يعرض 1 - 5 نتائج من 5 نتيجة بحث عن '"Н. С. Мартиросян"', وقت الاستعلام: 0.35s تنقيح النتائج
  1. 1
    Academic Journal

    المصدر: Meditsinskiy sovet = Medical Council; № 6 (2024); 240-249 ; Медицинский Совет; № 6 (2024); 240-249 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/8296/7317; Liu X, Cheng Y, Zang D, Zhang M, Li X, Liu D et al. The Role of Gut Microbiota in Lung Cancer: From Carcinogenesis to Immunotherapy. Front Oncol. 2021;11:720842. https://doi.org/10.3389/fonc.2021.720842.; Rebersek M. Gut microbiome and its role in colorectal cancer. BMC Cancer. 2021;21(1):1325. https://doi.org/10.1186/s12885-021-09054-2.; Ruo SW, Alkayyali T, Win M, Tara A, Joseph C, Kannan A et al. Role of Gut Microbiota Dysbiosis in Breast Cancer and Novel Approaches in Prevention, Diagnosis, and Treatment. Cureus. 2021;13(8):e17472. https://doi.org/10.7759/cureus.17472.; Fujita K, Matsushita M, Banno E, De Velasco MA, Hatano K, Nonomura N, Uemura H. Gut microbiome and prostate cancer. Int J Urol. 2022;29(8):793–798. https://doi.org/10.1111/iju.14894.; Han M, Wang N, Han W, Ban M, Sun T, Xu J. Gut Microbes in Gynecologic Cancers: Causes or Biomarkers and Therapeutic Potential. Front Oncol. 2022;12:902695. https://doi.org/10.3389/fonc.2022.902695.; Chen Y, Ma J, Dong Y, Yang Z, Zhao N, Liu Q et al. Characteristics of Gut Microbiota in Patients With Clear Cell Renal Cell Carcinoma. Front Microbiol. 2022;13:913718. https://doi.org/10.3389/fmicb.2022.913718.; Yang J, Zhou X, Liu X, Ling Z, Ji F. Role of the Gastric Microbiome in Gastric Cancer: From Carcinogenesis to Treatment. Front Microbiol. 2021;12:641322. https://doi.org/10.3389/fmicb.2021.641322.; Kang Y, Cai Y, Yang Y. The Gut Microbiome and Hepatocellular Carcinoma: Implications for Early Diagnostic Biomarkers and Novel Therapies. Liver Cancer. 2021;11(2):113–125. https://doi.org/10.1159/000521358.; Rahman MM, Islam F, Harun-Or-Rashid M, Mamun AA, Rahaman MS, Islam MM et al. The Gut Microbiota (Microbiome) in Cardiovascular Disease and Its Therapeutic Regulation. Front Cell Infect Microbiol. 2022;12:903570. https://doi.org/10.3389/fcimb.2022.903570.; Zhu M, Liu X, Ye Y, Yan X, Cheng Y, Zhao L et al. Gut Microbiota: A Novel Therapeutic Target for Parkinson’s Disease. Front Immunol. 2022;13:937555. https://doi.org/10.3389/fimmu.2022.937555.; Jiang C, Li G, Huang P, Liu Z, Zhao B. The Gut Microbiota and Alzheimer’s Disease. J Alzheimers Dis. 2017;58(1):1–15. https://doi.org/10.3233/JAD-161141.; Taniya MA, Chung HJ, Al Mamun A, Alam S, Aziz MA, Emon NU et al. Role of Gut Microbiome in Autism Spectrum Disorder and Its Therapeutic Regulation. Front Cell Infect Microbiol. 2022;12:915701. https://doi.org/10.3389/fcimb.2022.915701.; Zhao T, Wei Y, Zhu Y, Xie Z, Hai Q, Li Z, Qin D. Gut microbiota and rheumatoid arthritis: From pathogenesis to novel therapeutic opportunities. Front Immunol. 2022;13:1007165. https://doi.org/10.3389/fimmu.2022.1007165.; Zhang L, Qing P, Yang H, Wu Y, Liu Y, Luo Y. Gut Microbiome and Metabolites in Systemic Lupus Erythematosus: Link, Mechanisms and Intervention. Front Immunol. 2021;12:686501. https://doi.org/10.3389/fimmu.2021.686501.; Xu X, Ying J. Gut Microbiota and Immunotherapy. Front Microbiol. 2022;13:945887. https://doi.org/10.3389/fmicb.2022.945887.; Altieri C, Speranza B, Corbo MR, Sinigaglia M, Bevilacqua A. Gut-Microbiota, and Multiple Sclerosis: Background, Evidence, and Perspectives. Nutrients. 2023;15(4):942. https://doi.org/10.3390/nu15040942.; Hou K, Wu ZX, Chen XY, Wang JQ, Zhang D, Xiao C et al. Microbiota in health and diseases. Signal Transduct Target Ther. 2022;7(1):135. https://doi.org/10.1038/s41392-022-00974-4.; Berg G, Rybakova D, Fischer D, Cernava T, Vergès MC, Charles T et al. Microbiome definition re-visited: old concepts and new challenges. Microbiome. 2020;8(1):103. https://doi.org/10.1186/s40168-020-00875-0.; Reynoso-García J, Miranda-Santiago AE, Meléndez-Vázquez NM, Acosta-Pagán K, Sánchez-Rosado M, Díaz-Rivera J et al. A complete guide to human microbiomes: Body niches, transmission, development, dysbiosis, and restoration. Front Syst Biol. 2022;2:951403. https://doi.org/10.3389/fsysb.2022.951403.; Martínez JE, Vargas A, Pérez-Sánchez T, Encío IJ, Cabello-Olmo M, Barajas M. Human Microbiota Network: Unveiling Potential Crosstalk between the Different Microbiota Ecosystems and Their Role in Health and Disease. Nutrients. 2021;13(9):2905. https://doi.org/10.3390/nu13092905.; Kastl AJ Jr, Terry NA, Wu GD, Albenberg LG. The Structure and Function of the Human Small Intestinal Microbiota: Current Understanding and Future Directions. Cell Mol Gastroenterol Hepatol. 2020;9(1):33–45. https://doi.org/10.1016/j.jcmgh.2019.07.006.; Bull MJ, Plummer NT. Part 1: The Human Gut Microbiome in Health and Disease. Integr Med (Encinitas). 2014;13(6):17–22. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4566439/.; Sender R, Fuchs S, Milo R. Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS Biol. 2016;14(8):e1002533. https://doi.org/10.1371/journal.pbio.1002533.; Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J. 2017;474(11):1823–1836. https://doi.org/10.1042/BCJ20160510.; Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444(7122):1022–1023. https://doi.org/10.1038/4441022a.; Rinninella E, Raoul P, Cintoni M, Franceschi F, Miggiano GAD, Gasbarrini A, Mele MC. What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms. 2019;7(1):14. https://doi.org/10.3390/microorganisms7010014.; Zhang YJ, Li S, Gan RY, Zhou T, Xu DP, Li HB. Impacts of gut bacteria on human health and diseases. Int J Mol Sci. 2015;16(4):7493–7519. https://doi.org/10.3390/ijms16047493.; Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR et al. Enterotypes of the human gut microbiome. Nature. 2011;473(7346):174–180. https://doi.org/10.1038/nature09944.; Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59–65. https://doi.org/10.1038/nature08821.; Bourdeau-Julien I, Castonguay-Paradis S, Rochefort G, Perron J, Lamarche B, Flamand N et al. The diet rapidly and differentially affects the gut microbiota and host lipid mediators in a healthy population. Microbiome. 2023;11(1):26. https://doi.org/10.1186/s40168-023-01469-2.; Mansour SR, Moustafa MAA, Saad BM, Hamed R, Moustafa AA. Impact of diet on human gut microbiome and disease risk. New Microbes New Infect. 2021;41:100845. https://doi.org/10.1016/j.nmni.2021.100845.; Su Q, Liu Q. Factors Affecting Gut Microbiome in Daily Diet. Front Nutr. 2021;8:644138. https://doi.org/10.3389/fnut.2021.644138.; Makki K, Deehan EC, Walter J, Bäckhed F. The Impact of Dietary Fiber on Gut Microbiota in Host Health and Disease. Cell Host Microbe. 2018;23(6):705–715. https://doi.org/10.1016/j.chom.2018.05.012.; Fu J, Zheng Y, Gao Y, Xu W. Dietary Fiber Intake and Gut Microbiota in Human Health. Microorganisms. 2022;10(12):2507. https://doi.org/10.3390/microorganisms10122507.; Koliada A, Moseiko V, Romanenko M, Piven L, Lushchak O, Kryzhanovska N et al. Seasonal variation in gut microbiota composition: cross-sectional evidence from Ukrainian population. BMC Microbiol. 2020;20(1):100. https://doi.org/10.1186/s12866-020-01786-8.; Baniel A, Amato KR, Beehner JC, Bergman TJ, Mercer A, Perlman RF et al. Seasonal shifts in the gut microbiome indicate plastic responses to diet in wild geladas. Microbiome. 2021;9(1):26. https://doi.org/10.1186/s40168-020-00977-9.; Song F, Xu Y, Peng P, Li H, Zheng R, Zhang H et al. Seasonal Changes in the Structure and Function of Gut Microbiota in the Muskrat (Ondatra zibethicus). Metabolites. 