يعرض 1 - 20 نتائج من 41 نتيجة بحث عن '"ОКТ-ангиография"', وقت الاستعلام: 0.54s تنقيح النتائج
  1. 1
    Academic Journal

    المصدر: National Journal glaucoma; Том 22, № 3 (2023); 15-25 ; Национальный журнал Глаукома; Том 22, № 3 (2023); 15-25 ; 2311-6862 ; 2078-4104

    وصف الملف: application/pdf

    Relation: https://www.glaucomajournal.ru/jour/article/view/421/420; https://www.glaucomajournal.ru/jour/article/downloadSuppFile/421/116; https://www.glaucomajournal.ru/jour/article/downloadSuppFile/421/117; Downs J.C., Girkin C.A. Lamina cribrosa in glaucoma. Current opinion in ophthalmology 2017; 28(2):113-119. https://doi.org/10.1097/ICU.0000000000000354; Куренков В.В., Клюганов В.С., Кузнецова Н.В., Чиненова К.В., Коновалов М.Е., Пожарицкий М.Д. Визуализация решетчатой пластинки склеры с помощью оптической когерентной томографии. Возможности и перспективы диагностики. Обзор. Офтальмология 2019; 16(2):159-162. https://doi.org/10.18008/1816-5095-2019-2-159-162; Tan N.Y., Koh V., Girard M.J., Cheng C.Y. Imaging of the lamina cribrosa and its role in glaucoma: a review. Clinical & experimental ophthalmology 2018; 46(2):177-188. https://doi.org/10.1111/ceo.13126; Strickland R.G., Garner M.A., Gross A.K., Girkin C.A. Remodeling of the Lamina Cribrosa: Mechanisms and Potential Therapeutic Approaches for Glaucoma. International journal of molecular sciences 2022; 23(15):8068. https://doi.org/10.3390/ijms23158068; Li L., Song F. Biomechanical research into lamina cribrosa in glaucoma. National science review 2020; 7(8):1277-1279. https://doi.org/10.1093/nsr/nwaa063; Арутюнян Л.Л., Анисимова С.Ю., Морозова Ю.С., Анисимов С.И. Биометрические и морфометрические параметры решетчатой пластинки у пациентов с разными стадиями первичной открытоугольной глаукомы. Национальный журнал глаукома 2021; 20(3):11-19. https://doi.org/10.25700/2078-4104-2021-20-3-11-19; Курышева Н.И, Ким В.Ю. Исследование решетчатой мембраны склеры при глаукоме. Точка зрения. Восток – Запад 2022; 2:60-69. https://doi.org/10.25276/2410-1257-2022-2-60-66; Quigley H.A., Addicks E.M., Green W.R., Maumenee A.E. Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage. Archives of ophthalmology 1981; 99(4):635-649. https://doi.org/10.1001/archopht.1981.03930010635009; Luo H., Yang H., Gardiner S.K., Hardin C., et al. Factors Influencing Central Lamina Cribrosa Depth: A Multicenter Study. Investigative ophthalmology & visual science 2018; 59(6):2357-2370. https://doi.org/10.1167/iovs.17-23456; Волков В.В. Трехкомпонентная классификация открытоугольной глаукомы (на основе представлений о ее патогенезе). Глаукома 2004; 1:57-67.; Kim M., Bojikian K.D., Slabaugh M.A., Ding L., et al. Lamina depth and thickness correlate with glaucoma severity. Indian Journal of Ophthalmology 2016; 64(5):358-363. https://doi.org/10.4103/0301-4738.185594; Naz A.S., Qamar A., Haque S.U., Zaman Y., et al. Association of lamina cribrosa morphometry with retinal nerve fiber layer loss and visual field defects in primary open-angle glaucoma. Pakistan journal of medical sciences 2020; 36(3):521-525. https://doi.org/10.12669/pjms.36.3.1553; Lee E.J., Kim T.W., Kim M., Kim H. Influence of lamina cribrosa thickness and depth on the rate of progressive retinal nerve fiber layer thinning. Ophthalmology 2014; 122(4)721-729. https://doi.org/10.1016/j.ophtha.2014.10.007; Li L., Bian A., Cheng G., Zhou Q. Posterior displacement of the lamina cribrosa in normal-tension and high-tension glaucoma. Acta ophthalmologica 2016; 94(6):e492-e500. https://doi.org/10.1111/aos.13012; Lee S.H., Kim T.W., Lee E.J., Girard M.J., et al. Diagnostic Power of Lamina Cribrosa Depth and Curvature in Glaucoma. Investigative ophthalmology & visual science 2017; 58(2):755-762. https://doi.org/10.1167/iovs.16-20802; Kim J.A., Kim T.W., Lee E.J., Girard M.J.A., et al. Relationship between lamina cribrosa curvature and the microvasculature in treatmentnaïve eyes. The British journal of ophthalmology 2020; 104(3):398403. https://doi.org/10.1136/bjophthalmol-2019-313996; Lee E.J., Kim T.W., Kim J.A., Kim, G.N., et al. Elucidation of the Strongest Factors Influencing Rapid Retinal Nerve Fiber Layer Thinning in Glaucoma. Investigative ophthalmology & visual science 2019; 60(10):3343-3351. https://doi.org/10.1167/iovs.18-26519; Lee S.H., Kim T.W., Lee E.J., Girard M.J.A., et al. Lamina Cribrosa Curvature in Healthy Korean Eyes. Scientific Reports 2019; 9:1756. https://doi.org/10.1038/s41598-018-38331-7; Курышева Н.И., Бояринцева М.А., Фомин А.В. Хориоидея при первичной закрытоугольной глаукоме: результаты исследования методом оптической когерентной томографии. Офтальмология 2013; 10(4):26-31. https://doi.org/10.18008/1816-5095-2013-4-26-31; Kurysheva, N.I. Macula in Glaucoma: Vascularity Evaluated by OCT Angiography. Research Journal of Pharmaceutical, Biological and Chemical Sciences 2016; 7(5):651-662.; Kurysheva, N.I., Shatalova E.O. Parafoveal vessel density dropout may predict glaucoma progression in the long-term follow up. Journal of Ophthalmology and Research 2022; 5:150-166.; Kim J.A., Kim T.W., Lee E.J., Girard M.J.A., et al. Comparison of Lamina Cribrosa Morphology in Eyes with Ocular Hypertension and NormalTension Glaucoma. Investigative ophthalmology & visual science 2020; 61(4):4. https://doi.org/10.1167/iovs.61.4.4; Kim J.A., Kim T.W., Weinreb R.N., Lee E.J., et al. Lamina Cribrosa Morphology Predicts Progressive Retinal Nerve Fiber Layer Loss In Eyes with Suspected Glaucoma. Scientific reports 2018; 8(1):738. https://doi.org/10.1038/s41598-017-17843-8; Lee E.J., Kim T.W., Kim J.A., Lee S.H., et al. Predictive Modeling of Long-Term Glaucoma Progression Based on Initial Ophthalmic Data and Optic Nerve Head Characteristics. Translational vision science & technology 2022; 11(10):24. https://doi.org/10.1167/tvst.11.10.24; Куренков В.В., Клюганов В.С, Кузнецова Н.В., Чиненова. К.В., Коновалов М.Е., Пожарицкий М.Д. Визуализация решетчатой пластинки склеры с помощью оптической когерентной томографии. Возможности и перспективы диагностики. Обзор. Офтальмология 2019; 16(2):159-162. https://doi.org/10.18008/1816-5095-2019-2-159-162; Lee P., Chandel N.S., Simon M.C. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nature reviews. Molecular cell biology 2020; 21(5):268-283. https://doi.org/10.1038/s41580-020-0227-y; Lee S.H., Kim T.W., Lee E.J., Girard, M.J.A., et al. Focal lamina cribrosa defects are not associated with steep lamina cribrosa curvature but with choroidal microvascular dropout. Scientific reports 2020; 10:6761. https://doi.org/10.1038/s41598-020-63681-6; Anderson D.R., Braverman S. Reevaluation of the optic disk vasculature. American journal of ophthalmology 1976; 82(2):165-174. https://doi.org/10.1016/0002-9394(76)90414-1; Lieberman M.F., Maumenee A.E., Green W.R. Histologic studies of the vasculature of the anterior optic nerve. American journal of ophthalmology 1976; 82(3):405-423. https://doi.org/10.1016/0002-9394(76)90489-x; Onda E., Cioffi G.A., Bacon D.R., Van Buskirk E.M. Microvasculature of the human optic nerve. American journal of ophthalmology 1995; 120(1):92-102. https://doi.org/10.1016/s0002-9394(14)73763-8; Lee E.J., Kim J.A., Kim T.W. Influence of Choroidal Microvasculature Dropout on the Rate of Glaucomatous Progression: A Prospective Study. Ophthalmology. Glaucoma 2020; 3(1):25-31. https://doi.org/10.1016/j.ogla.2019.10.001; Downs J.C., Roberts M.D., Burgoyne C.F. Mechanical environment of the optic nerve head in glaucoma. Optometry and vision science: official publication of the American Academy of Optometry 2008; 85(6):425-435. https://doi.org/10.1097/OPX.0b013e31817841cb; Murphy C.G., Yun A.J., Newsome D.A., Alvarado J.A. Localization of extracellular proteins of the human trabecular meshwork by indirect immunofluorescence. American journal of ophthalmology 1987; 104(1):33-43. https://doi.org/10.1016/0002-9394(87)90290-x; Arend O., Plange N., Sponsel W.E., Remky A. Pathogenetic aspects of the glaucomatous optic neuropathy: fluorescein angiographic findings in patients with primary open-angle glaucoma. Brain research bulletin 2004; 62(6):517-524. https://doi.org/10.1016/j.brainresbull.2003.07.008; Kim J.A., Kim T.W., Lee E.J., Girard M.J.A., et al. Microvascular Changes in Peripapillary and Optic Nerve Head Tissues After Trabeculectomy in Primary Open-Angle Glaucoma. Investigative ophthalmology & visual science 2018; 59(11):4614-4621. https://doi.org/10.1167/iovs.18-25038; Kurysheva N.I. Assessment of the optic nerve head, peripapillary, and macular microcirculation in the newly diagnosed patients with primary open-angle glaucoma treated with topical tafluprost. Taiwan Journal of Ophthalmology 2019; 9(2):93-100. https://doi.org/10.4103/tjo.tjo_108_17; Kurysheva N.I., Maslova E.V., Trubilina A.V., Fomin A.V., et al. OCT angiography and color doppler imaging in glaucoma diagnostics. Journal of Pharmaceutical Sciences and Research 2017; 9(5): 527-536.; Burgoyne C.F., Downs J.C. Premise and prediction-how optic nerve head biomechanics underlies the susceptibility and clinical behavior of the aged optic nerve head. Journal of glaucoma 2008; 17(4):318328. https://doi.org/10.1097/IJG.0b013e31815a343b; Burgoyne C.F. A biomechanical paradigm for axonal insult within the optic nerve head in aging and glaucoma. Experimental eye research 2011; 93(2):120-132. https://doi.org/10.1016/j.exer.2010.09.005; https://www.glaucomajournal.ru/jour/article/view/421

