-019-0802-8.; Ewing J. The Bulkley Lectur. The modern attitude toward traumatic cancer. Bull New York Academy Med 1935;11:281–333.; Zulch K.J., Meinel H.D. The biology of brain tumours. In: Tumours of the brain and skull. Part I. Handbook of Clinical Neurology. Vol. 16. Ed. By P.J. Vinkin, G.W. Bruyn. Amsterdam: North Holland, 1974. Pp. 1–56.; Manuelidis E.E. Glioma in trauma. In: Pathology of the Nervous System. Ed. by J. Minckler. Vol. 2. New York: McGraw-Hill, 1978. Pp. 2237–40.; Moorthy R.K., Rajshekhar V. Development of glioblastoma multiforme following traumatic cerebral contusion: case report and review of literature. Surg Neurol 2001;61(2):180–4. DOI:10.1016/s0090-3019(03)00423-3.; Monteiro G.T., Pereira R.A., Koifman R.J., Koifman S. Head injury and brain tumours in adults: A case-control study in Rio de Janeiro, Brazil. Eur J Cancer 2006;42(7):917–21. DOI:10.1016/j.ejca.2005.11.028.; Munch T.N., Gørtz S., Wohlfahrt J., Melbye M. The long-term risk of malignant astrocytic tumors after structural brain injury – a nationwide cohort study. Neuro Oncol 2015;17(5):718–24. DOI:10.1093/neuonc/nou312.; Morantz R.A., Shain W. Trauma and brain tumours: an experimental study. Neurosurgery 1978;3:181–6.; Brenner M. Role of GFAP in CNS injuries. Neurosci Lett 2014;565:7–13. DOI:10.1016/j.neulet.2014.01.055.; Zhang L., Zhang W.P., Hu H. et al. Expression patterns of 5-lipoxygenase in human brain with traumatic injury and astrocytoma. Neuropathology 2006;26(2):99–106. DOI:10.1111/j.1440-1789.2006.00658.x.; Härtig W., Michalski D., Seeger G. et al. Impact of 5-lipoxygenase inhibitors on the spatiotemporal distribution of inflammatory cells and neuronal COX-2 expression following experimental traumatic brain injury in rats. Brain Res 2013;1498:69–84. DOI:10.1016/j.brainres.2012.12.022.; Nathoo N., Prayson R.A., Bondar J. et al. Increased expression of 5-lipoxygenase in high-grade astrocytomas. Neurosurgery 2006;58(2):347–5. DOI:10.1227/01.NEU.0000195096.43258.94.; Ishii K., Zaitsu M., Yonemitsu N. et al. 5-lipoxygenase pathway promotes cell proliferation in human glioma cell lines. Clin Neuropathol 2009;28(6):445–52. DOI:10.5414/npp28445.; Tyagi V., Theobald J., Barger J. et al. Traumatic brain injury and subsequent glioblastoma development: Review of the literature and case reports. Surg Neurol Int 2016;7:78. DOI:10.4103/2152-7806.189296.; Coskun S., Coskun A., Gursan N., Aydin M.D. Post-traumatic glioblastoma multiforme: a case report. Eurasian J Med 2011;43(1):50–3. DOI:10.5152/eajm.2011.10.; Juškys R., Chomanskis Ž. Glioblastoma following traumatic brain injury: case report and literature review. Cureus 2020;12(5):e8019. DOI:10.7759/cureus.8019.; Zhou B., Liu W. Post-traumatic glioma: report of one case and review of the literature. Int J Med Sci 2010;7(5):248–50. DOI:10.7150/ijms.7.248.; Spallone A., Izzo C., Orlandi A. Posttraumatic glioma: report of a case. Case Rep Oncol 2013;6(2):403–9. DOI:10.1159/000354340.; Nygren C., Adami J., Ye W., Bellocco R. Primary brain tumors following traumatic brain injury – a population-based cohort study in Sweden. Cancer Causes Control 2001;12(8):733–7. DOI:10.1023/A:10112276172568.8.; Chen Y.H., Keller J.J., Kang J.H., Lin H.C. Association between traumatic brain injury and the subsequent risk of brain cancer. J Neurotrauma 2012;29(7):1328–33. DOI:10.1089/neu.2011.22357.; Munch T.N., Gørtz S., Wohlfahrt J., Melbye M. The long-term risk of malignant astrocytic tumors after structural brain injury – a nationwide cohort study. Neuro Oncol 2015;17(5):718–24. DOI:10.1093/neuonc/nou3126.; Han Z., Du Y., Qi H., Yin W. Post-traumatic malignant glioma in a pregnant woman: case report and review of the literature. Neurol Med Chir (Tokyo) 2013;53(9):630–4. DOI:10.2176/nmc.cr2013-0029.; Anselmi E., Vallisa D., Bertè R. et al. Post-traumatic glioma: report of two cases. Tumori 2006;92(2):175–7.; Hirsiger S., Simmen H.P., Werner C.M. et al. Danger signals activating the immune response after trauma. Mediators Inflamm 2012;315941. DOI:10.1155/2012/315941.; Jha R.M., Kochanek P.M., Simard JM. Pathophysiology and treatment of cerebral edema in traumatic brain injury. Neuropharmacology 2019;145(Pt.B):230–246. DOI:10.1016/j.neuropharm.2018.08.004.; Wofford K.L., Loane D.J., Cullen D.K. Acute drivers of neuroinflammation in traumatic brain injury. Neural Regen Res 2019;14(9):1481–9. DOI:10.4103/1673-5374.255958.; Xu B., Yu D.M., Liu F.S. Effect of siRNA induced inhibition of IL 6 expression in rat cerebral gliocytes on cerebral edema following traumatic brain injury. Mol Med Rep 2014;10(4):1863–8. DOI:10.3892/mmr.2014.2462.; Cho A., McKelvey K.J., Lee A., Hudson A.L. The intertwined fates of inflammation and coagulation in glioma. Mamm Genome 2018;29(11–12):806–16. DOI:10.1007/s00335-018-9761-8.; Neagu M., Constantin C., Caruntu C. et al. Inflammation: a key process in skin tumorigenesis. Oncol Lett 2019;17(5):4068–84. DOI:10.3892/ol.2018.9735.; Needham E.J., Helmy A., Zanier E.R. et al. The immunological response to traumatic brain injury. J Neuroimmunol 2019;332:112–25. DOI:10.1016/j.jneuroim.2019.04.005.; Elder G.A., Ehrlich M.E., Gandy S. Relationship of traumatic brain injury to chronic mental health problems and dementia in military veterans. Neurosci Lett 2019;707:134294. DOI:10.1016/j.neulet.2019.134294.; Clark D.P.Q., Perreau V.M., Shultz S.R. et al. Inflammation in traumatic brain injury: roles for toxic A1 astrocytes and microglial-astrocytic crosstalk. Neurochem Res 2019;44(6):1410–24. DOI:10.1007/s11064-019-02721-8.; Smith C., Gentleman S.M., Leclercq P.D. et al. The neuroinflammatory response in humans after traumatic brain injury. Neuropathol Appl Neurobiol 2013; 39(6):654–66. DOI:10.1111/nan.12008.; Mostofa A.G., Punganuru S.R. et al. The process and regulatory components of inflammation in brain oncogenesis. Biomolecules 2017;7(2):E34. DOI:10.3390/biom7020034.; Jo J., Wen P.Y. Antiangiogenic therapy of high-grade gliomas. Prog Neurol Surg 2018;31:180–99. DOI:10.1159/000467379.; Schiffer D., Annovazzi L., Casalone C., Corona C., Mellai M. Glioblastoma: Microenvironment and Niche Concept. Cancers (Basel) 2018;11(1).E5. DOI:10.3390/cancers11010005.; Van Bodegraven E.J., van Asperen J.V. et al. Importance of GFAP isoform-specific analyses in astrocytoma. Glia 2019;67(8):1417–33. DOI:10.1002/glia.23594.; Valori C.F., Guidotti G., Brambilla L., Rossi D. Astrocytes: Emerging therapeutic targets in neurological disorders. Trends Mol Med 2019;25(99):750–9. DOI:10.1016/j.molmed.2019.04.010.; Guan X., Hasan M.N., Maniar S. et al. Reactive Astrocytes in glioblastoma multiforme. Mol Neurobiol 2018;55(8):6927–38. DOI:10.1007/s12035-018-0880-8.; Gimple R.C., Bhargava S., Dixit D., Rich J.N. Glioblastoma stem cells: lessons from the tumor hierarchy in a lethal cancer. Genes Dev 2019;33(11–12):591–609. DOI:10.1101/gad.324301.119.; Schiffer D., Giordana M.T., Cvalla P. et al. Immunohistochemistry of glial reaction after injury in the rat: double staining and markers of cell proliferation. Int J Dev Neurosci 1993;11(2):269–80.; Hill-Felberg S.J., McIntosh T.K., Oliver D.L. et al. Concurrent loss and proliferation of astrocytes following lateral fluid percussion brain injury in the adult rat. J Neurosci Res 1999;57(2):271–9. DOI:10.1002/(SICI)1097-4547(19990715)57:23.0.CO;2-Z.; Kernie S.G., Erwin T.M., Parada L.F. Brain remodeling due to neuronal and astrocytic proliferation after controlled cortical injury in mice. J Neuroci Res 2001;66(3):317–26. HTTPS://DOI.ORG/10.1002/jnr.10013.; Cassatella M.A., Östberg N.K., Tamassia N., Soehnlein O. Biological roles of neutrophil-derived granule proteins and cytokines. Trends Immunol 2019;40(7):648–64. DOI:10.1016/j.it.2019.05.003.; Ferrer V.P., Moura Neto V., Mentlein R. Glioma infiltration and extracellular matrix: key players and modulators. Glia 2018;66(8):1542–65. DOI:10.1002/glia.23309.; West P.K., Viengkhou B., Campbell I.L., Hofer M.J. Microglia responses to interleukin-6 and type I interferons in neuroinflammatory disease. Glia 2019;67(10):1821–41.DOI:10.1002/glia.23634.; Chang N., Ahn S.H., Kong D.S. et al. The role of STAT3 in glioblastoma progression through dual influences on tumor cells and the immune microenvironment. Mol Cell Endocrinol 2017;451:53–65. DOI:10.1016/j.mce.2017.01.004.; Linder B., Weirauch U., Ewe A. et al. Therapeutic targeting of Stat3 using lipopolyplex nanoparticle-formulated siRNA in a syngeneic orthotopic mouse glioma model. Cancers (Basel) 2019;11(3):E333. DOI:10.3390/cancers11030333.; Zhan X., Gao H., Sun W. Correlations of IL-6, IL-8, IL-10, IL-17 and TNF-α with the pathological stage and prognosis of glioma patients. Minerva Med 2019;(111)20:192–5. DOI:10.23736/S0026-4806.19.06101-9.; Samaras V., Piperi C., Korkolopoulou P. et al. Application of the ELISPOT method for comparative analysis of interleukin (IL)-6 and IL-10 secretion in peripheral blood of patients with astroglial tumors. Mol Cell Biochem 2007;304(1–2):343–51. DOI:10.1007/s11010-007-9517-3.; Li R., Li G., Deng L. et al. IL-6 augments the invasiveness of U87MG human glioblastoma multiforme cells via up-regulation of MMP-2 and fascin-1. Oncol Rep 2010;23:1553–9. DOI:10.3892/or_00000795.; Wang H., Lathia J.D., Wu Q. et al. Targeting interleukin 6 signaling suppresses glioma stem cell survival and tumor growth. Stem Cells 2009;27(10):2393–404. DOI:10.1002/stem.188.; Yousefzadeh-Chabok S., Dehnadi Moghaddam A., Kazemnejad-Leili E. et al. The relationship between serum levels of Interleukins 6, 8, 10 and clinical outcome in patients with severe traumatic brain injury. Arch Trauma Res 2015;4(1):e18357. DOI:10.5812/atr.18357.; Kosmopoulos M., Christofides A., Drekolias D. et al. Critical role of IL-8 targeting in gliomas. Curr Med Chem 2018;25(17):1954–67. DOI:10.2174/0929867325666171129125712.; Christofides A., Kosmopoulos M., Piperi C. Pathophysiological mechanisms regulated by cytokines in gliomas. Cytokine 2015;71(2):377–84. DOI:10.1016/j.cyto.2014.09.008.; Carlsson S.K., Brothers S.P., Wahlestedt C. Emerging treatment strategies for glioblastoma multiforme. EMBO Mol Med 2014;6(11):1359–70. DOI:10.15252/emmm.201302627.; Figarella-Branger D., Colin C., Tchoghandjian A. et al. Glioblastomas: gliomagenesis, genetics, angiogenesis, and microenvironment. Neurochirurgie 2010;56(6):441–8. DOI:10.1016/j.neuchi.2010.07.010.; Salazar-Ramiro A., Ramírez-Ortega D., de la Cruz V.P. et al. Role of redox status in development of glioblastoma. Front Immunol 2016;7:156. DOI:10.3389/fimmu.2016.00156.; Korbecki J., Gutowska I., Kojder I. et al. New extracellular factors in glioblastoma multiforme development: neurotensin, growth differentiation factor-15, sphingosine-1-phosphate and cytomegalovirus infection. Oncotarget 2018;9(6):7219–70. DOI:10.18632/oncotarget.24102.; Ma Q., Long W., Xing C. et al. Cancer stem cells and immunosuppressive microenvironment in glioma. Front Immunol 2018;9:2924. DOI:10.3389/fimmu.2018.02924.; Zhou J., Shrikhande G., Xu J. et al. Tsc1 mutant neural stem/progenitor cells exhibit migration deficits and give rise to subependymal lesions in the lateral ventricle. Genes Dev 2011;25(15):1595–600. DOI:10.1101/gad.16750211.; Rinaldi M., Caffo M., Minutoli L. et al. ROS and brain gliomas: an overview of potential and innovative therapeutic strategies. Int J Mol Sci 2016;17(6):E984. DOI:10.3390/ijms17060984.; Ciccarone F., Castelli S., Ciriolo M.R. Oxidative stress-driven autophagy acROSs onset and therapeutic outcome in hepatocellular carcinoma. Oxid Med Cell Longev 2019;2019:6050123. DOI:10.1155/2019/6050123.; Sanchez-Perez Y., Soto-Reyes E., GarciaCuellar C.M. et al. Role of epigenetics and oxidative stress in gliomagenesis. CNS Neurol Disord Drug Targets 2017;16(10):1090–8. DOI:10.2174/1871527317666180110124645.; Colquhoun A. Cell biology-metabolic crosstalk in glioma. Int J Biochem Cell Biol 2017;89:171–81. DOI:10.1016/j.biocel.2017.05.022.; Galgano M., Toshkezi G., Qiu X. et al. Traumatic brain injury: current treatment strategies and future endeavors. Cell Transplant 2017;26(7):1118–30. DOI:10.1177/0963689717714102.; Conti A., Gulì C., La Torre D. et al. Role of inflammation and oxidative stress mediators in gliomas. Cancers (Basel) 2010;2(2):693–712. DOI:10.3390/cancers2020693.; Khan M., Khan H., Singh I., Singh A.K. Hypoxia inducible factor-1 alpha stabilization for regenerative therapy in traumatic brain injury. Neural Regen Res 2017;12(5):696–701. DOI:10.4103/16735374.206632.; Tu J., Fang Y., Han D. et al. Activation of nuclear factor-kappaB in the angiogenesis of glioma: Insights into the associated molecular mechanisms and targeted therapies. Cell Prolif 2021;54(2):e12929. DOI:10.1111/cpr.12929.; D’Souza L.C., Mishra S., Chakraborty A. et al. Oxidative stress and cancer development: are noncoding RNAs the missing links? Antioxid Redox Signal 2020;33(17):1209–29. DOI:10.1089/ars.2019.7987.; Li X., Wu C., Chen N. et al. PI3K/Akt/ mTOR signaling pathway and targeted therapy for glioblastoma. Oncotarget 2016;7(22):33440–50. DOI:10.18632/oncotarget.7961.; Cohen A.L., Colman H. Glioma biology and molecular markers. Cancer Treat Res 2015;163:15–30. DOI:10.1007/978-3-31912048-5_2.; Kupats E., Stelfa G., Zvejniece B. et al. Mitochondrial-protective effects of R-phenibut after experimental traumatic brain injury. Oxid Med Cell Longev 2020;2020:9364598. DOI:10.1155/2020/9364598.; Vander Heiden M.G., DeBerardinis R.J. Understanding the Intersections between Metabolism and Cancer Biology Cell 2017;168(4):657–69. DOI:10.1016/j.cell.2016.12.039.; Shteinfer-Kuzmine A., Arif T., Krelin Y. et al. Mitochondrial VDAC1-based peptides: attacking oncogenic properties in glioblastoma. Oncotarget 2017;8(19):31329–46. DOI:10.18632/oncotarget.15455.; Vaupel P., Schmidberger H., Mayer A. The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression. Int J Radiat Biol 2019;95(7):912–9. DOI:10.1080/09553002.2019.1589653.; https://umo.abvpress.ru/jour/article/view/387

