-
1Academic Journal
المؤلفون: А. А. Трякин, Н. С. Бесова, Н. М. Волков, С. В. Гамаюнов, П. В. Кононец, Е. В. Левченко, М. Ю. Федянин, М. В. Черных
المصدر: Malignant tumours; Том 14, № 3s2-1 (2024); 221-240 ; Злокачественные опухоли; Том 14, № 3s2-1 (2024); 221-240 ; 2587-6813 ; 2224-5057
مصطلحات موضوعية: химиолучевое лечение, ЭГДС, плоскоклеточный рак, аденокарцинома, пищеводно-желудочный переход
وصف الملف: application/pdf
Relation: https://www.malignanttumors.org/jour/article/view/1368/973; https://www.malignanttumors.org/jour/article/view/1368
-
2Academic Journal
المؤلفون: Н. М. Волков, Т. Д. Барболина, Т. Н. Борисова, Л. Ю. Владимирова, Н. В. Деньгина, Е. В. Левченко, О. В. Пикин
المصدر: Malignant tumours; Том 14, № 3s2-1 (2024); 115-129 ; Злокачественные опухоли; Том 14, № 3s2-1 (2024); 115-129 ; 2587-6813 ; 2224-5057
مصطلحات موضوعية: HIPEC, химиотерапия, иммунотерапия, комбинированное лечение, опухолевые плевриты, тримодальная терапия, асцит, плеврит, плевродез, плевроцентез, лапароцентез
وصف الملف: application/pdf
Relation: https://www.malignanttumors.org/jour/article/view/1361/967; https://www.malignanttumors.org/jour/article/view/1361
-
3Academic Journal
المؤلفون: А. А. Трякин, Н. С. Бесова, Н. М. Волков, О. А. Гладков, В. В. Карасева, Д. Д. Сакаева, Н. В. Фадеева, М. Ю. Федянин
المصدر: Malignant tumours; Том 14, № 3s2-1 (2024); 33-46 ; Злокачественные опухоли; Том 14, № 3s2-1 (2024); 33-46 ; 2587-6813 ; 2224-5057
وصف الملف: application/pdf
Relation: https://www.malignanttumors.org/jour/article/view/1357/963; https://www.malignanttumors.org/jour/article/view/1357
-
4Academic Journal
المؤلفون: Н. М. Волков, Т. Д. Барболина, Т. Н. Борисова, Л. Ю. Владимирова, Н. В. Деньгина, Е. В. Левченко, О. В. Пикин
المصدر: Malignant tumours; Том 13, № 3s2-1 (2023); 72-88 ; Злокачественные опухоли; Том 13, № 3s2-1 (2023); 72-88 ; 2587-6813 ; 2224-5057
مصطلحات موضوعية: плеврит, канцерогенные факторы, факторы прогноза, химиотерапия, иммунотерапия, комбинированное лечение, опухолевые плевриты, тримодальная терапия, асцит
وصف الملف: application/pdf
Relation: https://www.malignanttumors.org/jour/article/view/1204/839; https://www.malignanttumors.org/jour/article/view/1204
-
5Academic Journal
المؤلفون: А. А. Трякин, Н. С. Бесова, Н. М. Волков, С. В. Гамаюнов, П. В. Кононец, Е. В. Левченко, М. Д. Тер-Ованесов, М. В. Черных
المصدر: Malignant tumours; Том 13, № 3s2-1 (2023); 388-404 ; Злокачественные опухоли; Том 13, № 3s2-1 (2023); 388-404 ; 2587-6813 ; 2224-5057
مصطلحات موضوعية: химиолучевое лечение, ЭГДС, плоскоклеточный рак, аденокарцинома, пищеводно-желудочный переход
وصف الملف: application/pdf
Relation: https://www.malignanttumors.org/jour/article/view/1222/856; https://www.malignanttumors.org/jour/article/view/1222
-
6Academic Journal
المؤلفون: А. А. Трякин, Н. С. Бесова, Н. М. Волков, О. А. Гладков, В. В. Карасева, Д. Д. Сакаева, Н. В. Фадеева, М. Ю. Федянин
المصدر: Malignant tumours; Том 13, № 3s2-1 (2023); 28-41 ; Злокачественные опухоли; Том 13, № 3s2-1 (2023); 28-41 ; 2587-6813 ; 2224-5057
وصف الملف: application/pdf
Relation: https://www.malignanttumors.org/jour/article/view/1201/836; https://www.malignanttumors.org/jour/article/view/1201
-
7Academic JournalВзаимозаменяемость анти-PD1 препаратов как инструмент реагирования на сложные условия финансирования
المؤلفون: М. Ю. Федянин, Д. Г. Кравчук, Ф. В. Моисенко, И. Р. Агранов, Г. Г. Борщев, Д. В. Попов, Е. В. Глазкова, В. И. Евдокимов, В. А. Чубенко, Е. Н. Левченко, Н. М. Волков
المصدر: Malignant tumours; Том 13, № 3s1 (2023); 4-6 ; Злокачественные опухоли; Том 13, № 3s1 (2023); 4-6 ; 2587-6813 ; 2224-5057
وصف الملف: application/pdf
Relation: https://www.malignanttumors.org/jour/article/view/1177/816; Assessment report OPDIVO International non-proprietary name : Nivolumab. London : European Medicines Agency 2015.; EMA. Assessment report Keytruda International non-propri-etary name : pembrolizumab 2015.; Имянитов ЕН., «Отличия пролголимаба от других ингибиторов контрольных точек иммунного ответа». VI Петербургский Международный онкологический форум «Белые ночи», 25–28 июня 2020.; Zak KM, Kitel R, Przetocka S, et al. Structure of the complex of human programmed death 1, PD-1, and its ligand PD-L1. Structure 2015; 23 : 2341–8.; Tyulyandin SA, Fedyanin MYu, Semiglazova TYu, et al. BCD-100–first Russian PD-1 inhibitor. Journal of Modern Oncology. 2017; 19 (3) : 5–12.; Centanni M, Moes DJAR, Trocóniz IF, et al. Clinical Pharmacokinetics and Pharmacodynamics of Immune Checkpoint Inhibitors. Clin Pharmacokinet. 2019 Jul; 58 (7) : 835–857.; Liu S-Y, Huang W-C, Yeh H-I, et al. Sequential blockade of PD-1 and PD-L1 causes fulminant cardiotoxicity — from case report to mouse model validation. Cancers 2019, 11 (4), 580.; Liang X, Guan Y, Zhang B, et al. Severe immune-related pneumonitis with PD-1 inhibitor after progression on previous PD-L1 inhibitor in small cell lung cancer : A case report and review of the literature. Front Oncol. 2019; 9 : 1437.; Lepir T, Zaghouani M, Roche SP,, et al. Nivolumab to pembrolizumab switch induced a durable melanoma response : A case report. Medicine (Baltimore). 2019 Jan; 98 (2) : e13804.; Martini DJ, Lalani A-KA, Bossé D, et al. Response to single agent PD-1 inhibitor after progression on previous PD-1 / PD-L1 inhibitors : a case series. J Immunother Cancer. 2017 Aug 15; 5 (1) : 66.; Kitagawa S, Hakozaki T, Kitadai R, Hosomi Y. Switching administration of anti-PD-1 and anti-PD-L1 antibodies as immune checkpoint inhibitor rechallenge in individuals with advanced non-small cell lung cancer : Case series and literature review. Thorac Cancer. 2020 Jul; 11 (7) : 1927–1933.; Zaremba A, Eggermont A, Robert C, Dummer RR, et al.The concepts of rechallenge and retreatment with immune checkpoint blockade in melanoma patients, European Journal of Cancer, Volume 155, 2021, Pages 268–280.; Abou AS et al. Safety and efficacy of restarting immune check-point inhibitors after clinically significant immune-related adverse events in metastatic renal cell carcinoma. J Immunother Cancer. 2020 Feb; 8 (1) : e000144.; Weber JS, Hodi FS, Wolchok JD, et al. Safety profile of nivolumab monotherapy : a pooled analysis of patients with advanced melanoma. J Clin Oncol. 2017 Mar; 35 (7) : 785–792.; Scapin G, Yang X, Prosise WW, et al. Structure of full-length human anti-PD1 therapeutic IgG4 antibody pembrolizumab. Nat Struct Mol Biol 2015;22 (12): 953–8.; https://www.malignanttumors.org/jour/article/view/1177
-
8Academic Journal
المؤلفون: M. L. Stepanova, O. A. Kuznetsovа, P. S. Shilo, F. V. Moiseenko, N. Kh. Abduloeva, E. V. Artemyeva, A. S. Zhabina, M. M. Kramchaninov, N. M. Volkov, I. A. Pokataev, A. A. Rumyantsev, I. L. Plaksa, M. A. Gairyan, A. A. Isaev, M. V. Ivanov, Yu. F. Sadykova, V. A. Mileiko, V. V. Shamrikova, E. V. Ledin, A. A. Tryakin, M. Yu. Fedyanin, М. Л. Степанова, О. А. Кузнецова, П. С. Шило, Ф. В. Моисеенко, Н. Х. Абдулоева, Е. В. Артемьева, А. С. Жабина, М. М. Крамчанинов, Н. М. Волков, И. А. Покатаев, А. А. Румянцев, И. Л. Плакса, М. А. Гайрян, А. А. Исаев, М. В. Иванов, Ю. Ф. Садыкова, В. А. Милейко, В. В. Шамрикова, Е. В. Ледин, А. А. Трякин, М. Ю. Федянин