  2. 2
    Academic Journal

    المصدر: Ophthalmology in Russia; Том 19, № 2 (2022); 391-398 ; Офтальмология; Том 19, № 2 (2022); 391-398 ; 2500-0845 ; 1816-5095 ; 10.18008/1816-5095-2022-2

    وصف الملف: application/pdf

    Relation: https://www.ophthalmojournal.com/opht/article/view/1865/988; Ivanisević M., Stanić R. Importance of fluorescein angiography in the early detection and therapy of diabetic retinopathy. Ophthalmologica. 1990;201(1):9–13. DOI:10.1159/000310117; Lobefalo L., Verrotti A., Mastropasqua L. Blue-on-yellow and achromatic perimetry in diabetic children without retinopathy. Diabetes Care. 1998;21(11):2003–2006. DOI:10.2337/diacare.21.11.2003; Vujosevic S., Midena E. Retinal layers changes in human preclinical and early clinical diabetic retinopathy support early retinal neuronal and Müller cells alterations. J Diabetes Res. 2013;2013:905058. DOI:10.1155/2013/905058; Campbell J.P., Zhang M., Hwang T.S. Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography. Sci Rep. 2017;7:1–11. DOI:10.1038/srep42201; Laatikainen L., Larinkari J. Capillary-free area of the fovea with advancing age. Invest Ophthalmol Vis Sci. 1977;16(12):1154–1157.; Tey K.Y., Teo K., Tan A.C.S. Optical coherence tomography angiography in diabetic retinopathy : a review of current applications. Eye Vis. 2019;6(37):1–10. DOI:10.1186/s40662-019-0160-3; Freiberg F.J., Pfau M., Wons J. Optical coherence tomography angiography of the foveal avascular zone in diabetic retinopathy. Graefe’s Arch Clin Exp Ophthalmol. 2016;254(6):1051–1058. DOI:10.1007/s00417-015-3148-2; Furino C., Montrone G., Cicinelli M.V. Optical coherence tomography angiography in diabetic patients without diabetic retinopathy. Eur J Ophthalmol. 2019;1120672119895701. DOI:10.1177/1120672119895701; Lynch G., Romo J.S.A., Linderman R. Within-subject assessment of foveal avascular zone enlargement in different stages of diabetic retinopathy using en face OCT reflectance and OCT angiography. Biomed Opt Express. 2018;9(12):5982–5996. DOI:10.1364/BOE.9.005982; Liu L., Gao J., Bao W. Analysis of foveal microvascular abnormalities in diabetic retinopathy using optical coherence tomography angiography with projection artifact removal. J Ophthalmol. 2018;2018:3926745. DOI:10.1155/2018/3926745; De Carlo T.E., Chin A.T., Bonini Filho M.A. Detection of microvascular changes in eyes of patients with diabetes but not clinical diabetic retinopathy using optical coherence tomography angiography. Retina. 2015;35(11):2364–2370. DOI:10.1097/IAE.0000000000000882; Onoe H., Kitagawa Y., Shimada H. Foveal avascular zone area analysis in juvenile — onset type 1 diabetes using optical coherence tomography angiography. Jpn J Ophthalmol. 2020; 64(3):271–277. DOI:10.1007/s10384-020-00726-3; Gołębiewska J., Olechowski A., Wysocka-Mincewicz M. Optical coherence tomography angiography vessel density in children with type 1 diabetes. PLoS One. 2017;12(10):1–11. DOI:10.1371/journal.pone.0186479; Niestrata-Ortiz M., Fichna P., Stankiewicz W., Stopa M. Enlargement of the foveal avascular zone detected by optical coherence tomography angiography in diabetic children without diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol. 2019;257(4):689–697. DOI:10.1007/s00417-019-04264-8; Dupas B., Minvielle W., Bonnin S. Association between vessel density and visual acuity in patients with diabetic retinopathy and poorly controlled type 1 diabetes. JAMA Ophthalmol. 2018;136(7):721–728. DOI:10.1001/jamaophthalmol.2018.1319; Tang F.Y., Chan E.O., Sun Z. Clinically relevant factors associated with quantitative optical coherence tomography angiography metrics in deep capillary plexus in patients with diabetes. Eye Vis. 2020;7:1–11. DOI:10.1186/s40662-019-0173-y; Cheng D., Chen Q., Wu Y. Deep perifoveal vessel density as an indicator of capillary loss in high myopia. Eye (Lond). 2019;33(12):1961–1968. DOI:10.1038/s41433019-0573-1; Sampson D.M., Gong P., An D. Axial length variation impacts on superficial retinal vessel density and foveal avascular zone area measurements using optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2017;58(7):3065–3072. DOI:10.1167/iovs.17-21551; Linderman R.E., Muthiah M.N., Omoba S.B. Variability of foveal avascular zone metrics derived from optical coherence tomography angiography images. Transl Vis Sci Technol. 2018;7(5):11–17. DOI:10.1167/tvst.7.5.20; Tam J., Dhamdhere K.P., Tiruveedhula P. Disruption of the retinal parafoveal capillary network in type 2 diabetes before the onset of diabetic retinopathy. Invest Ophthalmol Vis Sci. 2011;52(12):9257–9266. DOI:10.1167/iovs.11-8481; Vujosevic S., Toma C., Villani E. Early detection of microvascular changes in patients with diabetes mellitus without and with diabetic retinopathy: comparison between different swept-source OCT-A instruments. J Diabetes Res. 2019;2019(2547216). DOI:10.1155/2019/2547216; Inanc M., Tekin K., Kiziltoprak H. Changes in retinal microcirculation precede the clinical onset of diabetic retinopathy in children with type 1 diabetes mellitus. Am J Ophthalmol. 2019;207:37–44. DOI:10.1016/j.ajo.2019.04.011; Krawitz B.D., Mo S., Geyman L.S. Acircularity index and axis ratio of the foveal avascular zone in diabetic eyes and healthy controls measured by optical coherence tomography. Vis Res. 2017;139:177–186. DOI:10.1016/j.visres.2016.09.019; Alibhai A.Y., Moult E.M., Shahzad R. Quantifying microvascular changes using OCT angiography in diabetic eyes without clinical evidence of retinopathy. Ophthalmol Retina. 2018;2(5):418–427. DOI:10.1016/j.oret.2017.09.011; Sun Z., Tang F., Wong R. OCT Angiography metrics predict progression of diabetic retinopathy and development of diabetic macular edema: a prospective study. Ophthalmology. 2019;126(12):1675–1684. DOI:10.1016/j.ophtha.2019.06.016; Samara W.A., Shahlaee A., Adam M.K. Quantification of diabetic macular ischemia using optical coherence tomography angiography and its relationship with visual acuity. Ophthalmology. 2016;124(2):235–244. DOI:10.1016/j.ophtha.2016.10.008; Lavia C., Couturier A., Erginay A. Reduced vessel density in the superficial and deep plexuses in diabetic retinopathy is associated with structural changes in corresponding retinal layers. PLoS One. 2019;14(7):1–15. DOI:10.1371/journal. pone.0219164; Buffolino N.J., Vu A.F., Amin A. Factors affecting repeatability of foveal avascular zone measurement using optical coherence tomography angiography in pathologic eyes. Clin Ophthalmol. 2020;14:1025–1033. DOI:10.2147/OPTH.S247172; Rosen R.B., Romo J.S.A., Krawitz B.D. Earliest evidence of preclinical diabetic retinopathy revealed using optical coherence tomography angiography perfused capillary sensity. Am J Ophthalmol. 2019;203:103–115. DOI:10.1016/j.ajo.2019.01.012; Terheyden J.H., Wintergerst M.W.M., Falahat P. Automated thresholding algorithms outperform manual thresholding in macular optical coherence tomography angiography image analysis. PLoS One. 2020;15(3):1–12. DOI:10.1371/journal. pone.0230260; Simonett J.M., Scarinci F., Picconi F. Early microvascular retinal changes in optical coherence tomography angiography in patients with type 1 diabetes mellitus. Acta Ophthalmol. 2017;95(8):751–755. DOI:10.1111/aos.13404; Yang J.Y., Wang Q., Yan Y.N. Microvascular retinal changes in pre-clinical diabetic retinopathy as detected by optical coherence tomographic angiography. Graefes Arch Clin Exp Ophthalmol. 2020;258(3):513–520. DOI:10.1007/s00417-01904590-x; Durbin M.K., An L., Shemonski N.D. Quantification of retinal microvascular density in optical coherence tomographic angiography images in diabetic retinopathy. JAMA Ophthalmol. 2017;135(4):370–376. DOI:10.1001/jamaophthalmol.2017.0080; Forte R., Haulani H., Jürgens I. Quantative and qualitative analysis of the three capillary plexuses and choriocapillaris in patients with type 1 and type 2 diabetes mellitus without clinical signs of diabetic retinopathy: a prospective pilot study. Retina. 2020;40(2):333–344. DOI:10.1097/IAE.0000000000002376; Choi W., Waheed N.K., Moult E.M. Ultrahigh speed swept source optical coherence tomography angiography of retinal and choriocapillaris alterations in diabetic patients with and without diabetic retinopathy. Retina. 2017;37(1):11–21. DOI:10.1097/IAE.0000000000001250; Tang F.Y., Ng D.S., Lam A. Determinants of quantitative optical coherence tomography angiography metrics in patients with diabetes. Sci Rep. 2017;7(1):1–10. DOI:10.1038/s41598-017-02767-0; Bhardwaj S., Tsui E., Zahid S. Value of fractal analysis of optical coherence tomography angiography in various stages of diabetic retinopathy. Retina. 2018;38(9):1816– 1823. DOI:10.1097/IAE.0000000000001774; Huang F., Dashtbozorg B., Zhang J. Reliability of using retinal vascular fractal dimension as a biomarker in the diabetic retinopathy detection. J Ophthalmol. 2016;2016:6259047. DOI:10.1155/2016/6259047; Kim A.Y., Chu Z., Shahidzadeh A. Quantifying microvascular density and morphology in diabetic retinopathy using spectral-domain optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2016;57(9):362–370. DOI:10.1167/iovs.15-18904; Ishibazawa A., Nagaoka T., Takahashi A. Optical coherence tomography angiography in diabetic retinopathy: a prospective pilot study. Am J Ophthalmol. 2015;160(1):35–44. DOI:10.1016/j.ajo.2015.04.021; Cao D., Yang D., Huang Z Optical coherence tomography angiography discerns preclinical diabetic retinopathy in eyes of patients with type 2 diabetes without clinical diabetic retinopathy. Acta Diabetol. 2018;55(5):469–477. DOI:10.1007/s00592-018-1115-1; Hwang T.S, Hagag A., Wang J. Automated quantification of nonperfusion areas in 3 vascular plexuses with optical coherence tomography angiography in eyes of patients with diabetes. JAMA Ophthalmol. 2018;136(8):929–936. DOI:10.1001/jamaophthalmol.2018.2257; Schottenhamml J., Moult E.M., Ploner S. An automatic, intercapillary area based algorithm for quantifying diabetes related capillary dropout using OCT angiography. Retina. 2016;36:93–101. DOI:10.1097/IAE.0000000000001288; Lauermann P., van Oterendorp C., Storch M.W. Distance-Thresholded intercapillary area analysis versus vessel-based approaches to quantify retinal ischemia in OCTA. Transl Vis Sci Technol. 2019;8(4):1–13. DOI:10.1167/tvst.8.4.28; Krawitz B.D., Phillips E., Bavier R.D. Parafoveal nonperfusion analysis in diabetic retinopathy using optical coherence tomography angiography. Transl Vis Sci Technol. 2018;7(4):1–16. DOI:10.1167/tvst.7.4.4; Sasongko M.B., Wong T.Y., Nguyen T.T. Retinal vascular tortuosity in persons with diabetes and diabetic retinopathy. Diabetologia. 2011;54(9):2409–2416. DOI:10.1007/s00125-011-2200-y; Sasongko M.B., Wong T.Y., Nguyen T.T. Retinal vessel tortuosity and its relation to traditional and novel vascular risk markers in persons with diabetes. Curr Eye Res. 2016;41(4):551–557. DOI:10.3109/02713683.2015.1034371; Carnevali A., Sacconi R., Corbelli E. Optical coherence tomography angiography analysis of retinal vascular plexuses and choriocapillaris in patients with type 1 diabetes without diabetic retinopathy. Acta Diabetol. 2017;54(7):695–702. DOI:10.1007/s00592-017-0996-8; Zhu T.P., Li E.H., Li J.Y. Comparison of projection-resolved optical coherence tomography angiography-based metrics for the early detection of retinal microvas cular impairments in diabetes mellitus. Retina. 2020 Sep;40(9):1783-1792. DOI:10.1097/IAE.0000000000002655; Lee H., Lee M., Chung H., Kim H.C. Quantification of retinal vessel tortuosity in diabetic retinopathy in diabetic retinopathy using optical coherence tomography angiography. Retina. 2019;39(2):247–258. DOI:10.1097/IAE.0000000000001618; Thompson I.A., Durrani A.K., Patel S. Optical coherence tomography angiography characteristics in diabetic patients without clinical diabetic retinopathy. Eye (Lond). 2019;33(4):648–652. DOI:10.1038/s41433-018-0286-x; Salz D.A., de Carlo T.E., Adhi M. Select features of diabetic retinopathy on sweptsource optical coherence tomographic angiography compared with fluorescein angiography and normal eyes. JAMA Ophthalmol. 2016;134(6):644–650. DOI:10.1001/jamaophthalmol.2016.0600; Tang F.Y., Chan E.O., Sun Z. Clinically relevant factors associated with quantitative optical coherence tomography angiography metrics in deep capillary plexus in patients with diabetes. Eye Vis (Lond). 2020;7:1–11. DOI:10.1186/s40662-0190173-y; Brücher V.C., Storp J.J., Eter N., Alnawaiseh M. Optical coherence tomography angiography-derived flow density: a review of the influencing factors. Graefe’s Arch Clin Exp Ophthalmol. 2020;258(4):701–710. DOI:10.1007/s00417-01904553-2; Семенова Н.С., Акопян В.С. Оптическая когерентная томография: от спектральной к swept source. Атлас избранных клинических случаев. М.: Печатный дом «Магистраль»; 2019. 112 с.; Coscas G., Lupidi M., Coscas F. Optical coherence tomography angiography in healthy subjects and diabetic patients. Ophthalmologica. 2018;239(2–3):61–73. DOI:10.1159/000485323s; https://www.ophthalmojournal.com/opht/article/view/1865