  2. 2
    Academic Journal

    المصدر: Creative surgery and oncology; Том 11, № 4 (2021); 343-353 ; Креативная хирургия и онкология; Том 11, № 4 (2021); 343-353 ; 2076-3093 ; 2307-0501

    وصف الملف: application/pdf

    Relation: https://www.surgonco.ru/jour/article/view/639/478; Busch A., Wegner A., Haversath M., Jäger M. Bone substitutes in orthopaedic surgery: current status and future perspectives. Z Orthop Unfall. 2021;159(3):304–13. DOI:10.1055/a-1073-8473; Kofi na V., Demirer M., Erdal B.S., Eubank T.D., Yildiz V.O., Tatakis D.N., et al. Bone graft ing history aff ects soft tissue healing following implant placement. J Periodontol. 2021;92(2):234–43. DOI:10.1002/ JPER.19-0709; Villatte G., Martins A., Erivan R., Pereira B., Descamps S., Boisgard S. Use of allograft to reconstruct anterior bony glenoid defect in chronic glenohumeral instability: a systematic review. Arch Orthop Trauma Surg. 2020;140(10):1475–85. DOI:10.1007/s00402-020-03511-6; Burnier M., Nguyen N.T.V., Morrey M.E., O’Driscoll S.W., SanchezSotelo J. Revision elbow arthroplasty using a proximal ulnar allograft with allograft triceps for combined ulnar bone loss and triceps insuffi ciency. J Bone Joint Surg Am. 2020;102(22):2001–7. DOI:10.2106/ JBJS.20.00414; Schmidt A.H. Autologous bone graft : Is it still the gold standard? Injury. 2021;52(Suppl. 2):S18–22. DOI:10.1016/j.injury.2021.01.043; Coyac B.R., Sun Q., Leahy B., Salvi G., Yuan X., Brunski J.B., et al. Optimizing autologous bone contribution to implant osseointegration. J Periodontol. 2020;91(12):1632–44. DOI:10.1002/JPER.19-0524; Ek E.T., Johnson P.R., Bohan C.M., Padmasekara G. Autologous bone graft ing and double screw fi xation for unstable scaphoid nonunions with cavitary bone loss. J Hand Surg Eur Vol. 2021;46(2):205–6. DOI:10.1177/1753193420946656; Filipowska J., Tomaszewski K.A., Niedźwiedzki Ł., Walocha J.A., Niedźwiedzki T. The role of vasculature in bone development, regeneration and proper systemic functioning. Angiogenesis. 2017;20(3):291– 302. DOI:10.1007/s10456-017-9541-1; Diomede F., Marconi G.D., Fonticoli L., Pizzicanella J., Merciaro I., Bramanti P., et al. Functional relationship between osteogenesis and angiogenesis in tissue regeneration. Int J Mol Sci. 2020;21(9):3242. DOI:10.3390/ijms21093242; Haugen H.J., Lyngstadaas S.P., Rossi F., Perale G. Bone graft s: which is the ideal biomaterial? J Clin Periodontol. 2019;46(Suppl. 21):92–102. DOI:10.1111/jcpe.13058; Misch C.M. Bone augmentation using allogeneic bone blocks with recombinant bone morphogenetic protein-2. Implant Dent. 2017;26(6):826–31. DOI:10.1097/ID.0000000000000693; Canullo L., Genova T., Rakic M., Sculean A., Miron R., Muzzi M., et al. Eff ects of argon plasma treatment on the osteoconductivity of bone graft ing materials. Clin Oral Investig. 2020;24(8):2611–23. DOI:10.1007/s00784-019-03119-0; Baldwin P., Li D.J., Auston D.A., Mir H.S., Yoon R.S., Koval K.J. Autograft , allograft , and bone graft substitutes: clinical evidence and indications for use in the setting of orthopaedic trauma surgery. J Orthop Trauma. 2019;33(4):203–13. DOI:10.1097/BOT.0000000000001420; Lobb D.C., DeGeorge B.R. Jr, Chhabra A.B. Bone graft substitutes: current concepts and future expectations. J Hand Surg Am. 2019;44(6):497–505.e2. DOI:10.1016/j.jhsa.2018.10.032; Sohn H.S., Oh J.K. Review of bone graft and bone substitutes with an emphasis on fracture surgeries. Biomater Res. 2019;23:9. DOI:10.1186/ s40824-019-0157-y; Epple C., Haumer A., Ismail T., Lunger A., Scherberich A., Schaefer D.J., et al. Prefabrication of a large pedicled bone graft by engineering the germ for de novo vascularization and osteoinduction. Biomaterials. 2019;192:118–27. DOI:10.1016/j.biomaterials.2018.11.008; Calcei J.G., Rodeo S.A. Orthobiologics for bone healing. Clin Sports Med. 2019;38(1):79–95. DOI:10.1016/j.csm.2018.08.005; Niederauer G.G., Lee D.R., Sankaran S. Bone graft ing in arthroscopy and sports medicine. Sports Med Arthrosc Rev. 2006;14(3):163–8. DOI:10.1097/00132585-200609000-00008; Grambart S.T., Anderson D.S., Anderson T.D. Bone graft ing options. Clin Podiatr Med Surg. 2020;37(3):593–600. DOI:10.1016/j. cpm.2020.03.012; Golubovsky J.L., Ejikeme T., Winkelman R., Steinmetz M.P. Osteobiologics. Oper Neurosurg (Hagerstown). 2021;21(Suppl 1):S2–9. DOI:10.1093/ons/opaa383; Zhao H., Liang G., Liang W., Li Q., Huang B., Li A., et al. In vitro and in vivo evaluation of the pH-neutral bioactive glass as high performance bone graft s. Mater Sci Eng C Mater Biol Appl. 2020;116:111249. DOI:10.1016/j.msec.2020.111249; Hosseini F.S., Nair L.S., Laurencin C.T. Inductive materials for regenerative engineering. J Dent Res. 2021;100(10):1011–9. DOI:10.1177/00220345211010436; Nunziato C., Williams J., Williams R. Synthetic bone graft substitute for treatment of unicameral bone cysts. J Pediatr Orthop. 2021;41(1):e60– 6. DOI:10.1097/BPO.0000000000001680; Cakir T., Yolas C. Synthetic bone graft versus autograft obtained from the spinous process in posterior lumbar interbody fusion. Turk Neurosurg. 2021;31(2):199–205. DOI:10.5137/1019-5149.JTN.29765-20.2; Arif U., Haider S., Haider A., Khan N., Alghyamah A.A., Jamila N., et al. Biocompatible polymers and their potential biomedical applications: a review. Curr Pharm Des. 2019;25(34):3608–19. DOI:10.2174/138161 2825999191011105148; Li H., Ma T., Zhang M., Zhu J., Liu J., Tan F. Fabrication of sulphonated poly(ethylene glycol)-diacrylate hydrogel as a bone graft ing scaffold. J Mater Sci Mater Med. 2018;29(12):187. DOI:10.1007/s10856-018-6199-1; Bouler J.M., Pilet P., Gauthier O., Verron E. Biphasic calcium phosphate ceramics for bone reconstruction: A review of biological response. Acta Biomater. 2017;53:1–12. DOI:10.1016/j.actbio.2017.01.076; Trombetta R., Inzana J.A., Schwarz E.M., Kates S.L., Awad H.A. 3D Printing of calcium phosphate ceramics for bone tissue engineering and drug delivery. Ann Biomed Eng. 2017;45(1):23–44. DOI:10.1007/ s10439-016-1678-3; Blank A., Riesgo A., Gitelis S., Rapp T. Bone graft s, substitutes, and augments in benign orthopaedic conditions current concepts. Bull Hosp Jt Dis (2013). 2017;75(2):119–27. PMID: 28583058; Brett E., Flacco J., Blackshear C., Longaker M.T., Wan D.C. Biomimetics of bone implants: the regenerative road. Biores Open Access. 2017;6(1):1–6. DOI:10.1089/biores.2016.0044; Fukuba S., Okada M., Nohara K., Iwata T. Alloplastic bone substitutes for periodontal and bone regeneration in dentistry: current status and prospects. Materials (Basel). 2021;14(5):1096. DOI:10.3390/ ma14051096; Battafarano G., Rossi M., De Martino V., Marampon F., Borro L., Secinaro A., et al. Strategies for bone regeneration: from graft to tissue engineering. Int J Mol Sci. 2021;22(3):1128. DOI:10.3390/ ijms22031128; Zhao R., Yang R., Cooper P.R., Khurshid Z., Shavandi A., Ratnayake J. Bone graft s and substitutes in dentistry: a review of current trends and developments. Molecules. 2021;26(10):3007. DOI:10.3390/molecules26103007; Gao C., Qiu Z.Y., Hou J.W., Tian W., Kou J.M., Wang X. Clinical observation of mineralized collagen bone graft ing aft er curettage of benign bone tumors. Regen Biomater. 2020;7(6):567–75. DOI:10.1093/ rb/rbaa031; Jang H.Y., Shin J.Y., Oh S.H., Byun J.H., Lee J.H. PCL/HA hybrid microspheres for eff ective osteogenic differentiation and bone regeneration. ACS Biomater Sci Eng. 2020;6(9):5172–80. DOI:10.1021/ acsbiomaterials.0c00550; Li G., Zhao M., Xu F., Yang B., Li X., Meng X., et al. Synthesis and biological application of polylactic acid. Molecules. 2020;25(21):5023. DOI:10.3390/molecules25215023; Winter G.D., Simpson B.J. Heterotopic bone formed in a synthetic sponge in the skin of young pigs. Nature. 1969;223(5201):88–90. DOI:10.1038/223088a0; Winter G.D. Heterotopic bone formation in a synthetic sponge. Proc R Soc Med. 1970;63(11 Part 1):1111–5. PMID: 5484927; Guzzo C.M., Nychka J.A. Bone “spackling” paste: Mechanical properties and in vitro response of a porous ceramic composite bone tissue scaffold. J Mech Behav Biomed Mater. 2020;112:103958. DOI:10.1016/j.jmbbm.2020.103958; Panseri S., Montesi M., Hautcoeur D., Dozio S.M., Chamary S., De Barra E., et al. Bone-like ceramic scaffolds designed with bioinspired porosity induce a diff erent stem cell response. J Mater Sci Mater Med. 2021;32(1):3. DOI:10.1007/s10856-020-06486-3; Wu K., Chen Y.C., Lin S.M., Chang C.H. In vitro and in vivo eff ectiveness of a novel injectable calcitonin-loaded collagen/ceramic bone substitute. J Biomater Appl. 2021;35(10):1355–65. DOI:10.1177/0885328221989984; Kargozar S., Singh R.K., Kim H.W., Baino F. “Hard” ceramics for “Soft ” tissue engineering: Paradox or opportunity? Acta Biomater. 2020;115:1–28. DOI:10.1016/j.actbio.2020.08.014; Dee P., You H.Y., Teoh S.H., Le Ferrand H. Bioinspired approaches to toughen calcium phosphate-based ceramics for bone repair. J Mech Behav Biomed Mater. 2020;112:104078. DOI:10.1016/j. jmbbm.2020.104078; Zhang X., Zhou P., Chen W., Wu C. A study of hydroxyapatite ceramics and its osteogenesis. In: Ravaglioli Krajewski A., editors. Bioceramics and the human body. London: Elsevier Applied Science:1991. P. 408–16.; Coathup M.J., Hing K.A., Samizadeh S., Chan O., Fang Y.S., Campion C., et al. Effect of increased strut porosity of calcium phosphate bone graft substitute biomaterials on osteoinduction. J Biomed Mater Res A. 2012;100(6):1550–5. DOI:10.1002/jbm.a.34094; Wang J., Chen Y., Zhu X., Yuan T., Tan Y., Fan Y., et al. Effect of phase composition on protein adsorption and osteoinduction of porous calcium phosphate ceramics in mice. J Biomed Mater Res A. 2014;102(12):4234–43. DOI:10.1002/jbm.a.35102; Wan B., Wang R., Sun Y., Cao J., Wang H., Guo J., et al. Building osteogenic microenvironments with strontium-substituted calcium phosphate ceramics. Front Bioeng Biotechnol. 2020;8:591467. DOI:10.3389/fb ioe.2020.591467; Tovani C.B., Oliveira T.M., Soares M.P.R., Nassif N., Fukada S.Y., Ciancaglini P., et al. Strontium calcium phosphate nanotubes as bioinspired building blocks for bone regeneration. ACS Appl Mater Interfaces. 2020;12(39):43422–34. DOI:10.1021/acsami.0c12434; Wang W., Yeung K.W.K. Bone graft s and biomaterials substitutes for bone defect repair: A review. Bioact Mater. 2017;2(4):224–47. DOI:10.1016/j.bioactmat.2017.05.007; Rizwan M., Hamdi M., Basirun W.J. Bioglass 45S5-based composites for bone tissue engineering and functional applications. J Biomed Mater Res A. 2017;105(11):3197–223. DOI:10.1002/jbm.a.36156; Kang J.H., Jang K.J., Sakthiabirami K., Oh G.J., Jang J.G., Park C., et al. Fabrication and characterization of 45s5 bioactive glass/thermoplastic composite scaffold by ceramic injection printer. J Nanosci Nanotechnol. 2020;20(9):5520–4. DOI:10.1166/jnn.2020.17670; Golovchak R., Brennan C., Fletcher J., Ignatova T., Jain H. Dynamics of structural relaxation in bioactive 45S5 glass. J Phys Condens Matter. 2020;32(29):295401. DOI:10.1088/1361-648X/ab80f3; Baino F., Fiume E. Elastic mechanical properties of 45s5-based bioactive glass-ceramic scaffolds. Materials (Basel). 2019;12(19):3244. DOI:10.3390/ma12193244; Begum S., Johnson W.E., Worthington T., Martin R.A. The influence of pH and fluid dynamics on the antibacterial effi cacy of 45S5 Bioglass. Biomed Mater. 2016;11(1):015006. DOI:10.1088/1748-6041/11/1/015006; Bauer J., Silva E Silva A., Carvalho E.M., Ferreira P.V.C., Carvalho C.N., Manso A.P., et al. Dentin pretreatment with 45S5 and niobophosphate bioactive glass: Effects on pH, antibacterial, mechanical properties of the interface and microtensile bond strength. J Mech Behav Biomed Mater. 2019;90:374–80. DOI:10.1016/j.jmbbm.2018.10.029; Selye H., Lemire Y., Bajusz E. Induction of bone, cartilage and hemopoietic tissue by subcutaneously implanted tissue diaphragms. Wilhelm Roux Arch Entwickl Mech Org. 1960;151(5):572–85. DOI:10.1007/ BF00577813; Liu D., Zhu H., Zhao J., Pan L., Dai P., Gu X., et al. Synthesis of mesoporous gamma-Al2O3 with spongy structure: in-situ conversion of metal-organic frameworks and improved performance as catalyst support in hydrodesulfurization. Materials (Basel). 2018;11(7):1067. DOI:10.3390/ma11071067; Denes E., Barrière G., Poli E., Lévêque G. Alumina biocompatibility. J Long Term Eff Med Implants. 2018;28(1):9–13. DOI:10.1615/JLongTermEff MedImplants.2018025635; Naga S.M., El-Kady A.M., El-Maghraby H.F., Awaad M., Detsch R., Boccaccini A.R. Novel porous Al2O3-SiO2-TiO2 bone grafting materials: formation and characterization. J Biomater Appl. 2014;28(6):813– 24. DOI:10.1177/0885328213483634; Byeon S.M., Lee M.H., Bae T.S. Shear bond strength of Al2O3 sandblasted Y-TZP ceramic to the orthodontic metal bracket. Materials (Basel). 2017;10(2):148. DOI:10.3390/ma10020148; Shah A.M., Jung H., Skirboll S. Materials used in cranioplasty: a history and analysis. Neurosurg Focus. 2014;36(4):E19. DOI:10.3171/2014.2.FOCUS13561; Xie Y., Li S., Zhang T., Wang C., Cai X. Titanium mesh for bone augmentation in oral implantology: current application and progress. Int J Oral Sci. 2020;12(1):37. DOI:10.1038/s41368-020-00107-z; Herford A.S., Lowe I., Jung P. Titanium mesh grafting combined with recombinant human bone morphogenetic protein 2 for alveolar reconstruction. Oral Maxillofac Surg Clin North Am. 2019;31(2):309–15. DOI:10.1016/j.coms.2018.12.007; Fujibayashi S., Neo M., Kim H.M., Kokubo T., Nakamura T. Osteoinduction of porous bioactive titanium metal. Biomaterials. 2004;25(3):443–50. DOI:10.1016/s0142-9612(03)00551-9; Han Q., Wang C., Chen H., Zhao X., Wang J. Porous tantalum and titanium in orthopedics: a review. ACS Biomater Sci Eng. 2019;5(11):5798–824. DOI:10.1021/acsbiomaterials.9b00493; Wang N., Li H., Wang J., Chen S., Ma Y., Zhang Z. Study on the anticorrosion, biocompatibility, and osteoinductivity of tantalum decorated with tantalum oxide nanotubes array fi lms. ACS Appl Mater Interfaces. 2012;4(9):4516–23. DOI:10.1021/am300727v; Ballouze R., Marahat M.H., Mohamad S., Saidin N.A., Kasim S.R., Ooi J.P. Biocompatible magnesium-doped biphasic calcium phosphate for bone regeneration. J Biomed Mater Res B Appl Biomater. 2021;109(10):1426–35. DOI:10.1002/jbm.b.34802; Coelho C.C., Padrão T., Costa L., Pinto M.T., Costa P.C., Domingues V.F., et al. The antibacterial and angiogenic effect of magnesium oxide in a hydroxyapatite bone substitute. Sci Rep. 2020;10(1):19098. DOI:10.1038/s41598-020-76063-9; He F., Zhang J., Tian X., Wu S., Chen X. A facile magnesiumcontaining calcium carbonate biomaterial as potential bone graft . Colloids Surf B Biointerfaces. 2015;136:845–52. DOI:10.1016/j. colsurfb .2015.10.027; Kasuga T., Maeda H., Kato K., Nogami M., Hata K., Ueda M. Preparation of poly(lactic acid) composites containing calcium carbonate (vaterite). Biomaterials. 2003;24(19):3247–53. DOI:10.1016/s0142-9612(03)00190-x; Naik A., Shepherd D.V., Shepherd J.H., Best S.M., Cameron R.E. The effect of the type of HA on the degradation of PLGA/HA composites. Mater Sci Eng C Mater Biol Appl. 2017;70(Pt 1):824–31. DOI:10.1016/j.msec.2016.09.048; Singh D., Tripathi A., Zo S., Singh D., Han S.S. Synthesis of composite gelatinhyaluronic acid-alginate porous scaffold and evaluation for in vitro stem cell growth and in vivo tissue integration. Colloids Surf B Biointerfaces. 2014;116:502–9. DOI:10.1016/j.colsurfb .2014.01.049; Dziadek M., Stodolak-Zych E., Cholewa-Kowalska K. Biodegradable ceramic-polymer composites for biomedical applications: A review. Mater Sci Eng C Mater Biol Appl. 2017;71:1175–91. DOI:10.1016/j. msec.2016.10.014; Bellucci D., Sola A., Anesi A., Salvatori R., Chiarini L., Cannillo V. Bioactive glass/hydroxyapatite composites: mechanical properties and biological evaluation. Mater Sci Eng C Mater Biol Appl. 2015;51:196– 205. DOI:10.1016/j.msec.2015.02.041; Dawson D.R. 3rd, El-Ghannam A., Van Sickels J.E., Naung N.Y. Tissue engineering: What is new? Dent Clin North Am. 2019;63(3):433–45. DOI:10.1016/j.cden.2019.02.009; https://www.surgonco.ru/jour/article/view/639