المصدر: Surgery and Oncology; Том 12, № 3 (2022); 26-35 ; Хирургия и онкология; Том 12, № 3 (2022); 26-35 ; 2949-5857
مصطلحات موضوعية: прецизионная онкология, FoundationOne® Medicine, precision oncology
وصف الملف: application/pdf
Relation: https://www.onco-surgery.info/jour/article/view/550/395; Berger M.F., Mardis E.R. the emerging clinical relevance of genomics in cancer medicine. Nat Rev Clin Oncol 2018;15(6):353–65. DOI:10.1038/s41571-018-0002-6; Hyman D.M., Taylor B.S., Baselga J. Implementing genome-driven oncology. Cell 2017;168:584–99.; Suh J.H., Johnson A., Albacker L. et al. Comprehensive genomic profiling facilitates implementation of the National Comprehensive Cancer Network Guidelines for lung cancer biomarker testing and identifies patients who may benefit from enrollment in mechanism-driven clinical trials. Oncologist 2016;21(6):684–91. DOI:10.1634/theoncologist.2016-0030; Rankin A., Klempner S.J., Erlich R. et al. Broad detection of alterations predicted to confer lack of benefit from EGFR antibodies or sensitivity to targeted therapy in advanced colorectal cancer. Oncologist 2016;21(11):1306–14.; Drilon A., Wang L., Arcila M.E. et al. Broad, hybrid capture-based next-generation sequencing identifies actionable genomic alterations in lung adenocarcinomas otherwise negative for such alterations by other genomic testing approaches. Clin Cancer Res 2015;21(16):3631–9. DOI:10.1158/1078-0432.CCR-14-2683; FoundationOne® CDx FDA Approval Press Release, 2017. Available at: https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm587273.htm.; FoundationOne® CDx FDA Approval, 2017. Available at: https://www.accessdata.fda.gov/cdrh_docs/pdf17/P170019a.pdf.; Flaherty K.T., Gray R., Chen A. et al. the Molecular Analysis for Therapy Choice (NCI-MATCH) Trial: lessons for genomic trial design. J Natl Cancer Inst 2020;112(10):1021–9.; Schneider B.P., Jiang G., Ballinger T. et al. a postneoadjuvant, randomized phase ii trial of personalized therapy versus treatment of physician’s choice for patients with residual triple-negative breast cancer. J Clin Oncol 2022;40(4):345–55. DOI:10.1200/JCO.21.01657; Институт клинических и лабораторных стандартов. H3-A6. Процедура сбора диагностических образцов крови путем венепункции. Утвержденный стандарт. 6-е издание.; Клинические рекомендации. Доступно по: https://oncology-association.ru/clinical-guidelines.; Sunami K., Ichikawa H., Kubo T. et al. Feasibility and utility of a panel testing for 114 cancer associated genes in a clinical setting: a hospital-based study. Cancer Sci 2019;110:1480–90.; Sicklick J.K., Kato S., Okamura R. et al. Molecular profiling of cancer patients enables personalized combination therapy: the I-PREDICT study. Nat Med 2019;25:744–50.; Rodon J., Soria J.-C., Berger R. et al. Genomic and transcriptomic profiling expands precision cancer medicine: the WINTHER trial. Nat Med 2019;25:751–8. DOI:10.1038/s41591-019-0424; Van der Velden D.L., Hoes L.R., van der Wijngaart H. et al. the Drug Rediscovery protocol facilitates the expanded use of existing anticancer drugs. Nature 2019;574(7776):127–31.; Rothwell D.G., Ayub M., Cook N. et al. Utility of ctDNA to support patient selection for early phase clinical trials: the TARGET study. Nat Med 2019;25(5):738–43.; Le Tourneau C., Delord J.-P., Gonçalves A. et al. Molecularly targeted therapy based on tumour molecular profiling versus conventional therapy for advanced cancer (SHIVA): a multicentre, open-label, proof-of-concept, randomised, controlled phase 2 trial. Lancet Oncol 2015;16:1324–34.; Mangat P.K., Halabi S., Bruinooge S.S. et al. Rationale and design of the targeted agent and profiling utilization registry (TAPUR) study. JCO Precis Oncol 2018;2018:1. DOI:10.1200/PO.18.00122; Chen A.P., Williams M., Kummar S. et al. Feasibility of molecular profiling based assignment of cancer treatment (MPACT): a randomized NCI precision medicine study. JCO 2016;34:2539.; Trédan O., Wang Q., Pissaloux D. et al. Molecular screening program to select molecular-based recommended therapies for metastatic cancer patients: Analysis from the ProfiLER trial. Ann Oncol 2019;30:757–65.; Coyne G.O., Takebe N., Chen A.P. Defining precision: the precision medicine initiative trials NCI-MPACT and NCIMATCH. Curr Probl Cancer 2017;41(3):182–93.; NCI-MATCH Sets “Benchmark of Actionability”. Cancer Discov 2021;11(1):6, 7. DOI:10.1158/2159-8290.CD-NB2020-100; National Cancer Institute. Age and cancer risk. Available at: https://www.cancer.gov/about-cancer/causes-prevention/risk/age.; Hirshfield K.M., Tolkunov D., Zhong H. et al. Clinical action ability of comprehensive genomic profiling for management of rare or refractory cancers. Oncologist 2016;21:1315–25. DOI:10.1634/theoncologist.2016-0049; Hilal T., Nakazawa M., Hodskins J. et al. Comprehensive genomic profiling in routine clinical practice leads to a low rate of benefit from genotype-directed therapy. BMC Cancer 2017;17:602.; Johnson D.B., Dahlman K.H., Knol J. et al. Enabling a genetically informed approach to cancer medicine: a retrospective evaluation of the impact of comprehensive tumor profiling using a targeted next-generation sequencing panel. Oncologist 2014;19:616–22.; Wheler J.J., Janku F., Naing A. et al. Cancer therapy directed by comprehensive genomic profiling: a single center study. Cancer Res 2016;76:3690–701. DOI:10.1158/0008-5472.CAN-15-3043; https://www.onco-surgery.info/jour/article/view/550
-
9Academic Journal
المؤلفون: А. А. Трякин, Н. С. Бесова, Н. М. Волков, О. А. Гладков, В. В. Карасева, Д. Д. Сакаева, Н. В. Фадеева, М. Ю. Федянин
المصدر: Malignant tumours; Том 12, № 3s2-1 (2022); 27-40 ; Злокачественные опухоли; Том 12, № 3s2-1 (2022); 27-40 ; 2587-6813 ; 2224-5057
وصف الملف: application/pdf
Relation: https://www.malignanttumors.org/jour/article/view/1021/718; https://www.malignanttumors.org/jour/article/view/1021
-
10Academic Journal
المؤلفون: А. А. Трякин, Н. С. Бесова, Н. М. Волков, С. В. Гамаюнов, П. В. Кононец, Е. В. Левченко, М. Д. Тер-Ованесов, М. В. Черных
المصدر: Malignant tumours; Том 12, № 3s2-1 (2022); 366-381 ; Злокачественные опухоли; Том 12, № 3s2-1 (2022); 366-381 ; 2587-6813 ; 2224-5057
مصطلحات موضوعية: химиолучевое лечение, ЭГДС, плоскоклеточный рак, аденокарцинома, пищеводно-желудочный переход
وصف الملف: application/pdf
Relation: https://www.malignanttumors.org/jour/article/view/1040/737; https://www.malignanttumors.org/jour/article/view/1040
-
11Academic JournalПрактические рекомендации по лекарственному лечению мезотелиомы плевры, брюшины и других локализаций
المؤلفون: Н. М. Волков, Т. Д. Барболина, Т. Н. Борисова, Л. Ю. Владимирова, Н. В. Деньгина, Е. В. Левченко, О. В. Пикин
المصدر: Malignant tumours; Том 12, № 3s2-1 (2022); 67-80 ; Злокачественные опухоли; Том 12, № 3s2-1 (2022); 67-80 ; 2587-6813 ; 2224-5057
مصطلحات موضوعية: плеврит, канцерогенные факторы, факторы прогноза, химиотера‑ пия, иммунотерапия, комбинированное лечение, опухолевые плевриты, тримодальная терапия, асцит
وصف الملف: application/pdf
