يعرض 1 - 4 نتائج من 4 نتيجة بحث عن '"Н. В. Севян"', وقت الاستعلام: 0.38s تنقيح النتائج
  1. 1
    Academic Journal

    المساهمون: The study was carried out with the financial support of the Russian Science Foundation (grant No. 22-15-00304)., Исследование выполнено при финансовой поддержке Российского научного фонда (грант № 22-15-00304).

    المصدر: Advances in Molecular Oncology; Том 11, № 3 (2024); 68-78 ; Успехи молекулярной онкологии; Том 11, № 3 (2024); 68-78 ; 2413-3787 ; 2313-805X

    وصف الملف: application/pdf

    Relation: https://umo.abvpress.ru/jour/article/view/709/362; Herbst R.S. Review of epidermal growth factor receptor biology. Int J Radiat Oncol Biol Phys 2004;59(2):21–6. DOI:10.1016/j.ijrobp.2003.11.041; Hynes N.E., Lane H.A. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer 2005;5(5):341–54. DOI:10.1038/nrc1609; Jones S., Rappoport J.Z. Interdependent epidermal growth factor receptor signalling and trafficking. Int J Biochem Cell Biol 2014;51:23–8. DOI:10.1016/j.biocel.2014.03.014; Sigismund S., Avanzato D., Lanzetti L. Emerging functions of the EGFR in cancer. Mol Oncol 2018;12(1):3–20. DOI:10.1002/1878-0261.12155; Dreux A.C., Lamb D.J., Modjtahedi H., Ferns G.A. The epidermal growth factor receptors and their family of ligands: their putative role in atherogenesis. Atherosclerosis 2006;186(1):38–53. DOI:10.1016/j.atherosclerosis.2005.06.038; Saadeh F.S., Mahfouz R., Assi H.I. EGFR as a clinical marker in glioblastomas and other gliomas. Int J Biol Markers 2018;33(1): 22–32. DOI:10.5301/ijbm.5000301; Brennan C.W., Verhaak R.G., McKenna A. et al. TCGA Research Network. The somatic genomic landscape of glioblastoma. Cell 2013;155(2):462–77. DOI:10.1016/j.cell.2013.09.034; HigaN., AkahaneT., Hamada T. et al Distribution and favorable prognostic implication of genomic EGFR alterations in IDH-wildtype glioblastoma. Cancer Med 2023;12(1):49–60. DOI:10.1002/cam4.4939; Louis D.N., Perry A., Wesseling P. et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol 2021;23(8):1231–51. DOI:10.1093/neuonc/noab106; Gan H.K., Cvrljevic A.N., Johns T.G. The epidermal growth factor receptor variant III (EGFRvIII): where wild things are altered. FEBS J 2013;280(21):5350–70. DOI:10.1111/febs.12393; Eskilsson E., Rosland G.V., Talasila K.M. et al. EGFRvIII mutations can emerge as late and heterogenous events in glioblastoma development and promote angiogenesis through Src activation. Neuro Oncol 2016;18(12):55. DOI:10.1093/neuonc/now113; Alnahhas I., Rayi A., Guillermo Prieto Eibl M.D.P. et al. Prognostic implications of epidermal and platelet-derived growth factor receptor alterations in 2 cohorts of IDH wt glioblastoma. Neurooncol Adv 2021;3(1):vdab127. DOI:10.1093/noajnl/vdab127; Li J., Liang R., Song C. et al. Prognostic significance of epidermal growth factor receptor expression in glioma patients. Onco Targets Ther 2018;2018(11):731–42. DOI:10.2147/OTT.S155160; Hovinga K.E., McCrea H.J., Brennan C. et al. EGFR amplification and classical subtype are associated with a poor response to bevacizumab in recurrent glioblastoma. J Neurooncol 2019;142(2):337–45. DOI:10.1007/s11060-019-03102-5; Le Rhun E., Preusser M., Roth P. et al. Molecular targeted therapy of glioblastoma. Cancer Treat Rev 2019;80:101896. DOI:10.1016/j.ctrv.2019.101896; Vivanco I., Robins H.I., Rohle D. et al. Differential sensitivity of glioma- versus lung cancer-specific EGFR mutations to EGFR kinase inhibitors. Cancer Discov 2012;2(5):458–71. DOI:10.1158/2159-8290.CD-11-0284; Desai R., Suryadevara C.M., Batich K.A. et al. Emerging immunotherapies for glioblastoma. Expert Opin Emerg Drugs 2016;21(2):133–45. DOI:10.1080/14728214.2016.1186643; Weller M., Butowski N., Tran D.D. et al. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. Lancet Oncol 2017;18(10):1373–85. DOI:10.1016/S1470-2045(17)30517-X; Felsberg J., Hentschel B., Kaulich K. et al. German Glioma Network. Epidermal growth factor receptor variant III (EGFRvIII) positivity in EGFR-amplified glioblastomas: prognostic role and comparison between primary and recurrent tumors. Clin Cancer Res 2017;23(22):6846–55. DOI:10.1158/1078-0432.CCR-17-0890; Краснов Г.С., Гукасян Л.Г., Абрамов И.С., Наседкина Т.В. Определение субклональной структуры опухоли по данным высокопроизводительного секвенирования на примере острого миелоидного лейкоза у детей и акральной меланомы. Молекулярная биология 2021;55(5):829–45. DOI:10.31857/S0026898421050050; Chang M.T., Asthana S., Gao S.P. et al. Identifying recurrent mutations in cancer reveals widespread lineage diversity and mutational specificity. Nat Biotechnol 2016;34(2):155–63. DOI:10.1038/nbt.3391; Naidoo J., Sima C.S., Rodriguez K. et al. Epidermal growth factor receptor exon 20 insertions in advanced lung adenocarcinomas: clinical outcomes and response to erlotinib. Cancer 2015;121(18):3212–20. DOI:10.1002/cncr.29493; The cBio Cancer Genomics Portal. https://www.cbioportal.org/.; Zacher A., Kaulich K., Stepanow S. et al. Molecular diagnostics of gliomas using next generation sequencing of a glioma-tailored gene panel. Brain Pathol 2017;27(2):146–59. DOI:10.1111/bpa.12367; Blobner J., Dengler L., Blobner S. et al. Significance of molecular diagnostics for therapeutic decision-making in recurrent glioma. Neurooncol Adv 2023;5(1):vdad060. DOI:10.1093/noajnl/vdad060; Rutkowska A., Strózik T., Jędrychowska-Dańska K. et al. Immunohistochemical detection of EGFRvIII in glioblastoma – anti-EGFRvIII antibody validation for diagnostic and CAR-T purposes. Biochem Biophys Res Commun 2023;685:149133. DOI:10.1016/j.bbrc.2023.149133; Padovan M., Maccari M., Bosio A. et al. Actionable molecular alterations in newly diagnosed and recurrent IDH1/2 wild-type glioblastoma patients and therapeutic implications: a large mono-institutional experience using extensive next-generation sequencing analysis. Eur J Cancer 2023;191:112959. DOI:10.1016/j.ejca.2023.112959; Li J., Liang R., Song C. et al. Prognostic significance of epidermal growth factor receptor expression in glioma patients. Onco Targets Ther 2018;11:731–42. DOI:10.2147/OTT.S155160; Yang K., Ren X., Tao L. et al. Prognostic implications of epidermal growth factor receptor variant III expression and nuclear translocation in Chinese human gliomas. Chin J Cancer Res 2019;31(1):188–202. DOI:10.21147/j.issn.1000-9604.2019.01.14; Begagić E., Pugonja R., Bečulić H. et al. Molecular targeted therapies in glioblastoma multiforme: a systematic overview of global trends and findings. Brain Sci 2023;13(11):1602. DOI:10.3390/brainsci13111602; An Z., Aksoy O., Zheng T. et al. Epidermal growth factor receptor and EGFRvIII in glioblastoma: signaling pathways and targeted therapies. Oncogene 2018;37(12):1561–75. DOI:10.1038/s41388-017-0045-7; Hegi M.E., Diserens A.C., Bady P. et al. Pathway analysis of glioblastoma tissue after preoperative treatment with the EGFR tyrosine kinase inhibitor gefitinib – a phase II trial. Mol Cancer Ther 2011;10(6):1102–12. DOI:10.1158/1535-7163.MCT-11-0048; Hu C., Leche C.A., Kiyatkin A. et al. Glioblastoma mutations alter EGFR dimer structure to prevent ligand bias. Nature 2022;602(7897):518–22. DOI:10.1038/s41586-021-04393-3; Nathanson D.A., Gini B., Mottahedeh J. et al. Targeted therapy resistance mediated by dynamic regulation of extrachromosomal mutant EGFR DNA. Science 2014;343(6166):72–6. DOI:10.1126/science.1241328; https://umo.abvpress.ru/jour/article/view/709

