-
1Academic Journal
المؤلفون: N. A. Alpatova, Zh. I. Avdeeva, L. A. Gayderova, S. L. Lysikova, N. V. Medunitsyn, Н. А. Алпатова, Ж. И. Авдеева, Л. А. Гайдерова, С. Л. Лысикова, Н. В. Медуницын
المساهمون: The study reported in this publication was carried out as part of a publicity funded research project No. 056-00003-20-00 and was supported by the Scientific Centre for Expert Evaluation of Medicinal Products (R&D public accounting No. AAAA-A18-118021590046-9), Работа выполнена в рамках государственного задания ФГБУ «НЦЭСМП» Минздрава России № 056-00003-20-00 на проведение прикладных научных исследований (номер государственного учета НИР AAAA-A18-118021590046-9)
المصدر: Biological Products. Prevention, Diagnosis, Treatment; Том 20, № 1 (2020); 21-29 ; БИОпрепараты. Профилактика, диагностика, лечение; Том 20, № 1 (2020); 21-29 ; 2619-1156 ; 2221-996X ; 10.30895/2221-996X-2020-20-1
مصطلحات موضوعية: иммуногенность вакцин, virus, immunity, adjuvant, antibodies, T cells, vaccine immunogenicity, вирус, иммунитет, адъювант, антитела, Т-клетки
وصف الملف: application/pdf
Relation: https://www.biopreparations.ru/jour/article/view/250/278; Петров РВ, Хаитов РМ. Иммуногены и вакцины нового поколения. М.: ГЭОТАР-Медиа; 2011.; Зверев ВВ, Юминова НВ. Вакцинопрофилактика вирусных инфекций от Э. Дженнера до настоящего времени. Вопросы вирусологии. 2012;(S1):33–42.; Ярилин АА. Иммунология. М.: ГЭОТАР-Медиа; 2010.; Хаитов РМ, Пащенков МВ, Пинегин БВ. Роль паттернраспознающих рецепторов во врожденном и адаптивном иммунитете. Иммунология. 2009;30(1):66–76.; Mogensen TH. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev. 2009;22(2):240–73. https://doi.org/10.1128/CMR.00046-08; Хаитов РМ. Иммунология. М.: ГЭОТАР-Медиа; 2013.; Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010;11:373–84. http://doi.org/10.1038/ni.1863; Kumar H, Kawai T, Akira S. Pathogen recognition in the innate immune response. Biochem J. 2009;420(1):1–16. http://doi.org/10.1042/BJ20090272; Lipinska-Gediga M. Innate Response to Infection. J Clin Cell Immunol. 2013;S13:008. http://doi.org/10.4172/2155-9899.S13-008; Thompson MR, Kaminski JJ, Kurt-Jones EA, Fitzgerald КА. Pattern recognition receptors and the innate immune response to viral infection. Viruses. 2011;3(6):920–40. http://doi.org/10.3390/v3060920; Медуницын НВ, Миронов АН, Мовсесянц АА. Теория и практика вакцинологии. М.: Ремедиум; 2015.; Skwarczynski M, Toth I. Peptide-based synthetic vaccines. Chem Sci. 2016;7(2):842–54. http://doi.org/10.1039/c5sc03892h; O E, Lee YT, Ko EJ, Kim KH, Lee YN, Song JM, et al. Roles of major histocompatibility complex class II in inducing protective immune responses to influenza vaccination. J Virol. 2014;88(14):7764–75. https://doi.org/10.1128/JVI.00748-14; Plotkin SA. Correlates of vaccine-induced immunity. Clin Infect Dis. 2008;47(3):401–9. http://dx.doi.org/10.1086/589862; Zepp F. Principles of vaccination. Methods Mol Biol. 2016;1403:57–84 https://doi.org/10.1007/978-1-4939-33877_3; Orenstein WA, Seib K, Graham-Rowe D, Berkley S. Contemporary vaccine challenges: improving global health one shot at a time. Sci Transl Med. 2014;6(253):253ps11. https://doi.org/10.1126/scitranslmed.3009848; Plotkin SA. Correlates of protection induced by vaccination. Clin Vaccine Immunol. 2010;17(7):1055–65. https://doi.org/10.1128/CVI.00131-10; Griffiths KL, Khader SA. Novel vaccine approaches for protection against intracellular pathogens. Curr Opin Immunol. 2014;28:58–63. https://doi.org/10.1016/j.coi.2014.02.003; Querec T, Bennouna S, Alkan S, Laouar Y, Gorden K, Flavell R, et al. Yellow fever vaccine YF-17D activates multiple dendritic cell subsets via TLR2, 7, 8, and 9 to stimulate polyvalent immunity. J Exp Med. 2006;203(2):413–24. https://doi.org/10.1084/jem.20051720; Querec TD, Akondy RS, Lee EK, Cao W, Nakaya HI, Teuwen D, et al. Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans. Nat Immunol. 2009;10(1):116–25. https://doi.org/10.1038/ni.1688; Poland JD, Calisher CH, Monath TP, Downs WG, Murphy K. Persistence of neutralizing antibody 30–35 years after immunization with 17D yellow fever vaccine. Bull World Health Organ. 1981;59(6):895–900.; Koyama S, Ishii KJ, Kumar H, Tanimoto T, Coban C, Uematsu S, et al. Differential role of TLRand RLR-signaling in the immune responses to influenza A virus infection and vaccination. J Immunol. 