Relation: https://www.malignanttumors.org/jour/article/view/1024/721; https://www.malignanttumors.org/jour/article/view/1024
-
12Academic Journal
المؤلفون: V. V. Egorenkov, F. V. Moiseenko, N. M. Volkov, M. S. Molchanov, M. S. Ravkina, N. Kh. Abduloeva, A. V. Linets, V. R. Khairutdinov, M. S. Aksenov, V. M. Moiseyenko, В. В. Егоренков, Ф. В. Моисеенко, Н. М. Волков, М. С. Молчанов, М. С. Равкина, Н. Х. Абдулоева, А. В. Линец, В. Р. Хайрутдинов, М. С. Аксенов, В. М. Моисеенко
المصدر: Creative surgery and oncology; Том 11, № 2 (2021); 118-124 ; Креативная хирургия и онкология; Том 11, № 2 (2021); 118-124 ; 2076-3093 ; 2307-0501
مصطلحات موضوعية: заболеваемость, solid tumours, multiple primary neoplasms, recurrence, prospective studies, incidence, солидные опухоли, первично-множественные новообразования, рецидив, проспективные исследования
وصف الملف: application/pdf
Relation: https://www.surgonco.ru/jour/article/view/580/445; Shih S., Dai C., Shih T., Khachemoune A. multiple primary melanomas occurring around the same time: a review of terminology and implications. J Drugs Dermatol. 2020;19(5):471–4. PMID: 32484627; Sacchetto L., Zanetti R., Comber H., Bouchardy C., Brewster D.H., Broganelli P., et al. Trends in incidence of thick, thin and in situ melanoma in Europe. Eur J Cancer. 2018;92:108–18. DOI:10.1016/j.ejca.2017.12.024; Hwa C., Price L.S., Belitskaya-Levy I., Ma M.W., Shapiro R.L., Berman R.S., et al. Single versus multiple primary melanomas: old questions and new answers. Cancer. 2012;118(17):4184–92. DOI:10.1002/cncr.27407; Moore M.M., Geller A.C., Warton E.M., Schwalbe J., Asgari M.M. Multiple primary melanomas among 16,570 patients with melanoma diagnosed at Kaiser Permanente Northern California, 1996 to 2011. J Am Acad Dermatol. 2015;73(4):630–6. DOI:10.1016/j.jaad.2015.06.059; Simberg-Danell C., Lyth J., Månsson-Brahme E., Frohm-Nilsson M., Carstensen J., Hansson J., et al. Prognostic factors and disease-specific survival among immigrants diagnosed with cutaneous malignant melanoma in Sweden. Int J Cancer. 2016;139(3):543–53. DOI:10.1002/ijc.30103; Aitken J.F., Youlden D.R., Baade P.D., Soyer H.P., Green A.C., Smithers B.M. Generational shift in melanoma incidence and mortality in Queensland, Australia, 1995–2014. Int J Cancer. 2018;142(8):1528–35. DOI:10.1002/ijc.31141; Tripp M.K., Watson M., Balk S.J., Swetter S.M., Gershenwald J.E. State of the science on prevention and screening to reduce melanoma incidence and mortality: The time is now. CA Cancer J Clin. 2016;66(6):460–80. DOI:10.3322/caac.21352; Claeson M., Holmström P., Hallberg S., Gillstedt M., Gonzalez H., Wennberg A.M., et al. Multiple primary melanomas: a common occurrence in Western Sweden. Acta Derm Venereol. 2017;97(6):715–9. DOI:10.2340/00015555-2598; Ungureanu L., Zboraș I., Vasilovici A., Vesa Ș., Cosgarea I., Cosgarea R., et al. Multiple primary melanomas: Our experience. Exp Ther Med. 2021;21(1):88. DOI:10.3892/etm.2020.9520; Alhatem A., Lambert W.C., Schwartz R.A., Chokshi R.J. Multiple thick nodular melanoma: differentiating multiple primaries from the metastasis of a previous single melanoma. Balkan Med J. 2019;36(6):364–5. DOI:10.4274/balkanmedj.galenos.2019.2019.4.115; McCaul K.A., Fritschi L., Baade P., Coory M. The incidence of second primary invasive melanoma in Queensland, 1982-2003. Cancer Causes Control. 2008;19(5):451–8. DOI:10.1007/s10552-007-9106-5; Savoia P., Osella-Abate S., Deboli T., Marenco F., Stroppiana E., Novelli M., et al. Clinical and prognostic reports from 270 patients with multiple primary melanomas: a 34-year single-institution study. J Eur Acad Dermatol Venereol. 2012;26(7):882–8. DOI:10.1111/j.1468-3083.2011.04181.x; Nosrati A., Yu W.Y., McGuire J., Griffin A., de Souza J.R., Singh R., et al. Outcomes and risk factors in patients with multiple primary melanomas. J Invest Dermatol. 2019;139(1):195–201. DOI:10.1016/j.jid.2018.07.009; Helgadottir H., Isaksson K., Fritz I., Ingvar C., Lapins J., Höiom V., et al. Multiple primary melanoma incidence trends over five decades: a nationwide population-based study. J Natl Cancer Inst. 2021;113(3):318–28. DOI:10.1093/jnci/djaa088; Grossman D., Farnham J.M., Hyngstrom J., Klapperich M.E., Secrest A.M., Empey S., et al. Similar survival of patients with multiple versus single primary melanomas based on Utah Surveillance, Epidemiology, and End Results data (1973–2011). J Am Acad Dermatol. 2018;79(2):238–44. DOI:10.1016/j.jaad.2018.02.055; https://www.surgonco.ru/jour/article/view/580
-
13Academic Journal
المؤلفون: V. V. Egorenkov, F. V. Moiseenko, N. M. Volkov, M. S. Molchanov, M. S. Ravkina, N. Kh. Abduloeva, A. V. Linets, V. R. Khairutdinov, A. M. Ibragimov, V. M. Moiseyenko, В. В. Егоренков, Ф. В. Моисеенко, Н. М. Волков, М. С. Молчанов, М. С. Равкина, Н. Х. Абдулоева, А. В. Линец, В. Р. Хайрутдинов, А. М. Ибрагимов, В. М. Моисеенко
المصدر: Creative surgery and oncology; Том 11, № 2 (2021); 138-143 ; Креативная хирургия и онкология; Том 11, № 2 (2021); 138-143 ; 2076-3093 ; 2307-0501
مصطلحات موضوعية: послеоперационные осложнения, metastatic skin melanoma, sentinel lymph node, lymphadenectomy, video endoscopy, postoperative complications, метастатическая кожная меланома, сторожевой лимфатический узел, лимфаденэктомия, видеоэндоскопия
وصف الملف: application/pdf
Relation: https://www.surgonco.ru/jour/article/view/583/448; Gonzalez A. Sentinel lymph node biopsy: past and present implications for the management of cutaneous melanoma with nodal metastasis. Am J Clin Dermatol. 2018;19(Suppl 1):24–30. DOI:10.1007/s40257-018-0379-0; Ascierto P.A., Borgognoni L., Botti G., Guida M., Marchetti P., Mocellin S., et al. New paradigm for stage III melanoma: from surgery to adjuvant treatment. J Transl Med. 2019;17(1):266. DOI:10.1186/s12967-019-2012-2; Falk Delgado A., Zommorodi S., Falk Delgado A. Sentinel lymph node biopsy and complete lymph node dissection for melanoma. Curr Oncol Rep. 2019;21(6):54. DOI:10.1007/s11912-019-0798-y; Moncrieff M.D., Sharma R.A., Gathura E., Heaton M.J. Improved perioperative seroma and complication rates following the application of a 2-layer negative pressure wound therapy system after inguinal lymphadenectomy for metastatic cutaneous melanoma. Ann Surg Oncol. 2020;27(10):3692–701. DOI:10.1245/s10434-020-08513-7; Baur J., Mathe K., Gesierich A., Weyandt G., Wiegering A., Germer C.T., et al. Morbidity and oncologic outcome after saphenous vein-sparing inguinal lymphadenectomy in melanoma patients. World J Surg Oncol. 2017;15(1):99. DOI:10.1186/s12957-017-1164-x; Faut M., Heidema R.M., Hoekstra H.J., van Ginkel R.J., Been S.L., Kruijff S., et al. Morbidity after inguinal lymph node dissections: it is time for a change. Ann Surg Oncol. 2017;24(2):330–9. DOI:10.1245/s10434-016-5461-3; Leng Q., Li B.K., Mao X.M. Video endosopic inguinal lymphadenectomy for penile cancer. Zhonghua Nan Ke Xue. 2019;25(9):848–51. PMID: 32233215; Yuan P., Zhao C., Liu Z., Ou Z., He W., Cai Y., et al. Comparative study of video endoscopic inguinal lymphadenectomy through a hypogastric vs leg subcutaneous approach for penile cancer. J Endourol. 