  3. 3
    Academic Journal

    المساهمون: Данная работа не финансировалась.

    المصدر: Creative surgery and oncology; Том 11, № 1 (2021); 92-99 ; Креативная хирургия и онкология; Том 11, № 1 (2021); 92-99 ; 2076-3093 ; 2307-0501

    وصف الملف: application/pdf

    Relation: https://www.surgonco.ru/jour/article/view/576/443; Andia I., Maffulli N., Burgos-Alonso N.Stromal vascular fraction technologies and clinical applications. Expert Opin Biol Ther. 2019;19(12):1289–305. DOI:10.1080/14712598.2019.1671970; Ramakrishnan V.M., Boyd N.L.The adipose stromal vascular fraction as a complex cellular source for tissue engineering applications. Tissue Eng Part B Rev. 2018;24(4):289–99. DOI:10.1089/ten.TEB.2017.0061; Yao Y., Dong Z., Liao Y., Zhang P., Ma J., Gao J., et al. Adipose extracellular matrix/stromal vascular fraction gel: a novel adipose tissue-derived injectable for stem cell therapy. Plast Reconstr Surg. 2017;139(4):867–79. DOI:10.1097/PRS.0000000000003214; Rasmussen B.S., Sørensen C.L., Kurbegovic S., Ørholt M., Talman M.M., Herly M., et al. Cell-enriched fat grafting improves graft retention in a porcine model: a dose-response study of adipose-derived stem cells versus stromal vascular fraction. Plast Reconstr Surg. 2019;144(3):397e–408e. DOI:10.1097/PRS.0000000000005920; Nürnberger S., Lindner C., Maier J., Strohmeier K., Wurzer C., Slezak P., et al. Adipose-tissue-derived therapeutic cells in their natural environment as an autologous cell therapy strategy: the microtissuestromal vascular fraction. Eur Cell Mater. 2019;37:113–33. DOI:10.22203/eCM.v037a08; Fritsche E., Volk H.D., Reinke P., Abou-El-Enein M. Toward an optimized process for clinical manufacturing of CAR-Tregcell therapy. Trends Biotechnol. 2020;38(10):1099–112. DOI:10.1016/j.tibtech.2019.12.009; Aghayan H.R., Payab M., Mohamadi-Jahani F., Aghayan S.S., Larijani B., Arjmand B. GMP-compliant production of human placentaderived mesenchymal stem cells. Methods Mol Biol. 2021;2286:213–25. DOI:10.1007/7651_2020_282; Semon J.A., Zhang X., Pandey A.C., Alandete S.M., Maness C., Zhang S., et al. Administration of murine stromal vascular fraction ameliorates chronic experimental autoimmune encephalomyelitis. Stem Cells Transl Med. 2013;2(10):789–96. DOI:10.5966/sctm.2013-0032; Jurgens W.J., Kroeze R.J., Zandieh-Doulabi B., van Dijk A., Renders G.A., Smit T.H., et al. One-step surgical procedure for the treatment of osteochondral defects with adipose-derived stem cells in a caprine knee defect: a pilot study. Biores Open Access. 2013;2(4):315–25. DOI:10.1089/biores.2013.0024; Wu L., Prins H.J., Leijten J., Helder M.N., Evseenko D., Moroni L., et al. Chondrocytes cocultured with stromal vascular fraction of adipose tissue present more intense chondrogenic characteristics than with adipose stem cells. Tissue Eng Part A. 2016;22(3–4):336–48. DOI:10.1089/ten.TEA.2015.0269; Brown J.C., Shang H., Li Y., Yang N., Patel N., Katz A.J. Isolation of adipose-derived stromal vascular fraction cells using a novel point-of-care device: cell characterization and review of the literature. Tissue Eng Part C Methods. 2017;23(3):125–35. DOI:10.1089/ten.TEC.2016.0377; van Dongen J.A., Harmsen M.C., Stevens H.P. Isolation of stromal vascular fraction by fractionation of adipose tissue. Methods Mol Biol. 2019;1993:91–103. DOI:10.1007/978-1-4939-9473-1_8; Gentile P., Calabrese C., De Angelis B., Pizzicannella J., Kothari A., Garcovich S. Impact of the different preparation methods to obtain human adipose-derived stromal vascular fraction cells (AD-SVFs) and human adipose-derived mesenchymal stem cells (AD-MSCs): enzymatic digestion versus mechanical centrifugation. Int J Mol Sci. 2019;20(21):5471. DOI:10.3390/ijms20215471; Lee S.J., Lee C.R., Kim K.J., Ryu Y.H., Kim E., Han Y.N., et al. Optimal condition of isolation from an adipose tissue-derived stromal vascular fraction for the development of automated systems. Tissue Eng Regen Med. 2020;17(2):203–8. DOI:10.1007/s13770-019-00238-3; Aronowitz J.A., Lockhart R.A., Hakakian C.S. A method for isolation of stromal vascular fraction cells in a clinically relevant time frame.Methods Mol Biol. 2018;1773:11–9. DOI:10.1007/978-1-4939-7799-4_2; Haack-Sørensen M., Follin B., Juhl M., Brorsen S.K., Søndergaard R.H., Kastrup J., et al. Culture expansion of adipose derived stromal cells. A closed automated Quantum Cell Expansion System compared with manual flask-based culture. J Transl Med. 2016;14(1):319. DOI:10.1186/s12967-016-1080-9; Ghiasloo M., Lobato R.C., Díaz J.M., Singh K., Verpaele A., Tonnard P. Expanding clinical indications of mechanically isolated stromal vascular fraction: a systematic review. Aesthet Surg J. 2020;40(9):NP546–60. DOI:10.1093/asj/sjaa111; Karina K., Rosliana I., Rosadi I., Schwartz R., Sobariah S., Afini I., et al. Safety of technique and procedure of stromal vascular fraction therapy: from liposuction to cell administration. Scientifica (Cairo). 2020;2020:2863624. DOI:10.1155/2020/2863624; Basso S., Compagno F., Zelini P., Giorgiani G., Boghen S., Bergami E., et al. Harnessing T Cells to control infections after allogeneic hematopoietic stem cell transplantation. Front Immunol. 2020;11:567531. DOI:10.3389/fimmu.2020.567531; Wada A., Nishio N., Yokoi S., Tsuzuki H., Mukoyama N., Maruo T., et al. Safety and feasibility of fat injection therapy with adiposederived stem cells in a rabbit hypoglossal nerve paralysis model: A pilot study. Auris Nasus Larynx. 2021;48(2):274–80. DOI:10.1016/j.anl.2020.08.003; Yoshitani J., Kabata T., Arakawa H., Kato Y., Nojima T., Hayashi K., et al. Combinational therapy with antibiotics and antibiotic-loaded adipose-derived stem cells reduce abscess formation in implant-related infection in rats. Sci Rep. 2020;10(1):11182. DOI:10.1038/s41598-020-68184-y; Schneier M., Razdan S., Miller A.M., Briceno M.E., Barua S. Current technologies to endotoxin detection and removal for biopharmaceutical purification.Biotechnol Bioeng. 2020;117(8):2588–609. DOI:10.1002/bit.27362; Monteiro H.F., Faciola A.P. Ruminal acidosis, bacterial changes, and lipopolysaccharides. J Anim Sci. 2020;98(8):skaa248. DOI:10.1093/jas/skaa248; Liebers V., Brüning T., Raulf M. Occupational endotoxin exposure and health effects. Arch Toxicol. 2020;94(11):3629–44. DOI:10.1007/s00204-020-02905-0; Bacterial Endotoxins Test. Chapter 85, United States Pharmacopeia. [cited 2016 Nov 4]. Available from: http://www.usp.org/sites/default/files/usp_pdf/EN/USPNF/2011-02-2585BACTERIALENDOTOXINS.pdf; Neun B.W., Dobrovolskaia M.A. Detection of endotoxin in nanoformulations using Limulus Amoebocyte Lysate (LAL) assays. J Vis Exp. 2019;(143). DOI:10.3791/58830; Chan L.L., McCulley K.J., Kessel S.L. Assessment of cell viability with single-, dual-, and multi-staining methods using image cytometry.Methods Mol Biol. 2017;1601:27–41. DOI:10.1007/978-1-4939-6960-9_3; Mushahary D., Spittler A., Kasper C., Weber V., Charwat V. Isolation, cultivation, and characterization of human mesenchymal stem cells. Cytometry A. 2018;93(1):19–31. DOI:10.1002/cyto.a.23242; Borrelli M.R., Patel R.A., Blackshear C., Vistnes S., Diaz Deleon N.M., Adem S., et al. CD34+CD146+ adipose-derived stromal cells enhance engraftment of transplanted fat.Stem Cells Transl Med. 2020;9(11):1389–400. DOI:10.1002/sctm.19-0195; Oshita T., Tobita M., Tajima S., Mizuno H. Adipose-derived stem cells improve collagenase-induced tendinopathy in a rat model. Am J Sports Med. 2016;44(8):1983–9. DOI:10.1177/0363546516640750; Giromini C., Fekete Á.A., Givens D.I., Baldi A., Lovegrove J.A. Shortcommunication: a comparison of the in vitro angiotensin-1-converting enzyme inhibitory capacity of dairy and plant protein supplements. Nutrients. 2017;9(12):1352. DOI:10.3390/nu9121352; Hicok K.C., Hedrick M.H. Automated isolation and processing of adipose-derived stem and regenerative cells. Methods Mol Biol. 2011;702:87–105. DOI:10.1007/978-1-61737-960-4_8; Cowper M., Frazier T., Wu X., Curley L., Ma M.H., Mohiuddin O.A., et al. Human platelet lysate as a functional substitute for fetal bovine serum in the culture of human adipose derived stromal/stem cells.Cells. 2019;8(7):724. DOI:10.3390/cells8070724; Khan M.A., Zubair H., Anand S., Srivastava S.K., Singh S., Singh A.P. Dysregulation of metabolic enzymes in tumor and stromal cells: Role in oncogenesis and therapeutic opportunities. Cancer Lett. 2020;473:176–85. DOI:10.1016/j.canlet.2020.01.003; Si Z., Wang X., Sun C., Kang Y., Xu J., Wang X., et al. Adiposederived stem cells: sources, potency, and implications for regenerative therapies.Biomed Pharmacother. 2019;114:108765. DOI:10.1016/j.biopha.2019.108765; Gimble J.M., Guilak F., Bunnell B.A. Clinical and preclinical translation of cell-based therapies using adipose tissue-derived cells. Stem Cell Res Ther. 2010;1(2):19. DOI:10.1186/scrt19; Zakaria N., Yahaya B.H. Adipose-derived mesenchymal stem cells promote growth and migration of lung adenocarcinoma cancer cells. Adv Exp Med Biol. 2020;1292:83–95. DOI:10.1007/5584_2019_464; Chan Y.W., So C., Yau K.L., Chiu K.C., Wang X., Chan F.L., et al. Adipose-derived stem cells and cancer cells fuse to generate cancer stem cell-like cells with increased tumorigenicity. J Cell Physiol. 2020;235(10):6794–807. DOI:10.1002/jcp.29574; Shammas R.L., Fales A.M., Crawford B.M., Wisdom A.J., Devi G.R., Brown D.A., et al. Human adipose-derived stem cells labeled with plasmonic gold nanostars for cellular tracking and photothermal cancer cell ablation. Plast Reconstr Surg. 2017;139(4):900e–10e. DOI:10.1097/PRS.0000000000003187; Wang X. Stem cells in tissues, organoids, and cancers. Cell Mol Life Sci. 2019;76(20):4043–70. DOI:10.1007/s00018-019-03199-x; Wu Q., Li B., Li Z., Li J., Sun S., Sun S. Cancer-associated adipocytes: key players in breast cancer progression. J Hematol Oncol. 2019;12(1):95. DOI:10.1186/s13045-019-0778-6; Rybinska I., Agresti R., Trapani A., Tagliabue E., Triulzi T. Adipocytes in breast cancer, the thick and the thin. Cells. 2020;9(3):560. DOI:10.3390/cells9030560; Lee J.S., Eo P., Kim M.C., Kim J.B., Jin H.K., Bae J.S., et al. Effects of stromal vascular fraction on breast cancer growth and fat engraftment in NOD/SCID mice. Aesthetic Plast Surg. 2019;43(2):498–513. DOI:10.1007/s00266-018-01304-2; Mazur S., Zołocińska A., Siennicka K., Janik-Kosacka K., Chrapusta A., Pojda Z. Safety of adipose-derived cell (stromal vascular fraction — SVF) augmentation for surgical breast reconstruction in cancer patients. Adv Clin Exp Med. 2018;27(8):1085–90. DOI:10.17219/acem/70798; Zhao R., Kaakati R., Liu X., Xu L., Lee A.K., Bachelder R., et al. CRISPR/Cas9-mediated BRCA1 knockdown adipose stem cells promote breast cancer progression.Plast Reconstr Surg. 2019;143(3):747–56. DOI:10.1097/PRS.0000000000005316; Goto H., Shimono Y., Funakoshi Y., Imamura Y., Toyoda M., Kiyota N., et al. Adipose-derived stem cells enhance human breast cancer growth and cancer stem cell-like properties through adipsin.Oncogene. 2019;38(6):767–79. DOI:10.1038/s41388-018-0477-8; https://www.surgonco.ru/jour/article/view/576

  4. 4
    Academic Journal

    المساهمون: The study was supported by Russian Foundation for Basic Research and National Natural Science Foundation (Project No. 21-51-53001)., Исследование выполнено при финансовой поддержке РФФИ и ГФЕН (проект № 21-51-53001).