  3. 3
    Academic Journal

    المصدر: National Journal glaucoma; Том 20, № 3 (2021); 59-77 ; Национальный журнал Глаукома; Том 20, № 3 (2021); 59-77 ; 2311-6862 ; 2078-4104

    وصف الملف: application/pdf

    Relation: https://www.glaucomajournal.ru/jour/article/view/343/348; Tan O., Chopra V., Lu A.T. et al. Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography. Ophthalmology. 2009; 116:2305–2314. doi:10.1016/j.ophtha.2009.05.025; Kim Y.J., Kang M.H., Cho H.Y., Lim H.W., Seong M. Comparative study of macular ganglion cell complex thickness measured by spectral-domain optical coherence tomography in healthy eyes, eyes with preperimetric glaucoma, and eyes with early glaucoma. Jpn J Ophthalmol. 2014; 58(3):244–251. doi:10.1007/s10384-014-0315-7; Sung K.R., Sun J.H., Na J.H., Lee J.Y., Lee Y. Progression detection capability of macular thickness in advanced glaucomatous eyes. Ophthalmology. 2012; 119(2):308–313. doi:10.1016/j.ophtha.2011.08.022; Na J.H., Sung K.R., Lee J.R., Lee K.S., Baek S., Kim H.K., Sohn Y.H. Detection of glaucomatous progression by spectral-domain optical coherence tomography. Ophthalmology. 2013; 120(7):1388–1395. doi:10.1016/j.ophtha.2012.12.014; Yip V.C.H., Wong H.T., Yong V.K.Y. et al. Optical coherence tomography angiography of optic disc and macula vessel density in glaucoma and healthy eyes. J Glaucoma. 2019; 28(1):80–87. doi:10.1097/IJG.00000000000101125; Yarmohammadi A., Zangwill L.M., Manalastas P.I.C., Fuller N.J. et al. Peripapillary and macular vessel density in patients with primary open-angle glaucoma and unilateral visual field loss. Ophthalmology. 2018; 125(4):578–587. doi:10.1016/j.ophtha.2017.10.029; Moghimi S., Zangwill L.M., Penteado R.C. et al. Macular and optic nerve head vessel density and progressive retinal nerve fiber layer loss in glaucoma. Ophthalmology. 2018; 125(11):1720–1728. doi:10.1016/j.ophtha.2018.05.006; Фурсова А.Ж., Гамза Ю.А., Тарасов М.С., Васильева М.А., Дербенева А.С. Сравнительное исследование структурных и микроциркуляторных параметров у пациентов с первичной открытоугольной глаукомой и сахарным диабетом. Российский офтальмологический журнал. 2020; 13(3):42–50. doi:10.21516/2072-0076-2020-13-3-42-50; Hou H., Shoji T., Zangwill L.M., Moghimi S. Progression of primary open-angle glaucoma in diabetic and nondiabetic patients. Am J Ophthalmol. 2018; 189:1–9. doi:10.1016/j.ajo.2018.02.002; Wang Y., Xin C., Li M., Swain D.L., Cao K., Wang H., Wang N. Macular vessel density versus ganglion cell complex thickness for detection of early primary open-angle glaucoma. BMC Ophthalmol. 2020; 20(1):17. doi:10.1186/s12886-020-1304-x; Poli M., Cornut P.L., Nguyen A.M., De Bats F., Denis P. Accuracy of peripapillary versus macular vessel density in diagnosis of early to advanced primary open angle glaucoma. J Fr Ophtalmol. 2018;41(7):619–629.; Triolo G., Rabiolo A., Shemonski N.D., Fard A., Di Matteo F., Sacconi R. et al. Optical coherence tomography angiography macular and peripapillary vessel perfusion density in healthy subjects, glaucoma suspects, and glaucoma patients. Invest Ophthalmol Vis Sci. 2017;58(13):5713–5722.; Chung J.K., Hwang Y.H., Wi J.M., Kim M., Jung J.J. Glaucoma diagnostic ability of the optical coherence tomography angiography vessel density parameters. Curr Eye Res. 2017; 42(11):1458–1467.; Bojikian K., Nobrega P., Wen J.C., Zhang Q., Mudumbai R.C., Johnstone M.A., Wang R.K., Chen P.P. Macular vascular microcirculation in eyes with open-angle glaucoma using different visual field severity classification systems. J Glaucoma. 2019; 28(9):790–796. doi:10.1097/IJG.0000000000001308; Chen H.S., Liu C.H., Wu W.C., Tseng H.J., Lee Y.S. Optical coherence tomography angiography of the superficial microvasculature in the macular and peripapillary areas in glaucomatous and healthy eyes. Invest Ophthalmol Vis Sci. 2017; 58(9):3637–3645. doi:10.1167/iovs.17-21846; Penteado R.C., Zangwill L.M., Daga F.B. et al. Optical coherence tomography angiography macular vascular density measurements and the Central 10-2 visual field in glaucoma. J Glaucoma. 2018; 27(6):481–489. doi:10.1097/IJG.0000000000000964; Freiberg F.J., Pfau M., Wons J., Wirth M.A., Becker M.D., Michels S. Optical coherence tomography angiography of the foveal avascular zone in diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol. 2016; 254(6):1051–1058. doi:10.1007/s00417-015-3148-2; Kwon J., Choi J., Shin J.W., Lee J., Kook M.S. Glaucoma diagnostic capabilities of foveal avascular zone parameters using optical coherence tomography angiography according to visual field defect location. J Glaucoma. 2017; 26(12):1120–1129. doi:10.1097/IJG.0000000000000800; Shoji T., Zangwill L.M., Akagi T. et al. Progressive macula vessel density loss in primary open-angle glaucoma: a longitudinal study. Am J Ophthalmol. 2017; 182:107e117.; Spaide F. Measurable aspects of the retinal neurovascular unit in diabetes, glaucoma, and controls. Am J Ophthalmol. 2019; 207:395–409. doi:10.1016/j.ajo.2019.04.035; Sohn E.H., van Dijk H.W., Jiao C. Retinal neurodegeneration may precede microvascular changes characteristic of diabetic retinopathy in diabetes mellitus. Proc Natl Acad Sci USA. 2016; 113(19):E2655–64. doi:10.1073/pnas.1522014113; Wu Z., Weng D.S.D., Thenappan A., Ritch R., Hood D.C. Evaluation of a region-of-interest approach for detecting progressive glaucomatous macular damage on optical coherence tomography. Transl Vis Sci Technol. 2018; 7(2):14. doi:10.1167/tvst.7.2.14; Ng D.S., Chiang P.P., Tan G., Cheung C.G., Cheng C.Y., Cheung C.Y., Wong T.Y., Lamoureux E.L., Ikram M.K. Retinal ganglion cell neuronal damage in diabetes and diabetic retinopathy. Clin Exp Ophthalmol. 2016; 44(4):243–250. doi:10.1111/ceo.12724.; https://www.glaucomajournal.ru/jour/article/view/343

  4. 4
    Academic Journal

    المصدر: National Journal glaucoma; Том 20, № 1 (2021); 47-54 ; Национальный журнал Глаукома; Том 20, № 1 (2021); 47-54 ; 2311-6862 ; 2078-4104