2018;32(1):66–72. DOI:10.1089/end.2017.0455. PMID: 29256632; Bishoff J., Basler J., Teichman J., Thompson I. Endoscopic subcutaneous modified inguinal lymph node dissection (ESMIL) for squamous cell carcinoma of the penis. J Urol. 2003;169:78–81. DOI:10.21037/tau.2017.06.05; Tobias-Machado M., Tavares A., Molina W., Zambon J., Medina J., Forseto P., et al Video endoscopic inguinal lymphadenectomy (VEIL): Initial case report and comparison with open radical procedure. Arch Esp Urol. 2006;59:849–52. DOI:10.4321/s0004-06142006000800020; Sotelo R., Sanchez-Salas R., Carmona O., Garcia A., Mariano M., Neiva G., et al. Endoscopic lymphadenectomy for penile carcinoma. J Endourol. 2007;21:364–7. DOI:10.1089/end.2007.9971; Dellman K., Kooby D., Organ K., Hsiao W., Master V. Feasibility of a novel approach to inguinal lymphadenectomy: minimally invasive groin dissection for melanoma. Ann Surg Oncol. 2010;17:731–7. DOI:10.1245/s10434-009-0816-7; Martin B., Master V., Dellman K. Videoscopic inguinal lymphadenectomy for metastatic melanoma. Cancer Control. 2013;20:255–60. DOI:10.1177/107327481302000403; Postlewait L.M., Farley C.R., Diller M.L., Martin B., Hart Squires M. 3rd, Russell M.C., et al. A minimally invasive approach for inguinal lymphadenectomy in melanoma and genitourinary malignancy: longterm outcomes in an attempted randomized control trial. Ann Surg Oncol. 2017;24(11):3237–44. DOI:10.1245/s10434-017-5971-7; Nayak S.P., Pokharkar H., Gurawalia J., Dev K., Chanduri S., Vijayakumar M. Efficacy and safety of lateral approach-video endoscopic inguinal lymphadenectomy (L-VEIL) over open inguinal block dissection: a retrospective study. Indian J Surg Oncol. 2019;10(3):555–62. DOI:10.1007/s13193-019-00951-4; https://www.surgonco.ru/jour/article/view/583
-
14Academic Journal
المؤلفون: А. А. Трякин, Н. С. Бесова, Н. М. Волков, С. В. Гамаюнов, О. А. Гладков, М. М. Давыдов, П. В. Кононец, Е. В. Левченко, М. Д. Тер-Ованесов, С. И. Ткачев, М. В. Черных
المصدر: Malignant tumours; Том 10, № 3s2-1 (2020); 318-333 ; Злокачественные опухоли; Том 10, № 3s2-1 (2020); 318-333 ; 2587-6813 ; 2224-5057
مصطلحات موضوعية: химиолучевое лечение, ЭГДС, плоскоклеточный рак, аденокарцинома, пищеводно-желудочный переход
وصف الملف: application/pdf
Relation: https://www.malignanttumors.org/jour/article/view/768/533; https://www.malignanttumors.org/jour/article/view/768
-
15Academic Journal
المؤلفون: M. V. Matsko, D. E. Matsko, N. M. Volkov, A. Yu. Ulitin, V. M. Moiseenko, E. N. Imyanitov, A. G. Iyevleva, М. В. Мацко, Д. Е. Мацко, Н. М. Волков, А. Ю. Улитин, В. М. Моисеенко, Е. Н. Имянитов, А. Г. Иевлева
المصدر: Siberian journal of oncology; Том 18, № 3 (2019); 34-44 ; Сибирский онкологический журнал; Том 18, № 3 (2019); 34-44 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2019-18-3
مصطلحات موضوعية: PDGFRA, survival, prognostic factors, IDH1/2, MGMT, VEGF, продолжительность жизни при глиобластоме, прогностические факторы при глиобластоме
وصف الملف: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/1094/635; Burton E.C., Lamborn K.R., Forsyth P., Scott J., O’Campo J., Uyehara-Lock J., Prados M., Berger M., Passe S., Uhm J., O’Neill B.P., Jenkins R.B., Aldape K.D. Aberrant p53, mdm2, and proliferation differ in glioblastomas from long-term compared with typical survivors. Clin Cancer Res. 2002 Jan; 8(1): 180–7.; Scoccianti S., Magrini S.M., Ricardi U., Detti B., Buglione M., Sotti G., Krengli M., Maluta S., Parisi S., Bertoni F., Mantovani C., Tombolini V., De Renzis C., Lioce M., Fatigante L., Fusco V., Muto P., Berti F., Rubino G., Cipressi S., Fariselli L., Lupattelli M., Santoni R., Pirtoli L., Biti G. Patterns of care and survival in a retrospective analysis of 1059 patients with glioblastoma multiforme treated between 2002 and 2007: a multicenter study by the Central Nervous System Study Group of Airo (Italian Association of Radiation Oncology). Neurosurgery. 2010 Aug; 67(2): 446–58. doi:10.1227/01.NEU.0000371990.86656.E8.; Johnson D.R., Leeper H.E., Uhm J.H. Glioblastoma survival in the United States improved after Food and Drug Administration approval of bevacizumab: a population-based analysis. Cancer. 2013 Oct 1; 119(19): 3489–95. doi:10.1002/cncr.28259.; Gilbert M.R., Dignam J.J., Armstrong T.S., Wefel J.S., Blumenthal D.T., Vogelbaum M.A., Colman H., Chakravarti A., Pugh S., Won M., Jeraj R., Brown P.D., Jaeckle K.A., Schiff D., Stieber V.W., Brachman D.G., WernerWasik M., Tremont-Lukats I.W., Sulman E.P., Aldape K.D., Curran W.J., Mehta M.P. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med. 2014 Feb 20; 370(8): 699–708. doi:10.1056/NEJMoa1308573.; Gerber N.K., Goenka A., Turcan S., Reyngold M., Makarov V., Kannan K., Beal K., Omuro A., Yamada Y., Gutin P., Brennan C.W., Huse J.T., Chan T.A. Transcriptional diversity of long-term glioblastoma survivors. Neuro Oncol. 2014 Sep; 16(9): 1186–95. doi:10.1093/neuonc/nou043.; Johnson D.R., Ma D.J., Buckner J.C., Hammack J.E. Conditional probability of long-term survival in glioblastoma: a population-based analysis. Cancer. 2012 Nov 15; 118(22): 5608–13. doi:10.1002/cncr.27590.; Feng Y., Wang Z., Bao Z., Yan W., You G., Wang Y., Hu H., Zhang W., Zhang Q., Jiang T. SOCS3 Promoter Hypermethylation Is a Favorable Prognosticator and a Novel Indicator for G-CIMPPositive GBM Patients. PLoS One. 2014 Mar 14; 9(3): e91829. doi:10.1371/journal.pone.0091829.; Mazaris P., Hong X., Altshuler D., Schultz L., Poisson L.M., Jain R., Mikkelsen T., Rosenblum M., Kalkanis S. Key determinants of short-term and long-term glioblastoma survival: a 14-year retrospective study of patients from the Hermelin Brain Tumor Center at Henry Ford Hospital. Clin Neurol Neurosurg. 2014 May; 120: 103–12. doi:10.1016/j.clineuro.2014.03.001.; Geisenberger C., Mock A., Warta R., Rapp C., Schwager C., Korshunov A., Nied A.K., Capper D., Brors B., Jungk C., Jones D., Collins V.P., Ichimura K., Bäcklund L.M., Schnabel E., Mittelbron M., Lahrmann B., Zheng S., Verhaak R.G., Grabe N., Pfister S.M., Hartmann C., von Deimling A., Debus J., Unterberg A., Abdollahi A., Herold-Mende C. Molecular profiling of long-term survivors identifies a subgroup of glioblastoma characterized by chromosome 19/20 co-gain. Acta Neuropathol. 2015 Sep; 130(3): 419–34. doi:10.1007/s00401-015-1427-y.; Shannon S., Vaca C., Jia D., Entersz I., Schaer A., Carcione J., Weaver M., Avidar Y., Pettit R., Nair M., Khan A., Foty R.A. DexamethasoneMediated Activation of Fibronectin Matrix Assembly Reduces Dispersal of Primary HumanGlioblastoma Cells. PLoS One. 2015 Aug 18; 10(8): e0135951. doi:10.1371/journal.pone.0135951.; Bähr O., Herrlinger U., Weller M., Steinbach J.P. Very late relapses in glioblastoma long-term survivors. J Neurol. 2009 Oct; 256(10): 1756–8. doi:10.1007/s00415-009-5167-6.; Sawaya R., Suki D. Long-Term Survival in Patients With Glioblastoma Multiforme: Frequency and Prognostic Factors. Oncology (Williston Park). 