2007;179(7):4711–20. https://doi.org/10.4049/jimmunol.179.7.4711; Vetter V, Denizer G, Friedland LR, Krishnan J, Shapiro M. Understanding modern-day vaccines: what you need to know. Ann Med. 2018;50(2):110–20. https://doi.org/10.1080/07853890.2017.1407035; Bastola R, Noh G, Keum T, Bashyal S, Seo JE, Choi J, et al. Vaccine adjuvants: smart components to boost the immune system. Arch Pharm Res. 2017;40(11):1238–48. https://doi.org/10.1007/s12272-017-0969-z; Coffman RL, Sher A, Seder RA. Vaccine adjuvants: putting innate immunity to work. Immunity. 2010;33(4):492–503. https://doi.org/10.1016/j.immuni.2010.10.002; Apostolico JS, Lunardelli VA, Coirada FC, Boscardin SB, Rosa DS. Adjuvants: classification, modus operandi, and licensing. J Immunol Res. 2016;2016:1459394. https://doi.org/10.1155/2016/1459394; Pulendran B, Ahmed R. Immunological mechanisms of vaccination. Nat Immunol. 2011;12(6):509–17. https://doi.org/10.1038/ni.2039; Lee S, Nguyen MT. Recent advances of vaccine adjuvants for infectious diseases. Immune Netw. 2015;15(2):51–7. https://doi.org/10.4110/in.2015.15.2.51; Steinhagen F, Kinjo T, Bode C, Klinman DM. TLR-based immune adjuvants. Vaccine. 2011;29(17):3341–55. https://doi.org/10.1016/j.vaccine.2010.08.002; Tukhvatulin AI, Dzharullaeva AS, Tukhvatulina NM, Shcheblyakov DV, Shmarov MM, Dolzhikova IV, et al. Powerful complex immunoadjuvant based on synergistic effect of combined TLR4 and NOD2 activation significantly enhances magnitude of humoral and cellular adaptive immune responses. PLoS One. 2016; 11(5):e0155650. https://doi.org/10.1371/journal.pone.0155650; Awate S, Babiuk LA, Mutwiri G. Mechanisms of action of adjuvants. Front Immunol. 2013;4:114. https://doi.org/10.3389/fimmu.2013.00114; Mosca F, Tritto E, Muzzi A, Monaci E, Bagnoli F, Iavarone C, et al. Molecular and cellular signatures of human vaccine adjuvants. Proc Natl Acad Sci USA. 2008;105(30):10501– 06. https://doi.org/10.1073/pnas.0804699105; Reed SG, Orr MT, Fox CB. Key roles of adjuvants in modern vaccines. Nat Med. 2013;19(12):1597–608. https://doi.org/10.1038/nm.3409; Del Giudice G, Rappuoli R, Didierlaurent AM. Correlates of adjuvanticity: a review on adjuvants in licensed vaccines. Semin Immunol. 2018;39:14–21. https://doi.org/10.1016/j.smim.2018.05.001; Di Pasquale A, Preiss S, Tavares Da Silva F, Garcon N. Vaccine adjuvants: from 1920 to 2015 and beyond. Vaccines. 2015;3(2):320–43. https://doi.org/10.3390/vaccines3020320; Wagner R, Hildt E. Composition and mode of action of adjuvants in licensed viral vaccines. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2019;62(4):462– 71. https://doi.org/10.1007/s00103-019-02921-1; Moyer TJ, Zmolek AC, Irvine DJ. Beyond antigens and adjuvants: formulating future vaccines. J Clin Invest. 2016;126(3):799–808. https://doi.org/10.1172/JCI81083; Rambe DS, Giudice GD, Rossi S, Sanicas M. Safety and mechanism of action of licensed vaccine adjuvants. International Current Pharmaceutical Journal. 2015;4(8):420– 31. https://doi.org/10.3329/icpj.v4i8.24024; Kazmin D, Nakaya HI, Lee EK, Johnson MJ, van der Most R, van den Berg RA, et al. Systems analysis of protective immune responses to RTS,S malaria vaccination in humans. Proc Natl Acad Sci USA. 2017;114(9):2425–30. https://doi.org/10.1073/pnas.1621489114; Leroux-Roels G. Unmet needs in modern vaccinology: adjuvants to improve the immune response. Vaccine. 2010;28(Suppl 3):C25–36. https://doi.org/10.1016/j.vaccine.2010.07.021; Хантимирова ЛМ, Козлова ТЮ, Постнова ЕЛ, Шевцов ВА, Рукавишников АВ. Ретроспективный анализ заболеваемости вирусным гепатитом B населения Российской Федерации с 2013 по 2017 г. в аспекте вакцинопрофилактики. БИОпрепараты. Профилактика, диагностика, лечение. 2018;18(4):225–35. https://doi.org/10.30895/2221-996X-2018-18-4-225-235; Laupeze B, Herve C, Di Pasquale A, Tavares Da Silva F. Adjuvant systems for vaccines: 13 years of post-licensure experience in diverse populations have progressed the way adjuvanted vaccine safety is investigated and understood. Vaccine. 2019;37(38):5670–80. https://doi.org/10.1016/j.vaccine.2019.07.098; Nunberg JH, Doyle MV, York SM, York CJ. Interleukin 2 acts as an adjuvant to increase the potency of inactivated rabies virus vaccine. Proc Natl Acad Sci USA. 1989;86(11):4240–3. https://doi.org/10.1073/pnas.86.11.4240; Ben-Sasson SZ, Caucheteux S, Crank M, Hu-Li J, Paul WE. IL-1 acts on T cells to enhance the magnitude of in vivo immune responses. Cytokine. 