  2. 2
    Academic Journal

    المصدر: Head and Neck Tumors (HNT); Том 12, № 3 (2022); 127-135 ; Опухоли головы и шеи; Том 12, № 3 (2022); 127-135 ; 2411-4634 ; 2222-1468 ; 10.17650/2222-1468-2022-12-3

    وصف الملف: application/pdf

    Relation: https://ogsh.abvpress.ru/jour/article/view/821/548; Ольхова Л.В., Желудкова О.Г., Зубаровская Л.С. и др. Результаты мультицентрового лечения атипичной тератоидрабдоидной опухоли центральной нервной системы у детей до 3 лет. Вопросы гематологии/онкологии и иммунопатологии в педиатрии 2021;20(2):121–32. DOI:10.24287/1726-1708-2021-20-2-121-132; Lau C.S., Mahendraraj K., Chamberlain R.S. Atypical teratoidrhabdoid tumors: a population-based clinical outcomes study involving 174 patients from the Surveillance, Epidemiology, and End Results database (1973–2010). Cancer Manag Res 2015;7:301–9. DOI:10.2147/CMAR.S88561; Schrey D., Carceller Lechón F., Malietzis G. et al. Multimodal therapy in children and adolescents with newly diagnosed atypical teratoid rhabdoid tumor: individual pooled data analysis and review of the literature. J Neurooncol 2016;126(1):81–90.DOI:10.1007/s11060-015-1904-0; Dardis C., Yeo J., Milton K. et al. Atypical teratoid rhabdoid tumor: two case reports and an analysis of adult cases with implications for pathophysiology and treatment. Front Neurol 2017;8:247. DOI:10.3389/fneur.2017.00247; Lafay-Cousin L., Hawkins C., Carret A.S. et al. Central nervous system atypical teratoid rhabdoid tumours: the Canadian Paediatric Brain Tumour Consortium experience. Eur J Cancer 2012;48(3):353–9. DOI:10.1016/j.ejca.2011.09.005; Пьянзин С.Ю., Сивцова Е.В. Атипическая тератоидно-рабдоидная опухоль головного мозга у детей. Нейрохирургия 2007;4:47–50.; Appaji L., Aruna Kumari B.S., Babu K.G. et al. Atypical teratoid rhabdoid tumor of the central nervous system: Case series from a regional Tertiary Care Cancer Centre in South India. J Cancer Res Ther 2017;13(6):1015–22. DOI:10.4103/0973-1482.174536; Lee J., Kim D.S., Han J.W., Suh C.O. Atypical teratoid/rhabdoid tumors in children treated with multimodal therapies: The necessity of upfront radiotherapy after surgery. Pediatr Blood Cancer 2017;64(12). DOI:10.1002/pbc.26663; Fischer-Valuck B.W., Chen I., Srivastava A.J. et al. Assessment of the treatment approach and survival outcomes in a modern cohort of patients with atypical teratoid rhabdoid tumors using the National Cancer Database. Cancer 2017;123(4):682–7. DOI:10.1002/cncr.30405; Slavc I., Chocholous M., Leiss U. et al. Atypical teratoid rhabdoid tumor: improved long-term survival with an intensive multimodal therapy and delayed radiotherapy. The Medical University of Vienna Experience 1992–2012. Cancer Med 2014;3(1):91–100. DOI:10.1002/cam4.161; Ardon H., De Vleeschouwer S., Van Calenbergh F. et al. Adjuvant dendritic cell-based tumour