2016 Apr; 30 Suppl. pii: 216594.; Fiore D., Donnarumma E., Roscigno G., Iaboni M., Russo V., Affinito A., Adamo A., De Martino F., Quintavalle C., Romano G., Greco A., Soini Y., Brunetti A., Croce C.M., Condorelli G. miR-340 predicts glioblastoma survival and modulates key cancer hallmarks through downregulation of NRAS. Oncotarget. 2016 Apr 12; 7(15): 19531–47. doi:10.18632/oncotarget.6968.; Millward C.P., Brodbelt A.R., Haylock B., Zakaria R., Baborie A., Crooks D., Husband D., Shenoy A., Wong H., Jenkinson M.D. The impact of MGMT methylation and IDH-1 mutation on long-term outcome for glioblastoma treated with chemoradiotherapy. Acta Neurochir (Wien). 2016 Oct; 158(10): 1943–53. doi:10.1007/s00701-016-2928-8.; Shinawi T., Hill V.K., Krex D., Schackert G., Gentle D., Morris M.R., Wei W., Cruickshank G., Maher E.R., Latif F. DNA methylation profiles of longand short-term glioblastoma survivors. Epigenetics. 2013 Feb; 8(2): 149–56. doi:10.4161/epi.23398.; Reifenberger G., Weber R.G., Riehmer V., Kaulich K., Willscher E., Wirth H., Gietzelt J., Hentschel B., Westphal M., Simon M., Schackert G., Schramm J., Matschke J., Sabel M.C., Gramatzki D., Felsberg J., Hartmann C., Steinbach J.P., Schlegel U., Wick W., Radlwimmer B., Pietsch T., Tonn J.C., von Deimling A., Binder H., Weller M., Loeffler M. Molecular characterization of long-term survivors of glioblastoma using genomeand transcriptome-wide profiling. Int J Cancer. 2014 Oct 15; 135(8): 1822–31. doi:10.1002/ijc.28836.; Adeberg S., Bostel T., König L., Welzel T., Debus J., Combs S.E. A comparison of long-term survivors and short-term survivors with glioblastoma, subventricular zone involvement: a predictive factor for survival? Radiat Oncol. 2014 Apr 23; 9: 95. doi:10.1186/1748-717X-9-95.; Amelot A., De Cremoux P., Quillien V., Polivka M., Adle-Biassette H., Lehmann-Che J., Françoise L., Carpentier A.F., George B., Mandonnet E., Froelich S. IDH-Mutation Is a Weak Predictor of Long-Term Survival in Glioblastoma Patients. PLoS One. 2015 Jul 9; 10(7): e0130596. doi:10.1371/journal.pone.0130596.; Scott J.N., Rewcastle N.B., Brasher P.M., Fulton D., MacKinnon J.A., Hamilton M., Cairncross J.G., Forsyth P. Which glioblastoma multiforme patient will become a long-term survivor? A population-based study. Ann Neurol. 1999 Aug; 46(2): 183–8.; Baur M., Preusser M., Piribauer M., Elandt K., Hassler M., Hudec M., Dittrich C., Marosi C. Frequent MGMT (0(6)-methylguanineDNA methyltransferase) hypermethylation in long-term survivors of glioblastoma: a single institution experience. Radiol Oncol. 2010 Jun; 44(2): 113–20. doi:10.2478/v10019-010-0023-y.; Sanai N., Polley M.Y., McDermott M.W., Parsa A.T., Berger M.S. An extent of resection threshold for newly diagnosed glioblastomas. J Neurosurg. 2011 Jul; 115(1): 3–8. doi:10.3171/2011.2.JNS10998.; Chaichana K.L., Pendleton C., Chambless L., Camara-Quintana J., Nathan J.K., Hassam-Malani L., Li G., Harsh G.R. 4th, Thompson R.C., Lim M., Quinones-Hinojosa A. Multi-institutional validation of a preoperative scoring system which predicts survival for patients with glioblastoma. J Clin Neurosci. 2013 Oct; 20(10): 1422–6. doi:10.1016/j.jocn.2013.02.007.; Glas M., Happold C., Rieger J., Wiewrodt D., Bähr O., Steinbach J.P., Wick W., Kortmann R.D., Reifenberger G., Weller M., Herrlinger U. Longterm survival of patients with glioblastoma treated with radiotherapy and lomustine plus temozolomide. J Clin Oncol. 2009 Mar 10; 27(8): 1257–61. doi:10.1200/JCO.2008.19.2195.; Chandler K.L., Prados M.D., Malec M., Wilson C.B. Long-term survival in patients with glioblastoma multiforme. Neurosurgery 1993 May; 32(5): 716–20.; McLendon R.E., Halperin E.C. Is the long-term survival of patients with intracranial glioblastoma multiforme overstated? Cancer. 2003 Oct 15; 98(8): 1745–8. doi:10.1002/cncr.11666.; Zhang C., Yao Y., Wang Y., Chen Z., Wu J., Mao Y., Zhou L. Temozolomide for adult brain stem glioblastoma: case report of a long-term survivor. Int J Neurosci. 2010 Dec; 120(12): 787–91. doi:10.3109/00207454.2010.520377.; Hartmann C., Hentschel B., Simon M., Westphal M., Schackert G., Tonn J.C., Loeffler M., Reifenberger G., Pietsch T., von Deimling A., Weller M., German Glioma Network. Long-term survival in primary glioblastoma with versus without isocitrate dehydrogenase mutations. Clin Cancer Res. 2013 Sep 15; 19(18): 5146–57. doi:10.1158/1078-0432.CCR-13-0017.; Мацко М.В., Лучин Е.И., Иевлева А.Г., Бахолдин Д.В., Абышева С.Н., Завгородняя Е.В., Потапова О.Н., Имянитов Е.Н., Мацко Д.Е. Значимый регресс глиобластомы с низкой экспрессией гена MGMT при химиолучевой терапии. Вопросы онкологии. 2011; 57(2): 245–249.; Hegi M.E., Diserens A.C., Gorlia T., Hamou M.F., de Tribolet N., Weller M., Kros J.M., Hainfellner J.A., Mason W., Mariani L., Bromberg J.E., Hau P., Mirimanoff R.O., Cairncross J.G., Janzer R.C., Stupp R. Mgmt gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005; 352: 997–1003. doi:10.1056/NEJMoa043331.; Weiler M., Hartmann C., Wiewrodt D., Herrlinger U., Gorlia T., Bähr O., Meyermann R., Bamberg M., Tatagiba M., von Deimling A., Weller M., Wick W. Chemoradiotherapy of newly diagnosed glioblastoma with intensified temozolomide. Int J Radiat Oncol Biol Phys. 2010 Jul 1; 77(3): 670–6. doi:10.1016/j.ijrobp.2009.05.031.; Quillien V., Lavenu A., Karayan-Tapon L., Carpentier C., Labussière M., Lesimple T., Chinot O., Wager M., Honnorat J., Saikali S., Fina F., Sanson M., Figarella-Branger D. Comparative Assessment of 5 Methods (Methylation-Specific Polymerase Chain Reaction, MethyLight, Pyrosequencing, Methylation-Sensitive High-Resolution Melting, and Immunohistochemistry) to Analyze O6-Methylguanine-DNAMethyltranferase in a Series of 100 Glioblastoma Patients. Cancer. 2012 Sep 1; 118(17): 4201–11. doi:10.1002/cncr.27392.; Lalezari S., Chou A.P., Tran A., Solis O.E., Khanlou N., Chen W., Li S., Carrillo J.A., Chowdhury R., Selfridge J., Sanchez D.E., Wilson R.W., Zurayk M., Lalezari J., Lou J.J., Ormiston L., Ancheta K., Hanna R., Miller P., Piccioni D., Ellingson B.M., Buchanan C., Mischel P.S., Nghiemphu P.L., Green R., Wang H.J., Pope W.B., Liau L.M., Elashoff R.M., Cloughesy T.F., Yong W.H., Lai A. Combined analysis of O6-methylguanine-DNA methyltransferase protein expression and promoter methylation provides optimized prognostication of glioblastoma outcome. Neuro Oncol. 2013 Mar; 15(3): 370–81. doi:10.1093/neuonc/nos308.; Rapp M., Goeppert M., Felsberg J., Steiger H.J., Sabel M. The impact of sequential vs. combined radiochemotherapy with temozolomide, resection and MGMT promoter hypermethylation on survival of patients with primary glioblastoma – a single centre retrospective study. Br J Neurosurg. 2013 Aug; 27(4): 430–5. doi:10.3109/02688697.2013.767317.; Parsons D.W., Jones S., Zhang X., Lin J.C., Leary R.J., Angenendt P., Mankoo P., Carter H, Siu I.M., Gallia G.L., Olivi A., McLendon R., Rasheed B.A., Keir S., Nikolskaya T., Nikolsky Y., Busam D.A., Tekleab H., Diaz L.A.Jr., Hartigan J., Smith D.R., Strausberg R.L., Marie S.K., Shinjo S.M., Yan H., Riggins G.J., Bigner D.D., Karchin R., Papadopoulos N., Parmigiani G., Vogelstein B., Velculescu V.E., Kinzler K.W. An integrated genomic analysis of human glioblastoma multiforme. Science. 