    وصف الملف: application/pdf

    Relation: https://www.glaucomajournal.ru/jour/article/view/315/323; Tham Y.C., Li X., Wong T.Y., Quigley H.A., Aung T., Cheng C.Y. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014; 121(11):2081-2090. doi:10.1016/j.ophtha.2014.05.013; Yanagi M., Kawasaki R., Wang J.J., Wong T.Y., Crowston J., Kiuchi Y. Vascular risk factors in glaucoma: a review. Clin Exp Ophthalmol. 2011; 39(3):252-258. doi:10.1111/j.1442-9071.2010.02455.x; Wareham L.K., Calkins D.J. The neurovascular unit in glaucomatous neurodegeneration. Front Cell Dev Biol. 2020; 8:452. doi:10.3389/fcell.2020.00452; Newman A., Andrew N., Casson R. Review of the association between retinal microvascular characteristics and eye disease. Clin Exp Ophthalmol. 2018; 46(5):531-552. doi:10.1111/ceo.13119; Rosenfeld P.J., Durbin M.K., Roisman L., Zheng F., Miller A., Robbins G., Schaal K.B., Gregori G. ZEISS Angioplex™ spectral domain optical coherence tomography angiography: technical aspects. Dev Ophthalmol. 2016; 56:18-29. doi:10.1159/000442773; Coscas G., Lupidi M., Coscas F. Image analysis of optical coherence tomography angiography. Dev Ophthalmol. 2016; 56:30-36. doi:10.1159/000442774; Bekkers A., Borren N., Ederveen V., Fokkinga E., Andrade De Jesus D., Sánchez Brea L., Klein S., van Walsum T., Barbosa-Breda J., Stalmans I. Microvascular damage assessed by optical coherence tomography angiography for glaucoma diagnosis: a systematic review of the most discriminative regions. Acta Ophthalmol. 2020; 98(6):537-558. doi:10.1111/aos.14392; Spaide R.F., Klancnik J.M. Jr, Cooney M.J. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol. 2015; 133(1):45-50. doi:10.1001/jamaophthalmol.2014.3616; Yaoeda K., Shirakashi M., Funaki S., Funaki H., Nakatsue T., Abe H. Measurement of microcirculation in the optic nerve head by laser speckle flowgraphy and scanning laser Doppler flowmetry. Am J Ophthalmol. 2000; 129(6):734-739. doi:10.1016/s0002-9394(00)00382-2; Manalastas P.I.C., Zangwill L.M., Saunders L.J., Mansouri K., Belghith A., Suh M.H., Yarmohammadi A., Penteado R.C., Akagi T., Shoji T., Weinreb R.N. Reproducibility of optical coherence tomography angiography macular and optic nerve head vascular density in glaucoma and healthy eyes. J Glaucoma. 2017; 26(10):851-859. doi:10.1097/IJG.0000000000000768; Jia Y., Wei E., Wang X., Zhang X., Morrison J.C., Parikh M., Lombardi L.H., Gattey D.M., Armour R.L., Edmunds B., Kraus M.F., Fujimoto J.G., Huang D. Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology. 2014; 121(7):1322-1332. doi:10.1016/j.ophtha.2014.01.021; Geyman L.S., Garg R.A., Suwan Y., Trivedi V., Krawitz B.D., Mo S., Pinhas A., Tantraworasin A., Chui T.Y.P., Ritch R., Rosen R.B. Peripapillary perfused capillary density in primary open-angle glaucoma across disease stage: an optical coherence tomography angiography study. Br J Ophthalmol. 2017; 101(9):1261-1268. doi:10.1136/bjophthalmol-2016-309642; Yarmohammadi A., Zangwill L.M., Diniz-Filho A., Suh M.H., Man-lastas P.I., Fatehee N., Yousefi S., Belghith A., Saunders L.J., Medeiros F.A., Huang D., Weinreb R.N. Optical coherence tomography angiography vessel density in healthy, glaucoma suspect, and glaucoma eyes. Invest Ophthalmol Vis Sci. 2016; 57(9):OCT451-459. doi:10.1167/iovs.15-18944; Anctil J.L., Anderson D.R. Early foveal involvement and generalized depression of the visual field in glaucoma. Arch Ophthalmol. 1984; 102(3):363-370. doi:10.1001/archopht.1984.01040030281019; Curcio C.A., Allen K.A. Topography of ganglion cells in human retina. J Comp Neurol. 1990; 300(1):5-25. doi:10.1002/cne.903000103; Hood D.C., Raza A.S., de Moraes C.G., Liebmann J.M., Ritch R. Glaucomatous damage of the macula. Prog Retin Eye Res. 2013; 32:1-21. doi:10.1016/j.preteyeres.2012.08.003; Oddone F., Lucenteforte E., Michelessi M., Rizzo S., Donati S., Parravano M., Virgili G. Macular versus retinal nerve fiber layer parameters for diagnosing manifest glaucoma: a systematic review of diagnostic accuracy studies. Ophthalmology. 2016; 123(5):939-949. doi:10.1016/j.ophtha.2015.12.041; Курышева Н.И., Маслова Е.В., Трубилина А.В., Арджевнишвили Т.Д., Фомин А.В. Особенности макулярного кровотока при глаукоме. Вестник офтальмологии. 2017; 133(2):29-38.; Курышева Н.И., Маслова Е.В., Трубилина А.В., Лагутин М.Б. Роль оптической когерентной томографии с функцией ангиографии в ранней диагностике и мониторинге глаукомы. Национальный журнал глаукома. 2016; 14(2):20–32.; Hou H., Moghimi S., Zangwill L.M., Shoji T., Ghahari E., Penteado R.C., Akagi T., Manalastas P.I.C., Weinreb R.N. Macula vessel density and thickness in early primary open-angle glaucoma. Am J Ophthalmol. 2019; 199:120-132. doi:10.1016/j.ajo.2018.11.012; Wang X., Jiang C., Ko T., Kong X., Yu X., Min W., Shi G., Sun X. Correlation between optic disc perfusion and glaucomatous severity in patients with open-angle glaucoma: an optical coherence tomography angiography study. Graefes Arch Clin Exp Ophthalmol. 2015; 253(9):1557-1564. doi:10.1007/s00417-015-3095-y; Rao H.L., Pradhan Z.S., Weinreb R.N., Reddy H.B., Riyazuddin M., Dasari S., Palakurthy M., Puttaiah N.K., Rao D.A., Webers C.A. Regional comparisons of optical coherence tomography angiography vessel density in primary open-angle glaucoma. Am J Ophthalmol. 2016; 171:75-83. doi:10.1016/j.ajo.2016.08.030; Patel N., McAllister F., Pardon L., Harwerth R. The effects of graded intraocular pressure challenge on the optic nerve head. Exp Eye Res. 2018; 169:79-90. doi:10.1016/j.exer.2018.01.025; Zhang Q., Jonas J.B., Wang Q., Chan S.Y., Xu L., Wei W.B., Wang Y.X. Optical coherence tomography angiography vessel density changes after acute intraocular pressure elevation. Sci Rep. 2018; 8(1):6024. doi:10.1038/s41598-018-24520-x; Holló G. Influence of large intraocular pressure reduction on peripapillary OCT vessel density in ocular hypertensive and glaucoma eyes. J Glaucoma. 2017; 26(1):e7-e10. doi:10.1097/IJG.0000000000000527; Chihara E., Dimitrova G., Chihara T. Increase in the OCT angiographic peripapillary vessel density by ROCK inhibitor ripasudil instillation: a comparison with brimonidine. Graefes Arch Clin Exp Ophthalmol. 2018; 256(7):1257-1264. doi:10.1007/s00417-018-3945-5; Trible J.R., Sergott R.C., Spaeth G.L., Wilson R.P., Katz L.J., Moster M.R., Schmidt C.M. Trabeculectomy is associated with retrobulbar hemodynamic changes. A color Doppler analysis. Ophthalmology. 1994; 101(2):340-351. doi:10.1016/s0161-6420(13)31332-3; Synder A., Augustyniak E., Laudańska-Olszewska I., Wesołek-Czernik A. Evaluation of blood-flow parameters in extraocular arteries in patients with primary open-angle glaucoma before and after surgical treatment. Klin Oczna. 2004; 106(1-2 Suppl):206-208.; Berisha F., Schmetterer K., Vass C., Dallinger S., Rainer G., Findl O., Kiss B., Schmetterer L. Effect of trabeculectomy on ocular blood flow. Br J Ophthalmol. 2005; 89(2):185-188. doi:10.1136/bjo.2004.048173; Kuerten D., Fuest M., Koch E.C., Remky A., Plange N. Long term effect of trabeculectomy on retrobulbar haemodynamics in glaucoma. Ophthalmic Physiol Opt. 2015; 35(2):194-200. doi:10.1111/opo.12188; Januleviciene I., Siaudvytyte L., Diliene V., Barsauskaite R., Siesky B., Harris A. Effect of trabeculectomy on ocular hemodynamic parameters in pseudoexfoliative and primary open-angle glaucoma patients. J Glaucoma. 2015; 24(5):e52-6. doi:10.1097/IJG.0000000000000055; Zéboulon P., Lévêque P.M., Brasnu E., et al. Effect of surgical intraocular pressure lowering on peripapillary and macular vessel density in glaucoma patients: an optical coherence tomography angiography study. J Glaucoma. 2017; 26(5):466-472. doi:10.1097/IJG.0000000000000652; Shin J.W., Sung K.R., Uhm K.B. et al. Peripapillary microvascular improvement and lamina cribrosa depth reduction after trabeculectomy in primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2017; 58(13):5993-5999. doi:10.1167/iovs.17-22787; Kim J.A., Kim T.W., Lee E.J., Girard M.J.A., Mari J.M. Microvascular changes in peripapillary and optic nerve head tissues after trabeculectomy in primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2018; 59(11):4614-4621. doi:10.1167/iovs.18-25038; Lee E.J., Kim T.W. Lamina cribrosa reversal after trabeculectomy and the rate of progressive retinal nerve fiber layer thinning. Ophthalmology. 2015; 122(11):2234-2242. doi:10.1016/j.ophtha.2015.07.020; Lommatzsch C., Rothaus K., Koch J.M., Heinz C., Grisanti S. Retinal perfusion 6 months after trabeculectomy as measured by optical coherence tomography angiography. Int Ophthalmol. 2019; 39(11): 2583-2594. doi:10.1007/s10792-019-01107-7; Ch'ng T.W., Gillmann K., Hoskens K., Rao H.L., Mermoud A., Mansouri K. Effect of surgical intraocular pressure lowering on retinal structures — nerve fibre layer, foveal avascular zone, peripapillary and macular vessel density: 1 year results. Eye (Lond). 2020; 34(3): 562-571. doi:10.1038/s41433-019-0560-6; Zhao Z., Wen W., Jiang C., Lu Y. Changes in macular vasculature after uncomplicated phacoemulsification surgery: Optical coherence tomography angiography study. J Cataract Refract Surg. 2018; 44(4): 453-458. doi:10.1016/j.jcrs.2018.02.014; Raghu N., Pandav S.S., Kaushik S., Ichhpujani P., Gupta A. Effect of trabeculectomy on RNFL thickness and optic disc parameters using optical coherence tomography. Eye (Lond). 2012; 26(8):1131-1137. doi:10.1038/eye.2012.115; Alnawaiseh M., Müller V., Lahme L., Merté R.L., Eter N. Changes in flow density measured using optical coherence tomography angiography after iStent insertion in combination with phacoemulsification in patients with open-angle glaucoma. J Ophthalmol. 2018; 2018:2890357. doi:10.1155/2018/2890357; https://www.glaucomajournal.ru/jour/article/view/315

  5. 5
    Academic Journal

    المصدر: Acta Biomedica Scientifica; Том 6, № 6-1 (2021); 237-243 ; 2587-9596 ; 2541-9420