    المصدر: Bulletin of Siberian Medicine; Том 20, № 3 (2021); 129-140 ; Бюллетень сибирской медицины; Том 20, № 3 (2021); 129-140 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2021-20-3

    وصف الملف: application/pdf

    Relation: https://bulletin.tomsk.ru/jour/article/view/4490/3056; https://bulletin.tomsk.ru/jour/article/view/4490/3083; Lu T.X., Rothenberg M.E. MicroRNA. Journal of Allergy and Clinical Immunology. 2018; 141 (4): 1202–1207. DOI:10.1016/j.jaci.2017.08.034.; Van Meter E.N., Onyango J.A., Teske K.A. A review of currently identified small molecule modulators of microRNA function. European Journal of Medicinal Chemistry. 2019; 188: 112008. DOI:10.1016/j.ejmech.2019.112008.; Vishnoi A., Rani S. MiRNA biogenesis and regulation of diseases: an overview. Methods in Molecular Biology. 2017; 1509: 1–10. DOI:10.1007/978-1-4939-6524-3_1.; Valihrach L., Androvic P., Kubista M. Circulating miRNA analysis for cancer diagnostics and therapy. Molecular Aspects of Medicine. 2019; 72: 100825. DOI:10.1016/j.mam.2019.10.002; Sanz-Rubio D., Martin-Burriel I., Gil A., Cubero P., Forner M., Khalyfa A., Marin J.M. Stability of circulating exosomal miRNAs in healthy subjects. Scientific Reports. 2018; 8 (1): 10306. DOI:10.1038/s41598-018-28748-5.; Matias-Garcia P.R., Wilson R., Mussack V., Reischl E., Waldenberger M., Gieger C., Anton G., Peters A., Kuehn-Steven A. Impact of long-term storage and freeze-thawing on eight circulating microRNAs in plasma samples. PLoS One. 2020; 15 (1): e0227648. DOI:10.1371/journal.pone.0227648.; Ward Gahlawat A., Lenhardt J., Witte T., Keitel D., Kaufhold A., Maass K.K., Pajtler K.W., Sohn C., Schott S. Evaluation of storage tubes for combined analysis of circulating nucleic acids in liquid biopsies. International Journal of Molecular Sciences. 2019; 20 (3): 704. DOI:10.3390/ijms20030704.; Desmond B.J., Dennett E.R., Danielson K.M. Circulating extracellular vesicle microRNA as diagnostic biomarkers in early colorectal cancer – a review. Cancers (Basel). 2019; 12 (1): 52. DOI:10.3390/cancers12010052.; Lv Y., Tan J., Miao Y., Zhang Q. The role of microvesicles and its active molecules in regulating cellular biology. Journal of Cellular and Molecular Medicine. 2019; 23 (12): 7894–7904. DOI:10.1111/jcmm.14667.; Fuji T., Umeda Y., Nyuya A., Taniguchi F., Kawai T., Yasui K., Toshima T., Yoshida K., Fujiwara T., Goel A., Nagasaka T. Detection of circulating microRNAs with Ago2 complexes to monitor the tumor dynamics of colorectal cancer patients during chemotherapy. International Journal of Cancer. 2019; 144 (9): 2169–2180. DOI:10.1002/ijc.31960.; Silva S.S., Lopes C., Teixeira A.L., Carneiro de Sousa M.J., Medeiros R. Forensic miRNA: potential biomarker for body fluids? Forensic Science International: Genetics. 2015; 14: 1–10. DOI:10.1016/j.fsigen.2014.09.002.; Hanson E.K., Lubenow H., Ballantyne J. Identification of forensically relevant body fluids using a panel of differentially expressed microRNAs. Analytical Biochemistry. 2009; 387 (2): 303–314. DOI:10.1016/j.ab.2009.01.037.; Courts C., Madea B. Specific micro-RNA signatures for the detection of saliva and blood in forensic body-fluid identification. Journal of Forensic Sciences. 2011; 56 (6): 1464–1470. DOI:10.1111/j.1556-4029.2011.01894.x.; Wang Z., Zhang J., Luo H., Ye Y., Yan J., Hou Y. Screening and confirmation of microRNA markers for forensic body fluid identification. Forensic Science International: Genetics. 2013; 7 (1): 116–123. DOI:10.1016/j.fsigen.2012.07.006.; Sauer E., Reinke A.K., Courts C. Differentiation of five body fluids from forensic samples by expression analysis of four microRNAs using quantitative PCR. Forensic Science International: Genetics. 2016; 22: 89–99. DOI:10.1016/j.fsigen.2016.01.018.; Wang Z., Zhang J., Wei W., Zhou D., Luo H., Chen X., Hou Y. Identification of saliva using microRNA biomarkers for forensic purpose. Journal of Forensic Sciences. 2015; 60 (3): 702–706. DOI:10.1111/1556-4029.12730.; Sirker M., Fimmers R., Schneider P.M., Gomes I. Evaluating the forensic application of 19 target microRNAs as biomarkers in body fluid and tissue identification. Forensic Science International: Genetics. 2017; 27: 41–49. DOI:10.1016/j.fsigen.2016.11.012.; O,Leary K.R., Glynn C.L. Investigating the isolation and amplification of microRNAs for forensic body fluid identification. Microrna. 2018; 7 (3): 187–194. DOI:10.2174/2211536607666180430153821.; Lewis C.A., Layne T.R., Seashols-Williams S.J. Detection of microRNAs in DNA extractions for forensic biological source identification. Journal of Forensic Sciences. 2019; 64 (6): 1823–1830. DOI:10.1111/1556-4029.14070.; Fujimoto S., Manabe S., Morimoto C., Ozeki M., Hamano Y., Hirai E., Kotani H., Tamaki K. Distinct spectrum of microRNA expression in forensically relevant body fluids and probabilistic discriminant approach. Scientific Reports. 2019; 9 (1): 14332. DOI:10.1038/s41598-019-50796-8.; Sehgal A., Chen Q., Gibbings D., Sah D.W., Bumcrot D. Tissue-specific gene silencing monitored in circulating RNA. RNA. 2014; 20 (2): 143–149. DOI:10.1261/rna.042507.113.; Thomou T., Mori M.A., Dreyfuss J.M., Konishi M., Sakaguchi M., Wolfrum C., Rao T.N., Winnay J.N., Garcia-Martin R., Grinspoon S.K., Gorden P., Kahn C.R. Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature. 2017; 542 (7642): 450–455. DOI:10.1038/nature21365.; Siracusa J., Koulmann N., Banzet S. Circulating myomiRs: a new class of biomarkers to monitor skeletal muscle in physiology and medicine. Journal Cachexia Sarcopenia Muscle. 2018; 9 (1): 20–27. DOI:10.1002/jcsm.12227.; Sun Y., Koo S., White N., Peralta E., Esau C., Dean N.M., Perera R.J. Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs. Nucleic Acids Research. 2004; 32 (22): e188. DOI:10.1093/nar/gnh186.; Chandrasekaran K., Karolina D.S., Sepramaniam S., Armugam A., Wintour E.M., Bertram J.F., Jeyaseelan K. Role of microRNAs in kidney homeostasis and disease. Kidney International. 2012; 81 (7): 617–627. DOI:10.1038/ki.2011.448.; Sun Y., Luo Z.M., Guo X.M., Su D.F., Liu X. An updated role of microRNA-124 in central nervous system disorders: a review. Frontiers in Cellular Neuroscience. 2015; 9: 193. DOI:10.3389/fncel.2015.00193.; McSweeney K.M., Gussow A.B., Bradrick S.S., Dugger S.A., Gelfman S., Wang Q., Petrovski S., Frankel W.N., Boland M.J., Goldstein D.B. Inhibition of microRNA 128 promotes excitability of cultured cortical neuronal networks. Genome Research. 2016; 26 (10): 1411–1416. DOI:10.1101/gr.199828.115.; Wang K., Yuan Y., Cho J.H., McClarty S., Baxter D., Galas D.J. Comparing the microRNA spectrum between serum and plasma. PLoS One. 2012; 7 (7): e41561. DOI:10.1371/journal.pone.0041561.; Ludwig N., Leidinger P., Becker K., Backes C., Fehlmann T., Pallasch C., Rheinheimer S., Meder B., Stähler C., Meese E., Keller A. Distribution of miRNA expression across human tissues. Nucleic Acids Research. 2016; 44 (8): 3865–3877. DOI:10.1093/nar/gkw116.; Weber J.A., Baxter D.H., Zhang S., Huang D.Y., Huang K.H., Lee M.J., Galas D.J., Wang K. The microRNA spectrum in 12 body fluids. Clinical Chemistry. 2010; 56 (11): 1733–1741. DOI:10.1373/clinchem.2010.147405.; Stojkovic S., Koller L., Sulzgruber P., Hülsmann M., Huber K., Mayr M., Hengstenberg C., Wojta J., Niessner A. Liver-specific microRNA-122 as prognostic biomarker in patients with chronic systolic heart failure. International Journal of Cardiology. 2020; 303: 80–85. DOI:10.1016/J.IJCARD.2019.11.090.; Ponsuksili S., Trakooljul N., Hadlich F., Haack F., Murani E., Wimmers K. Genetic architecture and regulatory impact on hepatic microRNA expression linked to immune and metabolic traits. Open Biology. 2017; 7 (11): 170101. DOI:10.1098/rsob.170101.; Sauer E., Extra A., Cachée P., Courts C. Identification of organ tissue types and skin from forensic samples by microRNA expression analysis. Forensic Science International: Genetics. 2017; 28: 99–110. DOI:10.1016/j.fsigen.2017.02.002.; Van Solingen C., Bijkerk R., de Boer H.C., Rabelink T.J., van Zonneveld A.J. The role of microRNA-126 in vascular homeostasis. Current Vascular Pharmacology. 2015; 13 (3): 341–351. DOI:10.2174/15701611113119990017.; Gareev I., Yang G., Sun J., Beylerli O., Chen X., Zhang D., Zhao B., Zhang R., Sun Z., Yang Q., Li L., Pavlov V., Safin S., Zhao S. Circulating microRNAs as potential noninvasive biomarkers of spontaneous intracerebral hemorrhage. World Neurosurgery. 2020; 133: e369–e375. DOI:10.1016/j.wneu.2019.09.016.; Гареев И.Ф., Бейлерли О.А. Циркулирующие микроРНК как биомаркеры: какие перспективы? Профилактическая медицина. 2018; 21 (6): 142–150. DOI:10.17116/profmed201821061142.; Taghizadeh M., Ahmadizad S., Naderi M. Effects of endurance training on hsa-miR-223, P2RY12 receptor expression and platelet function in type 2 diabetic patients. Clinical Hemorheology and Microcirculation. 2018; 68 (4): 391–399. DOI:10.3233/CH-170300.; Corraliza-Gomez M., Sanchez D., Ganfornina M.D. Lipid-binding proteins in brain health and disease. Frontiers in Neurology. 2019; 10: 1152. DOI:10.3389/fneur.2019.01152.; Sessa F., Maglietta F., Bertozzi G., Salerno M., Di Mizio G., Messina G., Montana A., Ricci P., Pomara C. Human Brain Injury and miRNAs: An Experimental Study. International Journal of Molecular Sciences. 2019; 20 (7): 1546. DOI:10.3390/ijms20071546.; Lux C., Schyma C., Madea B., Courts C. Identification of gunshots to the head by detection of RNA in backspatter primarily expressed in brain tissue. Forensic Science International. 2014; 237: 62–69. DOI:10.1016/j.forsciint.2014.01.016.; Menathung P., Saengkaeotrakul P., Rasmeepaisarn K., Vongpaisarnsin K. Circulatory microrna in acute myocardial infarction: A candidate biomarker for forensic investigation. Forensic Science International: Genetics Supplement Series. 2017; 6: e294–e295. DOI:10.1016/j.fsigss.2017.09.136.; Li N., Zhou H., Tang Q. miR-133: A suppressor of cardiac remodeling? Frontiers in Pharmacology. 2018; 9: 903. DOI:10.3389/fphar.2018.00903.; Corsten M.F., Dennert R., Jochems S., Kuznetsova T., Devaux Y., Hofstra L., Wagner D.R., Staessen J.A., Heymans S., Schroen B. Circulating microRNA-208b and microRNA-499 reflect myocardial damage in cardiovascular disease. Circulation: Cardiovascular Genetics. 2010; 3 (6): 499–506. DOI:10.1161/CIRCGENETICS.110.957415.; Chen X., Zhang L., Su T., Li H., Huang Q., Wu D., Yang C., Han Z. Kinetics of plasma microRNA-499 expression in acute myocardial infarction. Journal of Thoracic Disease. 2015; 7 (5): 890–896. DOI:10.3978/j.issn.2072-1439.2014.11.32.; Gomes A., da Silva I.V., Rodrigues C.M.P., Castro R.E., Soveral G. The emerging role of microRNAs in aquaporin regulation. Frontiers in Chemistry. 2018; 6: 238. DOI:10.3389/fchem.2018.00238.; Yu S., Na J.Y., Lee Y.J., Kim K.T., Park J.T., Kim H.S. Forensic application of microRNA-706 as a biomarker for drowning pattern identification. Forensic Science International. 2015; 255: 96–101. DOI:10.1016/j.forsciint.2015.06.011.; Luo P., He G., Liu D. HCN channels: new targets for the design of an antidepressant with rapid effects. Journal of Affective Disorders. 2019; 245: 764–770. DOI:10.1016/j.jad.2018.11.081.; Capizzi A., Woo J., Verduzco-Gutierrez M. Traumatic brain injury: an overview of epidemiology, pathophysiology, and medical management. Medical Clinics of North America. 2020; 104 (2): 213–238. DOI:10.1016/j.mcna.2019.11.001.; Sun T.Y., Chen X.R., Liu Z.L., Zhao L.L., Jiang Y.X., Qu G.Q., Wang R.S., Huang S.Z., Liu L. Expression profiling of microRNAs in hippocampus of rats following traumatic brain injury. Journal of Huazhong University of Science and Technology (Medical Sciences). 2014; 34 (4): 548–553. DOI:10.1007/s11596-014-1313-1.; Martinez B., Peplow P.V. MicroRNAs as diagnostic markers and therapeutic targets for traumatic brain injury. Neural Regeneration Research. 2017; 12 (11): 1749–1761. DOI:10.4103/1673-5374.219025.; Inzani E., Marshall H.H., Thompson F.J., Kalema-Zikusoka G., Cant M.A., Vitikainen E.I.K. Spontaneous abortion as a response to reproductive conflict in the banded mongoose. Biology Letters. 2019; 15 (12): 20190529. DOI:10.1098/rsbl.2019.0529.; Barchitta M., Maugeri A., Quattrocchi A., Agrifoglio O., Agodi A. The Role of miRNAs as biomarkers for pregnancy outcomes: a comprehensive review. International Journal of Genomics. 2017; 2017: 8067972. DOI:10.1155/2017/8067972.; Chen H., Cheng S., Liu C., Fu J., Huang W. bioinformatics analysis of differentially expressed genes, methylated genes, and mirnas in unexplained recurrent spontaneous abortion. Journal of Computational Biology. 2019; 26 (12): 1418–1426. DOI:10.1089/cmb.2019.0158.; Noren Hooten N., Abdelmohsen K., Gorospe M., Ejiogu N., Zonderman A.B., Evans M.K. microRNA expression patterns reveal differential expression of target genes with age. PLoS One. 2010; 5 (5): e10724. DOI:10.1371/journal.pone.0010724.; Tu C., Du T., Ye X., Shao C., Xie J., Shen Y. Using miRNAs and circRNAs to estimate PMI in advanced stage. Legal Medicine (Tokyo). 2019; 38: 51–57. DOI:10.1016/j.legalmed.2019.04.002.; Ivanova E., Bozhilova R., Kaneva R., Milanova V. The dysregulation of microRNAs and the role of stress in the pathogenesis of mental disorders. Current Topics in Medicinal Chemistry. 2018; 18 (21): 1893–1907. DOI:10.2174/1568026619666181130135253.; Cao T., Zhen X.C. Dysregulation of miRNA and its potential therapeutic application in schizophrenia. CNS Neuroscience & Therapeutics. 2018; 24 (7): 586–597. DOI:10.1111/cns.12840.; Santarelli D.M., Carroll A.P., Cairns H.M., Tooney P.A., Cairns M.J. Schizophrenia-associated microRNA-gene interactions in the dorsolateral prefrontal cortex. Genomics Proteomics Bioinformatics. 2019; 17 (6): 623–634. DOI:10.1016/j.gpb.2019.10.003.; Ma J., Shang S., Wang J., Zhang T., Nie F., Song X., Zhao H., Zhu C., Zhang R., Hao D. Identification of miR-22-3p, miR-92a-3p, and miR-137 in peripheral blood as biomarker for schizophrenia. Psychiatry Research. 2018; 265: 70–76. DOI:10.1016/j.psychres.2018.03.080.; He K., Guo C., Guo M., Tong S., Zhang Q., Sun H., He L., Shi Y. Identification of serum microRNAs as diagnostic biomarkers for schizophrenia. Hereditas. 2019; 156: 23. DOI:10.1186/s41065-019-0099-3.; Liu S., Zhang F., Shugart Y.Y., Yang L., Li X., Liu Z., Sun N., Yang C., Guo X., Shi J., Wang L., Cheng L., Zhang K., Yang T., Xu Y. The early growth response protein 1-miR-30a-5pneurogenic differentiation factor 1 axis as a novel biomarker for schizophrenia diagnosis and treatment monitoring. Translational Psychiatry. 2017; 7 (1): e998. DOI:10.1038/tp.2016.268.; Zhao Z., Jinde S., Koike S., Tada M., Satomura Y., Yoshikawa A., Nishimura Y., Takizawa R., Kinoshita A., Sakakibara E., Sakurada H., Yamagishi M., Nishimura F., Inai A., Nishioka M., Eriguchi Y., Araki T., Takaya A., Kan C., Umeda M., Shimazu A., Hashimoto H., Bundo M., Iwamoto K., Kakiuchi C., Kasai K. Altered expression of microRNA-223 in the plasma of patients with first-episode schizophrenia and its possible relation to neuronal migration-related genes. Translational Psychiatry. 2019; 9 (1): 289. DOI:10.1038/s41398-019-0609-0.; Camkurt M., Karababa F., Erdal M., Bayazit H., Kandemir S., Ay M., Kandemir H., Ay O., Cicek E., Selek S., Tasdelen B. Investigation of dysregulation of several microRNAs in peripheral blood of schizophrenia patients. Clinical Psychopharmacology and Neuroscience. 2016; 14 (3): 256–260. DOI:10.9758/cpn.2016.14.3.256.; Sun X.Y., Lu J., Zhang L., Song H.T., Zhao L., Fan H.M., Zhong A.F., Niu W., Guo Z.M., Dai Y.H., Chen C., Ding Y.F., Zhang L.Y. Aberrant microRNA expression in peripheral plasma and mononuclear cells as specific blood-based biomarkers in schizophrenia patients. Journal of Clinical Neuroscience. 2015; 22 (3): 570–574. DOI:10.1016/j.jocn.2014.08.018.; Kalia M., Costa E., Silva J. Biomarkers of psychiatric diseases: current status and future prospects. Metabolism. 2015; 64 (3): S11–S15. DOI:10.1016/j.metabol.2014.10.026.; https://bulletin.tomsk.ru/jour/article/view/4490