2023;13(2):248. https://doi.org/10.3390/metabo13020248.; Matsumoto S, Ren L, Iigo M, Murai A, Yoshimura T. Mimicking seasonal changes in light-dark cycle and ambient temperature modulates gut microbiome in mice under the same dietary regimen. PLoS ONE. 2023;18(2):e0278013. https://doi.org/10.1371/journal.pone.0278013.; Arreaza-Gil V, Escobar-Martínez I, Suárez M, Bravo FI, Muguerza B, Arola-Arnal A, Torres-Fuentes C. Gut Seasons: Photoperiod Effects on Fecal Microbiota in Healthy and Cafeteria-Induced Obese Fisher 344 Rats. Nutrients. 2022;14(3):722. https://doi.org/10.3390/nu14030722.; Hasan N, Yang H. Factors affecting the composition of the gut microbiota, and its modulation. PeerJ. 2019;7:e7502. https://doi.org/10.7717/peerj.7502.; Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Nageshwar Reddy D. Role of the normal gut microbiota. World J Gastroenterol. 2015;21(29):8787–8803. https://doi.org/10.3748/wjg.v21.i29.8787.; Gaulke CA, Sharpton TJ. The influence of ethnicity and geography on human gut microbiome composition. Nat Med. 2018;24(10):1495–1496. https://doi.org/10.1038/s41591-018-0210-8.; Syromyatnikov M, Nesterova E, Gladkikh M, Smirnova Y, Gryaznova M, Popov V. Characteristics of the Gut Bacterial Composition in People of Different Nationalities and Religions. Microorganisms. 2022;10(9):1866. https://doi.org/10.3390/microorganisms10091866.; Ho HE, Bunyavanich S. Role of the Microbiome in Food Allergy. Curr Allergy Asthma Rep. 2018;18(4):27. https://doi.org/10.1007/s11882-018-0780-z.; Zheng D, Liwinski T, Elinav E. Interaction between microbiota and immunity in health and disease. Cell Res. 2020;30(6):492–506. https://doi.org/10.1038/s41422-020-0332-7.; Guo Y, Chen X, Gong P, Li G, Yao W, Yang W. The Gut-Organ-Axis Concept: Advances the Application of Gut-on-Chip Technology. Int J Mol Sci. 2023;24(4):4089. https://doi.org/10.3390/ijms24044089.; Liu L, Huh JR, Shah K. Microbiota and the gut-brain-axis: Implications for new therapeutic design in the CNS. EBioMedicine. 2022;77:103908. https://doi.org/10.1016/j.ebiom.2022.103908.; Fenneman AC, Bruinstroop E, Nieuwdorp M, van der Spek AH, Boelen A. A Comprehensive Review of Thyroid Hormone Metabolism in the Gut and Its Clinical Implications. Thyroid. 2023;33(1):32–44. https://doi.org/10.1089/thy.2022.0491.; Peeters RP, Visser TJ. Metabolism of Thyroid Hormone. In: Feingold KR, Anawalt B, Blackman MR, Boyce A, Chrousos G, Corpas E et al. (eds.). Endotext. South Dartmouth (MA): MDText.com, Inc.; 2000. Available at: https://www.ncbi.nlm.nih.gov/books/NBK285545/.; Salvatore G, Covelli I, Roche J. La fixation des hormones thyroidiennes par Escherichia coli et son mécanisme. Gen Comp Endocrinol. 1963;3(1):15–25. https://doi.org/10.1016/0016-6480(63)90042-x.; Asarat M, Apostolopoulos V, Vasiljevic T, Donkor O. Short-Chain Fatty Acids Regulate Cytokines and Th17/Treg Cells in Human Peripheral Blood Mononuclear Cells in vitro. Immunol Invest. 2016;45(3):205–222. https://doi.org/10.3109/08820139.2015.1122613.; Knezevic J, Starchl C, Tmava Berisha A, Amrein K. Thyroid-Gut-Axis: How Does the Microbiota Influence Thyroid Function? Nutrients. 2020;12(6):1769. https://doi.org/10.3390/nu12061769.; Segain JP, Raingeard de la Blétière D, Bourreille A, Leray V, Gervois N, Rosales C et al. Butyrate inhibits inflammatory responses through NFkappaB inhibition: implications for Crohn’s disease. Gut. 2000;47(3):397–403. https://doi.org/10.1136/gut.47.3.397.; Meng F, Lowell CA. Lipopolysaccharide (LPS)-induced macrophage activation and signal transduction in the absence of Src-family kinases Hck, Fgr, and Lyn. J Exp Med. 1997;185(9):1661–1670. https://doi.org/10.1084/jem.185.9.1661.; Chaiwut R, Kasinrerk W. Very low concentration of lipopolysaccharide can induce the production of various cytokines and chemokines in human primary monocytes. BMC Res Notes. 2022;15(1):42. https://doi.org/10.1186/s13104-022-05941-4.; Mazzieri A, Montanucci P, Basta G, Calafiore R. The role behind the scenes of Tregs and Th17s in Hashimoto’s thyroiditis: Toward a pivotal role of FOXP3 and BACH2. Front Immunol. 2022;13:1098243. https://doi.org/10.3389/fimmu.2022.1098243.; Li C, Yuan J, Zhu YF, Yang XJ, Wang Q, Xu J et al. Imbalance of Th17/Treg in Different Subtypes of Autoimmune Thyroid Diseases. Cell Physiol Biochem. 2016;40(1-2):245–252. https://doi.org/10.1159/000452541.; Kustrimovic N, Gallo D, Piantanida E, Bartalena L, Lai A, Zerbinati N et al. Regulatory T Cells in the Pathogenesis of Graves’ Disease. Int J Mol Sci. 2023;24(22):16432. https://doi.org/10.3390/ijms242216432.; Park JH, Jeong SY, Choi AJ, Kim SJ. Lipopolysaccharide directly stimulates Th17 differentiation in vitro modulating phosphorylation of RelB and NF-κB1. Immunol Lett. 2015;165(1):10–19. https://doi.org/10.1016/j.imlet.2015.03.003.; Pedro AB, Romaldini JH, Takei K. Changes of serum cytokines in hyperthyroid Graves’ disease patients at diagnosis and during methimazole treatment. Neuroimmunomodulation. 2011;18(1):45–51. https://doi.org/10.1159/000311519.; Siddiq A, Naveed AK, Ghaffar N, Aamir M, Ahmed N. Association of ProInflammatory Cytokines with Vitamin D in Hashimoto’s Thyroid Autoimmune Disease. Medicina (Kaunas). 2023;59(5):853. https://doi.org/10.3390/medicina59050853.; Kondo K, Harbuz MS, Levy A, Lightman SL. Inhibition of the hypothalamicpituitary-thyroid axis in response to lipopolysaccharide is independent of changes in circulating corticosteroids. Neuroimmunomodulation. 1997;4(4):188–194. https://doi.org/10.1159/000097337.; Yang N, Zhang DL, Hao JY, Wang G. Serum levels of thyroid hormones and thyroid stimulating hormone in patients with biliogenic and hyperlipidaemic acute pancreatitis: Difference and value in predicting disease severity. J Int Med Res. 2016;44(2):267–277. https://doi.org/10.1177/0300060515618052.; Sánchez E, Singru PS, Fekete C, Lechan RM. Induction of type 2 iodothyronine deiodinase in the mediobasal hypothalamus by bacterial lipopolysaccharide: role of corticosterone. Endocrinology. 2008;149(5):2484–2493. https://doi.org/10.1210/en.2007-1697.; De Vries EM, Surovtseva O, Vos WG, Kunst RF, van Beeren M, Kwakkel J et al. Downregulation of Type 3 Deiodinase in the Hypothalamus During Inflammation. Thyroid. 2019;29(9):1336–1343. https://doi.org/10.1089/thy.2019.0201.; Kahl S, Elsasser TH, Blum JW. Effect of endotoxin challenge on hepatic 5’-deiodinase activity in cattle. Domest Anim Endocrinol. 2000;18(1):133–143. https://doi.org/10.1016/s0739-7240(99)00069-7.; Nicola JP, Vélez ML, Lucero AM, Fozzatti L, Pellizas CG, Masini-Repiso AM. Functional toll-like receptor 4 conferring lipopolysaccharide responsiveness is expressed in thyroid cells. Endocrinology. 2009;150(1):500–508. https://doi.org/10.1210/en.2008-0345.; Nicola JP, Nazar M, Mascanfroni ID, Pellizas CG, Masini-Repiso AM. NF-kappaB p65 subunit mediates lipopolysaccharide-induced Na(+)/I(–) symporter gene expression by involving functional interaction with the paired domain transcription factor Pax8. Mol Endocrinol. 2010;24(9):1846–1862. https://doi.org/10.1210/me.2010-0102.; Vélez ML, Costamagna E, Kimura ET, Fozzatti L, Pellizas CG, Montesinos MM et al. Bacterial lipopolysaccharide stimulates the thyrotropin-dependent thyroglobulin gene expression at the transcriptional level by involving the transcription factors thyroid transcription factor-1 and paired box domain transcription factor 8. Endocrinology. 2006;147(7):3260–3275. https://doi.org/10.1210/en.2005-0789.; Pérez-Reytor D, Puebla C, Karahanian E, García K. Use of Short-Chain Fatty Acids for the Recovery of the Intestinal Epithelial Barrier Affected by Bacterial Toxins. Front Physiol. 