    وصف الملف: application/pdf

    Relation: https://www.actabiomedica.ru/jour/article/view/3131/2270; Bird AC, Phillips RL, Hageman GS. Geographic atrophy: a histopathological assessment. JAMA Ophthalmol. 2014; 132(3): 338-345. doi:10.1001/jamaophthalmol.2013.5799; Coscas F, Puche N, Coscas G, Srour M, Français C, GlacetBernard A, et al. Comparison of macular choroidal thickness in adult onset foveomacular vitelliform dystrophy and age-related macular degeneration. Invest Ophthalmol Vis Sci. 2014; 55(1): 64-69. doi:10.1167/iovs.13-12931; Sohn EH, Khanna A, Tucker BA, Abrámoff MD, Stone EM, Mullins RF. Structural and biochemical analyses of choroidal thickness in human donor eyes. Invest Ophthalmol Vis Sci. 2014; 55(3): 1352-1360. doi:10.1167/iovs.13-13754; Dansingani KK, Balaratnasingam C, Naysan J, Freund KB. En face imaging of pachychoroid spectrum disorders with sweptsource optical coherence tomography. Retina. 2016; 36(3): 499-516. doi:10.1097/IAE.0000000000000742; Gal-Or O, Dansingani KK, Sebrow D, Dolz-Marco R, Freund KB. Inner choroidal flow signal attenuation in pachychoroid disease: Optical coherence tomography angiography. Retina. 2018; 38(10): 1984-1992. doi:10.1097/IAE.0000000000002051; Warrow DJ, Hoang QV, Freund KB. Pachychoroid pigment epitheliopathy. Retina. 2013; 33(8): 1659-1672. doi:10.1097/IAE.0b013e3182953df4; Esmaeelpour M, Ansari-Shahrezaei S, Glittenberg C, Nemetz S, Kraus MF, Hornegger J, et al. Choroid, Haller’s, and Sattler’s layer thickness in intermediate age-related macular degeneration with and without fellow neovascular eyes. Invest Ophthalmol Vis Sci. 2014; 55(8): 5074-5080. doi:10.1167/iovs.14-14646; Pichi F, Aggarwal K, Neri P, Salvetti P, Lembo A, Nucci P, et al. Choroidal biomarkers. Indian J Ophthalmol. 2018; 66(12): 1716-1726. doi:10.4103/ijo.IJO_893_18; Metrangolo C, Donati S, Mazzola M, Fontanel L, Messina W, D’alterio G, et al. OCT biomarkers in neovascular age-related macular degeneration: A narrative review. J Ophthalmol. 2021; 2021: 9994098. doi:10.1155/2021/9994098; Будзинская М.В., Фурсова А.Ж., Педанова Е.К. Специфические биомаркеры ответа на антиангиогенную терапию. Вестник офтальмологии. 2020; 136(2): 117-124. doi:10.17116/oftalma2020136021117; Wei X, Ting DSW, Ng WY, Khandelwal N, Agrawal R, Cheung CMG. Choroidal vascularity index: A novel optical coherence tomography based parameter in patients with exudative age-related macular degeneration. Retina. 2017; 37(6): 1120-1125. doi:10.1097/IAE.0000000000001312; Kim JM, Kang SW, Son DY, Bae K. Risk factors and clinical significance of prechoroidal cleft in neovascular age-related macular degeneration. Retina. 2017; 37(11): 2047-2055. doi:10.1097/IAE.0000000000001435; Querques G, Costanzo E, Miere A, Capuano V, Souied EH. Choroidal caverns: A novel optical coherence tomography finding in geographic atrophy. Invest Ophthalmol Vis Sci. 2016; 57(6): 2578-2582. doi:10.1167/iovs.16-19083; Dolz -Marco R, Glover JP, Gal-Or O, Litts KM, Messinger JD, Zhang Y, et al. Choroidal and sub-retinal pigment epithelium caverns: Multimodal imaging and correspondence with Friedman lipid globules. Ophthalmology. 2018; 125(8): 1287-1301. doi:10.1016/j.ophtha.2018.02.036; Carnevali A, Sacconi S, Corbelli E, Querques L, Bandello F, Querques G. Choroidal caverns: A previously unreported optical coherence tomography finding in best vitelliform dystrophy. Ophthalmic Surg Lasers Imaging Retina. 2018; 49(4): 284-287. doi:10.3928/23258160-20180329-14; Guerra RLL, Arantes RC, Marback EF, Shields CL. Novel OCT findings in choroidal osteoma: Brief report. Int J Retina Vitreous. 2021; 7(1): 46. doi:10.1186/s40942-021-00317-5; Pang CE, Freund KB. Pachychoroid neovasculopathy. Retina. 2015; 35(1): 1-9. doi:10.1097/IAE.0000000000000331; Педанова Е.К., Клепинина О.Б., Горшков И.М. Пахихориоидальная неоваскулопатия – сравнительная эффективность загрузочных доз анти-VEGF-препаратов. Современные технологии в офтальмологии. 2019; 1: 289-291. doi:10.25276/2312-4911-2019-1-289-291; Miyake M, Ooto S, Yamashiro K, Takahashi A, Yoshikawa M, Akagi-Kurashige Y, et al. Pachychoroid neovasculopathy and age-related macular degeneration.Sci Rep. 2015; 5: 16204. doi:10.1038/srep16204; Terao N, Koizumi H, Kojima K, Yamagishi T, Yamamoto Y, Yoshii K, et al. Distinct aqueous humour cytokine profiles of patients with pachychoroid neovasculopathy and neovascular age-related macular degeneration. Sci Rep. 2018; 8(1): 10520. doi:10.1038/s41598-018-28484-w; Cheung CMG, Lee WK, Koizumi H, Dansingani K, Lai TYY, Freund KB. Pachychoroid disease. Eye (Lond). 2019; 33(1): 14-33. doi:10.1038/s41433-018-0158-4; Sakurada Y, Leong BC, Parikh R, Fragiotta S, Freund KB. Association between choroidal caverns and choroidal vascular hyperpermeability in eyes with pachychoroid diseases. Retina. 2018; 38(10): 1977-1983. doi:10.1097/IAE.0000000000002294; Ayachit A, Joshi S, Kathyayini SV, Ayachit G. Choroidal caverns in pachychoroid neovasculopathy. Indian J Ophthalmol. 2020; 68(1): 199-200. doi:10.4103/ijo.IJO_395_19; Mishra S, Garg B, Senger D, Kumar A, Somarajan AC, Goel S, et al. Focal choroidal excavation and giant choroidal cavern in an eye with pachychoroid. Oman J Ophthalmol. 2020; 13(3): 155-157. doi:10.4103/ojo.OJO_189_2019; https://www.actabiomedica.ru/jour/article/view/3131

  6. 6
    Academic Journal
  7. 7
    Academic Journal
  8. 8
    Academic Journal
  9. 9
    Academic Journal
  10. 10
    Academic Journal
  11. 11
    Academic Journal
  12. 12
    Academic Journal

    المصدر: Ophthalmology in Russia; Том 16, № 3 (2019); 310-316 ; Офтальмология; Том 16, № 3 (2019); 310-316 ; 2500-0845 ; 1816-5095 ; 10.18008/1816-5095-2019-3