  5. 5
    Academic Journal

    المصدر: Creative surgery and oncology; Том 10, № 2 (2020); 108-114 ; Креативная хирургия и онкология; Том 10, № 2 (2020); 108-114 ; 2076-3093 ; 2307-0501

    وصف الملف: application/pdf

    Relation: https://www.surgonco.ru/jour/article/view/487/395; Li J., Liu C. Coding or noncoding, the converging concepts of RNAs. Front Genet. 2019;10:496. DOI:10.3389/fgene.2019.00496; Lu T.X., Rothenberg M.E. MicroRNA. J Allergy Clin Immunol. 2018;141(4):1202–7. DOI:10.1016/j.jaci.2017.08.034; Mohr A.M., Mott J.L. Overview of microRNA biology. Semin Liver Dis. 2015;35(1):3–11. DOI:10.1055/s-0034-1397344; Jathar S., Kumar V., Srivastava J., Tripathi V. Technological Developments in lncRNA Biology. Adv Exp Med Biol. 2017;1008:283–323. DOI:10.1007/978-981-10-5203-3_10; Begolli R., Sideris N., Giakountis A. LncRNAs as chromatin regulators in cancer: from molecular function to clinical potential. Cancers (Basel). 2019;11(10):E1524. DOI:10.3390/cancers11101524; Marchese F.P., Huarte M. Long non-coding RNAs and chromatin modifi ers: their place in the epigenetic code. Epigenetics. 2014;9(1):21–6. DOI:10.4161/epi.27472; Li M., Duan L., Li Y., Liu B. Long noncoding RNA/circular noncoding RNA-miRNA-mRNA axes in cardiovascular diseases. Life Sci. 2019;233:116440. DOI:10.1016/j.lfs.2019.04.066; Harries L.W. RNA biology provides new therapeutic targets for human disease. Front Genet. 2019;10:205. DOI:10.3389/fgene.2019.00205; Cao M.X., Tang Y.L., Zhang W.L., Tang Y.J., Liang X.H. Non-coding RNAs as Regulators of Lymphangiogenesis in Lymphatic Development, Infl ammation, and Cancer Metastasis. Front Oncol. 2019;9:916. DOI:10.3389/fonc.2019.00916; Li Z., Li X., Chen C., Li S., Shen J., Tse G., et al. Long non-coding RNAs in nucleus pulposus cell function and intervertebral disc degeneration. Cell Prolif. 2018;51(5):e12483. DOI:10.1111/cpr.12483; Wang C., Wang W.J., Yan Y.G., Xiang Y.X., Zhang J., Tang Z.H., et al. MicroRNAs: new players in intervertebral disc degeneration. Clin Chim Acta. 2015;450:333–41. DOI:10.1016/j.cca.2015.09.011; Bowles R.D., Setton L.A. Biomaterials for intervertebral disc regeneration and repair. Biomaterials. 2017;129:54–67. DOI:10.1016/j.; biomaterials.2017.03.013; Navone S.E., Marfi a G., Giannoni A., Beretta M., Guarnaccia L., Gualtierotti R., et al. Infl ammatory mediators and signalling pathways controlling intervertebral disc degeneration. Histol Histopathol. 2017;32(6):523–42. DOI:10.14670/HH-11-846; Zhao R., Liu W., Xia T., Yang L. Disordered mechanical stress and tissue engineering therapies in intervertebral disc degeneration. Polymers (Basel). 2019;11(7):E1151. DOI:10.3390/polym11071151; Wang H.Q., Yu X.D., Liu Z.H., Cheng X., Samartzis D., Jia L.T., et al. Deregulated miR-155 promotes Fas-mediated apoptosis in human intervertebral disc degeneration by targeting FADD and caspase-3. J Pathol. 2011;225(2):232–42. DOI:10.1002/path.2931; Wang T., Li P., Ma X., Tian P., Han C., Zang J., et al. MicroRNA-494 inhibition protects nucleus pulposus cells from TNF-alpha-induced apoptosis by targeting JunD. Biochimie. 2015;115:1–7. DOI:10.1016/j.biochi.2015.04.011; Yu X., Li Z., Shen J., Wu W.K., Liang J., Weng X., et al. MicroRNA-10b promotes nucleus pulposus cell proliferation through RhoC-Akt pathway by targeting HOXD10 in intervetebral disc degeneration. PLoS One. 2013;8(12):e83080. DOI:10.1371/journal.pone.0083080; Liu G., Cao P., Chen H., Yuan W., Wang J., Tang X. MiR-27a regulates apoptosis in nucleus pulposus cells by targeting PI3K. PLoS One. 2013;8(9):e75251. DOI:10.1371/journal.pone.0075251; Tsirimonaki E., Fedonidis C., Pneumaticos S.G., Tragas A.A., Michalopoulos I., Mangoura D. PKC epsilon signalling activates ERK1/2, and regulates aggrecan, ADAMTS5, and miR377 gene expression in human nucleus pulposus cells. PLoS ONE. 2013;8:e82045. DOI:10.1371/journal.pone.0082045; Wang X., Zou M., Li J., Wang B., Zhang Q., Liu F., et al. LncRNA H19 targets miR-22 to modulate HO-induced deregulation in nucleus pulposus cell senescence, proliferation, and ECM synthesis through Wnt signaling. J Cell Biochem. 2018;119(6):4990–5002. DOI:10.1002/jcb.26738; Wang K., Song Y., Liu W., Wu X., Zhang Y., Li S., et al. Th e noncoding RNA linc-ADAMTS5 cooperates with RREB1 to protect from intervertebral disc degeneration through inhibiting ADAMTS5 expression. Clin Sci (Lond). 2017;131(10):965–79. DOI:10.1042/CS20160918; Ruan Z., Ma H., Li J., Liu H., Jia H., Li F. Th e long non-coding RNA NEAT1 contributes to extracellular matrix degradation in degenerative human nucleus pulposus cells. Exp Biol Med (Maywood). 2018;243(7):595–600. DOI:10.1177/1535370218760774; Xi Y., Jiang T., Wang W., Yu J., Wang Y., Wu X., et al. Long non-coding HCG18 promotes intervertebral disc degeneration by sponging miR- 146a-5p and regulating TRAF6 expression. Sci Rep. 2017;7(1):13234. DOI:10.1038/s41598-017-13364-6.25; Le Bleu H.K., Kamal F.A., Kelly M., Ketz J.P., Zuscik M.J., Elbarbary R.A. Extraction of high-quality RNA from human articular cartilage. Anal Biochem. 2017;518:134–8. DOI:10.1016/j.ab.2016.11.018; Patry J., Blanchette V. Enzymatic debridement with collagenase in wounds and ulcers: a systematic review and meta-analysis. Int Wound J. 2017;14(6):1055–65. DOI:10.1111/iwj.12760; https://www.surgonco.ru/jour/article/view/487

  6. 6
    Academic Journal

    المصدر: Creative surgery and oncology; Том 9, № 4 (2019); 273-277 ; Креативная хирургия и онкология; Том 9, № 4 (2019); 273-277 ; 2076-3093 ; 2307-0501 ; 10.24060/2076-3093-2019-9-4

    وصف الملف: application/pdf

    Relation: https://www.surgonco.ru/jour/article/view/434/366; Krestan C.R., Herold C. Polytrauma. Radiologe. 2014;54(9):859–60. DOI:10.1007/s00117-013-2633-z; Stoica B., Paun S., Tanase I., Negoi I., Chiotoroiu A., Beuran M. Probability of survival scores in different trauma registries: a systematic review. Chirurgia (Bucur). 2016;111(2):115–9. PMID: 27172523; Feliciano D.V. Abdominal trauma revisited. Am Surg. 2017;83(11):1193–202. PMID: 29183519; Gäble A., Mück F., Mühlmann M., Wirth S. Acute abdominal trauma. Radiologe. 2019;59(2):139–45. DOI:10.1007/s00117-0180485-2; Krupinski E.A., Berbaum K.S., Schartz K.M., Caldwell R.T., Madsen M.T. The impact of fatigue on satisfaction of search in chest radiography. Acad Radiol. 2017;24(9):1058–63. DOI:10.1016/j.acra.2017.03.021; Pothmann C.E.M., Sprengel K., Alkadhi H., Osterhoff G., Allemann F., Jentzsch T., et al. Abdominal injuries in polytraumatized adults: systematic review. Unfallchirurg. 2018;121(2):159–73. DOI:10.1007/s00113-017-0456-5; Lauerman M.H., Stein D.M. Multicompartment management of patients with severe traumatic brain injury. Curr Opin Anaesthesiol. 2014;27(2):219–24. DOI:10.1097/ACO.0000000000000044; Papurica M., Rogobete A.F., Sandesc D., Dumache R., Cradigati C.A., Sarandan M., et al. Advances in biomarkers in critical ill polytrauma patients. Clin Lab. 2016;62(6):977–86. PMID: 27468558; Oliver M. Assistive technology in polytrauma rehabilitation. Phys Med Rehabil Clin N Am. 2019;30(1):217–59. DOI:10.1016/j.pmr.2018.08.002; Galvagno S.M., Nahmias J.T., Young D.A. Advanced trauma life support® Update 2019: management and applications for adults and special populations. Anesthesiol Clin. 2019;37(1):13–32. DOI:10.1016/j.anclin.2018.09.009; Eckert M.J., Martin M.J. Trauma: spinal cord injury. Surg Clin North Am. 2017;97(5):1031–45. DOI:10.1016/j.suc.2017.06.008; Rincon S., Gupta R., Ptak T. Imaging of head trauma. Handb Clin Neurol. 2016;135:447–77. DOI:10.1016/B978-0-444-53485-9.00022-2; Çorbacıoğlu Ş.K., Aksel G. Whole body computed tomography in multi trauma patients: Review of the current literature. Turk J Emerg Med. 2018;18(4):142–7. DOI:10.1016/j.tjem.2018.09.003; Huber-Wagner S., Lefering R., Qvick L.M., Körner M., Kay M.V., Pfeifer K.J., et al. Effect of whole-body CT during trauma resuscitation on survival: a retrospective, multicentre study. Lancet. 2009;373(9673):1455–61. DOI:10.1016/S0140-6736(09)60232-4; Vela J.H., Wertz C.I., Onstott K.L., Wertz J.R. Trauma Imaging: a literature review. Radiol Technol. 2017;88(3):263–76. PMID: 28298577; Newbury A., Dorfman J.D., Lo H.S. Imaging and management of thoracic trauma. Semin Ultrasound CT MR. 2018;39(4):347–54. DOI:10.1053/j.sult.2018.03.006; Long B., April M.D., Summers S., Koyfman A. Whole body CT versus selective radiological imaging strategy in trauma: an evidence-based clinical review. Am J Emerg Med. 2017;35(9):1356–62. DOI:10.1016/j.ajem.2017.03.048; https://www.surgonco.ru/jour/article/view/434

  7. 7
    Academic Journal

    المصدر: Creative surgery and oncology; Том 9, № 4 (2019); 311-316 ; Креативная хирургия и онкология; Том 9, № 4 (2019); 311-316 ; 2076-3093 ; 2307-0501 ; 10.24060/2076-3093-2019-9-4