vaccination for children with malignant brain tumours. Pediatr Blood Cancer 2010;54(4):519–25. DOI:10.1002/pbc.22319; Burger P.C., Yu I.T., Tihan T. et al. Atypical teratoid/rhabdoid tumor of the central nervous system: a highly malignant tumor of infancy and childhood frequently mistaken for medulloblastoma: a Pediatric Oncology Group study. Am J Surg Pathol 1998;22(9):1083–92. DOI:10.1097/00000478-199809000-00007; Rorke L.B., Packer R., Biegel J. Central nervous system atypical teratoid/rhabdoid tumors of infancy and childhood. J Neurooncol 1995;24(1):21–8. DOI:10.1007/BF01052653; Strother D. Atypical teratoid rhabdoid tumors of childhood: diagnosis, treatment and challenges. Expert Rev Anticancer Ther 2005;5(5):907–15. DOI:10.1586/14737140.5.5.907; Hasselblatt M., Isken S., Linge A. et al. High-resolution genomic analysis suggests the absence of recurrent genomic alterations other than SMARCB1 aberrations in atypical teratoid/rhabdoid tumors. Genes Chromosomes Cancer 2013;52(2):185–90. DOI:10.1002/gcc.22018; Meuleman N., Ahmad I., Duvillier H. et al. Intrathecal donor lymphocyte infusion for the treatment of suspected refractory lymphomatous meningitis: a case report. Eur J Haematol 2006;77(6): 523–6. DOI:10.1111/j.0902-4441.2006.t01-1-EJH2498.x; Neumann M., Blau I.W., Burmeister T. et al. Intrathecal application of donor lymphocytes in leukemic meningeosis after allogeneic stem cell transplantation. Ann Hematol 2011;90(8):911–6. DOI:10.1007/s00277-011-1171-x; Mayumi A., Sawada A., Ioi A. et al. Intrathecal infusion of haploidentical non donor lymphocytes for central nervous system leukemic relapse after haploidentical hematopoietic stem cell transplantation. J Pediatr Hematol Oncol 2018;40(2):e129–32. DOI:10.1097/MPH.0000000000000937; Neuwelt E.A., Clark K., Kirkpatrick J.B., Toben H. Clinical studies of intrathecal autologous lymphocyte infusions in patients with malignant glioma: a toxicity study. Ann Neurol 1978;4(4):307–12. DOI:10.1002/ana.410040404; Lu J.Q., Wilson B.A., Yong V.W. et al. Immune cell infiltrates in atypical teratoid/rhabdoid tumors. Can J Neurol Sci 2012;39(5):605–12. DOI:10.1017/s031716710001533x; Talmadge J.E. Immune cell infiltration of primary and metastatic lesions: mechanisms and clinical impact. Semin Cancer Biol 2011;21(2):131–8. DOI:10.1016/j.semcancer.2010.12.002; Van Gool S.W., Holm S., Rachor J. et al. Immunotherapy in atypical teratoid-rhabdoid tumors: Data from a survey of the HGG-Immuno Group. Cytotherapy 2016;18(9):1178–86. DOI:10.1016/j.jcyt.2016.06.004; Hwang K., Koh E.J., Choi E.J. et al. PD-1/PD-L1 and immunerelated gene expression pattern in pediatric malignant brain tumors: clinical correlation with survival data in Korean population. J Neurooncol 2018;139(2):281–91. DOI:10.1007/s11060-018-2886-5; https://ogsh.abvpress.ru/jour/article/view/821