    وصف الملف: application/pdf

    Relation: https://www.ophthalmojournal.com/opht/article/view/1008/624; Kelly N.E., Wendel R.T. Vitreous surgery for idiopathic macular holes. Results of a pilot study. Arch. Ophthalmolog.1991;109:654–659.; Балашевич Л.И., Байбородов Я.В., Жоголев К.С. Хирургическое лечение патоло гии витреомакулярного интерфейса. Обзор литературы в вопросах и ответах. Офтальмохирургия. 2015;2:80–85. [Balashevich L.I., Baiborodov J.V., Zogolev K.S. Surgical treatment of the vitreo-macular interface pathology. Review of the for eign literature in questions and answers. Fyodorov Journal of Ophthalmic Surgery = Oftal’mokhirurgiya. 2015;2:80–85 (In Russ.)]. DOI:10.25276/0235-4160-2015-2-80-86; Sheidow T.G., Blinder K.J., Holekamp N., et al. Outcome results in macular hole surgery: an evaluation of internal limiting membrane peeling with and without indocyanine green. Ophthalmology. 2003;110(9):1697–1701. DOI:10.1016/S01616420(03)00562-1; Kumagai K., Furukawa M., Ogino N., et al. Vitreous surgery with and without internal limiting membrane peeling for macular hole repair. Retina. 2004;24(5):721–727.; Алпатов С.А., Щуко А.Г., Малышев В.В. Патогенез и лечение идиопатических макулярных разрывов. Новосибирск: Наука; 2005:192 [Alpatov S.A., Shchu ko A.G., Malyshev V.V Pathogenesis and treatment of Idiopatic macular holes. Novosibirsk: Science; 2005:192 (In Russ.)].; Белый Ю.А., Терещенко А.В., Шкворченко Д.О. и др. Новый подход к хи рургии больших идиопатических макулярных разрывов. Современные технологии в офтальмологии. 2015;1(5):24–27. [Beliy Yu.A., Tereshchenko A.V., Shkvorchenko D.O., et. al. New method of surgery of large idiopathic macular holes. Modern technologies in ophthalmology = Sovremennye tekhnologii v oftal’mologii. 2015;1(5):24–27 (In Russ.)].; Шпак А.А., Шкворченко Д.О., Шарафетдинов И.Х., Юханова О.А. Прогно зирование анатомического эффекта хирургического лечения идиопатиче ского макулярного разрыва. Современные технологии в офтальмологии. 2015;1:136–138. [Shpak A.A., Shkvorchenko D.O., Sharafetdinov I.Kh., Yuhanova O.A. Predicting the results of surgical treatment of idiopathic macular hole. Mod ern technologies in ophthalmology = Sovremennye tekhnologii v oftal’mologii. 2015;1:136–138 (In Russ.)]. DOI:10.25276/0235-4160-2015-2-55-61; Kwork A.K., Lai T.Y., Wong V.W. Idiopatic macular hole surgery in Chinese pa tients: a randomized study to compare indocyanin green-assisted internal limiting membrane peeling with no iternal limiting membran peeling. Hon Kong Med. J. 2005;11:259–266.; Baba T., Yamamoto S., Arai M., et al. Correlation of visual recovery and pres ence of photoreceptor inner/outer segment junction in optical coherence images after successful macular hole repair. Retina. 2008;28(3):453–458. DOI:10.1097/ IAE.0b013e3181571398; Engelmann K., Sievert U., Hölig K., Wittig D., Weßlau S., Domann S., Siegert G., Valtink M. Effect of autologous platelet concentrates on the anatomical and functional outcome of late stage macular hole surgery: A retrospective analysis. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2015;58:11–12. DOI:10.1007/s00103-015-2251-1; Gaudric A., Massin P., Paques M., et al. Autologous platelet concentrate for the treatment of full-thickness macular holes. Graefes Arch Clin Exp Ophthalmol.1995;233(9):549–554.; Kapoor K.G., Khan A.N., Tieu B.C., Khurshid G.S. Revisiting autologous platelets as an adjuvant in macular hole repair: chronic macular holes without prone positioning. Ophthalmic Surg Lasers Imaging. 2012;43(4):291–295. DOI:10.3928/15428877-20120426-03; Konstantinidis A., Hero M., Nanos P., Panos G.D. Efficacy of autologous platelets i n macular hole surgery. Clin Ophthalmol. 2013;7:45–50. DOI:10.2147/OPTH.S44440; Шкворченко Д.О., Захаров В.Д., Крупина Е.А., Письменская В.А., Какуни на С.А., Норманн К.С., Петерсен Е.В. Хирургическое лечение макулярных разрывов с применением богатой тромбоцитами плазмы крови. Офтальмохирургия. 2017;3:27–30. [Shkvorchenko D.O., Zakharov V.D., Krupina E.A., Pismen skaya V.A., Kakunina S.A., Norman K.S., Petersen E.V. Surgical treatment of primary macular hole using platelet-rich plasma. Fyodorov Journal of Ophthalmic Surgery = Oftal’mokhirurgiya 2017;3:27–30 (In Russ.)]. DOI:10.25276/0235-4160-2017-3-27-30; Захаров В.Д., Шкворченко Д.О., Крупина Е.А., Письменская В.А., Какунина С.А., Норман К.С. Эффективность богатой тромбоцитами плазмы крови в хирур гии больших макулярных разрывов. Практическая медицина.2016;9:118–121. [Zakharov V.D., Shkvorchenko D.O., Krupina E.A., Pismenskaya V.A., Kakunina S.A., Norman K.S. Efficacy of platelet-rich plasma in large macular holes surgery. Practical medicine = Prakticheskaya meditsina. 2016;9:118–121 (In Russ.)].; Tokayer J., Jia Y., Dhalla A. H., Huang D. Blood flow velocity quantification us ing split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Biomed Opt Express. 2013;4:1909–1924. DOI:10.1364/BOE.4.001909; Gao S.S., Liu G., Huang D., Jia Y. Optimization of the split-spectrum amplitudedecorrelation angiography algorithm on a spectral optical coherence tomography system. Opt Letters. 2015;40:2305–2308.; Dmuchowska D.A. Сan optical coherence tomography replace fluorescein angi ography in detection of ischemic diabetic maculopathy? Graefes Arch. Clin. Exp. Ophthalmol. 2014;252(5):731–738. DOI:10.1007/s00417-013-2518; Jhon Choi W. Choriocapillaris and Choroidal Microvasculature Imaging with Ultrahigh Speed OCT Angiography. PLoS One. 2013;8(12):e81499. DOI:10.1371/ journal.pone.0081499; Vaziri K., Schwartz S.G. Rates of Reoperation and Retinal Detachment Following Macular Hole Surgery. Ophthalmology. 2016;123(1):26–31. DOI:10.1016/j. ophtha.2015.09.015; Frechette J.P. Platalet rich plazma Dent. Res.2005; 84(5):434-439. DOI:10.1007/9783-642-40117-6_2; Новочадов В.В. Проблема управления клеточным заселением и ремоделиро ванием тканеинженерных матриц для восстановления суставного хряща (об зор литературы). Вестник Волгоградского государственного университета. Серия 11, Естественные науки. 2013;1(5):19–28. [Novochadov V.V. The problem of management of cell population and remodeling of tissue-engineering scaffolds for the articular cartilage reconstruction, Journal of Volgograd State University = Vestnik Volgogradskogo gosudarstvennogo universiteta. 2013;1(5):19–28 (In Russ.)].; Bringmann A., Pannicke T., Grosche J., Francke M., Wiedemann P., Skatchkov S.N., Osborne N.N., Reichenbach A. Müller cells in the healthy and diseased retina. Prog Retin Eye Res. 2006;25:397–424. DOI:10.1016/j.preteyeres.2006.05.003; Jadhav A.P., Roesch K., Cepko C.L. Development and neurogenic potential of Müller glial cells in the vertebrate retina. Prog Retin Eye Res. 2009;28:249–262. DOI:10.1016/j.preteyeres.2009.05.002; Ooka E., Mitamura Y., Baba T., Kitahashi M., Oshitari T., Yamamoto S. Foveal microstructure on spectral-domain optical coherence tomographic images and visual function after macular hole surgery. Am J Ophthalmol. 2011;152(2):283–290. DOI:10.1016/j.ajo.2011.02.001; Ruiz-Moreno J.M., Arias L., Araiz J., García-Arumí J., Montero J.A., Piñero D.P. Spectral-domain optical coherence tomography study of macular structure as prognostic and determining factor for macular hole surgery outcome. Retina. 2013;33(6):1117–1122. DOI:10.1097/IAE.0b013e318285cc3b; Hashimoto Y., Saito W., Fujiya A. Changes in inner and outer retinal layer thicknesses after vitrectomy for idiopathic macular hole: implications for visual prognosis. PLoS One. 2015;10(8):e0135925. DOI:10.1371/journal. pone.0135925; Savastano M., Lumbroso B., Rispoli M. In vivo characterization of retinal vascularization morphology using optical coherence tomography angiography. Retina. 2015;(35)11:2196–2203.; Tadayoni R., Paques M., Massin P., et al. Dissociated optic nerve fiber layer appear ance of the fundus after idiopathic epiretinal membrane removal. Ophthalmology. 2001;108:2279–2283. DOI:10.1016/S0161-6420(01)00856-9; https://www.ophthalmojournal.com/opht/article/view/1008

  13. 13
    Academic Journal

    المصدر: Ophthalmology in Russia; Том 16, № 1S (2019); 79-84 ; Офтальмология; Том 16, № 1S (2019); 79-84 ; 2500-0845 ; 1816-5095 ; 10.18008/1816-5095-2017-6

    وصف الملف: application/pdf

    Relation: https://www.ophthalmojournal.com/opht/article/view/902/586; Катаргина Л.А., Денисова Е.В., Рябцев Д.И. Болезнь Беста: клиническое наблюдение семейного случая. Российская педиатрическая офтальмология. 2015;10(2):15–19.; Marmorstein A.D., Kinnick T.R., Stanton J.B., Johnson A.A., Lynch R.M., Marmorstein L.Y. Bestrophin-1 influences transepithelial electrical properties and Ca2+ signaling in human retinal pigment epithelium. Molecular Vision. 2015;21:347–59.; Gass J.M.D. Best’s disease. In: Stereoscopic Atlas of Macular Disease. Diagnosis and Treatment. St. Louis-London-Philadelphia-Sydney-Toronto: Mosby; 1997:304–313.; Parodi M.B., Iacono P., Campa C., Turco C., Bandello F. Fundus autofluorescence patterns in Best vitelliform macular dystrophy. Am. J. Ophthalmol. 2014;158:1086–1092. DOI:10.1016 / j.ajo.2014.07.026; Chhablani J., Jalali S. Intravitreal bevacizumab for choroidal neovascularization secondary to Best vitelliform macular dystrophy in a 6-year-old child. Eur. J. Ophthalmol. 2012;22(4):677–679. DOI:10.5301/ejo.5000095; Elkhoyaali A., Chatoui S., Bercheq N., Elouatassi N., Zerrouk R., Elasri F., Reda K., Oubaaz A. Choroidal neovascularization complicating Best’s vitelliform macular dystrophy in a child. J. Fr. Ophtalmol. 2016;39(1):69–73. DOI:10.1016/j.jfo.2015.05.008 (In French).; Leu J., Schrage N.F., Degenring R.F. Choroidal neovascularisation secondary to Best’s disease in a 13-year-old boy treated by intravitreal bevacizumab. Graefes Arch. Clin. Exp. Ophthalmol. 2007;245(11):1723–1725. DOI: 10,1007 / s00417-007-0604-7; Schatz P., Sharon D., Al-Hamdani S., Andréasson S., Larsen M. Retinal structure in young patients aged 10 years or less with Best vitelliform macular dystrophy. Graefes Arch. Clin. Exp. Ophthalmol. 2016;254(2):215–221. DOI:10.1007/s00417-015-3025-z; Duncker T., Greenberg J.P., Ramachandran R., Hood D.C., Smith R.T., Hirose T., Woods R.L., Tsang S.H., Delori F.C., Sparrow J.R. Quantitative Fundus Autofluorescence and Optical Coherence Tomography in Best Vitelliform Macular Dystrophy. Invest. Ophthalmol. Vis. Sci. 2014;55(3):1471–1482. DOI:10.1167/iovs.13-13834; Sulzbacher F., Pollreisz A., Kaider A., Kickinger S., et al. Identification and clinical role of choroidal neovascularization characteristics based on optical coherence tomography angiography. Acta Ophthalmol. 2017;95(4):414–420. DOI:10.1111/aos.13364; https://www.ophthalmojournal.com/opht/article/view/902

  14. 14
    Academic Journal

    المصدر: National Journal glaucoma; Том 18, № 1 (2019); 3-9 ; Национальный журнал Глаукома; Том 18, № 1 (2019); 3-9 ; 2311-6862 ; 2078-4104

    وصف الملف: application/pdf

    Relation: https://www.glaucomajournal.ru/jour/article/view/227/235; Chen S.J. High myopia as a risk factor in primary open angle glaucoma. Int JOphthalmol. 2012; 5(6):750-753. http://doi.org/10.3980/j.issn.2222-3959.2012.06.18; Jonas J.B., Gusek G.C., Naumann G.O.H. Optic disk morphometry in high myopia. Graefes Arch Clin Exp Ophthalmol. 1988; 226:587-590. http://doi.org/10.1111/j.1755-3768.2009.01660.x; Dichtl A., Jonas J.B., Naumann G.O. Histomorphometry of the optic disc in highly myopic eyes with absolute secondary angle closure glaucoma. Br J Ophthalmol. 1998; 82:286-289. http://dx.doi.org/10.1136/bjo.82.3.286; Corallo G., Capris P., Zingirian M. Perimetric findings in subjects with elevated myopia and glaucoma. Acta Ophthalmol Scand Suppl. 1997; 224:30-31.; Doughty M.J., Zaman M.L. Human corneal thickness and its impact on intraocular pressure measures: a review: a meta-analysis approach. Surv Ophthalmol. 2000; 44:367-408. https://doi.org/10.1016/S0039-6257(00)00110-7; Medeiros F.A., Weinreb R.N. Evaluation of the influence of corneal biomechanical properties on intraocular pressure measurements using the ocular response analyzer. Glaucoma. 2006; 15:364-370. http:// doi.org/10.1097/01.ijg.0000212268.42606.97; Аветисов С.Э., Бубнова И.А., Антонов А.А. Клинико-экспериментальные аспекты изучения биомеханических свойств фиброзной оболочки глаза. Вестник офтальмологии. 2013; 5:82-90.; Волков В.В. Глаукома при псевдонормальном давлении. Москва: Медицина; 2001: 352.; Gazarek J., Jan J., Kolar R., Odstrcilik J. Bimodal comparison of retinal nerve fibre layer atrophy evaluation. Proc. Biosignal: Analysis of Biomedical Signals and Images. 2010; 20:409-413.; Dichtl A., Jonas J.B., Naumann G.O.H. Glaucoma in high myopia and parapapillary delta zone. PLOS ONE. 2017; 5. https://doi.org/10.1371/journal.pone.0175120; Lee J.E., Sung K.R., Park J.M. et al. Optic disc and peripapillary retinal nerve fiber layer characteristics associated with glaucomatous optic disc in young myopia. Graefe’s Arch Clin Exper Ophthalmol 2017; 255(3):591-598. https://doi.org/10.1007/s00417-016-3542-4; Щуко А.Г., Малышев В.В. Оптическая когерентная томография в диагностике глазных болезней. Москва: ГЕОТАР-Медиа; 2010: 128.; Жукова С.И., Юрьева Т.Н., Микова О.И., Самсонов Д.Ю., Григорьева А.В., Пятова Ю.С. ОКТ-ангиография в оценке хориоретинального кровотока при колебании внутриглазного давления у больных первичной открытоугольной глаукомой. Клиническая Офтальмология. 2016; 2:98-103. https://doi.org/10.21689/2311-7729-2016-16-2-98-103; Mansouri K., Rao H.L., Hoskens K. et al. Diurnal variations of peripapillary and Macular vessel density in glaucomatous eyes using optical coherence tomography angiography. J Glaucoma. 2018; 27(4):336-341. https://doi.org/10.1097/IJG.0000000000000914; Lumbroso B., Huang D., Jia Y. et al. Clinical guide to angio-OCT: non invasive, dyeless OCT angiography. New Delhi: Jaypee Brothers Medical Publ.; 2015: 86.; Ishida Tomoka, Jonas Jost B. Ishii, Minami et al. Peripapillary arterial ring of Zinn-Haller in highly myopic eyes as detected by optical coherence tomography angiography. Retina. 2017; 37(2):299-304. https://doi.org/10.1097/IAE.0000000000001165; Щуко А.Г., Юрьева Т.Н. Алгоритмы диагностики и лечения больных первичной глаукомой. Иркутск: Иркутский институт усовершенствования врачей; 2010: 45.; Kim T.-W. et al. Optic disc change with incipient myopia of childhood. Ophthalmology. 2012; 119(1):21-26. https://doi.org/10.1016Zj.oph-tha.2011.07.051; Григорьева А.В., Щуко А.Г., Жукова С.И., Самсонов Д.Ю., Юрьева Т.Н., Зайцева Н.В. Дифференциально-диагностические критерии хориоидальной неоваскуляризации при осложненной миопии и экссудативной возрастной макулярной дегенерации. Современные технологии в офтальмологии. 2016; 4:69-72.; Мозаффари М., Фламмер Й. Кровообращение глаза и глаукомная оптическая нейропатия. СПб.: Эко-Вектор; 2013: 141.; https://www.glaucomajournal.ru/jour/article/view/227