2021;12:650313. https://doi.org/10.3389/fphys.2021.650313.; Mendoza-León MJ, Mangalam AK, Regaldiz A, González-Madrid E, Rangel-Ramírez MA, Álvarez-Mardonez O et al. Gut microbiota shortchain fatty acids and their impact on the host thyroid function and diseases. Front Endocrinol (Lausanne). 2023;14:1192216. https://doi.org/10.3389/fendo.2023.1192216.; Virili C, Antonelli A, Santaguida MG, Benvenga S, Centanni M. Gastrointestinal Malabsorption of Thyroxine. Endocr Rev. 2019;40(1):118–136. https://doi.org/10.1210/er.2018-00168.; Sun J, Zhao F, Lin B, Feng J, Wu X, Liu Y et al. Gut Microbiota Participates in Antithyroid Drug Induced Liver Injury Through the Lipopolysaccharide Related Signaling Pathway. Front Pharmacol. 2020;11:598170. https://doi.org/10.3389/fphar.2020.598170.; Yao Z, Zhao M, Gong Y, Chen W, Wang Q, Fu Y et al. Relation of Gut Microbes and L-Thyroxine Through Altered Thyroxine Metabolism in Subclinical Hypothyroidism Subjects. Front Cell Infect Microbiol. 2020;10:495. https://doi.org/10.3389/fcimb.2020.00495.; Brechmann T, Sperlbaum A, Schmiegel W. Levothyroxine therapy and impaired clearance are the strongest contributors to small intestinal bacterial overgrowth: Results of a retrospective cohort study. World J Gastroenterol. 2017;23(5):842–852. https://doi.org/10.3748/wjg.v23.i5.842.; Lauritano EC, Bilotta AL, Gabrielli M, Scarpellini E, Lupascu A, Laginestra A et al. Association between hypothyroidism and small intestinal bacterial overgrowth. J Clin Endocrinol Metab. 2007;92(11):4180–4184. https://doi.org/10.1210/jc.2007-0606.; Yang M, Zheng X, Wu Y, Zhang R, Yang Q, Yu Z et al. Preliminary Observation of the Changes in the Intestinal Flora of Patients With Graves’ Disease Before and After Methimazole Treatment. Front Cell Infect Microbiol. 2022;12:794711. https://doi.org/10.3389/fcimb.2022.794711.; Li X, Hong J, Wang Y, Pei M, Wang L, Gong Z. Trimethylamine-N-Oxide Pathway: A Potential Target for the Treatment of MAFLD. Front Mol Biosci. 2021;8:733507. https://doi.org/10.3389/fmolb.2021.733507.; Janeiro MH, Ramírez MJ, Milagro FI, Martínez JA, Solas M. Implication of Trimethylamine N-Oxide (TMAO) in Disease: Potential Biomarker or New Therapeutic Target. Nutrients. 2018;10(10):1398. https://doi.org/10.3390/nu10101398.; Gawałko M, Agbaedeng TA, Saljic A, Müller DN, Wilck N, Schnabel R et al. Gut microbiota, dysbiosis and atrial fibrillation. Arrhythmogenic mechanisms and potential clinical implications. Cardiovasc Res. 2022;118(11):2415–2427. https://doi.org/10.1093/cvr/cvab292.; Meng G, Zhou X, Wang M, Zhou L, Wang Z, Wang M et al. Gut microbederived metabolite trimethylamine N-oxide activates the cardiac autonomic nervous system and facilitates ischemia-induced ventricular arrhythmia via two different pathways. EBioMedicine. 2019;44:656–664. https://doi.org/10.1016/j.ebiom.2019.03.066.; Warrier M, Shih DM, Burrows AC, Ferguson D, Gromovsky AD, Brown AL et al. The TMAO-Generating Enzyme Flavin Monooxygenase 3 Is a Central Regulator of Cholesterol Balance. Cell Rep. 2015;10(3):326–338. https://doi.org/10.1016/j.celrep.2014.12.036.; Shih DM, Wang Z, Lee R, Meng Y, Che N, Charugundla S et al. Flavin containing monooxygenase 3 exerts broad effects on glucose and lipid metabolism and atherosclerosis. J Lipid Res. 2015;56(1):22–37. https://doi.org/10.1194/jlr.M051680.; Krueger SK, Williams DE. Mammalian flavin-containing monooxygenases: structure/function, genetic polymorphisms and role in drug metabolism. Pharmacol Ther. 2005;106(3):357–387. https://doi.org/10.1016/j.pharmthera.2005.01.001.; Fennema D, Phillips IR, Shephard EA. Trimethylamine and Trimethylamine N-Oxide, a Flavin-Containing Monooxygenase 3 (FMO3)-Mediated HostMicrobiome Metabolic Axis Implicated in Health and Disease. Drug Metab Dispos. 2016;44(11):1839–1850. https://doi.org/10.1124/dmd.116.070615.; Andermann T, Antonelli A, Barrett RL, Silvestro D. Estimating Alpha, Beta, and Gamma Diversity Through Deep Learning. Front Plant Sci. 2022;13:839407. https://doi.org/10.3389/fpls.2022.839407.; Zhao F, Feng J, Li J, Zhao L, Liu Y, Chen H et al. Alterations of the Gut Microbiota in Hashimoto’s Thyroiditis Patients. Thyroid. 2018;28(2):175–186. https://doi.org/10.1089/thy.2017.0395.; Zhao H, Yuan L, Zhu D, Sun B, Du J, Wang J. Alterations and Mechanism of Gut Microbiota in Graves’ Disease and Hashimoto’s Thyroiditis. Pol J Microbiol. 2022;71(2):173–189. https://doi.org/10.33073/pjm-2022-016.; El-Zawawy HT, Ahmed SM, El-Attar EA, Ahmed AA, Roshdy YS, Header DA. Study of gut microbiome in Egyptian patients with autoimmune thyroid diseases. Int J Clin Pract. 2021;75(5):e14038. https://doi.org/10.1111/ijcp.14038.; Liu S, An Y, Cao B, Sun R, Ke J, Zhao D. The Composition of Gut Microbiota in Patients Bearing Hashimoto’s Thyroiditis with Euthyroidism and Hypothyroidism. Int J Endocrinol. 2020:5036959. https://doi.org/10.1155/2020/5036959.; Liu J, Qin X, Lin B, Cui J, Liao J, Zhang F, Lin Q. Analysis of gut microbiota diversity in Hashimoto’s thyroiditis patients. BMC Microbiol. 2022;22(1):318. https://doi.org/10.1186/s12866-022-02739-z.; Cornejo-Pareja I, Ruiz-Limón P, Gómez-Pérez AM, Molina-Vega M, Moreno-Indias I, Tinahones FJ. Differential Microbial Pattern Description in Subjects with Autoimmune-Based Thyroid Diseases: A Pilot Study. J Pers Med. 2020;10(4):192. https://doi.org/10.3390/jpm10040192.; Ishaq HM, Mohammad IS, Guo H, Shahzad M, Hou YJ, Ma C et al. Molecular estimation of alteration in intestinal microbial composition in Hashimoto’s thyroiditis patients. Biomed Pharmacother. 2017;95:865–874. https://doi.org/10.1016/j.biopha.2017.08.101.; Cayres LCF, de Salis LVV, Rodrigues GSP, Lengert AVH, Biondi APC, Sargentini LDB et al. Detection of Alterations in the Gut Microbiota and Intestinal Permeability in Patients With Hashimoto Thyroiditis. Front Immunol. 2021;12:579140. https://doi.org/10.3389/fimmu.2021.579140.; Wu M, Yang Y, Fan Y, Guo S, Li T, Gu M et al. Characteristics of the Intestinal Flora of TPOAb-Positive Women With Subclinical Hypothyroidism in the Second Trimester of Pregnancy: A Single-Center Prospective Cohort Study. Front Cell Infect Microbiol. 2022;12:794170. https://doi.org/10.3389/fcimb.2022.794170.; Fenneman AC, Rampanelli E, van der Spek AH, Fliers E, Nieuwdorp M. Protocol for a double-blinded randomised controlled trial to assess the effect of faecal microbiota transplantations on thyroid reserve in patients with subclinical autoimmune hypothyroidism in the Netherlands: the IMITHOT trial. BMJ Open. 2023;13(9):e073971. https://doi.org/10.1136/bmjopen2023-073971.; Chang SC, Lin SF, Chen ST, Chang PY, Yeh YM, Lo FS, Lu JJ. Alterations of Gut Microbiota in Patients With Graves’ Disease. Front Cell Infect Microbiol. 2021;11:663131. https://doi.org/10.3389/fcimb.2021.663131.; Chen J, Wang W, Guo Z, Huang S, Lei H, Zang P et al. Associations between gut microbiota and thyroidal function status in Chinese patients with Graves’ disease. J Endocrinol Invest. 2021;44(9):1913–1926. https://doi.org/10.1007/s40618-021-01507-6.; Yan HX, An WC, Chen F, An B, Pan Y, Jin J et al. Intestinal microbiota changes in Graves’ disease: a prospective clinical study. Biosci Rep. 2020;40(9):BSR20191242. https://doi.org/10.1042/BSR20191242.; Ishaq HM, Mohammad IS, Shahzad M, Ma C, Raza MA, Wu X et al. Molecular Alteration Analysis of Human Gut Microbial Composition in Graves’ disease Patients. Int J Biol Sci. 2018;14(11):1558–1570. https://doi.org/10.7150/ijbs.24151.; Jiang W, Yu X, Kosik RO, Song Y, Qiao T, Tong J et al. Gut Microbiota May Play a Significant Role in the Pathogenesis of Graves’ Disease. Thyroid. 