  3. 3
    Academic Journal

    المصدر: Head and Neck Tumors (HNT); Том 12, № 1 (2022); 26-34 ; Опухоли головы и шеи; Том 12, № 1 (2022); 26-34 ; 2411-4634 ; 2222-1468 ; 10.17650/2222-1468-2022-12-1

    وصف الملف: application/pdf

    Relation: https://ogsh.abvpress.ru/jour/article/view/734/512; Белов Д.М., Карахан В.Б., Бекяшев В.А. и др. Опыт хирургического лечения больных с церебральными метастазами злокачественных опухолей в нейрохи рургическом отделении НМИЦ онкологии им Н.Н. Блохина. Вестник РОНЦ им. Н.Н. Блохина РАМН 2018;29(1–2):28–32.; Белов Д.М., Карахан В.Б., Бекяшев А.Х., Алешин В.А. Хирургический этап в комплексном лечении пациенток с церебральными метастазами рака молочной железы. Злокачественные опухоли 2014;(3):110–5. DOI:10.18027/2224505720143110115.; Kellogg R.G., Munoz L.F. Selective excision of cerebral metastases from the precentral gyrus. Surg Neurol Int 2013;4:66. DOI:10.4103/21527806.11218926.; Metellus P., Bialecki E., Le Rhun E. Neurosurgical and radiosurgical decision making in brain metastasis patients in the area of targeted therapies? Chin Clin Oncol 2015;4(2):19. DOI:10.3978/j.issn.23043865.2015.06.02.; Thon N., Kreth F.W., Tonn J.C. The role of surgery for brain metastases from solid tumors. Handb Clin Neurol 2018;149:113–21. DOI:10.1016/B9780128111611.000086.; Gaspar L., Scott C., Rotman M. et al. Recursive partitioning analysis (RPA) of prognostic factors in three Radiation Therapy Oncology Group (RTOG) brain metastases trials. Int J Radiat Oncol Biol Phys 1997;37(4):745–51. DOI:10.1016/s03603016(96)006190.; Obermueller T., Schaeffner M., Gerhardt J. et al. Risks of postoperative paresis in motor eloquently and noneloquently located brain metastases. BMC Cancer 2014;14:21. DOI:10.1186/147124071421.; Sanmillan J.L., FernandezCoello A., FernandezConejero I. et al. Functional approach using intraoperative brain mapping and neurophysiological monitoring for the surgical treatment of brain metastases in the central region. J Neurosurg 2017;126(3):698–707. DOI:10.3171/2016.2.JNS152855.; Kim S.H., Jung S., Kang S.S. et al. Evaluation of the postoperative motor function for metastatic brain tumors around the motor cortex. J Korean Neurosurg Soc 2001;30(1):25–7.; Stortebecker T.P. Metastatic tumors of the brain from a neurosurgical point of view; a followup study of 158 cases. J Neurosurg 1954;11:84–111. DOI:10.3171/jns.1954.11.1.0084.; Yoo H., Kim Y.Z., Nam B.H. et al. Reduced local recurrence of a single brain metastasis through microscopic total resection. J Neurosurg 2009;110(4):730–6. DOI:10.3171/2008.8.JNS08448.; Rossetto M., Ciccarino P., Lombardi G. et al. Surgery on motor area metastasis. Neurosurg Rev 2016;39(1):71–7; discussion 7–8. DOI:10.1007/s1014301506489.; https://ogsh.abvpress.ru/jour/article/view/734

  4. 4
    Academic Journal

    المصدر: Head and Neck Tumors (HNT); Том 11, № 1 (2021); 101-108 ; Опухоли головы и шеи; Том 11, № 1 (2021); 101-108 ; 2411-4634 ; 2222-1468 ; 10.17650/2222-1468-2021-11-1