    وصف الملف: application/pdf

    Relation: https://www.surgonco.ru/jour/article/view/441/373; Lloyd R.V., Osamura R.Y., Klöppel G., Rosai J. (eds.) WHO classification of tumours of endocrine organs. Lyon: IARC; 2017. 355 p.; McDowell B.D., Wallace R.B., Carnahan R.M., Chrischilles E.A., Lynch C.F., Schlechte J.A. Demographic differences in incidence for pituitary adenoma. Pituitary. 2011;14(1):23–30. DOI:10.1007/s11102-010-0253-4; Tjörnstrand A., Gunnarsson K., Evert M., Holmberg E., Ragnarsson O., Rosén T., et al. The incidence rate of pituitary adenomas in western Sweden for the period 2001–2011. Eur J Endocrinol. 2014;171(4):519–26. DOI:10.1530/EJE-14-0144; Askitis D., Tsitlakidis D., Müller N., Waschke A., Wolf G., Müller U.A., et al. Complete evaluation of pituitary tumours in a single tertiary care institution. Endocrine. 2018;60(2):255–62. DOI:10.1007/s12020-018-1570-z; Przybylowski C.J., Dallapiazza R.F., Williams B.J., Pomeraniec I.J., Xu Z., Payne S.C., et al. Primary versus revision transsphenoidal resection for nonfunctioning pituitary macroadenomas: matched cohort study. J Neurosurg. 2016;76(5):889–96. DOI:10.3171/2016.3.JNS152735; Vaz-Guimaraes F., Koutourousiou M., de Almeida J.R., Tyler-Kabara E.C., Fernandez-Miranda J.C., Wang E.W., et al. Endoscopic endonasal surgery for epidermoid and dermoid cysts: a 10-year experience. J Neurosurg. 2018;100(5):1–11. DOI:10.3171/2017.7.JNS162783; Dhandapani S., Singh H., Negm H.M., Cohen S., Souweidane M.M., Greenfield J.P., et al. Endonasal endoscopic reoperation for residual or recurrent craniopharyngiomas. J Neurosurg. 2016;3(5):418–30. DOI:10.3171/2016.1.JNS152238; Ji M.J., Kim J.H., Lee J.H., Lee J.H., Kim Y.H., Paek S.H., et al. Best candidates for dopamine agonist withdrawal in patients with prolactinomas. Pituitary. 2017;20(5):578–84. DOI:10.1007/s11102-017-0820-z; Langlois F., McCartney S., Fleseriu M. Recent progress in the medical therapy of pituitary tumors. Endocrinol Metab. 2017;32(2):162–70. DOI:10.3803/EnM.2017.32.2.162; Schloffer H. Erfolgreiche Operation eines Hypophysentumors auf nasalem Wege. Wien Klin Wochenschr. 1907;20:621–4.; Gondim J.A., Almeida J.P., de Albuquerque L.A., Gomes E., Schops M., Mota J.I. Endoscopic endonasal transsphenoidal surgery in elderly patients with pituitary adenomas. J Neurosurg. 2015;123(1):31–8. DOI:10.3171/2014.10.JNS14372; Pala A., Knoll A., Brand C., Etzrodt-Walter G., Coburger J., Wirtz C.R., et al. The value of Intraoperative magnetic resonance imaging in endoscopic and microsurgical transsphenoidal pituitary adenoma resection. World Neurosurg. 2017;102:144–50. DOI:10.1016/j.wneu.2017.02.132; Coburger J., König R., Seitz K., Bäzner U., Wirtz C.R., Hlavac M. Determining the utility of intraoperative magnetic resonance imaging for transsphenoidal surgery: a retrospective study. J Neurosurg. 2014;120(2):346–56. DOI:10.3171/2013.9.JNS122207; Sylvester P.T., Evans J.A., Zipfel G.J., Chole R.A., Uppaluri R., Haughey B.H., et al. Combined high-field intraoperative magnetic resonance imaging and endoscopy increase extent of resection and progressionfree survival for pituitary adenomas. Pituitary. 2015;18(1):72–85. DOI:10.1007/s11102-014-0560-2; Amano K., Aihara Y., Tsuzuki S., Okada Y., Kawamata T. Application of indocyanine green fluorescence endoscopic system in transsphenoidal surgery for pituitary tumors. Acta Neurochir (Wien). 2019;161(4):695–706. DOI:10.1007/s00701-018-03778-0; Li Z., Ji T., Huang G.D., Guo J., Yang J.H., Li W.P. A stratified algorithm for skull base reconstruction with endoscopic endonasal approach. J Craniofac Surg. 2018;29(1):193–8. DOI:10.1097/SCS.0000000000004184; Sanmillán J.L., Torres-Diaz A., Sanchez-Fernández J.J., Lau R., Ciller C., Puyalto P., et al. Radiologic predictors for extent of resection in pituitary adenoma surgery. A single-center study. World Neurosurg. 2017;108:436–46. DOI:10.1016/j.wneu.2017.09.017; Losa M., Spatola G., Albano L., Gandolfi A., Del Vecchio A., Bolognesi A., et al. Frequency, pattern, and outcome of recurrences after gamma knife radiosurgery for pituitary adenomas. Endocrine. 2017;56(3):595–602. DOI:10.1007/s12020-016-1081-8; Graffeo C.S., Link M.J., Brown P.D., Young W.F., Pollock B.E. Hypopituitarism after single-fraction pituitary adenoma radiosurgery: dosimetric analysis based on patients treated using contemporary techniques. Int J Radiat Oncol Biol Phys. 2018;101(3):618–23. DOI:10.1016/j.ijrobp.2018.02.169; Gao Y., Zheng H., Xu S., Zheng Y., Wang Y., Jiang J., et al. Endoscopic versus microscopic approach in pituitary surgery. J Craniofac Surg. 2016;27(2):e157–9. DOI:10.1097/SCS.0000000000002401; Zhan R., Ma Z., Wang D., Li X. Pure endoscopic endonasal transsphenoidal approach for nonfunctioning pituitary adenomas in the elderly: surgical outcomes and complications in 158 patients. World Neurosurg. 2015;84(6):1572–8. DOI:10.1016/j.wneu.2015.08.035; Magro E., Graillon T., Lassave J., Castinetti F., Boissonneau S., Tabouret E., et al. Complications related to the endoscopic endonasal transsphenoidal approach for Nonfunctioning pituitary macroadenomas in 300 consecutive patients. World Neurosurg. 2016;89(C):442–453. DOI:10.1016/j.wneu.2016.02.059; Fan Y., Lv M., Feng Sh., Fan X., Hong H., Wen W., et al. Full endoscopic transsphenoidal surgery for pituitary adenoma-emphasized on surgical skill of otolaryngologist. Indian J Otolaryngol Head Neck Surg. 2014;66(Suppl 1):S334–40. DOI:10.1007/s12070-011-0317-4; Zhang H., Wang F., Zhou T., Wang P., Chen X., Zhang J., et al. Analysis of 137 patients who underwent endoscopic transsphenoidal pituitary adenoma resection under high-field Intraoperative magnetic resonance imaging navigation. World Neurosurg. 2017;104:802–15. DOI:10.1016/j.wneu.2017.04.056; Mortini P., Losa M., Barzaghi R., Boari N., Giovanelli M. Results of transsphenoidal surgery in a large series of patients with pituitary adenoma. Neurosurgery. 2005;56(6):1222–33. DOI:10.1227/01.NEU.0000159647.6275.9D; Laws E.R., Iuliano S.L., Cote D.J., Woodmansee W., Hsu L., Cho C.H. A benchmark for preservation of normal pituitary function after endoscopic transsphenoidal surgery for pituitary macroadenomas. World Neurosurg 2016;91:371–5. DOI:10.1016/j.wneu.2016.04.059; Serra C., Burkhardt J.K., Esposito G., Bozinov O., Pangalu A., Valavanis A., et al. Pituitary surgery and volumetric assessment of extent of resection: a paradigm shift in the use of intraoperative magnetic resonance imaging. Neurosurg Focus. 2016;40(3):E17. DOI:10.3171/2015.12.FOCUS15564; https://www.surgonco.ru/jour/article/view/441

  8. 8
    Academic Journal

    المصدر: Bulletin of Siberian Medicine; Том 19, № 1 (2020); 125-133 ; Бюллетень сибирской медицины; Том 19, № 1 (2020); 125-133 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2020-19-1