2021;31(5):810–820. https://doi.org/10.1089/thy.2020.0193.; Jiang W, Lu G, Qiao T, Yu X, Luo Q, Tong J et al. Integrated microbiome and metabolome analysis reveals a distinct microbial and metabolic signature in Graves’ disease and hypothyroidism. Heliyon. 2023;9(11):e21463. https://doi.org/10.1016/j.heliyon.2023.e21463.; Yang M, Li F, Zhang R, Wu Y, Yang Q, Wang F et al. Alteration of the Intestinal Microbial Flora and the Serum IL-17 Level in Patients with Graves’ Disease Complicated with Vitamin D Deficiency. Int Arch Allergy Immunol. 2022;183(2):225–234. https://doi.org/10.1159/000518949.; Biscarini F, Masetti G, Muller I, Verhasselt HL, Covelli D, Colucci G et al. Gut Microbiome Associated With Graves Disease and Graves Orbitopathy: The INDIGO Multicenter European Study. J Clin Endocrinol Metab. 2023;108(8):2065–2077. https://doi.org/10.1210/clinem/dgad030.; Shi TT, Hua L, Wang H, Xin Z. The Potential Link between Gut Microbiota and Serum TRAb in Chinese Patients with Severe and Active Graves’ Orbitopathy. Int J Endocrinol. 2019:9736968. https://doi.org/10.1155/2019/9736968.; Shi TT, Xin Z, Hua L, Wang H, Zhao RX, Yang YL et al. Comparative assessment of gut microbial composition and function in patients with Graves’ disease and Graves’ orbitopathy. J Endocrinol Invest. 2021;44(2):297–310. https://doi.org/10.1007/s40618-020-01298-2.; Shi TT, Xin Z, Hua L, Zhao RX, Yang YL, Wang H et al. Alterations in the intestinal microbiota of patients with severe and active Graves’ orbitopathy: a cross-sectional study. J Endocrinol Invest. 2019;42(8):967–978. https://doi.org/10.1007/s40618-019-1010-9.; https://www.med-sovet.pro/jour/article/view/8296

  2. 2
    Academic Journal

    المصدر: Meditsinskiy sovet = Medical Council; № 6 (2024); 140-147 ; Медицинский Совет; № 6 (2024); 140-147 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/8278/7299; Адамян ЛВ, Андреева ЕН, Абсатарова ЮС, Григорян ОР, Дедов ИИ, Мельниченко ГА и др. Клинические рекомендации «Синдром поликистозных яичников». Проблемы эндокринологии. 2022;68(2):112–127. https://doi.org/10.14341/probl12874.; Neven ACH, Laven J, Teede HJ, Boyle JA. A Summary on Polycystic Ovary Syndrome: Diagnostic Criteria, Prevalence, Clinical Manifestations, and Management According to the Latest International Guidelines. Semin Reprod Med. 2018;36(1):5–12. https://doi.org/10.1055/s-0038-1668085.; Helena JT, Marie LM, Michael FC, Anuja D, Joop L, Lisa M. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Fertil Steril. 2018;110(3):364–379. https://doi.org/10.1016/j.fertnstert.2018.05.004.; Teede HJ, Tay CT, Laven JJE, Dokras A, Moran LJ, Piltonen TT et al. Recommendations From the 2023 International Evidence-based Guideline for the Assessment and Management of Polycystic Ovary Syndrome. J Clin Endocrinol Metab. 2023;108(10):2447–2469. https://doi.org/10.1210/clinem/dgad463.; Можейко ЛФ, Потоцкая АА. Синдром поликистозных яичников: современный взгляд на проблему (обзор литературы). Репродуктивное здоровье. Восточная Европа. 2022;12(3):390–403. https://doi.org/10.34883/PI.2022.12.3.010.; John EN. Role of Hyperinsulinemia in the Pathogenesis of the Polycystic Ovary Syndrome, and Its Clinical Implications. Semin Reprod Med. 1997;15(2):111–122. https://doi.org/10.1055/s-2007-1016294.; Сутурина ЛВ. Синдром поликистозных яичников в XXI веке. Акушерство и гинекология: новости, мнения, обучения. 2017;(3):86–91. https://doi.org/10.24411/2303-9698-2017-00040.; Lizneva D, Suturina L, Walker W, Brakta S, Gavrilova-Jordan L, Azziz R. Criteria, prevalence, and phenotypes of polycystic ovary syndrome. Fertil Steril. 2016;106(1):6–15. https://doi.org/10.1016/j.fertnstert.2016.05.003.; Lo JC, Feigenbaum SL, Yang J, Pressman AR, Selby JV, Go AS. Epidemiology and adverse cardiovascular risk profile of diagnosed polycystic ovary syndrome. J Clin Endocrinol Metab. 2006;91(4):1357–1363. https://doi.org/10.1210/jc.2005-2430.; Berni TR, Morgan CL, Berni ER, Rees DA. Polycystic Ovary Syndrome Is Associated With Adverse Mental Health and Neurodevelopmental Outcomes. J Clin Endocrinol Metab. 2018;103(6):2116–2125. https://doi.org/10.1210/jc.2017-02667.; Hung JH, Hu LY, Tsai SJ, Yang AC, Huang MW, Chen PM. Risk of psychiatric disorders following polycystic ovary syndrome: a nationwide populationbased cohort study. PLoS ONE. 2014;9(5):e97041. https://doi.org/10.1371/journal.pone.0097041.; Cooney LG, Dokras A. Depression and Anxiety in Polycystic Ovary Syndrome: Etiology and Treatment. Curr Psychiatry Rep. 2017;19(11):83. https://doi.org/10.1007/s11920-017-0834-2.; Cooney LG, Lee I, Sammel MD, Dokras A. High prevalence of moderate and severe depressive and anxiety symptoms in polycystic ovary syndrome: a systematic review and meta-analysis. Hum Reprod. 2017;32(5):1075–1091. https://doi.org/10.1093/humrep/dex044.; Johnson JE, Daley D, Tarta C, Stanciu PI. Risk of endometrial cancer in patients with polycystic ovarian syndrome: A meta-analysis. Oncol Lett. 2023;25(4):168. https://doi.org/10.3892/ol.2023.13754.; Harris HR, Terry KL. Polycystic ovary syndrome and risk of endometrial, ovarian, and breast cancer: a systematic review. Fertil Res Pract. 2016;2:14. https://doi.org/10.1186/s40738-016-0029-2.; Risch HA. Hormonal etiology of epithelial ovarian cancer, with a hypothesis concerning the role of androgens and progesterone. J Natl Cancer Inst. 1998;90(23):1774–1786. https://doi.org/10.1093/jnci/90.23.1774.; Althuis MD, Moghissi KS, Westhoff CL, Scoccia B, Lamb EJ, Lubin JH, Brinton LA. Uterine cancer after use of clomiphene citrate to induce ovulation. Am J Epidemiol. 2005;161(7):607–615. https://doi.org/10.1093/aje/kwi084.; Goldstein SR, Siddhanti S, Ciaccia AV, Plouffe LJr. A pharmacological review of selective oestrogen receptor modulators. Hum Reprod Update. 2000;6(3):212–224. https://doi.org/10.1093/humupd/6.3.212.; Endometrial cancer and oral contraceptives: an individual participant meta-analysis of 27 276 women with endometrial cancer from 36 epidemiological studies. Lancet Oncol. 2015;16(9):1061–1070. https://doi.org/10.1016/S1470-2045(15)00212-0.; Colditz GA. Oral contraceptive use and mortality during 12 years of follow-up: the Nurses’ Health Study. Ann Intern Med. 1994;120(10):821–826. https://doi.org/10.7326/0003-4819-120-10-199405150-00002.; Wernli KJ, Ray RM, Gao DL, De Roos AJ, Checkoway H, Thomas DB. Menstrual and reproductive factors in relation to risk of endometrial cancer in Chinese women. Cancer Causes Control. 2006;17(7):949–955. https://doi.org/10.1007/s10552-006-0034-6.; Ramezani Tehrani F, Amiri M, Behboudi-Gandevani S, Bidhendi-Yarandi R, Carmina E. Cardiovascular events among reproductive and menopausal age women with polycystic ovary syndrome: a systematic review and meta-analysis. Gynecol Endocrinol. 2020;36(1):12–23. https://doi.org/10.1080/09513590.2019.1650337.; Gallo MF, Nanda K, Grimes DA, Lopez LM, Schulz KF. 20 µg versus >20 µg estrogen combined oral contraceptives for contraception. Cochrane Database Syst Rev. 2013;2013(8):CD003989. https://doi.org/10.1002/14651858.CD003989.pub5.; Basdevant A, Conard J, Pelissier C, Guyene TT, Lapousterle C, Mayer M et al. Hemostatic and metabolic effects of lowering the ethinyl-estradiol dose from 30 mcg to 20 mcg in oral contraceptives containing desogestrel. Contraception. 1993;48(3):193–204. https://doi.org/10.1016/0010-7824(93)90141-s.; Kaunitz AM, Burkman RT, Fisher AC, LaGuardia KD. Cycle control with a 21-day compared with a 24-day oral contraceptive pill: a randomized controlled trial. Obstet Gynecol. 