    وصف الملف: application/pdf

    Relation: https://ogsh.abvpress.ru/jour/article/view/615/467; Яковленко Ю.Г. Глиобластомы: современное состояние проблемы. Медицинский вестник Юга России 2019;10(4):28—35.; Shergalis A., Bankhead A. 3rd, Luesakul U. et al. Current Challenges and Opportunities in Treating Glioblastomas. Pharmacol Rev 2018;70(3):412—45. DOI:10.1124/pr.117.014944.; Ostrom Q.T., Gittleman H., Xu J. et al. CBTRUS Statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2009-2013. Neurooncol 2016;18(5): v1-75. DOI:10.1093/neuonc/now207.; Stupp R., Mason W.P., van den Bent M.J. et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005;352(10):987—96. DOI:10.1056/NEJMoa043330.; Chinot O.L., Wick W., Mason W. et al. Bevacizumab plus radiotherapy-temo-zolomide for newly diagnosed glioblastoma. N Engl J Med 2014;370(8):709-22. DOI:10.1056/NEJMoa1308345.; Tosoni A., Franceschi E., Poggi R., Brandes A.A. Relapsed glioblastoma: treatment strategies for initial and subsequent recurrences. Curr Treat Options Oncol 2016;17(9):49. DOI:10.1007/s11864-016-0422-4.; Gorlia T., Stupp R., Brandes A.A. et al. New prognostic factors and calculators for outcome prediction in patients with recurrent glioblastoma: a pooled analysis of EORTC Brain Tumour Group Phase I and II clinical trials. Eur J Cancer 2012;48(8):1176-84. DOI:10.1016/j.ejca.2012.02.004.; Stupp R., Taillibert S., Kanner A. et al. Effect of tumor-treating fields plus maintenance temozolomide vi maintenance temozolomide alone on survival in patients with glioblastoma: a randomized clinical trial. JAMA 2017;318(23):2306-16. DOI:10.1001/jama.2017.18718.; McLendon R., Friedman A., Bigner D. et al. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2008;455(7216):1061-8. DOI:10.1038/nature07385.; Verhaak R.G.W., Hoadley K.A., Purdom E. et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 2010;17(1):98-110. DOI:10.1016/j.ccr.2009.12.020.; Patel A.P., Tirosh I., Trombetta J.J. et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 2014;344(6190):1396—1401. DOI:10.1126/science.1254257.; Korshunov A., Golanov A., Sycheva R. Immunohistochemical markers for prognosis of cerebral glioblastomas. J Neurooncol 2002;58(3):217—36. DOI:10.1023/a:1016218117251.; Scorsetti M., Navarria P., Pessina F., Ascolese A.M. Multimodality therapy approaches, local and systemic treatment, compared with chemotherapy alone in recurrent glioblastoma. BMC Cancer 2015;15:486. DOI:10.1186/s12885-015-1488-2.; Wei W., Shin Y.S., Xue M. et al. Single-cell phosphoproteomics resolves adaptive signaling dynamics and informs targeted combination therapy in glioblastoma. Cancer Cell 2016;29(4):563—73. DOI:10.1016/j.ccell.2016.03.012.; Qazi M.A., Vora P., Venugopal C. et al. Intratumoral heterogeneity: pathways to treatment resistance and relapse in human glioblastoma. Ann Oncol 2017;28(7):1448—56. DOI:10.1093/annonc/mdx169.; Ставровская А.А., Шушанов С.С., Ры-балкина Е.Ю. Проблемы устойчивости глиобластом к лекарственной терапии. Обзор. Биохимия 2016;81(2):179—90.; Воронина Е.И., Агеева ТА., Рыжова М.В. Особенности микроокружения и возможности иммунотерапии злокачественных глиальных опухолей. Клиническая и экспериментальная морфология 2020;9(2):5—10. DOI:10.31088/CEM2020.9.2.5-10.; Broekman M.L., Maas S.L.N., Abels E.R. et al. Multidimensional communication in the microenvirons of glioblastoma. Nat Rev Neurol 2018;14(8):482—95. DOI:10.1038/s41582-018-0025-8.; Jhaveri N., Chen T.C., Hofman F.M. Tumor vasculature and glioma stem cells: contributions to glioma progression. Cancer Lett 2016;380(2):545—51. DOI:10.1016/j.canlet.2014.12.028.; See A.P., Parker J.J., Waziri A. The role of regulatory T cells and microglia in glioblastoma associated immunosuppression. J Neurooncol 2015;123(3):405—12. DOI:10.1007/s11060-015-1849-3.; Roesch