2011;56(1):122–5. https://doi.org/10.1016/j.cyto.2011.07.006; Li Y, Zhou M, Luo Z, Zhang Y, Cui M, Chen H, et al. Overexpression of interleukin-7 extends the humoral immune response induced by rabies vaccination. J Virol. 2017;91(7):e02324-16. https://doi.org/10.1128/JVI.02324-16; Gai W, Zheng W, Wang C, Wong G, Song Y, Zheng X. Immunization with recombinant rabies virus expressing Interleukin-18 exhibits enhanced immunogenicity and protection in mice. Oncotarget. 2017;8(53):91505–15. https://doi.org/10.18632/oncotarget.21065; Ju B, Li D, Ji X, Liu J, Peng H, Wang S, et al. Interleukin-21 administration leads to enhanced antigen-specific T cell responses and natural killer cells in HIV-1 vaccinated mice. Cell Immunol. 2016;303:55–65. https://doi.org/10.1016/j.cellimm.2016.03.006; Grasse M, Meryk A, Miggitsch C, Grubeck-Loebenstein B. GM-CSF improves the immune response to the diphtheriacomponent in a multivalent vaccine. Vaccine. 2018;36(31):4672– 80. https://doi.org/10.1016/j.vaccine.2018.06.033; Toporovski R, Morrow MP, Weiner DB. Interferons as potential adjuvants in prophylactic vaccines. Expert Opin Biol Ther. 2010;10(10):1489–500. https://doi.org/10.1517/14712598.2010.521495; Симбирцев АС, Петров АВ, Пигарева НВ, Николаев АТ. Новые возможности применения рекомбинантных цитокинов в качестве адъювантов при вакцинации. БИОпрепараты. Профилактика, диагностика, лечение. 2011;(1):16–20.; Miquilena-Colina ME, Lozano-Rodriguez T, Garcia-Pozo L, Saez A, Rizza P, Capone I, et al. Recombinant interferonα2b improves immune response to hepatitis B vaccination in haemodialysis patients: results of a randomised clinical trial. Vaccine. 2009;27(41):5654–60. https://doi.org/10.1016/j.vaccine.2009.07.014; Yağci M, Acar K, Sucak GT, Yamac K, Haznedar R. Hepatitis B virus vaccine in lymphoproliferative disorders: a prospective randomized study evaluating the efficacy of granulocyte-macrophage colony stimulating factor as a vaccine adjuvant. Eur J Haematol. 2007;79(4):292–6. https://doi.org/10.1111/j.1600-0609.2007.00912.x; https://www.biopreparations.ru/jour/article/view/250
-
2Academic Journal
المؤلفون: A. A. Soldatov, Zh. I. Avdeeva, N. A. Alpatova, N. V. Medunitsyn, S. L. Lysikova, V. A. Merkulov, А. А. Солдатов, Ж. И. Авдеева, Н. А. Алпатова, Н. В. Медуницын, С. Л. Лысикова, В. А. Меркулов
المصدر: Biological Products. Prevention, Diagnosis, Treatment; № 2 (2015); 24-35 ; БИОпрепараты. Профилактика, диагностика, лечение; № 2 (2015); 24-35 ; 2619-1156 ; 2221-996X ; undefined
مصطلحات موضوعية: моноклональные антитела, absorption, bioavailability, distribution, metabolism, biological preparation, monoclonal antibodies, фармакокинетика, всасывание, биодоступность, распределение, метаболизм, биологические препараты
وصف الملف: application/pdf
Relation: https://www.biopreparations.ru/jour/article/view/11/12; Pharmacokinetics and Pharmacodynamics of Biotech Drugs: Principles and Case Studies in Drug Development. Edited by Bernd Meibohm. WiLeY-VCH Verlag GmbH. 2006.; Mould D.R., Sweeney K.R.D. The pharmacokinetics and pharmacodynamics of monoclonal antibodies - mechanistic modeling applied to drug development. Current Opinion in Drug Discovery & Development 2007; 10(1): 84-96.; Baumann A.Early Development of TherapeuticBiologics - Pharmacokinetics. Current Drug Metabolism 2006; 7: 15-21.; Keizer R.J., Huitema A.D., Schellens J.H., Beijnen J.H. Clinical pharmacokinetics of therapeutic monoclonal antibodies. Clin Pharmacokinet. 2010; 49: 493-507.; Gibson C.R., Sandu P., Hanley W.D. Monoclonal Antibody Pharmacokinetics and Pharmacodynamics. In: An Z, editor. Monoclonal antibody pharmacokinetics and pharmacodynamics, in Therapeutic monoclonal antibodies: From bench to clinic. Hoboken, New Jersey: John Wiley & Son Inc.; 2009.; McDonald T.A., Zepeda M.L., Tomlinson M.J., Bee W.H., Ivens I.A. Subcutaneous administration of biotherapeutics: current experience in animal models. Curr Opin Mol Ther. 2010; 12: 461-470.; Beshyah S.A., Anyaoku V., Niththyananthan R., Sharp P., Johnston D.G. The effect of subcutaneous injection site on absorption of human growth hormone: abdomen versus thigh. Clin Endocrinol. 