2009;114(6):1205–1212. https://doi.org/10.1097/AOG.0b013e3181beab47.; Notaro ALG, Neto FTL. The use of metformin in women with polycystic ovary syndrome: an updated review. J Assist Reprod Genet. 2022;39(3):573–579. https://doi.org/10.1007/s10815-022-02429-9.; Misso ML, Costello MF, Garrubba M, Wong J, Hart R, Rombauts L. Metformin versus clomiphene citrate for infertility in non-obese women with polycystic ovary syndrome: a systematic review and meta-analysis. Hum Reprod Update. 2013;19(1):2–11. https://doi.org/10.1093/humupd/dms036.; Wang R, Li W, Bordewijk EM, Legro RS, Zhang H, Wu X. First-line ovulation induction for polycystic ovary syndrome: an individual participant data meta-analysis. Hum Reprod Update. 2019;25(6):717–732. https://doi.org/10.1093/humupd/dmz029.; DiNicolantonio JJ, H O’Keefe J. Myo-inositol for insulin resistance, metabolic syndrome, polycystic ovary syndrome and gestational diabetes. Open Heart. 2022;9(1):e001989. https://doi.org/10.1136/openhrt-2022-001989.; Croze ML, Soulage CO. Potential role and therapeutic interests of myo-inositol in metabolic diseases. Biochimie. 2013;95(10):1811–1827. https://doi.org/10.1016/j.biochi.2013.05.011.; Roy KK, Baruah J, Singla S, Sharma JB, Singh N, Jain SK, Goyal M. A prospective randomized trial comparing the efficacy of Letrozole and Clomiphene citrate in induction of ovulation in polycystic ovarian syndrome. J Hum Reprod Sci. 2012;5(1):20–25. https://doi.org/10.4103/0974-1208.97789.; Mitwally MF, Casper RF. Aromatase inhibition improves ovarian response to follicle-stimulating hormone in poor responders. Fertil Steril. 2002;77(4):776–780. https://doi.org/10.1016/s0015-0282(01)03280-0.; Begum MR, Ferdous J, Begum A, Quadir E. Comparison of efficacy of aromatase inhibitor and clomiphene citrate in induction of ovulation in polycystic ovarian syndrome. Fertil Steril. 2009;92(3):853–857. https://doi.org/10.1016/j.fertnstert.2007.08.044.; Dehbashi S, Parsanezhad ME, Alborzi S, Zarei A. Effect of clomiphene citrate on endometrium thickness and echogenic patterns. Int J Gynaecol Obstet. 2003;80(1):49–53. https://doi.org/10.1016/s0020-7292(02)00341-7.; Thompson LA, Barratt CL, Thornton SJ, Bolton AE, Cooke ID. The effects of clomiphene citrate and cyclofenil on cervical mucus volume and receptivity over the periovulatory period. Fertil Steril. 1993;59(1):125–129. https://doi.org/10.1016/s0015-0282(16)55627-1.; Gelety TJ, Buyalos RP. The effect of clomiphene citrate and menopausal gonadotropins on cervical mucus in ovulatory cycles. Fertil Steril. 1993;60(3):471–476. https://doi.org/10.1016/s0015-0282(16)56163-9.; Moll E, Bossuyt PM, Korevaar JC, Lambalk CB, van der Veen F. Effect of clomifene citrate plus metformin and clomifene citrate plus placebo on induction of ovulation in women with newly diagnosed polycystic ovary syndrome: randomised double blind clinical trial. BMJ. 2006;332(7556):1485. https://doi.org/10.1136/bmj.38867.631551.55.; Tang T, Lord JM, Norman RJ, Yasmin E, Balen AH. Insulin-sensitising drugs (metformin, rosiglitazone, pioglitazone, D-chiro-inositol) for women with polycystic ovary syndrome, oligo amenorrhoea and subfertility. Cochrane Database Syst Rev. 2012;(5):CD003053. https://doi.org/10.1002/14651858.CD003053.pub5.; Legro RS, Barnhart HX, Schlaff WD, Carr BR, Diamond MP, Carson SA. Clomiphene, metformin, or both for infertility in the polycystic ovary syndrome. N Engl J Med. 2007;356(6):551–566. https://doi.org/10.1056/NEJMoa063971.; Chen Y, Wang G, Chen J, Wang C, Dong X, Chang HM. Genetic and Epigenetic Landscape for Drug Development in Polycystic Ovary Syndrome. Endocr Rev. 2024;31:bnae002. https://doi.org/10.1210/endrev/bnae002.; Khan MJ, Ullah A, Basit S. Genetic Basis of Polycystic Ovary Syndrome (PCOS): Current Perspectives. Appl Clin Genet. 2019;12:249–260. https://doi.org/10.2147/TACG.S200341.; https://www.med-sovet.pro/jour/article/view/8278

  3. 3
    Academic Journal

    المساهمون: The article was published with the support of Geropharm, Cтатья опубликована при поддержке компании «Герофарм»

    المصدر: Meditsinskiy sovet = Medical Council; № 6 (2024); 16-22 ; Медицинский Совет; № 6 (2024); 16-22 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/8216/7289; Galicia-Garcia U, Benito-Vicente A, Jebari S, Larrea-Sebal A, Siddiqi H, Uribe KB, Ostolaza H, et al. Pathophysiology of Type 2 Diabetes Mellitus. Int J Mol Sci. 2020;21(17):6275. https://doi.org/10.3390/ijms21176275.; Jiang H, Xia C, Lin J, Garalleh HAL, Alalawi A, Pugazhendhi A. Carbon nanomaterials: A growing tool for the diagnosis and treatment of diabetes mellitus. Environ Res. 2023;221:115250. https://doi.org/10.1016/j.envres.2023.115250.; LeRoith D, Biessels GJ, Braithwaite SS, Casanueva FF, Draznin B, Halter JB et al. Treatment of diabetes in older adults: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2019;104(5):1520–1574. https://doi.org/10.1210/jc.2019-00198.; Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022;183:109119. https://doi.org/10.1016/j.diabres.2021.109119.; Bellary S, Kyrou I, Brown JE, Bailey CJ. Type 2 diabetes mellitus in older adults: Clinical considerations and management. Nat Rev Endocrinol. 2021;17(9):534–548. https://doi.org/10.1038/s41574-021-00512-2.; Yang X, Xue C, Chen K, Gao D, Wang H, Tang C. Characteristics of elderly diabetes patients: focus on clinical manifestation, pathogenic mechanism, and the role of traditional Chinese medicine. Front Pharmacol. 2024;14:1339744. https://doi.org/10.3389/fphar.2023.1339744.; Mangiola F, Nicoletti A, Gasbarrini A, Ponziani FR. Gut microbiota and aging. Eur Rev Med Pharmacol Sci. 2018;22:7404–7413. https://doi.org/10.26355/eurrev_201811_16280.; Tsai HJ, Tsai WC, Hung WC, Hung WW, Chang CC, Dai CY et al. Gut microbiota and subclinical cardiovascular disease in patients with type 2 diabetes mellitus. Nutrients. 2021;13:2679. https://doi.org/10.3390/nu13082679.; Mayorga-Ramos A, Barba-Ostria C, Simancas-Racines D, Guamán LP. Protective role of butyrate in obesity and diabetes: new insights. Front Nutr. 2022;9:1067647. https://doi.org/10.3389/fnut.2022.1067647.; Coppola S, Avagliano C, Calignano A, Berni Canani R. The protective role of butyrate against obesity and obesity-related diseases. Molecules. 2021;26:682. https://doi.org/10.3390/molecules26030682.; Noureldein MH, Bitar S, Youssef N, Azar S, Eid AA. Butyrate modulates diabetes-linked gut dysbiosis: epigenetic and mechanistic modifications. J Mol Endocrinol. 2020;64:29–42. https://doi.org/10.1530/JME-19-0132.; Prause M, Pedersen S, Tsonkova V, Qiao M, Billestrup N. Butyrate protects pancreatic beta cells from cytokine-induced dysfunction. Int J Mol Sci. 2021;22(19):10427. https://doi.org/10.3390/ijms221910427.; Basisty N, Kale A, Jeon OH, Kuehnemann C, Payne T, Rao C et al. A proteomic atlas of senescence-associated secretomes for aging biomarker development. PLoS Biol. 2020;18:e3000599. https://doi.org/10.1371/journal.pbio.3000599.; Yousefzadeh MJ, Flores RR, Zhu Y, Schmiechen ZC, Brooks RW, Trussoni CE et al. An aged immune system drives senescence and ageing of solid organs. Nature. 2021;594(7861):100–105. https://doi.org/10.1038/s41586-021-03547-7.; Kumar P, Liu C, Suliburk J, Hsu JW, Muthupillai R, Jahoor F et al. Supplementing Glycine and N-acetylcysteine (GlyNAC) in older adults improves glutathione deficiency, oxidative stress, mitochondrial dysfunction, inflammation, physical function, and aging hallmarks: a randomized clinical trial. J Gerontol A Biol Sci Med Sci. 2023;78(1):75–89. https://doi.org/10.1093/gerona/glac135.; Aguayo-Mazzucato C. Functional changes in beta cells during ageing and senescence. Diabetologia. 