S., Rapp C., Dettling S., Herold-Mende C. When immune cells turn bad-tumor-associated microglia/macrophages in glioma. Int J Mol Sci 2018;19(2):E436. DOI:10.3390/ijms19020436.; Okolie O., Bago J.R., Schmid R.S. et al. Reactive astrocytes potentiate tumor aggressiveness in a murine glioma resection and recurrence model. Neuro Oncol 2016;18(12):1622—33. DOI:10.1093/neuonc/now117.; Pencheva N., de Gooijer M.C., Vis D.J. et al. Identification of a druggable pathway controlling glioblastoma invasiveness. Cell Rep 2017;20(1):48—60. DOI:10.1016/j.celrep.2017.06.036.; Seano G. Targeting the perivascular niche in brain tumors. Curr Opin Oncol 2018;30(1):54—60. DOI:10.1097/CCO.0000000000000417.; De Vleeschouwer S., Bergers G. Glioblastoma to target the tumor cell or the microenvironment? In: De Vleeschouwer S., editor. Glioblastoma. Codon Publications, Brisbane, Australia, 2017. Chapter 16. Pp. 315-40. DOI:10.15586/codon.glioblastoma.2017.ch16.; Da Ros M., De Gregorio V., Iorio A.L. et al. Glioblastoma chemoresistance: the double play by microenvironment and blood-brain barrier. Int J Mol Sci 2018;19(10):2879. DOI:10.3390/ijms19102879.; Lathia J.D., Mack S.C., Mulkearns-Hubert E.E. et al. Cancer stem cells in glioblastoma. Genes Dev 2015;29(12):1203-17. DOI:10.1101/gad.261982.115.; Hadjipanayis C.G., Van Meir E.G. Tumor initiating cells in malignant gliomas: biology and implications for therapy. J Mol Med(Berl) 2009;87(4):363-74. DOI:10.1007/s00109-009-0440-9.; Osuka S., Van Meir E.G. Overcoming therapeutic resistance in glioblastoma: the way forward. J Clin Invest 2017;127(2):415-26. DOI:10.1172/JCI89587.; Sabit H., Nakada M., Furuta T. et al. Characterizing invading glioma cells based on IDH1-R132H and Ki-67 immunofluorescence. Brain Tumor Pathol 2014;31(4):242-46. DOI:10.1007/s10014-013-0172-y; Scherer H.J. Structural development in gliomas. Am J Cancer 1938;34(3):333—51.; Munthe S., Petterson S.A., Dahlrot R.H. et al. Glioma Cells in the Tumor Periphery Have a Stem Cell Phenotype. PLoS One 2016;11(5). DOI:10.1371/journal.pone.0155106.; Ziegler D.S., Kung A.L., Kieran M.W. Anti-apoptosis mechanisms in malignant gliomas. J Clin Oncol 2008;26(3):493—500. DOI:10.1200/JCO.2007.13.9717.; Ceccarelli M., Barthel F.P., Malta T.M. et al. Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell 2016;164(3):550—63. DOI:10.1016/j.cell.2015.12.028.; Suva M.L., Rheinbay E., Gillespie S.M. et al. Reconstructing and reprogramming the tumor-propagating potential of glioblastoma stem-like cells. Cell 2014;157(3):580—94. DOI:10.1016/j.cell.2014.02.030.; Mao P., Joshi K., Li J. et al. Mesenchymal glioma stem cells are maintained by activated glycolytic metabolism involving aldehyde dehydrogenase 1A3. Proc Natl Acad Sci U S A. 2013;110(21):8644—49. DOI:10.1073/pnas.1221478110.; Kathagen A., Schulte A., Balcke G. et al. Hypoxia and oxygenation induce a metabolic switch between pentose phosphate pathway and glycolysis in glioma stem-like cells. Acta Neuropathol 2013;126(5):763—80. DOI:10.1007/s00401-013-1173-y.; Vlashi E., Lagadec C., Vergnes L. et al. Metabolic state of glioma stem cells and nontumorigenic cells. Proc Natl Acad Sci U S A 2011;108(38):16062—7. DOI:10.1073/pnas.1106704108.; Kim H., Siyuan Zheng S., Amini S.S. et al. Whole-genome and multisector exome sequencing of primary and posttreatment glioblastoma reveals patterns of tumor evolution. Genome Res 2015; 25(3):316—27. DOI:10.1101/gr.180612.114.; Wang J., Cazzato E., Ladewig E. et al. Clonal evolution of glioblastoma under therapy. Nat Genet 2016;48(7):768—76. DOI:10.1038/ng.3590.; Bouffet E., Larouche V., Campbell B.B. et al. Immune checkpoint inhibition for hypermutant glioblastoma multiforme resulting from germline biallelic mismatch repair deficiency. J Clin