1991; 35: 409-412.; Kagan L., Gershkovich P., Mendelman A., Amsili S., Ezov N., Hoffman A. The role of the lymphatic system in subcutaneous absorption of macromolecules in the rat model. Eur J Pharm Biopharm. 2007; 67: 759-765.; Kagan L., Turner M.R., Balu-Iyer S.V., Mager D.E. Subcutaneous absorption of monoclonal antibodies: role of dose, site of injection, and injection volume on rituximab pharmacokinetics in rats. Pharm Res. 2012; 29: 490-499.; Lin J.H. Pharmacokinetics of biotech drugs: peptides, proteins and monoclonal antibodies. Curr Drug Metab. 2009; 10: 661-691.; Xiao J.J. Pharmacokinetic Models for FcRn-Mediated IgG Disposition. Journal of Biomedicine and Biotechnology 2012; 2: 1-13.; Kurzrock R., Rosenblum M.G., Sherwin S.A. et al. Pharmacokinetics, singledose tolerance, and biological activity of recombinant gammainterferon in cancer patients. Cancer Res. 1985; 45: 2866-2872.; Radwanski E., Perentesis G., Jacobs S. et al. Pharmacokinetics of interferon a-2b in healthy volunteers. J Clin Pharmacol. 1987; 27: 432-435.; McLennan D.N., Christopher J.H., Porter E. et al. Lymphatic absorption is the primary contributor to the systemic availability of epoetin alfa following subcutaneous administration to sheep. J Pharmacol Experim Therapeut. 2004; 313: 345-351.; Vugmeyster Y., DeFranco D., Szklut P., Wang Q., Xu X. Biodistribution of [125I]-labeled therapeutic proteins: application in protein drug development beyond oncology. J Pharm Sci. 2010; 99: 1028-1045.; Dong J.Q., Salinger D.H., Endres C.J., Gibbs J.P. et. al. Quantitative prediction of human pharmacokinetics for monoclonal antibodies: retrospective analysis of monkey as a single species for first-in-human prediction. Clin Pharmacokinet. 2011; 50: 131-142.; Zapf J., Hauri C., Waldvogel M. et al. Acute metabolic effects and half-lives of intravenously administered insulinlike growth factors I and II in normal and hypophysectomizedrats. J Clin Invest. 1986; 77: 1768-1775.; Charman S.A., Segrave A.M., Edwards G.A., Porter C.J. Systemic availability and lymphatic transport of human growth hormone administered by subcutaneous injection. J Pharm Sci. 2000; 89: 168-177.; Richter W.F., Bhansali S.G., Morris M.E. Mechanistic Determinants of Biotherapeutics Absorption Following SC Administration. The AAPS Journal, 2012; 14(3): 559-570.; Bocci V., Muscettola M., Grasso G., Magyar Z. et al. The lymphatic route. 1) Albumin and hyaluronidase modify the normal distribution of interferon in lymph and plasma. Experientia 1986; 42: 432-433.; Mannucci P.M., Kempton C., Millar C., Romond E. et al. Pharmacokinetics and safety of a novel recombinant human von Willebrand factor manufactured with a plasma-free method: a prospective clinical trial. Blood 2013; 122(5): 648-657.; Agerso H., Laesen L.S., Riis A. et al. Pharmacokinetics and renal excretion of desmopressin after intravenous administration to healthy subjects and renally impaired patients. Br J Clin Pharmacol. 2004; 58: 352-358.; Kovarki J.M., Kahan B.D., Rajagopalan P.R. et al. Population pharmacokinetics and exposure-response relationships for basiliximab in kidney transplantation. Transplant. 1999; 68: 1288-94.; Berrettini M., Mariani G., Schiavoni M. et al. Pharmacokinetic evaluation of recombinant, activated factor VII in patients with inherited factor VII deficiency Haematologica 2001; 86(6): 640-45.; Krippendorff B.F., Kuester K., Kloft C., Huisinga W. Nonlinear pharmacokinetics of therapeutic proteins resulting from receptor mediated endocytosis. J Pharmacokinet Pharmacodyn. 2009; 36: 239-260.; Xu X., Vugmeyster Y. Challenges and Opportunities in Absorption, Distribution, Metabolism, and Excretion Studies of Therapeutic Biologics. The AAPS Journal 2012; 14(4): 781-882.; Wang W., Wang E.Q., Balthasar J.P. Monoclonal Antibody Pharmacokinetics and Pharmacodynamics. Clin. Pharmacology & Therapeutics 2008; 84(5): 548-558.; Insulin inhalation-Pfizer / Nektar therapeutic: HMR 4006, inhaled PEGinsulin-Nektar, PEGylated insurin-Nektar. Drugs R.D. 2004; 5: 166-170.; Baumann A. Early Development of TherapeuticBiologics - Pharmacokinetics. Current Drug Metabolism 2006; 7: 15-21.; Fracasso P.M., Burris H., Arquette M.A., Govindan R. et al. A phase 1 escalating single-dose and weekly fixed-dose