    وصف الملف: application/pdf

    Relation: https://bulletin.tomsk.ru/jour/article/view/2692/1701; https://bulletin.tomsk.ru/jour/article/view/2692/1725; Carninci P., Kasukawa T., Katayama S., Gough J., Frith M.C., Maeda N., Oyama R., Ravasi T., Lenhard B., Wells C., Kodzius R., Shimokawa K., Bajic V.B., Brenner S.E., Batalov S., Forrest A.R., Zavolan M., Davis M.J., Wilming L.G., Aidinis V., Allen J.E., Ambesi-Impiombato A., Apweiler R., Aturaliya R.N., Bailey T.L., Bansal M., Baxter L., Beisel K.W., Bersano T., Bono H., Chalk A.M., Chiu K.P., Choudhary V., Christoffels A., Clutterbuck D.R., Crowe M.L., Dalla E., Dalrymple B.P., de Bono B., Della Gatta G., di Bernardo D., Down T., Engstrom P., Fagiolini M., Faulkner G., Fletcher C.F., Fukushima T., Furuno M., Futaki S., Gariboldi M., Georgii-Hemming P., Gingeras T.R., Gojobori T., Green R.E., Gustincich S., Harbers M., Hayashi Y., Hensch T.K., Hirokawa N., Hill D., Huminiecki L., Iacono M., Ikeo K., Iwama A., Ishikawa T., Jakt M., Kanapin A., Katoh M., Kawasawa Y., Kelso J., Kitamura H., Kitano H., Kollias G., Krishnan S.P., Kruger A., Kummerfeld S.K., Kurochkin I.V., Lareau L.F., Lazarevic D., Lipovich L., Liu J., Liuni S., McWilliam S., Madan Babu M., Madera M., Marchionni L., Matsuda H., Matsuzawa S., Miki H., Mignone F., Miyake S., Morris K., Mottagui-Tabar S., Mulder N., Nakano N., Nakauchi H., Ng P., Nilsson R., Nishiguchi S., Nishikawa S., Nori F., Ohara O., Okazaki Y., Orlando V., Pang K.C., Pavan W.J., Pavesi G., Pesole G., Petrovsky N., Piazza S., Reed J., Reid J.F., Ring B.Z., Ringwald M., Rost B., Ruan Y., Salzberg S.L., Sandelin A., Schneider C., Schönbach C., Sekiguchi K., Semple C.A., Seno S., Sessa L., Sheng Y., Shibata Y., Shimada H., Shimada K., Silva D., Sinclair B., Sperling S., Stupka E., Sugiura K., Sultana R., Takenaka Y., Taki K., Tammoja K., Tan S.L., Tang S., Taylor M.S., Tegner J., Teichmann S.A., Ueda H.R., van Nimwegen E., Verardo R., Wei C.L., Yagi K., Yamanishi H., Zabarovsky E., Zhu S., Zimmer A., Hide W., Bult C., Grimmond S.M., Teasdale R.D., Liu E.T., Brusic V., Quackenbush J., Wahlestedt C., Mattick J.S., Hume D.A., Kai C., Sasaki D., Tomaru Y., Fukuda S., Kanamori-Katayama M., Suzuki M., Aoki J., Arakawa T., Iida J., Imamura K., Itoh M., Kato T., Kawaji H., Kawagashira N., Kawashima T., Kojima M., Kondo S., Konno H., Nakano K., Ninomiya N.; Nishio T., Okada M., Plessy C., Shibata K., Shiraki T., Suzuki S., Tagami M., Waki K., Watahiki A., Okamura-Oho Y., Suzuki H., Kawai J., Hayashizaki Y.; FANTOM Consortium; RIKEN Genome Exploration Research Group and Genome Science Group (Genome Network Project Core Group). The transcriptional landscape of the mammalian genome. Science. 2005; 309 (5440): 1559–1563. DOI:10.1126/science.1112014.; Molnár V., Bakos B., Hegyesi H., Falus A. Nem kódoló genom és mikroRNS-ek: új fejezet a genetika történetében. Lege Artis Medicinae. 2008; 18: 591–597.; Tömböl Z., Szabó P., Rácz K., Zsolt T. Relevance of microRNA-s in neoplastic diseases. Orv. Hetil. 2007; 148 (24): 1135–1141. DOI:10.1556/OH.2007.28117.; Atkinson S.R., Marguerat S., Bähler J. Exploring long non-coding RNAs through sequencing. Semin. Cell Dev. Biol. 2012; 23 (2): 200–205. DOI:10.1016/j.semcdb.2011.12.003.; Nagano T., Fraser P. No-nonsense functions for long noncoding RNAs. Cell. 2011; 145 (2): 178–181. DOI:10.1016/j.cell.2011.03.014.; Gibb E.A., Brown C.J., Lam W.L. The functional role of long non-coding RNA in human carcinomas. Mol. Cancer. 2011; 10: 38. DOI:10.1186/1476-4598-10-38.; Mitra S.A., Mitra A.P., Triche T.J. A central role for long non-coding RNA in cancer. Front. Genet. 2012; 3: 17. DOI:10.3389/fgene.2012.00017.; Gutschner S., Diederichs S. The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol. 2012; 9 (6): 703–719. DOI:10.4161/rna.20481.; Knowling S., Morris K.V. Non-coding RNA and antisense RNA. Nature’s trash or treasure? Biochimie. 2011; 93 (11): 1922–1927. DOI:10.1016/j.biochi.2011.07.031; Aguilo F., Zhou M.M., Walsh M.J. Long non coding RNA, polycomb, and the ghosts haunting LNK4b-ARF-LNK4a expression. Cancer Res. 2011; 71 (16): 5365–5369. DOI:10.1158/0008-5472.CAN-10-4379; Yang L., Froberg J.E., Lee J.T. Long noncoding RNAs: fresh perspectives into the RNA world. Trends Biochem. Sci. 2014; 39 (1): 35–43. DOI:10.1016/j.tibs.2013.10.002.; Orom U.A., Shiekhattar R. Long noncoding RNAs usher in a new era in the biology of enhancers. Cell. 2013; 154 (6): 1190–1193. DOI:10.1016/j.cell.2013.08.028.; Lee J.T. Gracefully ageing at 50, X-chromosome inactivation becomes a paradigm for RNA and chromatin control. Nat. Rev. Mol. Cell Biol. 2011; 12 (12): 815–826. DOI:10.1038/nrm3231.; Rinn J.L., Kertesz M., Wang J.K., Squazzo S.L., Xu X., Brugmann S.A., Goodnough L.H., Helms J.A., Farnham P.J., Segal E., Chang H.Y. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell. 2007; 129 (7): 1311–1323. DOI:10.1016/j.cell.2007.05.022.; Tsai M.C., Manor O., Wan Y., Mosammaparast N., Wang J.K., Lan F., Shi Y., Segal E., Chang H.Y. Long noncoding RNA as modular scaffold of histone modification complexes. Science. 2010; 329 (5992): 689–693. DOI:10.1126/science.1192002.; Bertani S., Sauer S., Bolotin E., Sauer F. The noncoding RNA Mistral activates Hoxa6 and Hoxa7 expression and stem cell differentiation by recruiting MLL1 to chromatin. Mol. Cell. 2011; 43 (6): 1040–1046. DOI:10.1016/j.molcel.2011.08.019.; Wang K.C., Yang Y.W., Liu B., Sanyal A., Corces-Zimmerman R., Chen Y., Lajoie B.R., Protacio A., Flynn R.A., Gupta R.A., Wysocka J., Lei M., Dekker J., Helms J.A., Chang H.Y. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature. 2011; 472 (7341): 120–124. DOI:10.1038/nature09819.; Carrieri C., Cimatti L., Biagioli M., Beugnet A., Zucchelli S., Fedele S., Pesce E., Ferrer I., Collavin L., Santoro C., Forrest A.R., Carninci P., Biffo S., Stupka E., Gustincich S. Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature. 2012; 491 (7424): 454–457. DOI:10.1038/nature11508.; Memczak S., Jens M., Elefsinioti A., Torti F., Krueger J., Rybak A., Maier L., Mackowiak S.D., Gregersen L.H., Munschauer M., Loewer A., Ziebold U., Landthaler M., Kocks C., le Noble F., Rajewsky N. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013; 495 (744): 333–338. DOI:10.1038/nature11928.; Spicuglia S., Zacarias-Cabeza J., Pekowska P., Ferrier P. Epigenetic regulation of antigen receptor gene rearrangement. F1000 Biol. Rep. 2010; 2: 23.; Szabó D., Zsippai A., Bendes M., Zsófia T., Szabo P.M., Károly R., Igaz P. Pathogenesis of adrenocortical cancer. Orv. Hetil. 2010; 151 (29): 1163–1170. DOI:10.1556/OH.2010.28931.; Barsyte-Lovejoy D., Lau S.K., Boutros P.C., Khosravi F., Jurisica I., Andrulis I.L., Tsao M.S., Penn L.Z. The c-Myc oncogene directly induces the H19 noncoding RNA by allelespecific binding to potentiate tumorigenesis. Cancer Res. 2006; 66 (10): 5330–5337. DOI:10.1158/0008-5472.CAN-06-0037.; Cai X., Cullen B.R. The imprinted H19 noncoding RNA is a primary microRNA precursor. RNA. 2007; 13 (3): 313–316. DOI:10.1261/rna.351707.; Tsang W.P., Ng E.K., Ng S.S., Jin H., Yu J., Sung J.J., Kwok T.T. Oncofetal H19-derived miR-675 regulates tumor suppressor RB in human colorectal cancer. Carcinogenesis. 2010; 31 (3): 350–358. DOI:10.1093/carcin/bgp181.; Leygue E., Dotzlaw H., Watson P.H., Murphy L.C. Expression of the steroid receptor RNA activator in human breast tumors. Cancer Res. 1999; 59 (17): 4190–4193.; Hube F., Guo J., Chooniedass-Kothari S., Cooper C., Hamedani M.K., Dibrov A.A., Blanchard A.A., Wang X., Deng G., Myal Y., Leygue E. Alternative splicing of the first intron of the steroid receptor RNA activator (SRA) participates in the generation of coding and noncoding RNA isoforms in breast cancer cell lines. DNA Cell Biol. 2006; 25 (7): 418–428. DOI:10.1089/dna.2006.25.418.; Caslini C. Transcriptional regulation of telomeric non-coding RNA: implications on telomere biology, replicative senescence and cancer. RNA Biol. 2010; 7 (1): 18–22. DOI:10.4161/rna.7.1.10257.; Gupta R.A., Shah N., Wang K.C., Kim J., Horlings H.M., Wong D.J., Tsai M.C., Hung T., Argani P., Rinn J.L., Wang Y., Brzoska P., Kong B., Li R., West R.B., van de Vijver M.J., Sukumar S., Chang H.Y. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 2010; 464 (7291): 1071–1076. DOI:10.1038/nature08975.; Morey L., Helin K. Polycomb group protein-mediated repression of transcription. Trends Biochem. Sci. 2010; 35 (6): 323–332. DOI:10.1016/j.tibs.2010.02.009.; Ji P., Diederichs S., Wang W., Böing S., Metzger R., Schneider P.M., Tidow N., Brandt B., Buerger H., Bulk E., Thomas M., Berdel W.E., Serve H., Müller-Tidow C. MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene. 2003; 22 (39): 8031–8041. DOI:10.1038/sj.onc.1206928.; Tripathi V., Ellis J.D., Shen Z., Song D.Y., Pan Q., Watt A.T., Freier S.M., Bennett C.F., Sharma A., Bubulya P.A., Blencowe B.J., Prasanth S.G., Prasanth K.V. The nuclear-retained non-coding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol. Cell. 2010; 39 (6): 925–938. DOI:10.1016/j.molcel.2010.08.011.; Popov N., Gil J. Epigenetic regulation of the INK4b-ARF-INK4a locus: in sickness and in health. Epigenetics. 2010; 5 (8): 685–690. DOI:10.4161/epi.5.8.12996.; Yu W., Gius D., Onyango P., Muldoon-Jacobs K., Karp J., Feinberg A.P., Cui H. Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA. Nature. 2008; 451(7175): 202–206. DOI:10.1038/nature06468.; Morris K.V., Santoso S., Turner A.M., Pastori C., Hawkins P.G. Bidirectional transcription directs both transcriptional gene activation and suppression in human cells. PLoS Genet. 2008; 4 (11): e1000258. DOI:10.1371/journal.pgen.1000258.; Zhang X., Zhou Y., Mehta K.R., Danila D.C., Scolavino S., Johnson S.R., Klibanski A. A pituitary-derived MEG3 isoform functions as a growth suppressor in tumor cells. J. Clin. Endocrinol. Metab. 2003; 88 (11): 5119–5126. DOI:10.1210/jc.2003-030222.; Hagan J.P., O’Neill B.L., Stewart C.L., Kozlov S.V., Croce C.M. At least ten genes defi ne the imprinted Dlk1-Dio3 cluster on mouse chromosome 12qF1. PLoS One. 2009; 4 (2): e4352. DOI:10.1371/journal.pone.0004352.; Huarte M., Guttman M., Feldser D., Garber M., Koziol M.J., Kenzelmann-Broz D., Khalil A.M., Zuk O., Amit I., Rabani M., Attardi L.D., Regev A., Lander E.S., Jacks T., Rinn J.L. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell. 2010; 142 (3): 409–419. DOI:10.1016/j.cell.2010.06.040.; Wapinski O., Chang H.Y. Long noncoding RNAs and human disease. Trends Cell Biol. 2011; 21 (6): 354–361. DOI:10.1016/j.tcb.2011.04.001.; Kino T., Hurt D.E., Ichijo T., Nader N., Chrousos G.P. Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci. Signal. 2010; 3 (107): 8. DOI:10.1126/scisignal.2000568.; Mourtada-Maarabouni M., Hasan A.M., Farzaneh F., Williams G.T. Inhibition of human T-cell proliferation by mammalian target of rapamycin (mTOR) antagonists requires noncoding RNA growth-arrest-specifi c transcript 5 (GAS5). Mol. Pharmacol. 2010; 78 (1): 19–28. DOI:10.1124/mol.110.064055.; McDermott A.M., Heneghan H.M., Miller N., Kerin M.J. The therapeutic potential of microRNAs: disease modulators and drug targets. Pharm. Res. 2011; 28 (12): 3016–3029. DOI:10.1007/s11095-011-0550-2.; Panzitt K., Tschernatsch M.M., Guelly C., Moustafa T., Stradner M., Strohmaier H.M., Buck C.R., Denk H., Schroeder R., Trauner M., Zatloukal K. Characterization of HULC, a novel gene with striking up-regulation in hepatocellular carcinoma, as noncoding RNA. Gastroenterology. 2007; 132: 330–342. DOI:10.1053/j.gastro.2006.08.026.; Poliseno L., Salmena L., Zhang J., Carver B., Haveman W.J., Pandolfi P.P. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature. 2010; 465 (7301): 1033–1038. DOI:10.1038/nature09144.; Alimonti A., Carracedo A., Clohessy J.G., Trotman L.C., Nardella C., Egia A., Salmena L., Sampieri K., Haveman W.J., Brogi E., Richardson A.L., Zhang J., Pandolfi P.P. Subtle variations in Pten dose determine cancer susceptibility. Nat. Genet. 2010; 42 (5): 454–458. DOI:10.1038/ng.556.; Rossignol F., Vaché C., Clottes E. Natural antisense transcripts of hypoxia-inducible factor 1 alpha are detected in different normal and tumour human tissues. Gene. 2002; 299 (1–2): 135–140. DOI:10.1016/s0378-1119(02)01049-1.; Cayre A., Rossignol F., Clottes E., Penault-Llorca F. HIF but not HIF-1alpha transcript is a poor prognostic marker in human breast cancer. Breast Cancer Res. 2003; 5 (6): R223–R230. DOI:10.1186/bcr652.; Jafri M.A., Al-Qahtani M.H., Shay J.W. Role of miRNAs in human cancer metastasis: Implications for therapeutic intervention. Semin. Cancer Biol. 2017; 44: 117–131. DOI:10.1016/j.semcancer.2017.02.004.; Leber M.F., Efferth T. Molecular principles of cancer invasion and metastasis (review). Int. J. Oncol. 2009; 34 (4): 881–895. DOI:10.3892/ijo_00000214.; Tsai J.H., Yang J. Epithelial-mesenchymal plasticity in carcinoma metastasis. Genes Dev. 2013; 27 (20): 2192–2206. DOI:10.1101/gad.225334.113.; Lambert A.W., Pattabiraman D.R., Weinberg R.A. Emerging Biological Principles of Metastasis. Cell. 2017; 168 (4): 670–691. DOI:10.1016/j.cell.2016.11.037.; Sanchez-Tillo E., Liu Y., de Barrios O., Siles L., Fanlo L., Cuatrecasas M., Darling D.S., Dean D.C., Castells A., Postigo A. EMT-activating transcription factors in cancer: beyond EMT and tumor invasiveness. Cell Mol. Life Sci. 2012; 69 (20): 3429–3456. DOI:10.1007/s00018-012-1122-2.; Liu Y.W., Zhang E., Liu X., Zhang Z., Xu T., De W., Liu B., Wang Z. LincHOTAIR epigenetically silences mi-R34a by binding to PRC2 to promote the epithelial-to-mesenchymal transition in human gastric cancer. Cell Death Dis. 2015; 6: e1802. DOI:10.1038/cddis.2015.150.; Wu H., Hu Y., Liu X., Song W., Gong P., Zhang K., Chen Z., Zhou M., Shen X., Qian Y., Fan H. LncRNA TRERNA1 function as an enhancer of snai1 promotes gastric cancer metastasis by regulating epithelial-mesenchymal transition. Mol. Ther. Nucleic. Acids. 2017; 8: 291–299. DOI:10.1016/j.omtn.2017.06.021.; Liu C., Lin J. Long noncoding RNA ZEB1-AS1 acts as an oncogene in osteosarcoma by epigenetically activating ZEB1. Am. J. Transl. Res. 2016; 8 (10): 4095–4105.; Yang P., Chen T., Xu Z., Zhu H., Wang J., He Z. Long noncoding RNA GAPLINC promotes invasion in colorectal cancer by targeting SNAI2 through binding with PSF and NONO. Oncotarget. 2016; 7 (27): 42183–42194. DOI:10.18632/oncotarget.9741.; Hu P., Yang J., Hou Y., Zhang H., Zeng Z., Zhao L., Yu T., Tang X., Tu G., Cui X., Liu M. LncRNA expression signatures of twist-induced epithelial-to-mesenchymal transition in MCF10A cells. Cell Signal. 2014; 26 (1): 83–93. DOI:10.1016/j.cellsig.2013.10.001.; Malek R., Gajula R.P., Williams R.D., Nghiem B., Simons B.W., Nugent K., Wang H., Taparra K., Lemtiri-Chlieh G., Yoon A.R., True L., An S.S., DeWeese T.L., Ross A.E., Schaeffer E.M., Pienta K.J., Hurley P.J., Morrissey C., Tran P.T. TWIST1-WDR5-Hottip regulates hoxa9 chromatin to facilitate prostate cancer metastasis. Cancer Res. 2017; 77 (12): 3181–3193. DOI:10.1158/0008-5472.CAN-16-2797.; Tao Y., Han T., Zhang T., Ma C., Sun C. LncRNA CHRF-induced miR-489 loss promotes metastasis of colorectal cancer via TWIST1/EMT signaling pathway. Oncotarget. 2017; 8 (22): 36410–36422. DOI:10.18632/oncotarget.16850.; Tinzl M., Marberger M., Horvath S., Chypre C. DD3PCA3 RNA analysis in urine – a new perspective for detecting prostate cancer. Eur. Urol. 2004; 46 (2): 182–186. DOI:10.1016/j.eururo.2004.06.004.; Lai M.C., Yang Z., Zhou L., Zhu Q.Q., Xie H.Y., Zhang F., Wu L.M., Chen L.M., Zheng S.S. Long non-coding RNA MALAT-1 overexpression predicts tumor recurrence of hepatocellular carcinoma after liver transplantation. Med. Oncol. 2012; 29 (3): 1810–1816. DOI:10.1007/s12032-011-0004-z.; https://bulletin.tomsk.ru/jour/article/view/2692

  9. 9
    Academic Journal

    المساهمون: Грант Республики Башкортостан молодым ученым от 5 февраля 2019 № УГ-28

    المصدر: Creative surgery and oncology; Том 9, № 1 (2019); 66-74 ; Креативная хирургия и онкология; Том 9, № 1 (2019); 66-74 ; 2076-3093 ; 2307-0501 ; 10.24060/2076-3093-2019-9-1