  15. 15
    Academic Journal

    المصدر: Ophthalmology in Russia; Том 15, № 3 (2018); 294-302 ; Офтальмология; Том 15, № 3 (2018); 294-302 ; 2500-0845 ; 1816-5095 ; 10.18008/1816-5095-2018-3

    وصف الملف: application/pdf

    Relation: https://www.ophthalmojournal.com/opht/article/view/690/521; Злобина А.Н., Юрьева Т.Н. Центральная серозная хориоретинопатия. Лазерная хирургия сосудистой патологии глазного дна / под ред. проф. А.Г. Щуко. М.: Офтальмология, 2014. [Zlobina A.N., Iureva T.N. Central serous chorioretinopathy. Laser surgery of the vascular pathology of the fundus / ed. prof. A.G. Shchuko. Oftal’mologiya, 2014 (In Russ.)]; Gass J.D. Central serous chorioretinopathy and white subretinal exudation during pregnancy. Arch Ophthalmol. 1991;109:677–681.; Williamoson T.H., Harris A. Ocular blood flow measurement. Br J Ophthalmol. 1994;78:939–945.; Wei W.B., Xu L., Jonas J.B., Shao L., Du K.F., Wang S., Chen C.X., Xu J., Wang Y.X., Zhou J.Q., You Q.S. Subfoveal choroidal thickness: the Beijing eye study. Ophthalmology. 2013;120(1):175–180. DOI:10.1016/j.ophtha.2012.07.048; Iida, T., Kishi S., Hagimura N., et al. Persistent and bilateral choroidal vascular abnormalities in central serous chorioretinopathy. Retina. 1999;19:508–512.; Щуко А.Г., Злобина А.Н., Юрьева Т.Н. Оптимизация критериев диагно стики центральной серозной хориоретинопатии. Клиническая Офтальмология. 2015;1:24. [Shchuko A.G., Zlobina A.N., Iureva T.N. Optimization of diagnostic criteria for central serous chorioretinopathy. Clinical Ophthalmology = Klinicheskaya Oftal’mologiya. 2015;1:24 (In Russ.)]; Drexler H. Endothelial dysfunction: clinical implications. Prog Cardiovasc Dis. 1997;39(4):287–324.; Gass J.D. Bullous retinal detachments and multiple retinal pigment epithelial detachments in patients receiving hemodialysis. Graefes Arch Clin Exp Ophthalmol. 1992;230:454–458.; Marmor M.F. New hypothesis on the pathogenesis and treatment of serous retinal detachment. Graefes Arch Clin Exp Ophthalmol. 1988;226:548–555.; Sekiryu T., Iida T., Maruko I. Infrared Fundus Autofluorescence and Cen tral Serous Chorioretinopathy. Investigative Ophthalmology & Visual Science. 2010;51(10):4956–4962. DOI:10.1167/iovs.09-5009; Guyer D.R., Yannuzzi L.A., Slakter J.S., et al. Digital indocyanine green videoangi ography of central serous chorioretinopathy. Arch Ophthalmol. 1994;112:1057–1062.; Imamura Y., Fujiwara T., Margolis R. Enhanced depth imaging optical coher ence tomography of the choroid in central serous chorioretinopathy. Retina. 2009;29:1469–1473. DOI:10.1097/IAE.0b013e3181be0a83; Khng, C.G., Yap E.Y., Au-Eong K.G. Central serous retinopathy complicating sys temic lupus erythematosus: a case series. Clin Exp Ophthalmol. 2000;28:309–313. DOI:10.1046/j.1442-9071.2000.00328.x; Maruko I., Iida T., Sugano Y. Subfoveal choroidal thickness after treatment of central serous chorioretinopathy. Ophthalmology. 2010;117:1792–1799. DOI:10.1016/j.ophtha.2010.01.023; Щуко А.Г., Пашковский А.А., Шестаков А.О., Якимов А.П., Юрьева Т.Н., Жу кова С.И., Алпатов С.А., Малышев В.В. Оптическая когерентная томография в диагностике офтальмологических заболеваний. Медицинская визуализация. 2003;3: 59–62. [Shchuko A.G., Pashkovsky A.A., Shestakov A.O., Yakimov A.P., Iureva T.N., Zhukova S.I., Alpatov S.A., Malyshev V.V. Optical coherence tomography in the diagnosis of ophthalmic diseases. Medical visualization = Meditsinskaya vizualizatsiya. 2003;3:59–62 (In Russ.)]; Branchini L.A., Adhi M., Regatieri C.V., et al. Analysis of Choroidal Morphology and Vasculature in Healthy Eyes Using Spectral-Domain Optical Coherence Tomogra phy. Ophthalmology. 2013;120(9):1901–1908. DOI:10.1016/j.ophtha.2013.01.066; Weiter J.J., Ernest J.T. Anatomy of the choroidal vasculature. Am J Ophthalmol. 1974;78:583.; Lumbroso B., Huang D., Chen C. Clinical OCT Angiography Atlas. New DelhiLondon-Philadelphia-Panama: The Health Sciences Publisher, 2015.; Lumbroso B., Huang D., Jia Y. Clinical Guide to Angio-OCT-Non Invasive Dyeless OCT Angiography. New Delhi: Jaypee Brothers Medical Publisher, 2015.; Lumbroso B., Huang D., Romano A. Clinical En Face OCT Atlas. New Delhi-Lon don-Philadelphia-Panama: Jaypee — highlights Medical Publisher, INC., 2013.; Spaide R.F., Koizumi H., Pozonni M.C. Enhanced depth imaging spectral-do main optical coherence tomography. Am J Ophthalmol. 2008;146:496–500. DOI:10.1016/j.ajo.2008.05.032; Hayrech S.S. Segmental nature of the choroidal vasculature. Br J Ophthalmol. 1975;59(11):631–648.; Savastano V.C., Rispoli M., Savastano F., Lumbroso B. En-Face Optical Coherence Tomography for Visualization of the Choroid. Ophthalmic Surgery. Lasers and Imaging Retina. 2015;46(5):561–565. DOI:10.3928/23258160-20150521-07; Grunwald J., Metelitsina T., Du Pont J., et al. Reduced foveolar choroidal blood flow in yes with increasing AMD severity. Invest Ophthalmol Vis Sci. 2005;46:1033–38. DOI:10.1167/iovs.04-1050; Guyer D.R., Schachat A.P., Green W.R. The choroid: structural considerations / In: Ryan S. J., ed.-in-chief. Retina. Philadelphia: Elsevier Mosby, 2006.; Hayrech S.S. Choriocapillaris. Graefes Arch Ophthalmol. 1974;192:165–179.; Johnson P.C. Red cell separation in the capillary network. Am J Physiol. 1971;221(1):99–104.; Внутренние болезни. Сердечно-сосудистая система: учеб. пособие / ред. Г.Е. Ройтберг, А.В. Струтынский. М.: МЕДпресс-информ; 2017. [Internal diseases. Cardiovascular system: Textbook. allowance / ed. G.Ye. Roitberg, A.V. Strutynsky Moscow: MEDpress-inform, 2017 (In Russ.)]; Фолков Б., Нил Э. Кровообращение / пер. с англ. Н.М. Верич. М.: Медицина; 1976. [Folkov B., Neil E. Blood circulation / transl. from English by Н.М. Verich. Meditsina; 1976 (In Russ.)]; Коган И.И., Конюков В.Н., Шацких А.В. Микрохирургическая анатомия кровеносных сосудов заднего отдела глазного яблока. Офтальмохирургия. 2003;3:42–46. [Kogan I.I., Konyukov V.N., Shatskikh A.V. Microsurgical anatomy of the blood vessels of the posterior eyeball. Ophthalmosurgery = Oftal’mokhirurgiya. 2003;3:42–46 (In Russ.)]; Астахов Ю.С., Тульцева С.Н., Титаренко А.И. Роль дисфункции эндотелия в патогенезе сосудистых заболеваний органа зрения. Регионарное кровообращение и микроциркуляция. 2017;15(4):5–13. [Astakhov Yu.S., Tultseva S.N., Titarenko A.I. The role of endothelial dysfunction in the pathogenesis of vascular diseases of the organ of vision. Regional Heamodynamics and microcirculation = Regionarnoye krovoobrashcheniye i mikrotsirkulyatsiya. 2016;15(4):5–16 (In Russ.)]; Iida, T., Spaide S.G., Negrao R.F. Central serous chorioretinopathy after epidural corticosteroid injection. Am J Ophthalmol. 2001;132:423–425. DOI: http://dx.doi. org/10.1016/S0002-9394(01)00970-9; Wang M., Munch I.C., Hasler P.W., et al. Central serous chorioretinopathy. Acta Ophthalmol. 2008;86:126–145 (4). DOI:10.1111/j.1600-0420.2007.00889.x; https://www.ophthalmojournal.com/opht/article/view/690

  16. 16
    Academic Journal

    المصدر: Ophthalmology in Russia; Том 15, № 2S (2018); 254-260 ; Офтальмология; Том 15, № 2S (2018); 254-260 ; 2500-0845 ; 1816-5095 ; 10.18008/1816-5095-2018-2S