Oncol 2016;34(19):2206—11. DOI:10.1200/JCO.2016.66.6552.; Chiocca E.A., Blair D., Mufson R.A. Oncolytic viruses targeting tumor stem cells. Cancer Res 2014;74(13):3396—8. DOI:10.1158/0008-5472.CAN-14-0290.; Post D.E., Devi N.S., Li Z. et al. Cancer therapy with a replicating oncolytic adenovirus targeting the hypoxic microenvironment of tumors. Clin Cancer Res 2004;10(24):8603—12. DOI:10.1158/1078-0432.CCR-04-1432.; Post D.E., Sandberg E.M., Kyle M.M. et al. Targeted cancer gene therapy using a hypoxia inducible factor dependent oncolytic adenovirus armed with interleukin-4. Cancer Res 2007;67(14):6872—81. DOI:10.1158/0008-5472.CAN-06-3244.; Hitchcock S.A. Blood-brain barrier permeability considerations for CNS-targeted compound library design. Curr Opin Chem Biol 2008;12(3):318—23. DOI:10.1016/j.cbpa.2008.03.019.; Pardridge W.M. Blood-brain barrier delivery. Drug Discov Today 2007;12(1—2):54—61. DOI:10.1016/j.drudis.2006.10.013.; Weiss N., Miller F., Cazaubon S., Cou-raud P.O. The blood-brain barrier in brain homeostasis and neurological diseases. Biochim Biophys Acta 2009;1788(4):842—57. DOI:10.1016/j.bbamem.2008.10.022.; Chen L., Li X., Liu L. et al. Erastin sensitizes glioblastoma cells to temozolomide by restraining xCT and cystathionine-y-lyase function. Oncol Rep 2015;33(3):1465—74. DOI:10.3892/ОГ.2015.3712.; Watkins S., Robel S., Kimbrough I.F. et al. Disruption of astrocyte-vascular coupling and the blood-brain barrier by invading glioma cells. Nat Commun 2014;5:4196. DOI:10.1038/ncomms5196.; Wen L., Tan Y., Dai S. et al. VEGF-mediated tight junctions pathological fenestration enhances doxorubicin-loaded glycolipid-like nanoparticles traversing BBB for glioblastoma-targeting therapy. Drug Deliv 2017;24(1):1843—55. DOI:10.1080/10717544.2017.1386731.; Shannon R.J., Carpenter K.L., Guil-foyle M.R. et al. Cerebral microdialysis in clinical studies of drugs: Pharmacokinetic applications. J Pharmacokinet Pharmacodyn 2013;40(3):343—58. DOI:10.1007/s10928-013-9306-4.; Liu S.J., Yang T.C., Yang S.T. et al. Biodegradable hybrid-structured nanofibrous membrane supported chemoprotective gene therapy enhances chemotherapy tolerance and efficacy in malignant glioma rats. Artif Cells Nanomed Biotechnol 2018;46(sup2):515—26. DOI:10.1080/21691401.2018.1460374.; Pompe R.S., von Bueren A.O., Mynarek M. et al. Intraventricular methotrexate as part of primary therapy for children with infant and/or metastatic medulloblastoma: Feasibility, acute toxicity and evidence for efficacy. Eur J Cancer 2015;51(17):2634—42. DOI:10.1016/j.ejca.2015.08.009.; Thomas E., Colombeau L., Gries M. et al. Ultrasmall AGuIX theranostic nanoparticles for vascular-targeted interstitial photodynamic therapy of glioblastoma. Int J Nanomedicine 2017;12:7075-88. DOI:10.2147/IJN.S141559.; Nafee N., Gouda N. Nucleic Acids-based Nanotherapeutics crossing the blood brain barrier. Curr. Gene Ther 2017;17(2):154—69. DOI:10.2174/1566523217666170510155803.; Miller J.J., Wen P.Y. Emerging targeted therapies for glioma. Expert Opin Emerg Drugs 2016;21(4):441—52. DOI:10.1080/14728214.2016.1257609.; Sampson J.H., Heimberger A.B., Archer G.E. et al. Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. J Clin Oncol 2010;28(31):4722—29. DOI:10.1200/JCO.2010.28.6963.; Medawar P.B. Immunity to homologous grafted skin; the fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. Br J Exp Pathol 1948;29(1):58—69.; Louveau A., Smirnov I., Keyes T.J. et al. Structural and functional features of central nervous system lymphatic vessels. Nature 2015;523(7560):337-41. DOI:10.1038/nature14432.; Greter M., Heppner F.L., Lemos M.P. et al. Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis. Nat Med 2005; 11(3):328—34. DOI:10.1038/nm1197.; https://ogsh.abvpress.ru/jour/article/view/615