study of cetuximab: pharmacokinetic and pharmacodynamic rationale for dosing. Clin Cancer Res. 2007; 13: 986-993.; Urva S.R., Balthasar J.P. Target mediated disposition of T84.66, a monoclonal anti-CEA antibody: application in the detection of colorectal cancer xenografts. MAbs. 2010; 2: 67-72.; Vugmeyster Y., Szklut P., Wensel D., Ross J. et al. Complex pharmacokinetics of a humanized antibody against human amyloid beta peptide, anti-abeta Ab2, in nonclinical species. Pharm Res. 2011; 28: 1696-1706.; Gibiansky L., Gibiansky E. Target-mediated drug disposition model: relationships with indirect response models and application to population PK-PD analysis. J Pharmacokinet Pharmacodyn. 2009; 36: 341-351.; Gibiansky L., Gibiansky E. Target-mediated drug disposition model: approximations, identifiability of model parameters and applications to the population pharmacokinetic-pharmacodynamic modeling of biologics. Expert Opin Drug Metab Toxicol. 2009; 5: 803-812.; Kuter D.J., Rosenberg RD. The reciprocal relationship of thrombopoietin (c-Mpl ligand) to changes in the platelet mass during busulfan-induced thrombocytopenia in the rabbit. Blood 1995; 85: 2720-30.; Kurschner C., Ozmen L., Garotta G. et al. IFN-gamma receptor-Ig fusion proteins: Half-life, immunogenicity, and in vivo activity. J Immunol. 1992; 149: 4096-100.; Teng M.N., Turksen K., Jacobs C.A. et al. Prevention of runting and cachexia by a chimeric TN F receptor-Fc protein. Clin Immunol Immunopathol. 1993; 69: 215-222.; Sato T.A., Widmer M.B., Finkelman F.D. et al. Recombinant soluble murine IL-4 receptor can inhibit or enhance Ig Eresponses in vivo. J Immunol. 1993; 150: 2717-23.; Finkelman F.D., Madden K.B., Morris S.C. et al. Anti-cytokine antibodies as carrier proteins. Prolongation of in vivo effects of exogenous cytokines by injection of cytokine-anti-cytokine antibody complexes. J Immunol. 1993; 151: 1235-44.; Schobitz B., Pezeshki G,. Pohl T. et al. Soluble interleukin-6 (IL-6) receptor augments central effects of IL-6 in vivo. Faseb J. 1995; 9: 659-64.; Aderka D., Engelmann H., Maor Y. et al. Stabilization of the bioactivity of tumor necrosis factor by its soluble receptors. J Exp Med. 1992; 175: 323-329.; Baumann G., Shaw M.A., Amburn K. Circulating growth hormone binding proteins. J Endocrinol Invest. 1994; 17: 67-81.; Baumann G., Vance M.L., Shaw M.A. et al. Plasma transport of human growth hormone in vivo. J Clin Endocrinol Metab. 1990; 71: 470-73.; Baumann G., Shaw M.A., Brumbaugh R.C. et al. Short stature and decreased serum growth hormone-binding protein in the Mountain Ok people of Papua New Guinea. J Clin Endocrinol Metab. 1991; 72: 1346-9.; Svenson M., Geborek P., Saxne T., Bendtzen K. Monitoring patients treated with anti-TNF-alpha biopharmaceuticals: assessing serum infliximab and antiinfliximab antibodies. Rheumatology 2007; 46: 1828-34.; Stephens S., Emtage S., Vetterlein O. et al. Comprehensive pharmacokinetics of a humanized antibody and analysis of residual anti-idiotypic responses. Immunology 1995; 85: 668-74.; Yver A., Homery M.C., Fuseau E. et al. Pharmacokinetics and safety of roledumab, a novel human recombinant monoclonal anti-RhD antibody with an optimized Fc for improved engagement of FCcRIII, in healthy volunteers. Vox Sanguinis 2012; 103: 213-22.; Kuo T.T., Baker K., Yoshida M. et al. Neonatal Fc receptor: from immunity to therapeutics. J Clin Immunol. 2010; 30: 777-89.; Roopenian D.C., Sun V.Z. Clinical ramifications of the MHC family Fc receptor FcRn. J Clin Immunol. 2010; 30: 790-97.; Ghetie V., Ward E.S. Multiple roles for the major histocompatibility complex class I- related receptor FcRn. Annu Rev Immunol. 2000; 18: 739-66.; Petkova S.B., Akilesh S., Sproule T.J. et al. Enhanced half-life of genetically engineered human IgG1 antibodies in a humanized FcRn mouse model: potential application in humorally mediated autoimmune disease. Int Immunol. 2006; 18(12): 1759-69.; Jaggi J.S., Carrasquillo J.A., Seshan S.V. et al. Improved tumor imaging and therapy via i.v. IgG-mediated time-sequential modulation of neonatal Fc receptor. J Clin Invest. 