2020;63(10):2022–2029. https://doi.org/10.1007/s00125-020-05185-6.; Khosla S, Farr JN, Tchkonia T, Kirkland JL. The role of cellular senescence in ageing and endocrine disease. Nat Rev Endocrinol. 2020;16(5):263–275. https://doi.org/10.1038/s41574-020-0335-y.; Chistiakov DA, Sobenin IA, Revin VV, Orekhov AN, Bobryshev YV. Mitochondrial aging and age-related dysfunction of mitochondria. Biomed Res Int. 2014;2014:238463. https://doi.org/10.1155/2014/238463.; Izzo A, Massimino E, Riccardi G, Della Pepa G. A narrative review on sarcopenia in type 2 diabetes mellitus: prevalence and associated factors. Nutrients. 2021;13(1):183. https://doi.org/10.3390/nu13010183.; Shou J, Chen PJ, Xiao WH. Mechanism of increased risk of insulin resistance in aging skeletal muscle. Diabetol Metab Syndr. 2020;12:14. https://doi.org/10.1186/s13098-020-0523-x.; Le Pelletier L, Mantecon M, Gorwood J, Auclair M, Foresti R, Motterlini R et al. Metformin alleviates stress-induced cellular senescence of aging human adipose stromal cells and the ensuing adipocyte dysfunction. Elife. 2021;10:e62635. https://doi.org/10.7554/eLife.62635.; Bulut O, Kilic G, Domínguez-Andrés J, Netea MG. Overcoming immune dysfunction in the elderly: trained immunity as a novel approach. Int Immunol. 2020;32(12):741–753. https://doi.org/10.1093/intimm/dxaa052.; Moskalev A, Stambler I, Caruso C. Innate and adaptive immunity in aging and longevity: the foundation of resilience. Aging Dis. 2020;11(6):1363–1373. https://doi.org/10.14336/AD.2020.0603.; Leite MM, Dutra MT, da Costa MVG, Funghetto SS, Silva A de O, de Lima LR et al. Comparative evaluation of inflammatory parameters and substitute insulin resistance indices in elderly women with and without type 2 diabetes mellitus. Exp Gerontol. 2021;150: https://doi.org/111389.10.1016/j.exger.2021.111389.; Valencia I, Lumpuy-Castillo J, Magalhaes G, Sánchez-Ferrer CF, Lorenzo Ó, Peiró C. Mechanisms of endothelial activation, hypercoagulation and thrombosis in COVID-19: a link with diabetes mellitus. Cardiovasc Diabetol. 2024;23(1):75. https://doi.org/10.1186/s12933-023-02097-8.; Bordier L, Buysschaert M, Bauduceau B, Doucet J, Verny C, Lassmann Vague V et al. Predicting factors of hypoglycaemia in elderly type 2 diabetes patients: contributions of the GERODIAB study. Diabetes Metab. 2015;41(4):301–303. https://doi.org/10.1016/j.diabet.2015.03.001.; Hermann M, Heimro LS, Haugstvedt A, Hernar I, Sigurdardottir AK, Graue M. Hypoglycaemia in older home-dwelling people with diabetes- a scoping review. BMC Geriatr. 2021;21(1):20. https://doi.org/10.1186/s12877-020-01961-6.; Sakib MN, Ramezan R, Hall PA. Diabetes status and cognitive function in middle-aged and older adults in the Canadian longitudinal study on aging. Front Endocrinol (Lausanne). 2023;14:1293988. https://doi.org/10.3389/fendo.2023.1293988.; Lopez-Pedrosa JM, Camprubi-Robles M, Guzman-Rolo G, Lopez-Gonzalez A, Garcia-Almeida JM, Sanz-Paris A, Rueda R. The Vicious Cycle of Type 2 Diabetes Mellitus and Skeletal Muscle Atrophy: Clinical, Biochemical, and Nutritional Bases. Nutrients. 2024;16(1):172. https://doi.org/10.3390/nu16010172.; Chen LK. The vicious cycle in the development of diabetes mellitus and sarcopenia in older persons. Arch Gerontol Geriatr. 2021;95:104437. https://doi.org/10.1016/j.archger.2021.104437.; Jayasinghe S, Hills AP. Sarcopenia, obesity, and diabetes – The metabolic conundrum trifecta. Diabetes Metab Syndr. 2022;16(11):102656. https://doi.org/10.1016/j.dsx.2022.102656.; Дедов ИИ, Шестакова МВ, Майоров АЮ, Мокрышева НГ, Андреева ЕН, Безлепкина ОБ и др. Алгоритмы специализированной медицинской помощи больным сахарным диабетом. 11-й выпуск. Сахарный диабет. 2023;26(Прил. 2):1–157. https://doi.org/10.14341/DM13042.; Xue M, Xu W, Ou YN, Cao XP, Tan MS, Tan L, Yu JT. Diabetes mellitus and risks of cognitive impairment and dementia: A systematic review and meta-analysis of 144 prospective studies. Ageing Res Rev. 2019;55:100944. https://doi.org/10.1016/j.arr.2019.100944.; Gregg EW, Engelgau MM, Narayan V. Complications of diabetes in elderly people. BMJ. 2002;325:916–917. https://doi.org/10.1136/bmj.325.7370.916.; Bauduceau B, Le Floch JP, Halimi S, Verny C, Doucet J, Intergroup SFD/SFGG. Cardiovascular complications over 5 Years and their association with survival in the GERODIAB cohort of elderly French patients with type 2 diabetes. Diabetes Care. 2018;41(1):156–162. https://doi.org/10.2337/dc17-1437.; Ch’ng au Z, Barakatun-Nisak MY, Zukiman WZ, Abas F, Wahab NA. Nutritional strategies in managing postmeal glucose for type 2 diabetes: A narrative review. Diabetes Metab Syndr. 2019;13(4):2339–2345. https://doi.org/10.1016/j.dsx.2019.05.026.; Aryangat AV, Gerich JE. Type 2 diabetes: postprandial hyperglycemia and increased cardiovascular risk. Vasc Health Risk Manag. 2010;6:145–155. https://doi.org/10.2147/vhrm.s8216.; U.K. prospective diabetes study 16. Overview of 6 years’ therapy of type II diabetes: a progressive disease. U.K. Prospective Diabetes Study Group. Diabetes. 1995;44(11):1249–1258. Available at: https://pubmed.ncbi.nlm.nih.gov/7589820.; ElSayed NA, Aleppo G, Aroda VR, Bannuru RR, Brown FM, Bruemmer D et al. Pharmacologic Approaches to Glycemic Treatment: Standards of Care in Diabetes – 2023. Diabetes Care. 2023;46(1):S140–S157. https://doi.org/10.2337/dc23-S009.; Deed G, Kilov G, Dunning T, Cutfield R, Overland J, Wu T. Use of 50/50 Premixed Insulin Analogs in Type 2 Diabetes: Systematic Review and Clinical Recommendations. Diabetes Ther. 2017;8:1265–1296. https://doi.org/10.1007/s13300-017-0328-6.; Fahrbach J, Jacober S, Jiang H, Martin S. The DURABLE trial study design: comparing the safety, efficacy, and durability of insulin glargine to insulin lispro mix 75/25 added to oral antihyperglycemic agents in patients with type 2 diabetes. J Diabetes Sci Technol. 2008;2(5):831–838. https://doi.org/10.1177/193229680800200514.; Soewondo P, Pramono RB, Langi YA, Soetedjo NN, Kshanti IA. Clinical experience with BIAsp 30: results from the Indonesian cohort of the international A₁chieve study. Diabetes Res Clin Pract. 2013;100(Suppl. 1):S54-S59. https://doi.org/10.1016/S0168-8227(13)70011-1.; Alavudeen SS, Khobrani M, Dhanapal CK, Mir JI, Alshahrani SM, Khan NA, Alhossan A. Comparative evaluation of biphasic insulin with metformin and triple oral hypoglycemic agents (OHA) in type 2 diabetes patients. Saudi Pharm J. 2020;28(2):210–214. https://doi.org/10.1016/j.jsps.2019.11.023.; Qayyum R, Bolen S, Maruthur N, Feldman L, Wilson LM, Marinopoulos SS et al. Systematic review: comparative effectiveness and safety of premixed insulin analogues in type 2 diabetes. Ann Intern Med. 2008;149(8):549–559. https://doi.org/10.7326/0003-4819-149-8-200810210-00242.; Kumar A. Efficacy and safety of biphasic insulin aspart and biphasic insulin lispro mix in patients with type 2 diabetes: A review of the literature. Indian J Endocrinol Metab. 2016;20(3):288–299. https://doi.org/10.4103/2230-8210.179993.; Дедов ИИ, Шестакова МВ, Петеркова ВА, Майоров АЮ, Галстян ГР, Викулова ОК. Проект рекомендаций Российской ассоциации эндокринологов по применению биосимиляров инсулина. Сахарный диабет. 2021;24(1):76–79. Режим доступа: https://www.dia-endojournals.ru/jour/article/view/12739.; Каронова ТЛ, Майоров АЮ. Изучение эквивалентности и сопоставимой иммуногенности биосимиляра инсулина аспарт в сравнении с зарегистрированным аналогом. Медицинский совет. 2022;16(10):75–82. https://doi.org/10.21518/2079-701X-2022-16-10-75-82.; Mayorov AY, Mosikian AA, Alpenidze DN, Makarenko IE, Orlova VL, Lunev IS et al. Efficacy and safety of GP40021 insulin lispro biphasic compared with Humalog Mix 25 in Type 2 diabetes mellitus patients. J Comp Eff Res. 2021;10(1):55–66. https://doi.org/10.2217/cer-2020-0064.; American Diabetes Association Professional Practice Committee. 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes-2022. Diabetes Care. 2022;45(Suppl. 1):S125-S143. https://doi.org/10.2337/dc22-S009.; https://www.med-sovet.pro/jour/article/view/8216