2008 Sep 26; 321(5897): 1807–12. doi:10.1126/science.1164382.; Sanson M., Marie Y., Paris S., Idbaih A., Laffaire J., Ducray F., El Hallani S., Boisselier B., Mokhtari K., Hoang-Xuan K., Delattre J.Y. Isocitrate dehydrogenase 1 codon 132 mutation is an important prognostic biomarker in gliomas. J Clin Oncol. 2009 Sep 1; 27(25): 4150–4. doi:10.1200/JCO.2009.21.9832.; Yan H., Parsons D.W., Jin G., McLendon R., Rasheed B.A., Yuan W., Kos I., Batinic-Haberle I., Jones S., Riggins G.J., Friedman H., Friedman A., Reardon D., Herndon J., Kinzler K.W., Velculescu V.E., Vogelstein B., Bigner D.D. IDH1 and IDH2 mutations in gliomas. N Engl J Med. 2009 Feb 19; 360(8): 765–73. doi:10.1056/NEJMoa0808710.; Turcan S., Rohle D., Goenka A., Walsh L.A., Fang F., Yilmaz E., Campos C., Fabius A.W., Lu C., Ward P.S., Thompson C.B., Kaufman A., Guryanova O., Levine R., Heguy A., Viale A., Morris L.G., Huse J.T., Mellinghoff I.K., Chan T.A. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature. 2012 Feb 15; 483(7390): 479–83. doi:10.1038/nature10866.; Christensen B.C., Smith A.A., Zheng S., Koestler D.C., Houseman E.A., Marsit C.J., Wiemels J.L., Nelson H.H., Karagas M.R., Wrensch M.R., Kelsey K.T., Wiencke J.K. DNA methylation, isocitrate dehydrogenase mutation, and survival in glioma. Natl Cancer Inst. 2011 Jan 19; 103(2): 143–53. doi:10.1093/jnci/djq497.; Zou P., Xu H., Chen P., Yan Q., Zhao L., Zhao P., Gu A. IDH1/ IDH2 mutations define the prognosis and molecular profiles of patients with gliomas: a meta-analysis. PLoS One. 2013 Jul 22; 8(7): e68782. doi:10.1371/journal.pone.0068782.; Molenaar R.J., Verbaan D., Lamba S., Zanon C., Jeuken J.W., BootsSprenger S.H., Wesseling P., Hulsebos T.J., Troost D., van Tilborg A.A., Leenstra S., Vandertop W.P., Bardelli A., van Noorden C.J., Bleeker F.E. The combination of IDH1 mutations and MGMT methylation status predicts survival in glioblastoma better than either IDH1 or MGMT alone. Neuro Oncol. 2014 Sep; 16(9): 1263–73. doi:10.1093/neuonc/nou005.; Balss J., Meyer J., Mueller W., Korshunov A., Hartmann C., von Deimling A. Analysis of the IDH1 codon 132 mutation in brain tumors. Acta Neuropathol. 2008 Dec; 116(6): 597–602. doi:10.1007/s00401008-0455-2.; Ichimura K., Pearson D.M., Kocialkowski S., Bäcklund L.M., Chan R., Jones D.T., Collins V.P. IDH1 mutations are present in the majority of common adult gliomas but rare in primary glioblastomas. Neuro Oncol. 2009 Aug; 11(4): 341–7. doi:10.1215/15228517-2009-025.; Hartmann C., Meyer J., Balss J., Capper D., Mueller W., Christians A., Felsberg J., Wolter M., Mawrin C., Wick W., Weller M., Herold-Mende C., Unterberg A., Jeuken J.W., Wesseling P., Reifenberger G., von Deimling A. Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1,010 diffuse gliomas. Acta Neuropathol. 2009 Oct; 118(4): 469–74. doi:10.1007/s00401-009-0561-9.; Weller M., Felsberg J., Hartmann C., Berger H., Steinbach J.P., Schramm J., Westphal M., Schackert G., Simon M., Tonn J.C., Heese O., Krex D., Nikkhah G., Pietsch T., Wiestler O., Reifenberger G., von Deimling A., Loeffler M. Molecular predictors of progression-free and overall survival in patients with newly diagnosed glioblastoma: a prospective translational study of the German Glioma Network. J Clin Oncol. 2009 Dec 1; 27(34): 5743–50. doi:10.1200/JCO.2009.23.0805.; Hartmann C., Hentschel B., Wick W., Capper D., Felsberg J., Simon M., Westphal M., Schackert G., Meyermann R., Pietsch T., Reifenberger G., Weller M., Loeffler M., von Deimling A. Patients with IDH1 wild type anaplastic astrocytomas exhibit worse prognosis than IDH1-mutated glioblastomas, and IDH1 mutation status accounts for the unfavorable prognostic effect of higher age: implications for classification of gliomas. Acta Neuropathol. 2010 Dec; 120(6): 707–18. doi:10.1007/s00401-010-0781-z.; Combs S.E., Rieken S., Wick W., Abdollahi A., von Deimling A., Debus J., Hartmann C. Prognostic significance of IDH-1 and MGMT in patients with glioblastoma: one step forward, and one step back? Radiat Oncol. 2011 Sep 13; 6: 115. doi:10.1186/1748-717X-6-115.; Myung J.K., Cho H.J., Park C.K., Kim S.K., Phi J.H., Park S.H. IDH1 mutation of gliomas with long-term survival analysis. Oncol Rep. 2012 Nov; 28(5): 1639–44. doi:10.3892/or.2012.1994.; Sarmiento J.M., Mukherjee D., Black K.L., Fan X., Hu J.L., Nuno M.A., Patil C.G. Do Long-Term Survivor Primary Glioblastoma Patients Harbor IDH1 Mutations? J Neurol Surg A Cent Eur Neurosurg. 2016 May; 77(3): 195–200. doi:10.1055/s-0035-1566121.; Yan W., Zhang W., You G., Bao Z., Wang Y., Liu Y., Kang C., You Y., Wang L., Jiang T. Correlation of IDH1 mutation with clinicopathologic factors and prognosis in primary glioblastoma: a report of 118 patients from China. PLoS One. 2012; 7(1): e30339. doi:10.1371/journal.pone.0030339.; Мацко Д.Е., Мацко М.В., Имянитов Е.Н. Нейроонкология. Практическая онкология. 2017; 18(1): 103–114.; Krex D., Klink B., Hartmann C., von Deimling A., Pietsch T., Simon M., Sabel M., Steinbach J.P., Heese O., Reifenberger G., Weller M., Schackert G.; German Glioma Network. Long-term survival with glioblastoma multiforme. Brain. 2007 Oct; 130(Pt 10): 2596–606. doi:10.1093/brain/awm204.; Zhang G.B., Cui X.L., Sui D.L., Ren X.H., Zhang Z., Wang Z.C., Lin S. Differential molecular genetic analysis in glioblastoma multiforme of longand short-term survivors: a clinical study in Chinese patients. J Neurooncol. 2013 Jun; 113(2): 251–8. doi:10.1007/s11060-013-1102-x.; Wen P.Y., Macdonald D.R., Reardon D.A., Cloughesy T.F., Sorensen A.G., Galanis E., Degroot J., Wick W., Gilbert M.R., Lassman A.B., Tsien C., Mikkelsen T., Wong E.T., Chamberlain M.C., Stupp R., Lamborn K.R., Vogelbaum M.A., van den Bent M.J., Chang S.M. Updated response assessment criteria for high-grade gliomas: response assessment in neurooncology working group. J Clin Oncol. 2010 Apr 10; 28(11): 1963–72. doi:10.1200/JCO.2009.26.3541.; Martinez R., Schackert G., Yaya-Tur R., Rojas-Marcos I., Herman J.G., Esteller M. Frequent hypermethylation of the DNA repair gene MGMT in long-term survivors of glioblastoma multiforme. J Neurooncol. 2007 May; 83(1): 91–3. doi:10.1007/s11060-006-9292-0.; Korshunov A., Sycheva R., Golanov A. Genetically distinct and clinically relevant subtypes of glioblastoma defined by array-based comparative genomic hybridization (array-CGH). Acta Neuropathol. 2006 May; 111(5): 465–74. doi:10.1007/s00401-006-0057-9.; Sonoda Y., Kumabe T., Watanabe M., Nakazato Y., Inoue T., Kanamori M., Tominaga T. Long-term survivors of glioblastoma: clinical features and molecular analysis. Acta Neurochir (Wien). 2009 Nov; 151(11): 1349–58. doi:10.1007/s00701-009-0387-1.; Lu J., Cowperthwaite M.C., Burnett M.G., Shpak M. Molecular Predictors of Long-Term Survival in Glioblastoma Multiforme Patients. PLoS One. 2016 Apr 28; 11(4): e0154313. doi:10.1371/journal.pone.0154313.; Matsko M.V., Imyanitov E.N. Predictive role of O6-methylguanine DNA methyltransferase status for the treatment of brain tumors. Epigenetics Territory and Cancer. Springer, 2015. 