2007; 117(9): 2422-30.; Zhou J., Johnson J.E., Ghetie V. et al. Generation of mutated variants of the human form of the MHC class I-related receptor, FcRn, with increased affinity for mouse immunoglobulin G. J Mol Biol. 2003; 332(4): 901-13.; Deng R., Loyet K.M., Lien S., Iyer S. et al. Pharmacokinetics of humanized monoclonal anti-tumor necrosis factor-{alpha} antibody and its neonatal Fc receptor variants in mice and cynomolgus monkeys. Drug Metab Dispos. 2010; 38: 600-05.; Dall’Acqua W.F., Kiener P.A., Wu H. Properties of human IgG1s engineered for enhanced binding to the neonatal Fc receptor (FcRn). J Biol Chem. 2006; 281: 23514-24.; Yeung Y.A., Leabman M.K., Marvin J.S., Qiu J. et al. Engineering human IgG1 affinity to human neonatal Fc receptor: impact of affinity improvement on pharmacokinetics in primates. J Immunol. 2009; 182: 7663-71.; Sarav M., Wang Y., Hack B.K. et al. Renal FcRn Reclaims Albumin but Facilitates Elimination of IgG. J Am Soc Nephrol. 2009; 20(9): 1941-52.; Kaneko E., Niwa R. Optimizing therapeutic antibody function: progress with Fc domain engineering. BioDrugs 2011; 25: 1-11.; Shinkawa T., Nakamura K., Yamane N., Shoji-Hosaka E. et al. The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity J Biol Chem. 2003; 278: 3466-73.; Hodoniczky J., Zheng Y.Z., James D.C. Control of recombinant monoclonal antibody effector functions by Fc N-glycan remodeling in vitro. Biotechnol Prog. 2005; 21: 1644-52.; Gregoriadis G., Fernandes A., Mital M., McCormack B. Polysialic acids: potential in improving the stability and pharmacokinetics of proteins and other therapeutics. Cell Mol Life Sci. 2000; 57: 1964-69.; Bailon P., Won C.Y. PEG-modified biopharmaceuticals. Expert Opin Drug Deliv. 2009; 6: 1-16.; Boswell C.A., Tesar D.B., Mukhyala K., Theil F.P. et al. Effects of charge on antibody tissue distribution and pharmacokinetics. Bioconjug Chem. 2010; 21: 2153-63.; Schifferli J.A., Taylor R.P. Physiological and pathological aspects of circulating immune complexes. Kidney Int. 1989; 35: 993-1003.; Emlen W., Carl V., Burdick G. Mechanism of transfer of immune complexes from red blood cell CR1 to monocytes. Clin Exp Immunol. 1992; 89: 8-17.; Johansson A., Erlandsson A., Eriksson D., Ullén A. et al. Idiotypic-anti-idiotypic complexes and their in vivo metabolism. Cancer 2002; 94: 1306-13.; Kosugi I., Muro H., Shirasawa H., Ito I. Endocytosis of soluble IgG immune complex and its transport to lysosomes in hepatic sinusoidal endothelial cells. J Hepatol. 1992; 16: 106-14.; Pastuskovas C.V., Mallet W., Clark S., Kenrick M. et al. Effect of immune complex formation on the distribution of a novel antibody to the ovarian tumor antigen CA125. Drug Metab Dispos. 2010; 38: 2309-19.; Tabrizi M.T., Tseng C.M.L., Roskos L.K. Elimination mechanisms of therapeutic monoclonal antibodies. Drug Discov Today 2006; 11: 81-88.; Pollock C., Johnson D.W., Hörl W.H., Rossert J. et al. Pure red cell aplasia induced by erythropoiesis-stimulating agents. Clin J Am Soc Nephrol. 2008; 3: 193-99.; Rossert J. Erythropoietin-induced, antibody-mediated pure red cell aplasia. Eur J Clin Invest. 2005; 35(Suppl 3): 95-99.; Wight J., Paisley S. The epidemiology of inhibitors in haemophilia A: a systematic review. Haemophilia 2003; 9: 418-35.; Guidelines on the quality, safety, and efficacy of biotherapeutic protein products prepared by recombinant DNA technology. Replacement of Annex; of WHO Technical Report Series, № 814.; Guideline on the clinical investigation of the pharmacokinetics of therapeutic proteins (CHMP/EWP/89249/2004).; Vugmeyster Y., Szklut P., Wensel D., Ross J., Xu X., Awwad M., Gill D., Tchistiakov L., Warner G. Complex pharmacokinetics of a humanized antibody against human amyloid beta peptide, anti-abeta Ab2, in nonclinical species. Pharm Res. 2011; 28: 1696-1706.; Bumbaca D., Wong A., Drake E., Reyes A.E., Lin B.C. et al. Highly specific offtarget binding identified and eliminated during the humanization of an antibody against FGF receptor 4. MAbs. 2011; 3: 376-86.; Guideline on the clinical investigation of recombinant and human plasma-derived factor VIII products. EMA/CHMP/BPWP/144533/2009.; Guideline on clinical investigation of recombinant and human plasma-derived factor IX products. EMA/CHMP/BPWP/144552/2009.; Guideline on comparability of biotechnology-derived medicinal products after a change in the manufacturing process. Non-clinical and clinical issues. EMEA/CHMP/BMWP/101695/2006.; Similar biological medicinal products containing biotechnology-derived proteins as active substance: non-clinical and clinical issues. EMEA/CHMP/ BMWP/42832/2005.; Heinemann L., Hompesch M. Biosimilar Insulins: How Similar is Similar? Journal of Diabetes Science and Technology 2011; 5(3): 741-55.; https://www.biopreparations.ru/jour/article/view/11; undefined