  4. 4
    Academic Journal

    المصدر: Meditsinskiy sovet = Medical Council; № 6 (2023); 234-240 ; Медицинский Совет; № 6 (2023); 234-240 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/7529/6713; Bommer C., Heesemann E., Sagalova V., Manne-Goehler J., Atun R., Bärnighausen T. et al. The Global Economic burden of Diabetes in Adults Aged 20–79 Years: a Cost-Of-Illness Study. Lancet Diabetes Endocrinol. 2017;5(6):423–430. https://doi.org/10.1016/s2213-8587(17)30097-9.; Chatterjee S., Khunti K., Davies M. J. Type 2 Diabetes. Lancet. 2017;389(10085):2239–2251. https://doi.org/10.1016/S0140-6736(17)30058-2.; Cosentino F., Grant P.J., Aboyans V., Bailey C. J., Ceriello A., Delgado V. et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD: The Task Force for diabetes, prediabetes, and cardiovascular diseases of the European Society of Cardiology (ESC) and the European Association for the Study of Diabetes (EASD). Eur Heart J. 2020;41(2):255–323. https://doi.org/10.1093/eurheartj/ehz486.; Saeedi P., Petersohn I., Salpea P., Malanda B., Karuranga S., Unwin N. et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract. 2019;(157):107843. https://doi.org/10.1016/j.diabres.2019.107843.; Eknoyan G., Lameire N., Wheeler D.C., Jadoul M., Winkelmayer W.C., Arici M et al. Kidney Disease: Improving Global Outcomes (KDIGO) Diabetes Work Group. KDIGO 2020 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease. Kidney Int. 2020;98(4S):S1-S115. https://doi.org/10.1016/j.kint.2020.06.019.; Piepoli M.F., Hoes A.W., Agewall S., Albus C., Brotons C., Catapano A.L. et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts) Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur Heart J. 2016;37(29):2315–2381. https://doi.org/10.1093/eurheartj/ehw106.; Дедов И.И., Шестакова М.В., Майоров А.Ю., Мокрышева Н.Г., Викулова О.К., Галстян Г.Р. и др. Алгоритмы специализированной медицинской помощи больным сахарным диабетом. Сахарный диабет. 2021;24(1S):1–148. https://doi.org/10.14341/DM12802.; Markham A. Ertugliflozin: First Global Approval. Drugs. 2018;78(4):513–519. https://doi.org/10.1007/s40265-018-0878-6.; Liu L., Shi F.H., Xu H., Wu Y., Gu Z.C., Lin H.W. Efficacy and Safety of Ertugliflozin in Type 2 Diabetes: A Systematic Review and Meta-Analysis. Front Pharmacol. 2022;(12):752440. https://doi.org/10.3389/fphar.2021.752440.; Gerich J. Role of the kidney in normal glucose homeostasis and in the hyperglycaemia of diabetes mellitus: therapeutic implications. Diabet Med. 2010;27(2):136–142. https://doi.org/10.1111/j.1464-5491.2009.02894.x.; Buse J.B., Wexler D.J., Tsapas A., Rossing P., Mingrone G., Mathieu C. et al. 2019 Update to: Management of Hyperglycemia in Type 2 Diabetes, 2018. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2020;43(2):487–493. https://doi.org/10.2337/dci19-0066.; Dagogo-Jack S., Liu J., Eldor R., Amorin G., Johnson J., Hille D. et al. Efficacy and safety of the addition of ertugliflozin in patients with type 2 diabetes mellitus inadequately controlled with metformin and sitagliptin: The VERTIS SITA2 placebo-controlled randomized study. Diabetes Obes Metab. 2018;20(3):530–540. https://doi.org/10.1111/dom.13116.; Terra S.G., Focht K., Davies M., Frias J., Derosa G., Darekar A. et al. Phase III, efficacy and safety study of ertugliflozin monotherapy in people with type 2 diabetes mellitus inadequately controlled with diet and exercise alone. Diabetes Obes Metab. 2017;19(5):721–728. https://doi.org/10.1111/dom.12888.; Aronson R., Frias J., Goldman A., Darekar A., Lauring B., Terra S.G. Long-term efficacy and safety of ertugliflozin monotherapy in patients with inadequately controlled T2DM despite diet and exercise: VERTIS MONO extension study. Diabetes Obes Metab. 2018;20(6):1453–1460. https://doi.org/10.1111/dom.13251.; Kovacich N., Chavez B. Ertugliflozin (Steglatro): A New Option for SGLT2 Inhibition. P T. 2018;43(12):736–742. Available at: https://pubmed.ncbi.nlm.nih.gov/30559584/.; Rosenstock J., Frias J., Pall D., Charbonnel B., Pascu R., Saur D. et al. Effect of ertugliflozin on glucose control, body weight, blood pressure and bone density in type 2 diabetes mellitus inadequately controlled on metformin monotherapy (VERTIS MET). Diabetes Obes Metab. 2018;20(3):520–529. https://doi.org/10.1111/dom.13103.; Miller S., Krumins T., Zhou H., Huyck S., Johnson J., Golm G. et al. Ertugliflozin and Sitagliptin Co-initiation in Patients with Type 2 Diabetes: The VERTIS SITA Randomized Study. Diabetes Ther. 2018;9(1):253–268. https://doi.org/10.1007/s13300-017-0358-0.; Hollander P., Liu J., Hill J., Johnson J., Jiang Z.W., Golm G. et al. Ertugliflozin Compared with Glimepiride in Patients with Type 2 Diabetes Mellitus Inadequately Controlled on Metformin: The VERTIS SU Randomized Study. Diabetes Ther. 2018;9(1):193–207. https://doi.org/10.1007/s13300-017-0354-4.; Hollander P., Hill J., Johnson J., Wei Jiang Z., Golm G., Huyck S. et al. Results of VERTIS SU extension study: Safety and efficacy of ertugliflozin treatment over 104 weeks compared to glimepiride in patients with type 2 diabetes mellitus inadequately controlled on metformin. Curr Med Res Opin. 2019;35(8):1335–1343. https://doi.org/10.1080/03007995.2019.1583450.; Pratley R.E., Eldor R., Raji A., Golm G., Huyck S.B., Oiu Y. et al. Ertugliflozin plus sitagliptin versus either individual agent over 52 weeks in patients with type 2 diabetes mellitus inadequately controlled with metformin: the VERTIS FACTORIAL randomized trial. Diabetes Obes Metab. 2018;20(5):1111–1120. https://doi.org/10.1111/dom.13194.; Салухов В.В., Ильинская Т.А. Новый ингибитор SGLT2 эртуглифлозин: безопасная эффективность в управлении сахарным диабетом 2-го типа. Медицинский cовет. 2020;(7):32–41. https://doi.org/10.21518/2079-701X-2020-7-32-41.; Cannon C.P., Pratley R., Dagogo-Jack S., Mancuso J., Huyck S., Masiukiewicz U. et al. Cardiovascular Outcomes with Ertugliflozin in Type 2 Diabetes. N Engl J Med. 2020;383(15):1425–1435. https://doi.org/10.1056/NEJMoa2004967.; Lingvay I., Greenberg M., Gallo S., Shi H., Liu J., Gantz I. Efficacy and safety of ertugliflozin in patients with type 2 diabetes mellitus and established cardiovascular disease using insulin: A VERTIS CV substudy. Diabetes Obes Metab. 2021;23(7):1640–1651. https://doi.org/10.1111/dom.14385.; Wanner C., Inzucchi S.E., Lachin J.M., Fitchett D., Von Eynatten M., Mattheus M. et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med. 2016;375(4):323–334. https://doi.org/10.1056/NEJMoa1515920.; Neal B., Perkovic V., Matthews D.R. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N Engl J Med. 2017;377(21):2099. https://doi.org/10.1056/NEJMc1712572.; The American Diabetes Association (ADA) “Standards of Medical Care in Diabetes” Diabetes Care. 2022;45(1):S1–S2. https://doi.org/10.2337/dc22-SINT.; Wiviott S.D., Raz I., Bonaca M.P., Mosenzon O., Kato E.T., Cahn A. et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019;380(4):347–357. https://doi.org/10.1056/NEJMoa1812389.; Perkovic V., Jardine M.J., Neal B., Bompoint S., Heerspink H. J.L., Charytan D.M. et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019;380(24):2295–2306. https://doi.org/10.1056/NEJMoa1811744.; Cherney D., Charbonnel B., Cosentino F., Dagogo-Jack S., McGuire D. K., Pratley R. et al. Effects of ertugliflozin on kidney composite outcomes, renal function and albuminuria in patients with type 2 diabetes mellitus: an analysis from the randomised VERTIS CV trial. Diabetologia. 2021;64(6):1256–1267. https://doi.org/10.1007/s00125-021-05407-5.; Grunberger G., Camp S., Johnson J., Huyck S., Terra S.G., Mancuso J.P. et al. Ertugliflozin in Patients with Stage 3 Chronic Kidney Disease and Type 2 Diabetes Mellitus: The VERTIS RENAL Randomized Study. Diabetes Ther. 2018;9(1):49–66. https://doi.org/10.1007/s13300-017-0337-5.; Liu H., Sridhar V.S., Lovblom L.E., Lytvyn Y., Burger D., Burns K. et al. Markers of Kidney Injury, Inflammation, and Fibrosis Associated With Ertugliflozin in Patients With CKD and Diabetes. Kidney Int Rep. 2021;6(8):2095–2104. https://doi.org/10.1016/j.ekir.2021.05.022.; https://www.med-sovet.pro/jour/article/view/7529