    وصف الملف: application/pdf

    Relation: https://www.ophthalmojournal.com/opht/article/view/657/508; Дога А.В., Качалина Г.Ф., Клепинина О.Б. Центральная серозная хориоретинопатия: современные аспекты диагностики и лечения: руководство для врачей/ А.В. Дога, Г.Ф. Качалина, О.Б. Клепинина. Москва: Офтальмология; 2017:226. [Doga A.V., Kachalina G.F., Klepinina O.B. Central serous chorioretinopathy: modern aspects of diagnosis and treatment: the guide for physicians. Moscow: Ophthalmology; 2017:226. (In Russ.)]; Дога А.В., Клепинина О.Б., Педанова Е.К., Мушкова И.А. Дифференциально-диагностические ОКТ-критерии острой и хронической форм центральной серозной хориоретинопатии. Вестник офтальмологии. 2017;6:10–16. [Doga A.V., Klepinina O.B., Pedanova E.K., Mushkova I.A. Differential diagnostic OCT-criteria of acute and chronic central serous chorioretinopathy. Annals of Ophthalmology=Vestnik oftal’mologii 2017;6:10–16. (In Russ.)] DOI:10.17116/ oftalma2017133610-15; Pichi F., Morara M., Veronese C., Ciardella AP. The overlapping spectrum of flat irregular pigment epithelial detachment investigated by optical coherence tomography angiography. Int Ophthalmol. 2017; May 11. DOI:10.1007/s10792-017-0547-x; Bonini Filho M.A., de Carlo T.E., Ferrara D., Adhi M., Baumal C.R., Witkin A.J., Reichel E., Duker J.S., Waheed N.K. Association of choroidal neovascularization and central serous chorioretinopathy with optical coherence tomography angiography. JAMA Ophthalmology. 2015;133 (8): 899–06. DOI:10.1001/jamaophthalmol.2015.1320; Constanzo E., Cohen S.Y., Miere A., Querques G., Capuano V., Semoun O., El Ameen A., Oubraham H., Souied E.H. Optical Coherence Tomography Angiography in Central Serous Chorioretinopathy. J Ophthalmol. 2015; 2015:134783. DOI:10.1155/2015/134783 Epub 2015 Nov 8.; Dansingani K.K., Balaratnasingam C., Klufas M.A., Sarraf D., Freund K.B. Optical Coherence Tomography Angiography of Shallow Irregular Pigment Epithelial Detachments In Pachychoroid Spectrum Disease. Am J Ophthalmol. 2015;160(6):1243–54. DOI:10.1016/j.ajo.2015.08.028; Gajdzik-Gajdecka U., Dorecka M., Nita E., Michalska A., Miniewicz-Kurowska J., Romaniuk W. Indocyanine green angiography in chronic central serous chorioretinopathy. Med Sci Monit. 2012;18(2):CR51–7. DOI:10.12659/MSM.882455; Jia Y., Tan O., Tokayer J., Potsaid B., Wang Y., Liu J.J., Kraus M.F., Subhash H., Fujimoto J.G., Hornegger J., Huang D. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt Express. 2012;20(4):4710–25. DOI:10.1364/OE.20.004710; Фабрикантов О. Л., Попова Н. В., Гойдин А. П. Диагностические возможности оптической когерентной томографии-ангиографии при хориоидальной неоваскуляризации (обзор клинических случаев). Медицина. 2017;5(2): 55–63. [Fabrikantov O.L., Popova N.V, Goydin A.P. Diagnostic capabilities of optical coherence tomography-angiography in choroidal neovascularization (clinical cases review). Medicine= Meditsina. 2017;5(2):55–63. (In Russ.)]; de Carlo T.E., Rosenblatt A., Goldstein M., Baumal C.R., Loewenstein A., Duker J.S. Vascularization of Irregular Retinal Pigment Epithelial Detachments in Chronic Central Serous Chorioretinopathy Evaluated With OCT Angiography. Ophthalmic Surg Lasers Imaging Retina. 2016;47(2):128–33. DOI:10.3928/23258160-20160126-05; Teussink M.M., Breukink M.B., van Grinsven M.J., Hoyng C.B., Klevering B.J., Boon C.J., de Jong E.K., Theelen T. OCT Angiography Compared to Fluorescein and Indocyanine Green Angiography in Chronic Central Serous Chorioretinopathy. Invest Ophthalmol Vis Sci. 2015; 56(9):5229–37. DOI:10.1167/iovs.15-17140; Quaranta-El Maftouhi M., El Maftouhi A., Eandi C.M. Chronic central serous chorioretinopathy imaged by optical coherence tomographic angiography. Am J Ophthalmol. 2015;160(3):581–7. DOI:10.1016/j.ajo.2015.06.016; Bhattacharjee H., Soibam R. , Yambem D., Misra D.K. Indocyanine Green Angiography Findings in Central Serous Chorioretinopathy. IOSR Journal of Dental and Medical Sciences (IOSR-JDMS). 2016;15(5):11–21. DOI:10.9790/0853-1505031121; https://www.ophthalmojournal.com/opht/article/view/657

  17. 17
  18. 18
  19. 19
    Academic Journal

    المصدر: Ophthalmology in Russia; Том 13, № 2 (2016); 102-110 ; Офтальмология; Том 13, № 2 (2016); 102-110 ; 2500-0845 ; 1816-5095 ; 10.18008/1816-5095-2016-2

    وصف الملف: application/pdf

    Relation: https://www.ophthalmojournal.com/opht/article/view/307/315; Hayreh S. S. Blood flow in the optic head andfactors that may influence it. Prog Retin Eye Res. 2001;20 (5):595‑624.; Grieshaber M. C., Flammer J. Blood flow in glaucoma. Curr Opin Ophthalmol. 2005;16:79‑83.; Rusia D., Harris A., Pernic A., et al. Feasibility of creating a normative database of colour doppler imaging parameters in glaucomatous eyes and controls (Review). Br J of Ophthalmol. 2010;95 (9):1193‑1198.; Hwang J., Konduru R., Zhang X., Tan O., Francis B., Varma R., Sehi M., Greenfield D., Sadda S., Huang D. Relationship among Visual Field, Blood Flow, and Neural Structure Measurements in Glaucoma. Invest Ophthalmol Vis Sci. 2012;53:3020‑3026.; Wang Y., Bower D., Izatt J., Tan O., Huang D. Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography. J Biomed Opt. 2008;13 (6).; Weinreb R. N., Harris A. Ocular Blood Flow in Glaucoma: Consensus Series 6. The Netherlands. Kugler Publications; 2009.; Jonas J., et al. Optic disc morfometry correlated with confocal laser scanning Doppler flowmetry measurements in normal-pressure glaucoma. J. Glaucoma 2003;12:260‑265.; Kawasaki R., Wang J. J., Rochtchina E., Lee A. J., Wong T. Y., Mitchell P. Retinal vessel caliber is associated with the 10‑year incidence of glaucoma: the Blue Mountains Eye Study. Ophthalmology; 2013;120:84‑90.; Yaoeda K., Shirakashi M., et al. Relationship between optic nerve head circulation and visual field loss in glaucoma. Acta Ophthalmol Scand, 2003;81:253.; Harris A., Kagemann L., Chung H. The use of dye dilution curve analysis in the quatification of indocyanin green angiograms of the human choroid. Ophthalmic imaging and diagnostics 1998;11:331‑337.; Ben-Zion I., Harris A., et al. An updated review of methods for human retinal oximetry measurements and current applications. Harefuah 2008;147:812‑817, 836.; Stalmans I., Vandewalle E., Anderson D. R., Costa V. P., Frenkel R. E., et al. Use of colour Doppler imaging in ocular blood flow research. Acta Ophthalmol. 2011;89:609‑630.; Курышева Н. И. Глазная гемоперфузия и глаукома. — М.: ГРИНЛАЙТ; 2014, 128 с.; Tokayer J., Jia Y., Dhalla A. H., Huang D. Blood flow velocity quantification using split- spectrum amplitude-decorrelation angiography with optical coherence tomography. Biomed Opt Express 2013;4:1909‑1924.; Jia Y., Wei E., Wang X., et al. Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology 2014;121:1322‑1332.; Pechauer A., Liu L., Gao S., Jian C., Huang D. Optical coherence tomography angiography of peripapillary retinal blood flow response to hyperoxia. Invest Ophthalmol Vis Sci. 2015;56:3287‑3291.; Liu L., Jia Y., Takusagawa H. L., Morrison J. C., Huang D. Optical Coherence Tomography Angiography of the Peripapillary Retina in Glaucoma JAMA Ophthalmol. 2015;133 (9):1045‑1052.; Wang Y., Fawzi A. A., Varma R., et al. Pilot study of optical coherence tomography measurement of retinal blood flow in retinal and optic nerve diseases. Invest Ophthalmol Vis Sci 2015;52:840‑845.; Kurysheva N. I., Ardzhevnishvili T. D., Kiseleva T. N., Fomin A. V. [Choroid in glaucoma: the results of research by optical coherence tomography] Khorioideya pri glaukome: rezul’taty issledovaniya metodom opticheskoi kogerentnoi tomografii. [Glaucoma]. Glaukoma. 2013;4:73‑83. (In Russ.); Kurysheva N. I., Kiseleva T. N., Irtegova E. Yu. [Features of venous blood flow of eyes with primary open-angle glaucoma.] Osobennosti venoznogo krovotoka glaza pri pervichnoy otkrytougol’noy glaukome. [Glaucoma.] Glaukoma. 2012;4:24‑31. (In Russ.); Kurysheva N. I., Parshunina O. A., Maslova E. V., Kiseleva T. N., Lagutin M. B., [Diagnostic significance of the research of ocular blood flow in early detection of primary open-angle glaucoma.] Diagnosticheskaya znachimost’ issledovaniya glaznogo krovotoka v rannem vyyavlenii pervichnoy otkrytougol’noy glaukome. [Glaucoma]. Glaukoma. 2015;3 (14):19‑28. (In Russ.); Spaide R., Klancic J., Cooney M. Retinal vascular layers imaged by fluorescein angiography. JAMA Ophthalmol.2015; 133: 45‑50.; Savastano M., Lumbroso B., Rispoli M. In vivo characterization of retinal vascularization morphology using optical coherence tomography angiography. Retina. 2015;35,11: 2196‑2203.; Snodderly D., Weinhaus R., Choi J. Neural-vascular relationships in central retina of macaque monkeys (Macaca fascicularis). J Neurosci. 1992;12: 1169‑1193.; Flammer J, Konieczka K. Retinal venous pressure: the role of endothelin. EPMA J. 2015; 6:21; Kurysheva N. I., Kiseleva T. N., Ryzhkov P. K., Fomin A. V., Khodak N. A., Ardzhevnishvili T. D. [Influence of venous blood flow of the eye on the condition of the center of retinal ganglion cells in patients with primary open-angle glaucoma.] Vliyanie venoznogo krovotoka glaza na sostoyanie kompleksa ganglioznykh kletok setchatki u bol’nykh pervichnoy otkrytougol’noy glaukomoy. [Ophthalmology]. Oftal’mologiya. 2013;1:26‑31. (In Russ.); https://www.ophthalmojournal.com/opht/article/view/307

  20. 20