-
3Academic Journal
المؤلفون: Zh. I. Avdeeva, A. A. Soldatov, N. A. Alpatova, M. V. Kiselevsky, S. L. Lysikova, V. P. Bondarev, N. V. Medunitsyn, V. D. Mosyagin, V. A. Merkulov, A. N. Mironov, Ж. И. Авдеева, А. А. Солдатов, Н. А. Алпатова, М. В. Киселевский, С. Л. Лысикова, В. П. Бондарев, Н. В. Медуницын, В. Д. Мосягин, В. А. Меркулов, А. Н. Миронов
المصدر: Biological Products. Prevention, Diagnosis, Treatment; № 1 (2015); 4-14 ; БИОпрепараты. Профилактика, диагностика, лечение; № 1 (2015); 4-14 ; 2619-1156 ; 2221-996X ; undefined
مصطلحات موضوعية: оценка стабильности, филграстим, биоаналоговые (биоподобные) лекарственные препараты, референтный (оригинальный) препарат, действующее вещество, субстанция, сравнительные исследования, исследования доказательства подобия, оценка качества
وصف الملف: application/pdf
Relation: https://www.biopreparations.ru/jour/article/view/2/3; Ярилин А.А. Иммунология. М.: ГЭОТАР-Медиа; 2010.; Медуницын Н.В. Вакцинология. М.: Триада-Х; 2010.; Кетлинский С.А., Симбирцев А.С. Цитокины. СПб: Фолиант; 2008.; Ковальчук Л.В., Ганковская Л.В., Мешкова Р.Я. Клиническая иммунология и аллергология с основами общей иммунологии. М.: ГЭОТАР-Медиа; 2012.; The Cytokine Handbook V. 1, 4th Edition, ed. A.W. Thomson, London: Elsevier Science Ltd; 2003.; Querol S., Cancelas J.A., Amat L., Capmany G., Garcia J. Effect of glycosylation of recombinant human granulocytic colony-stimulating factor on expansion cultures of umbilical cord blood CD34+ cells. Haematologica 1999; 84: 493-8.; Nohynek G.J., Plard J.P., Wells M.Y., Zerial A. Comparison of the potency of glycosylated and nonglycosylated recombinant human granulocyte colony-stimulating factors in neutropenic and nonneutropenic CD rats. Cancer Chemother Pharmacol. 1997; 39: 259-66.; Kubota N., Orita T., Hattori К, Oh-eda M., Ochi N., Yamazaki T. Structural characterization of natural and recombinant human granulocyte colony-stimulating factors. J Biochem. 1990; 107: 486-92.; Nissen С. Glycosylation of recombinant human granulocyte colony-stimulating factor: implications for stability and potency. Eur J Cancer. 1994; 30A(3): 12-4.; Oh-eda M., Hasegawa M., Hattori К., Kuboniwa H., Kojima T., Orita T., et al. O-linked sugar chain of human granulocyte colony-stimulating factor protects it against polymerization and denaturation allowing it to retain its biological activity. J Biol Chem. 1990; 265: 11432-5.; Ono M. Physicochemical and biochemical characteristics of glycosylated recombinant human granulocyte colony-stimulating factor (lenograstim). Eur J Cancer 1994; 30A(3): 7-11.; Wang С., Eufemi M., Turano C., Giartosio A. Influence of the carbohydrate moiety on the stability of glycoproteins. Biochemistry 1996; 35: 7299-307.; Arakawa T., Prestrelski S.J., Narhi L.O., Boone T.C., Kenney W.C. Cysteine 17 of recombinant human granulocyte-colony stimulating factor is partially solvent-exposed. J Protein Chem. 1993; 12: 525-31.; Lu H.S., Fausset P., Narhi L., Horan T., Shinagawa K., Shimamoto G., Boone T. Chemical modification and site-directed mutagenesis of methionine residues in recombinant human granulocyte colony-stimulating factor. Effect on stability and biological activity. Arch Biochem Biophys. 1999; 362(1): 1-11.; Akizuki S., Mizorogi F., Inoue T., Sudo K., Ohnishi A. Pharmacokinetics and adverse events following 5-day repeated administration of lenograstim, a recombinant human granulocyte colony-stimulating factor, in healthy subjects. Bone Marrow Transplant. 2000; 26: 939-46.; Pedrazzoli P., Gibelli N., Pavesi L., Preti P., Piolini M., Bertolini F., et al. Effects of glycosylated andnon-glycosylated G-CSFs, alone and in combination with other cytokines, on the growth of human progenitor cells. Anticancer Res. 1996; 16(4А): 1781-5.; Welte К., Gabrilove J., Bronchud M.H., Platzer E., Morstyn G. Filgrastim (r-metHuG-CSF): the first 10 years. Blood. 