251–279.; Sturm D., Witt H., Hovestadt V., Khuong-Quang D.A., Jones D.T., Konermann C., Pfaff E., Tönjes M., Sill M., Bender S., Kool M., Zapatka M., Becker N., Zucknick M., Hielscher T., Liu X.Y., Fontebasso A.M., Ryzhova M., Albrecht S., Jacob K., Wolter M., Ebinger M., Schuhmann M.U., van Meter T., Frühwald M.C., Hauch H., Pekrun A., Radlwimmer B., Niehues T., von Komorowski G., Dürken M., Kulozik A.E., Madden J., Donson A., Foreman N.K., Drissi R., Fouladi M., Scheurlen W., von Deimling A., Monoranu C., Roggendorf W., Herold-Mende C., Unterberg A., Kramm C.M., Felsberg J., Hartmann C., Wiestler B., Wick W., Milde T., Witt O., Lindroth A.M., Schwartzentruber J., Faury D., Fleming A., Zakrzewska M., Liberski P.P., Zakrzewski K., Hauser P., Garami M., Klekner A., Bognar L., Morrissy S., Cavalli F., Taylor M.D., van Sluis P., Koster J., Versteeg R., Volckmann R., Mikkelsen T., Aldape K., Reifenberger G., Collins V.P., Majewski J., Korshunov A., Lichter P., Plass C., Jabado N., Pfister S.M. Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell. 2012 Oct 16; 22(4): 425–37. doi:10.1016/j.ccr.2012.08.024.; Toedt G., Barbus S., Wolter M., Felsberg J., Tews B., Blond F., Sabel M.C., Hofmann S., Becker N., Hartmann C., Ohgaki H., von Deimling A., Wiestler O.D., Hahn M., Lichter P., Reifenberger G., Radlwimmer B. Molecular signatures classify astrocytic gliomas by IDH1 mutation status. Int J Cancer. 2011 Mar 1; 128(5): 1095–103. doi:10.1002/ijc.25448.; Noushmehr H., Weisenberger D.J., Diefes K., Phillips H.S., Pujara K., Berman B.P., Pan F., Pelloski C.E., Sulman E.P., Bhat K.P., Verhaak R.G., Hoadley K.A., Hayes D.N., Perou C.M., Schmidt H.K., Ding L., Wilson R.K., Van Den Berg D., Shen H., Bengtsson H., Neuvial P., Cope L.M., Buckley J., Herman J.G., Baylin S.B., Laird P.W., Aldape K.; Cancer Genome Atlas Research Network. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell. 2010 May 18; 17(5): 510–22. doi:10.1016/j.ccr.2010.03.017.; Suh J.H., Park C.K., Park S.H. Alpha internexin expression related with molecular characteristics in adult glioblastoma and oligodendroglioma. J Korean Med Sci. 2013 Apr; 28(4): 593–601. doi:10.3346/jkms.2013.28.4.593.; Durand K., Guillaudeau A., Pommepuy I., Mesturoux L., Chaunavel A., Gadeaud E., Porcheron M., Moreau J.J., Labrousse F. Alphainternexin expression in gliomas: relationship with histological type and 1p, 19q, 10p and 10q status. J Clin Pathol. 2011 Sep; 64(9): 793–801. doi:10.1136/jcp.2010.087668.; Ducray F., Crinière E., Idbaih A., Mokhtari K., Marie Y., Paris S., Navarro S., Laigle-Donadey F., Dehais C., Thillet J., Hoang-Xuan K., Delattre J.Y., Sanson M. alpha-Internexin expression identifies 1p19q codeleted gliomas. Neurology. 2009 Jan 13; 72(2): 156–61. doi:10.1212/01.wnl.0000339055.64476.cb.; Мацко М.В., Мацко Д.Е., Моисеенко В.М., Улитин А.Ю., Волков Н.М., Иевлева А.Г., Имянитов Е.Н. Предиктивная роль гена MGMT при лечении Темозоломидом больных с глиобластомой. Материалы XI международного научного конгресса «Рациональная фармакотерапия». СПб., 2016. 97–98.; https://www.siboncoj.ru/jour/article/view/1094
-
16Academic Journal
المؤلفون: A. A. Kashintsev, G. A. Yanus, N. Yu. Kokhanenko, V. M. Moiseenko, M. D. Hanevich, L. D. Roman, A. G. Ievleva, A. P. Sokolenko, E. N. Suspitsin, A. I. Budovskiy, A. V. Togo, N. M. Volkov, R. V. Fadeev, M. S. Dinikin, A. K. Ivanova, K. G. Shostko, E. N. Imyanitov, А. А. Кашинцев, Г. А. Янус, Н. Ю. Коханенко, В. М. Моисеенко, М. Д. Ханевич, Л. Д. Роман, А. Г. Иевлева, А. П. Соколенко, Е. Н. Суспицин, А. И. Будовский, А. В. Того, Н. М. Волков, Р. В. Фадеев, М. С. Диникин, А. К. Иванова, К. Г. Шостко, Е. Н. Имянитов
المصدر: Siberian journal of oncology; № 5 (2013); 39-44 ; Сибирский онкологический журнал; № 5 (2013); 39-44 ; 2312-3168 ; 1814-4861 ; undefined
مصطلحات موضوعية: наследственный рак молочной железы и яичников, BRCA1, BRCA2
وصف الملف: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/237/239; Al-Sukhni W., Rothenmund H., Borgida A.E. et al. Germline BRCA1 mutations predispose to pancreatic adenocarcinoma//Hum. Genet. 2008. Vol. 124. P. 271-278; Aretini P., D’Andrea E., Pasini B. et al. Different expressivity of BRCA1 and BRCA2: analysis of 179 Italian pedigrees with identified mutation//Breast Cancer Res. Treat. 2003. Vol. 81. P. 71-79; van Asperen C.J., Brohet R.M., Meijers-Heijboer E.J. et al. Cancer risks in BRCA2 families: estimates for sites other than breast and ovary//J. Med. Genet. 2005. Vol. 42. P. 711-719; Axilbund J.E., Argani P., Kamiyama M. et al. Absence of germline BRCA1 mutations in familial pancreatic cancer patients//Cancer Biol. Ther. 2009. Vol. 8. P. 131-135; Barrow E., Robinson L., Alduaij W. et al. Cumulative lifetime incidence of extracolonic cancers in Lynch syndrome: a report of 121 families with proven mutations//Clin. Genet. 2009. Vol. 75. P. 141-149; Brose M.S., Rebbeck T.R., Calzone K.A. et al. Cancer risk estimates for BRCA1 mutation carriers identified in a risk evaluation program//Natl. Cancer Inst. 2002. Vol. 94. P. 1365-1372; Chalasani P., Kurtin S., Dragovich T. Response to a third-line mitomycin C (MMC)-based chemotherapy in a patient with metastatic pancreatic adenocarcinoma carrying germline BRCA2 mutation//JOP. 2008. Vol. 9. P. 305-308; Couch F.J., Johnson M.R., Rabe K. et al. Germ line Fanconi anemia complementation group C mutations and pancreatic cancer//Cancer Res. 2005. Vol. 65. P. 383-386; Couch F.J., Johnson M.R., Rabe K.G. et al. The prevalence of BRCA2 mutations in familial pancreatic cancer//Cancer Epidemiol. Biomarkers Prev. 2007. Vol. 16. P. 342-346; Dagan E. Predominant Ashkenazi BRCA1/2 mutations in families with pancreatic cancer//Genet. Test. 2008. Vol. 12. P. 267-271; Ferlay J., Shin H.R., Bray F. et al. GLOBOCAN 2008 v2.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 10 [Internet]. Lyon, France: International Agency for Research on Cancer; 2010. Available from: http://globocan.iarc.fr, accessed on 29/07/2013; Ferrone C.R., Levine D.A., Tang L.H. et al. BRCAgermline mutations in Jewish patients with pancreatic adenocarcinoma//J. Clin. Oncol. 2009. Vol. 27. P. 433-438; Figer A., Irmin L., Geva R. et al. The rate of the 6174delT founder Jewish mutation in BRCA2 in patients with non-colonic gastrointestinal tract tumours in Israel//Br. J. Cancer. 2001. Vol. 84. P. 478-481; Fogelman D.R., Wolff R.A., Kopetz S. et al. Evidence for the efficacy of Iniparib, a PARP-1 inhibitor, in BRCA2-associated pancreatic cancer//Anticancer Res. 2011 Vol. 31. P. 1417-1420; Ghiorzo P., Fornarini G., Sciallero S. et al. CDKN2A is the main susceptibility gene in Italian pancreatic cancer families//J. Med. Genet. 2012. Vol. 49. P. 164-170; Ghiorzo P., Pensotti V., Fornarini G. et al. Contribution of germline mutations in the BRCA and PALB2 genes to pancreatic cancer in Italy//Fam. Cancer. 2012. Vol. 11. P. 41-47; Goggins M., Sehutte M., Lu J. et al. Germline BRCA2 gene mutations in patients with apparently sporadic pancreatic carcinomas//Cancer Research. 