  5. 5
    Academic Journal

    المصدر: Meditsinskiy sovet = Medical Council; № 4 (2019); 14-19 ; Медицинский Совет; № 4 (2019); 14-19 ; 2658-5790 ; 2079-701X ; 10.21518/2079-701X-2019-4

    وصف الملف: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/3109/3027; Diabetes Atlas 8ed. international Diabetes Federation, 2017. Online version of IDF Diabetes Atlas. www.diabetesatlas.org.; Алгоритмы специализированной медицинской помощи больным сахарным диабетом. Под ред. И.И. Дедова, М.В. Шестаковой, А.Ю. Майорова. Вып. 8. Сахарный диабет. 2017;20(1S):1-112.; Lankas G.R., Leiting B., Roy R.S., Eiermann GJ., Beconi M.G., Biftu T. et al. Dipeptidyl peptidase iV inhibition for the treatment of type 2 diabetes: potential importance of selectivity over dipeptidyl peptidases 8 and 9. Diabetes. 2005;54:2988-2994.; Петунина Н.А., Гончарова Е.В., Потапова С.А. Кардиоваскулярная безопасность глиптинов: акцент на алоглиптин. Медицинский совет. 2017;3:32-37.; Drucker DJ. Dipeptidyl peptidase-4 inhibition and the treatment of type 2 diabetes preclinical biology and mechanisms of action. Diabetes Care. 2007;30:1335-1343.; Lamers D., Famulla S., Wronkowitz N., Hartwig S., Lehr S., Ouwens D.M. et aL Dipeptidyl peptidase 4 is a novel adipokine potentially linking obesity to the metabolic syndrome. Diabetes. 2011;60:1917-1925.; Ruter J., Hoffmann T., Demuth H.U., Moschansky P, Klapp B.F., Hildebrandt M. Evidence for an interaction between leptin, T cell costimulatory antigens CD28, CTLA-4 and CD26 (dipeptidyl peptidase iV) in BCG-induced immune responses of leptin- and leptin receptor-deficient mice. Biol Chem. 2004;385:537-541.; Aso Y., Terasawa T., Kato K., Jojima T., Suzuki K., iijima T., Kawagoe Y., Mikami S., Kubota Y., inukai T., Kasai K. The serum level of soluble CD26/dipeptidyl peptidase 4 increases in response to acute hyperglycemia after an oral glucose load in healthy subjects: association with high-molecular weight adiponectin and hepatic enzymes. Transl Res. 2013;162:309-316.; Петунина НА.,Трухина Л.В., Гончарова Е.В. Роль вилдаглиптина в оптимизации гликеми-ческого контроля. Справочник поликлинического врача. 2012;09:46-49.; Bergman AJ., Stevens C., Zhou Y., Yi B., Laethem M. , De Smet M. et al. Pharmacokinetic and pharmacodynamic properties of multiple oral doses of sitagliptin, a dipeptidyl peptidase-IV inhibitor: A double-blind, randomized, placebo-controlled study in healthy male volunteers. Clinical Therapeutics. 2O06 January; 28(1):55-72.; Herman G.A., Bergman A., Stevens C., Katy P.,Yi B., Zhao P. et al. Effect of single oral doses of sitagliptin, a dipeptidyl peptidase-4 inhibitor, on incretin and plasma glucose levels after an oral glucose tolerance test in patients with type 2 diabetes. J Clin Endocrinol Metab. 2006 Nov;91(11):4612-9.; Miller S., St Onge E.L. Sitagliptin: a dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. Ann Pharmacother. 2006 Jul-Aug;40(7-8):1336-43.; Петунина НА, Гончарова Е.В., Терехова А.Л. Управление сахарным диабетом. Новая эпоха самоконтроля: выявление тенденций и закономерностей гликемии. Сахарный диабет. 2017; 20(6):441-448.; Chan J.C., Scott R., Arjona Ferreira J.C., Sheng D., Gonzalez E., Davies MJ. et al. Safety and efficacy of sitagliptin in patients with type 2 diabetes and chronic renal insufficiency. Diabetes Obes Metab. 2008 Jul;10(7):545-55.; Scott R., Morgan G., Zimmer Z. Lam R.L.H., O’Neill E.A., Kauffman K.D. et al. A randomized clinical trial of the efficacy and safety of sitagliptin compared with dapagliflozin in patients with type 2 diabetes mellitus and mild renal insufficiency: The CompoSIT-R study. Diabetes Obes Metab. 2018;1-9.; Gomez N., Touihri K., Matheeussen V., Mendes Da Costa A., Mahmoudabady M., Mathieu M. et al. Dipeptidyl peptidase IV inhibition improves cardiorenal function in overpacing-induced heart failure. Eur J Heart Fail. 2012;14(1):14-21.; Read P.A., Khan F.Z., Heck P.M., Hoole S.P., Dutka D.P. DPP-4 inhibition by sitagliptin improves the myocardial response to dobutamine stress and mitigates stunning in a pilot study of patients with coronary artery disease. Circ Cardiovasc Imaging. 2010;3(2):195-201.; Hibuse T., Maeda N., Kishida K., Kimura T., Minami T., Takeshita E. et al. A pilot 3-month sit-agliptin treatment increases serum adiponectin level in Japanese patients with type 2 diabetes mellitus - a randomized controlled trial START-J study. Cardiovasc Diabetol. 2014;13:96.; Eurich D.T., Weir D.L., Simpson S.H., Senthilselvan A., McAlister F.A. Risk of new-onset heart failure in patients using sitagliptin: a population-based cohort study. Diabet Med. 2016 May;33(5):621-30.; Nakamura K., Oe H., Kihara H., Shimada K., Fukuda S., Watanabe K., Takagi T. et al. DPP-4 inhibitor and alpha-glucosidase inhibitor equally improve endothelial function in patients with type 2 diabetes: EDGE study. Cardiovasc Diabetol. 2014;13:110.; Leibovitz E., Gottlieb S., Goldenberg I., Gevrielov-Yusim N., Matetzky S., Gavish D. Sitagliptin pretreatment in diabetes patients presenting with acute coronary syndrome: results from the Acute Coronary Syndrome Israeli Survey (ACSIS). Cardiovasc Diabetol. 2013;12:53.; Green J.B., Bethel M.A., Armstrong P. W., Buse J.B., Engel S.S. et al.Effect of Sitagliptin on Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2015;373:232-242.; Engel S.S., Golm G.T., Shapiro D., Davies MJ., Kaufman K.D., Goldstein BJ. Cardiovascular safety of sitagliptin in patients with type 2 diabetes mellitus: a pooled analysis. Cardiovasc Diabetol. 2013;12:3.; Шестакова М.В. Опыт применения ситаглипти-на (первого ингибитора ДПП-4) в лечении сахарного диабета 2 типа в Российской Федерации: результаты наблюдательной программы «Диа-Да». Сахарный диабет. 2010;3:57-60.; Ким С.С., Ким И.Ч., Ли К.Д., Парк Ч.Х., Ким Й.И., Ли Й.С. и др. Эффективность и безопасность фиксированной комбинации ситаглиптина/мет-формина по сравнению с глимепиридом у пациентов с сахарным диабетом 2 типа: многоцентровое рандомизированное двойное слепое исследование. Эндокринология: новости, мнения, обучение. 2017;4:64-78.; Perez-Monteverde A., Seck T., Xu L., Lee M.A., Sisk C.M., Williams-Herman D.E. et al. Efficacy and safety of sitagliptin and the fixed-dose combination of sitagliptin and metformin vs. pioglitazone in drug-naive patients with type 2 diabetes. Int J Clin Pract. 2011 Sep;65(9):930-8.; Reasner C., Olansky L., Seck T.L. et al. The effect of initial therapy with the fixed-dose combination of sitagliptin and metformin compared with metformin monotherapy in patients with type 2 diabetes mellitus. Diabetes Obes. Metab. 2011;13:644-652.; https://www.med-sovet.pro/jour/article/view/3109