    وصف الملف: application/pdf

    Relation: https://www.surgonco.ru/jour/article/view/365/333; Howell A.E., Zheng J., Haycock P.C., McAleenan A., Relton C., Martin R.M., et al. Use of mendelian randomization for identifying risk factors for brain tumors. Front Genet. 2018;9:525. DOI:10.3389/fgene.2018.00525; Merve A., Millner T.O., Marino S. Integrated phenotype-genotype approach in diagnosis and classification of common CNS tumours. Histopathology. 2019, 01 March. DOI:10.1111/his.13849; Wu D.F., He W., Lin S., Han B., Zee C.S. Using real-time fusion imaging constructed from contrast-enhanced ultrasonography and magnetic resonance imaging for high-grade glioma in neurosurgery. World Neurosurg. 2019, Jan 21. PII: S1878-8750(19)30098-1. DOI:10.1016/j.wneu.2018.12.215; Bagley S.J., Schwab R.D., Nelson E., Viaene A.N., Binder Z.A., Lustig R.A., et al. Histopathologic quantification of viable tumor versus treatment effect in surgically resected recurrent glioblastoma. J Neurooncol. 2019;141(2):421–9. DOI:10.1007/s11060-018-03050-6; Berberat J., McNamara J., Remonda L., Bodis S., Rogers S. Diffusion tensor imaging for target volume definition in glioblastoma multiforme. Strahlenther Onkol. 2014;190(10):939–43. DOI:10.1007/s00066-014-0676-3; Metaweh N.A.K., Azab A.O., El Basmy A.A.H., Mashhour K.N., El Mahdy W.M. Contrast-enhanced perfusion MR imaging to differentiate between recurrent/residual brain neoplasms and radiation necrosis. Asian Pac J Cancer Prev. 2018;19(4):941–8. DOI:10.22034/APJCP.2018.19.4.941; Martens K., Meyners T., Rades D., Tronnier V., Bonsanto M.M., Petersen D., et al. The prognostic value of tumor necrosis in patients undergoing stereotactic radiosurgery of brain metastases. Radiat Oncol. 2013;8:162. DOI:10.1186/1748-717X-8-162; Newton S.L., Kalamaha K., Fernandes H.D. Temozolomideinduced aplastic anemia treated with eltrombopag and granulocyte colony stimulating factor: a report of a rare complication. Cureus. 2018;10(9):e3329. DOI:10.7759/cureus.3329; Ladha H., Pawar T., Gilbert M.R., Mandel J., O-Brien B., Conrad C., et al. Wound healing complications in brain tumor patients on Bevacizumab. J Neurooncol. 2015;124(3):501–6. DOI:10.1007/s11060015-1868-0; Han X., Xu K., Taratula O., Farsad K. Applications of nanoparticles in biomedical imaging. Nanoscale. 2019;11(3):799–819. DOI:10.1039/c8nr07769j; Chen K.T., Wei K.C., Liu H.L. Theranostic strategy of focused ultrasound induced blood-brain barrier opening for CNS disease treatment. Front Pharmacol. 2019;10:86. DOI:10.3389/fphar.2019.00086; Grabrucker A.M., Chhabra R., Belletti D., Forni F. Nanoparticles as blood–brain barrier permeable CNS targeted drug delivery systems. Top Med Chem. 2014;10:71–89. DOI:10.1007/7355_2013_22; Dixit S., Novak T., Miller K., Zhu Y., Kenney M.E., Broome A.M. Transferrin receptor-targeted theranostic gold nanoparticles for photosensitizer delivery in brain tumors. Nanoscale. 2015;7:1782–90. DOI:10.1039/c4nr04853a; Bien-Ly N., Yu Y.J., Bumbaca D., Elstrott J., Boswell C.A., Zhang Y., et al. Transferrin receptor (TfR) trafficking determines brain uptake of TfR antibody affinity variants. J Exp Med. 2014;211(2):233–44. DOI:10.1084/jem.20131660; Porru M., Zappavigna S., Salzano G., Luce A., Stoppacciaro A., Balestrieri M.L., et al. Medical treatment of orthotopic glioblastoma with transferrin-conjugated nanoparticles encapsulating zoledronic acid. Oncotarget 2014;5:10446–59. DOI:10.18632/oncotarget.2182; Matsumura Y., Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent SMANCS. Cancer Res. 1986; 46: 6387–92. PMID: 2946403; Rajora M., Ding L., Valic M., Jiang W., Overchuk M., Chen J., et al. Tailored theranostic apolipoprotein E3 porphyrin-lipid nanoparticles target glioblastoma tumours. Chem Sci. 2017;8(8):5371–84. DOI:10.1039/c7sc00732a; Hayward S.L., Wilson C.L., Kidambi S. Hyaluronic acid-conjugated liposome nanoparticles for targeted delivery to CD44 overexpressing glioblastoma cells. Oncotarget. 2016;7(23): 34158–71. DOI:10.18632/oncotarget.8926; Rosenblum D., Joshi N., Tao W., Karp J.M., Peer D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat Commun. 2018;9(1):1410. DOI:10.1038/s41467-018-03705-y; Parayath N.N., Amiji M.M. Therapeutic targeting strategies using endogenous cells and proteins. J Control Release. 2017;258:81–94. DOI:10.1016/j.jconrel.2017.05.004; Kumar A., Lee J.-Y., Kim H.-S. Selective fluorescence sensing of 3, 5-dinitrosalicylic acid based on pyrenesulfonamide-functionalized inorganic/organic hybrid nanoparticles. J Ind Eng Chem. 2016;44:82–9. DOI:10.1016/j.jiec.2016.08.010; Anselmo A.C., Mitragotri S. A review of clinical translation of inorganic nanoparticles. AAPS J. 2015;17(5):1041–54. DOI:10.1208/s12248-015-9780-2; Sherwood J., Xu Y., Lovas K., Qin Y., Bao Y. Surface functionalization of dopamine coated iron oxide nanoparticles for various surface functionalities. J Magn Magn Mater. 2017;427:220–4. DOI:10.1016/j.jmmm.2016.10.039; Sofias A.M., Dunne M., Storm G., Allen C. The battle of “nano” paclitaxel. Adv Drug Deliv Rev. 2017;122:20–30. DOI:10.1016/j.addr.2017.02.003; Hu Q., Gao X., Gu G., Kang T., Tu Y., Liu Z., et al. Glioma therapy using tumor homing and penetrating peptide-functionalized PEG–PLA nanoparticles loaded with paclitaxel. Biomaterials. 2013;34(22):5640– 50. DOI:10.1016/j.biomaterials.2013.04.025; Xin H., Sha X., Jiang X., Zhang W., Chen L., Fang X. Anti-glioblastoma efficacy and safety of paclitaxel-loading Angiopep-conjugated dual targeting PEG-PCL nanoparticles. Biomaterials. 2012;33(32):8167–76. DOI:10.1016/j.biomaterials.2012.07.046; Colen C.B., Shen Y., Ghoddoussi F., Yu P., Francis T.B., Koch B.J., et al. Metabolic targeting of lactate efflux by malignant glioma inhibits invasiveness and induces necrosis: an in vivo study. Neoplasia. 2011;13(7):620–32. PMID: 21750656; Cheng Y., Dai Q., Morshed R.A., Fan X., Wegscheid M.L., Wainwright D.A., et al. Blood–brain barrier permeable gold nanoparticles: an efficient delivery platform for enhanced malignant glioma therapy and imaging. Small. 2014;10(24):5137–50. DOI:10.1002/smll.201400654; Pang L., Qin J., Han L., Zhao W., Liang J., Xie Z., et al. Exploiting macrophages as targeted carrier to guide nanoparticles into glioma. Oncotarget. 2016;7(24):37081–91. DOI:10.18632/oncotarget.9464; Ren Y., Kang C.S., Yuan X.B., Zhou X., Xu P., Han L., et al. Co-delivery of as-miR-21 and 5-FU by poly(amidoamine) dendrimer attenuates human glioma cell growth in vitro. J Biomater Sci Polym. 2010;21(3):303– 14. DOI:10.1163/156856209X415828; Yang J., Li Y., Zhang T., Zhang X. Development of bioactive materials for glioblastoma therapy. Bioact Mater. 2016;1(1):29–38. DOI:10.1016/j.bioactmat.2016.03.003; Khalid M.K., Asad M., Henrich-Noack P., Sokolov M., Hintz W., Grigartzik L., et al. Evaluation of toxicity and neural uptake in vitro and in vivo of superparamagnetic iron oxide nanoparticles. Int J Mol Sci. 2018;19(9): E2613. DOI:10.3390/ijms19092613; Pathak R.A., Hemal A.K. Intraoperative ICG-fluorescence imaging for robotic-assisted urologic surgery: current status and review of literature. Int Urol Nephrol. 2019, March 22. DOI:10.1007/s11255-019-02126-0; Stanga P.E., Lim J.I., Hamilton P. Indocyanine green angiography in chorioretinal diseases: indications and interpretation: an evidencebased update. Ophthalmology. 2003;110(1):15–21. PMID: 12511340; Halle B.M., Poulsen T.D., Pedersen H.P. Indocyanine green plasma disappearance rate as dynamic liver function test in critically ill patients. Acta Anaesthesiol Scand. 2014;58(10):1214–9. DOI:10.1111/aas.12406; Takagi Y., Kikuta K., Nozaki K., Sawamura K., Hashimoto N. Detection of a residual nidus by surgical microscope-integrated intraoperative near-infrared indocyanine green videoangiography in a child with a cerebral arteriovenous malformation. J Neurosurg. 2007;107(5):416–8. DOI:10.3171/PED-07/11/416; Shen C., Wang X., Zheng Z., Gao C., Chen X., Zhao S., et al. Doxorubicin and indocyanine green loaded superparamagnetic iron oxide nanoparticles with PEGylated phospholipid coating for magnetic resonance with fluorescence imaging and chemotherapy of glioma. Int J Nanomedicine. 2018;14:101–17. DOI:10.2147/IJN.S173954; Pillai G. Nanomedicines for cancer therapy: an update of FDA approved and those under various stages of development. SOJ Pharm Pharm Sci. 2014;1(2):13. DOI:10.15226/2374-6866/1/2/00109.; Fabel K., Dietrich J., Hau P., Wismeth C., Winner B., Przywara S., et al. Long-term stabilization in patients with malignant glioma after treatment with liposomal doxorubicin. Cancer. 2001;92(7):1936–42. PMID: 11745268; Hau P., Fabel K., Baumgart U., Rümmele P., Grauer O., Bock A., et al. Pegylated liposomal doxorubicin-efficacy in patients with recurrent high-grade glioma. Cancer. 2004;100(6):1199–207. DOI:10.1002/cncr.20073; Ananda S., Nowak A.K., Cher L., Dowling A., Brown C., Simes J., et al. Phase 2 trial of temozolomide and pegylated liposomal doxorubicin in the treatment of patients with glioblastoma multiforme following concurrent radiotherapy and chemotherapy. J Clin Neurosci. 2011;18(11):1444–8. DOI:10.1016/j.jocn.2011.02.026; Papademetriou I.T., Porter T. Promising approaches to circumvent the blood-brain barrier: progress, pitfalls and clinical prospects in brain cancer. Ther Deliv. 2015;6(8):989–1016. DOI:10.4155/tde.15.48; https://www.surgonco.ru/jour/article/view/365

  10. 10
    Academic Journal

    المصدر: Creative surgery and oncology; Том 9, № 3 (2019); 216-222 ; Креативная хирургия и онкология; Том 9, № 3 (2019); 216-222 ; 2076-3093 ; 2307-0501 ; 10.24060/2076-3093-2019-9-3

    وصف الملف: application/pdf

    Relation: https://www.surgonco.ru/jour/article/view/419/357; Yuan X., Curtin J., Xiong Y., Liu G., Waschsmann-Hogiu S., Farkas D.L., et al. Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene. 2004;23(58):9392–400. DOI:10.1038/ sj.onc.1208311; Lathia J.D., Mack S.C., Mulkearns-Hubert E.E., Valentim C.L., Rich J.N. Cancer stem cells in glioblastoma. Genes Dev. 2015;29(12):1203–17. DOI:10.1101/gad.261982.115; Ludwig K., Kornblum H.I. Molecular markers in glioma. J Neurooncol. 2017;134(3):505–12. DOI:10.1007/s11060-017-2379-y; Chen R., Nishimura M.C., Bumbaca S.M., Kharbanda S., Forrest W.F., Kasman I.M., et al. A hierarchy of self-renewing tumor-initiating cell types in glioblastoma. Cancer Cell. 2010;17(4):362–75. DOI:10.1016/j. ccr.2009.12.049; Calabrese C., Poppleton H., Kocak M., Hogg T.L., Fuller C., Hamner B., et al. A perivascular niche for brain tumor stem cells. Cancer Cell. 2007;11:69–82.; Seidel S., Garvalov B.K., Wirta V., von Stechow L., Schänzer A., Meletis K., et al. A hypoxic niche regulates glioblastoma stem cells through hypoxia inducible factor 2 alpha. Brain. 2010;133:983–95. DOI:10.1093/brain/awq042; Sottoriva A., Spiteri I., Piccirillo S.G., Touloumis A., Collins V.P., Marioni J.C., et al. Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Nat Acad Sci USA. 2013;110(10):4009–14. DOI:10.1073/pnas.1219747110; Sottoriva A., Spiteri I., Shibata D., Curtis C., Tavare S. Single-molecule genomic data delineate patient-specific tumor profiles and cancer stem cell organization. Cancer Res. 2013;73(1):41–9. DOI:10.1158/0008- 5472.CAN-12-2273; Patel A.P., Tirosh I., Trombetta J.J., Shalek A.K., Gillespie S.M., Wakimoto H., et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science. 2014;344(6190):1396–401. DOI:10.1126/science.1254257; Debruyne D.N., Turchi L., Burel-Vandenbos F., Fareh M., Almairac F., Virolle V., et al. DOCK4 promotes loss of proliferation in glioblastoma progenitor cells through nuclear beta-catenin accumulation and subsequent miR-302-367 cluster expression. Oncogene. 2018;37(2):241–54. DOI:10.1038/onc.2017.323; Liebelt B.D., Shingu T., Zhou X., Ren J., Shin S.A., Hu J. Glioma stem cells: signaling, microenvironment, and therapy. Stem Cells Int. 2016;2016:7849890. DOI:10.1155/2016/7849890; Sakakini N., Turchi L., Bergon A., Holota H., Rekima S., Lopez F., et al. A positive feed-forward loop associating EGR1 and PDGFA promotes proliferation and self-renewal in glioblastoma stem cells. J Biol Chem. 2016;291(20):10684–99. DOI:10.1074/jbc.M116.720698; Turchi L., Debruyne D.N., Almairac F., Virolle V., Fareh M., Neirijnck Y., et al. Tumorigenic potential of miR-18A* in glioma initiating cells requires NOTCH-1 signaling. Stem Cells. 2013;31(7):1252–65. DOI:10.1002/stem.1373; Patru C., Omao L., Varlet P., Coulombel L., Raponi E., Cadusseau J., et al. CD133, CD15/SSEA-1, CD34 or side populations do not resume tumorinitiating properties of long-term cultured cancer stem cells from human malignant glioneuronal tumors. BMC Cancer. 2010;10:66. DOI:10.1186/1471-2407-10-66; Fareh M., Turchi L., Virolle V., Debruyne D., Almairac F., de-la-Forest Divonne S., et al. The miR 302-367 cluster drastically affects selfrenewal and infiltration properties of glioma-initiating cells through CXCR4 repression and consequent disruption of the SHH-GLI-NANOG network. Cell Death Different. 2012;19(2):232–44. DOI:10.1038/ cdd.2011.89; Piccirillo S.G., Vescovi A.L. Bone morphogenetic proteins regulate tumorigenicity in human glioblastoma stem cells. Ernst Schering Found Symp Proc. 2006;(5):59–81. PMID: 17939295; El-Habr E.A., Dubois L.G., Burel-Vandenbos F., Bogeas A., Lipecka J., Turchi L., et al. A driver role for GABA metabolism in controlling stem and proliferative cell state through GHB production in glioma. Acta Neuropathol. 2017;133(4):645–60. DOI:10.1007/s00401-016-1659-5; Fareh M., Almairac F., Turchi L., Burel-Vandenbos F., Paquis P., Fontaine D., et al. Cell-based therapy using miR-302-367 expressing cells represses glioblastoma growth. Cell Death Dis. 2017;8(3):e2713. DOI:10.1038/cddis.2017.117; Yan H., Romero-López M., Benitez L.I., Di K., Frieboes H.B., Hughes C.C.W., et al. 3D Mathematical modeling of glioblastoma suggests that transdifferentiated vascular endothelial cells mediate resistance to current standard-of-care therapy. Cancer Res. 2017;77(15):4171–84. DOI:10.1158/0008-5472.CAN-16-3094; Mei X., Chen Y.S., Chen F.R., Xi S.Y., Chen Z.P. Glioblastoma stem cell differentiation into endothelial cells evidenced through live-cell imaging. Neuro Oncol. 2017;19(8):1109–18. DOI:10.1093/neuonc/nox016; Cheng L., Huang Z., Zhou W., Wu Q., Donnola S., Liu J.K., et al. Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth. Cell. 2013;153(1):139–52. DOI:10.1016/j. cell.2013.02.021; Guichet P.O., Guelfi S., Teigell M., Hoppe L., Bakalara N., Bauchet L., et al. Notch1 stimulation induces a vascularization switch with pericyte-like cell differentiation of glioblastoma stem cells. Stem Cells. 2015;33(1):21–34. DOI:10.1002/stem.1767; Dahan P., Martinez Gala J., Delmas C., Monferran S., Malric L., Zentkowski D., et al. Ionizing radiations sustain glioblastoma cell dedifferentiation to a stem-like phenotype through survivin: possible involvement in radioresistance. Cell Death Dis. 2014;5(11):e1543. DOI:10.1038/cddis.2014.509; Hegi M.E., Murat A., Lambiv W.L., Stupp R. Brain tumors: molecular biology and targeted therapies. Ann Oncol. 2006;17(Suppl. 10):x191–7. DOI:10.1093/annonc/mdl259; Stupp R., Mason W.P., van den Bent M.J., Weller M., Fisher B., Taphoorn M.J., et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–96. DOI:10.1056/NEJMoa043330; Lechapt-Zalcman E., Levallet G., Dugué A.E., Vital A., Diebold M.D., Menei P., et al. O(6) -methylguanine-DNA methyltransferase (MGMT) promoter methylation and low MGMT-encoded protein expression as prognostic markers in glioblastoma patients treated with biodegradable carmustine wafer implants after initial surgery followed by radiotherapy with concomitant and adjuvant temozolomide. Cancer. 2012;118(18):4545–54. DOI:10.1002/cncr.27441; Bao S., Wu Q., McLendon R.E., Hao Y., Shi Q., Hjelmeland A.B., et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444(7120):756–60. DOI:10.1038/nature05236; Bleau A.M., Hambardzumyan D., Ozawa T., Fomchenko E.I., Huse J.T., Brennan C.W., et al. PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells. Cell Stem Cell. 2009;4(3):226–35. DOI:10.1016/j.stem.2009.01.007; Eramo A., Ricci-Vitiani L., Zeuner A., Pallini R., Lotti F., Sette G., et al. Chemotherapy resistance of glioblastoma stem cells. Cell Death Differ. 2006;13(7):1238–41. DOI:10.1038/sj.cdd.4401872; Shi L., Zhang S., Feng K., Wu F., Wan Y., Wang Z., et al. MicroRNA125b-2 confers human glioblastoma stem cells resistance to temozolomide through the mitochondrial pathway of apoptosis. Int J Oncol. 2012;40(1):119–29. DOI:10.3892/ijo.2011.1179; Гареев И.Ф., Бейлерли О.А., Павлов В.Н., Zhao S., Chen X., Zheng Z. и др. Наночастицы: новый подход в диагностике и терапии глиальных опухолей головного мозга. Креативная хирургия и онкология. 2019;9(1):66–74. DOI:10.24060/2076-3093-2019-9-1-66-74; Platten M., Wick W., Weller M. Malignant glioma biology: role for TGF-beta in growth, motility, angiogenesis, and immune escape. Microsc Res Tech. 2001;52(4):401–10. DOI:10.1002/1097-0029(20010215)52:43.0.CO;2-C; Khan H., Gucalp R., Shapira I. Evolving concepts: immunity in oncology from targets to treatments. J Oncol. 2015;8473:83. DOI:10.1155/2015/847383; Di Tomaso T., Mazzoleni S., Wang E., Sovena G., Clavenna D., Franzin A., et al. Immunobiological characterization of cancer stem cells isolated from glioblastoma patients. Clin Cancer Res. 2010;16(3):800– 13. DOI:10.1158/1078-0432.CCR-09-2730; Wu A., Wei J., Kong L.Y., Wang Y., Priebe W., Qiao W., et al. Glioma cancer stem cells induce immunosuppressive macrophages/microglia. Neuro Oncol. 2010;12(11):1113–25. DOI:10.1093/neuonc/noq082; Gardeck A.M., Sheehan J., Low W.C. Immune and viral therapies for malignant primary brain tumors. Expert Opin Biol Ther. 2017;17(4):457–74. DOI:10.1080/14712598.2017.1296132; https://www.surgonco.ru/jour/article/view/419