1996. Vol. 56. P. 5360-5364; Goldstein A.M., Chan M., Harland M. et al. High-risk melanoma susceptibility genes and pancreatic cancer, neural system tumors, and uveal melanoma across GenoMEL//Cancer Res. 2006. Vol. 66. P. 9818-9828; Groen E.J., Roos A., Muntinghe F.L. et al. Extra-intestinal manifestations of familial adenomatous polyposis//Ann. Surg. Oncol. 2008. Vol. 15. P. 2439-2450; Hahn S.A., Greenhalf B., Ellis I. et al. BRCA2 germline mutations in familial pancreatic carcinoma//J. Natl. Cancer Inst. 2003. Vol. 95. P. 214-221; van der Heijden M.S., Yeo C.J., Hruban R.H., Kern S.E. Fanconi anemia gene mutations in young-onset pancreatic cancer//Cancer Res. 2003. Vol. 63. P. 2585-2588; Hollestelle A., Wasielewski M., Martens J.W., Schutte M. Discovering moderate-risk breast cancer susceptibility genes//Curr. Opin. Genet. Dev. 2010. Vol. 20. P. 268-276; Imyanitov E.N., Moiseenko M.V. Drug therapy for hereditary cancers//Hered. Cancer Clin. Pract. 2011. Vol. 9. P. 1-16; Iqbal J., Ragone A., Lubinski J. et al. The incidence of pancreatic cancer in BRCA1 and BRCA2 mutation carriers//Br. J. Cancer. 2012. Vol. 107. P. 2005-2009; Johannsson O., Loman N., Möller T. et al. Incidence of malignant tumours in relatives of BRCA1 and BRCA2 germline mutation carriers//Eur. J. Cancer. 1999. Vol. 35. P. 1248-1257; Jones S., Hruban R.H., Kamiyama M. et al. Exomic sequencing identifies PALB2 as a pancreatic cancer susceptibility gene//Science. 2009. Vol. 324. P. 217; Kastrinos F., Mukherjee B., Tayob N. et al. Risk of pancreatic cancer in families with Lynch syndrome//JAMA. 2009. Vol. 302. P. 1790-1795; Klein A.P. Genetic susceptibility to pancreatic cancer//Mol. Carcinog. 2012. Vol. 51. P. 14-24; Kim D.H., Crawford B., Ziegler J., Beattie M.S. Prevalence and characteristics of pancreatic cancer in families with BRCA1 and BRCA2 mutations//Fam. Cancer. 2009. Vol. 8. P. 153-158; Lal G., Liu G., Schmocker B. et al. Inherited predisposition to pancreatic adenocarcinoma: role of family history and germ-line p16, BRCA1, and BRCA2 mutations//Cancer Res. 2000. Vol. 60. P. 409-416; Landi S. Genetic predisposition and environmental risk factors to pancreatic cancer: A review of the literature//Mutat. Res. 2009. Vol. 681. P. 299-307; Lawniczak M., Gawin A., Białek A. et al. Is there any relationship between BRCA1 gene mutation and pancreatic cancer development?//Pol. Arch. Med. Wewn. 2008. Vol. 118. P. 645-649; van Lier M.G., Wagner A., Mathus-Vliegen E.M. et al. High cancer risk in Peutz-Jeghers syndrome: a systematic review and surveillance recommendations//Am. J. Gastroenterol. 2010. Vol. 105. P. 1258-1264; Lowery M.A., Kelsen D.P., Stadler Z.K. et al. An emerging entity: pancreatic adenocarcinoma associated with a known BRCAmutation: clinical descriptors, treatment implications, and future directions//Oncologist. 2011. Vol. 16. P. 1397-1402; Lubinski J., Phelan C.M., Ghadirian P. et al. Cancer variation associated with the position of the mutation in the BRCA2 gene//Fam. Cancer. 2004. Vol. 3. P. 1-10; Lucas A.L., Shakya R., Lipsyc M.D. et al. High Prevalence of BRCA1 and BRCA2 Germline Mutations with Loss of Heterozygosity in a Series of Resected Pancreatic Adenocarcinoma and Other Neoplastic Lesions//Clin. Cancer Res. 2013. Vol. 19. P. 3396-3403; Maisonneuve P., Marshall B.C., Lowenfels A.B. Risk of pancreatic cancer in patients with cystic fibrosis//Gut. 2007. Vol. 56. P. 1327-1328; Mocci E., Milne R.L., Méndez-Villamil E.Y. et al. Risk of pancreatic cancer in breast cancer families from the breast cancer family registry//Cancer Epidemiol. Biomarkers Prev. 2013. Vol. 22. P. 803-811; Moiseyenko V.M., Volkov N.M., Suspistin E.N. et al. Evidence for predictive role of BRCA1 and bTUBIII in gastric cancer//Med. Oncol. 2013. Vol. 30. P. 54-57; Moran A., O’Hara C., Khan S. et al. Risk of cancer other than breast or ovarian in individuals with BRCA1 and BRCA2 mutations//Fam. Cancer. 2012. Vol. 11. P. 235-242; Murphy K.M., Brune K.A., Griffin C. et al. Evaluation of candidate genes MAP2K4, MADH4, ACVR1B, and BRCA2 in familial pancreatic cancer: deleterious BRCA2 mutations in 17%//Cancer Res. 2002. Vol. 62. P. 3789-3793; Ozçelik H., Schmocker B., Di Nicola N. et al. Germline BRCA2 6174delT mutations in Ashkenazi Jewish pancreatic cancer patients//Nat. Genet. 1997. Vol. 16. P. 17-18; Raimondi S., Maisonneuve P., Lowenfels A.B. Epidemiology of pancreatic cancer: an overview//Nat. Rev. Gastroenterol. Hepatol. 2009. Vol. 6. P. 699-708; Real F.X., Malats N., Lesca G. et al. Family history of cancer and germline BRCA2 mutations in sporadic exocrine pancreatic cancer//Gut. 2002. Vol. 50 P. 653-657; Rebours V., Lévy P., Ruszniewski P. An overview of hereditary pancreatitis//Dig. Liver Dis. 2012. Vol. 44. P. 8-15; Risch H.A., McLaughlin J.R., Cole D.E. et al. Population BRCA1 and BRCA2 mutation frequencies and cancer penetrances: a kin-cohort study in Ontario, Canada//J. Natl. Cancer Inst. 2006. Vol. 98. P. 1694-1706; Roberts N.J., Jiao Y., Yu J. et al. ATM mutations in patients with hereditary pancreatic cancer//Cancer Discov. 2012. Vol. 2. P. 41-46; Saufferlein T., Bachet J.B., van Cutsen E. et al. Pancreatic adenocarcinoma: ESMO-ESDO Clinical Practice Guidelines for diagnosis, treatment and follow-up//Ann. Oncol. 2012. Vol. 23. P. 33-40; Slater E.P., Langer P., Fendrich V. et al. Prevalence of BRCA2 and CDKN2a mutations in German familial pancreatic cancer families//Fam. Cancer. 2010. Vol. 9. P. 335-343; Sokolenko A.P., Iyevleva A.G., Mitiushkina N.V. et al. Hereditary breast-ovarian cancer syndrome in Russia//Acta Naturae. 2010. Vol. 2. P. 31-35; Sokolenko A.P., Rozanov M.E., Mitiushkina N.V. et al. Founder mutations in early-onset, familial and bilateral breast cancer patients from Russia//Fam. Cancer. 2007. Vol. 6. P. 281-286; Solomon S., Das S., Brand R., Whitcomb D.C. Inherited pancreatic cancer syndromes//Cancer J. 2012. Vol. 18. P. 485-491; Stadler Z.K., Salo-Mullen E., Patil S.M. et al. Prevalence of BRCA1 and BRCA2 mutations in Ashkenazi Jewish families with breast and pancreatic cancer//Cancer. 2012. Vol. 118. P. 493-499; The Breast Cancer Linkage Consortium. Cancer risks in BRCA2 mutation carriers//J. Natl. Cancer Inst. 1999. Vol. 91. P. 1310-1316; Thompson D., Easton D.F. Breast Cancer Linkage Consortium. Cancer Incidence in BRCA1 mutation carriers//J. Natl. Cancer Inst. 2002. Vol. 94. P. 1358-1365; Tonin P., Weber B., Offit K. et al. Frequency of recurrent BRCA1 and BRCA2 mutations in Ashkenazi Jewish breast cancer families//Nat. Med. 1996. Vol. 2. P. 1179-1183; Tulinius H., Olafsdottir G.H., Sigvaldason H. et al. The effect of a single BRCA2 mutation on cancer in Iceland//J. Med. Genet. 2002. Vol. 39. P. 457-462; Walsh T., King M.C. Ten genes for inherited breast cancer//Cancer Cell. 2007. Vol. 11. P. 103-105; Wang X., Szabo C., Qian C. et al. Mutational analysis of thirty-two double-strand DNA break repair genes in breast and pancreatic cancers//Cancer Res. 2008. Vol. 68. P. 971-975; Wolpin B.M., Chan A.T., Hartge P. et al. ABO blood group and the risk of pancreatic cancer//J. Natl. Cancer Inst. 2009. Vol. 101. P. 424-431; https://www.siboncoj.ru/jour/article/view/237; undefined