1996; 88: 1907-29.; Welte К., Reiter A., Mempel К., Pfetsch M., Schwab G., Schrappe M., Riehm H. A randomized phase-Ill study of the efficacy of granulocyte colony-stimulating factor in children with high-risk acute lymphoblastic leukemia. Blood 1996; 87: 3143-50.; Gisselbrecht G., Prentice H.G., Bacigalupo A., Biron P., Milpied N., Rubie H., et al. Placebo-controlled phase III trial of lenograstim in bone-marrow transplantation. Lancet. 1994; 343: 696-700.; Seymour A.M., de Campos E., Thatcher N., De Greve J., Cunningham D., Howell A., et al. A single-blind, randomised, vehicle-controlled dose-finding study of recombinant human granulocyte colony-stimulating factor (lenograstim) in patients undergoing chemotherapy for solid cancers and lymphoma. Eur J Cancer. 1995; 31A: 2157-63.; Höglund M., Smedmyr B., Bengtsson M., Tötterman TH., Cour-Chabernaud V., Yver A., Simonsson B. Mobilization of CD34+ cells by glycosyla ted and nonglycosylated G-CSF in healthy volunteers - a comparative study. Eur J Haematol. 1997; 59: 177-83.; Kim I.H., Park S.K., Suh O.K., Oh J.M. Comparison of lenograstim and filgrastim on haematological effects after autologous peripheral blood stem cell transplantation with high-dose chemotherapy. Curr Med Res Opin. 2003; 19(8): 753-9.; Watts M.J., Addison I., Long S.G., Hartley S., Warrington S., Boyce M., Linch D.C. Crossover study of the haematological effects and pharmacokinetics of glycosylated and non-glycosylated G-CSF in healthy volunteers. Br J Haematol. 1997; 98(2): 474-9.; Young D., Zhan H., Cheng Q., Hou J., Matthews D. Characterization of the receptor binding determinants of granulocyte colony stimulating factor. Protein Sci. 1997; 6(6): 1228-36.; Martino M., Console G., Irrera G., Callea I., Condemi A., Dattola A., et al. Harvesting peripheral blood progenitor cells from healthy donors: retrospective comparison of filgrastim and lenograstim. J Clin Apher. 2005; 20(3): 129-36.; Teramura M., Kimura A., Iwase S., Yonemura Y., Nakao S., Urabe A., et al. Treatment of severe aplastic anemia with antithymocyte globulin and cyclosporin A with or without G-CSF in adults: a multicenter randomized study in Japan. Blood 2007; 110(6): 1756-61.; Cooper K.L., Madan J., Whyte S., Stevenson M.D., Akehurst R.L. Granulocyte colony-stimulating factors for febrile neutropenia prophylaxis following chemotherapy: systematic review and meta-analysis. BMC Cancer. 2011; 11: 404.; Aapro M.S., Bohlius J., Cameron D.A., Dal Lago L., Donnelly J.P., Kearney N., et al. 2010 update of EORTC guidelines for the use of granulocyte-colonystimulating factor to reduce the incidence of chemotherapy-induced febrile neutropenia in adult patients with lymphoproliferative disorders and solid tumours. Eur J Cancer. 2011; 47: 8-32.; Aapro M.S., Cameron D.A., Pettengell R., Bohlius J., Crawford J., Ellis M., et al. EORTC guidelines for the use of granulocyte-colony stimulating factor to reduce the incidence of chemotherapy-induced febrile neutropenia in adult patients with lymphomas and solid tumours. Eur J Cancer. 2006; 42: 2433-53.; Clark O.A.C., Lyman G., Castro A.A., et al. Colony stimulating factors for chemotherapy induced febrile neutropenia. [Review]. Cochrane Database of Systematic Reviews. The Cochrane Collaboration. Published by John Wiley & Sons; 2008.; Johnston E., Crawford J., Blackwell S., Bjurstrom T., Lockbaum P., Roskos L., et al. Randomized, dose-escalation study of SD/01 compared with daily filgrastim in patients receiving chemotherapy. J Clin Oncol. 2000; 18(13): 2522-8.; Миронов А.Н., ред. Руководство по проведению доклинических исследований лекарственных средств (иммунобиологические лекарственные препараты). Ч. 2. М.: Гриф и К; 2012.; Миронов А.Н., ред. Руководство по экспертизе лекарственных средств. Т. М.: Гриф и К; 2013.; Guidelines on the quality, safety, and efficacy of biotherapeutic protein products prepared by recombinant DNA technology, 2013. Replacement of Annex 3 of WHO Technical Report Series, № 814. WHO Expert Committee on biological Standardization.; ICH S6 Preclinical Safety Evaluation of Biotechnology-Derived Pharmaceuticals. International Conference on Harmonisation; 1997.; ICH guideline S6 (R1) Preclinical safety evaluation of biotechnology-derived pharmaceuticals. EMA/CHMP/ICH/731268/1998.; ICH Q5D Derivation and Characterization of Cell Substrates Used for Production of Biotechnological/Biological Products. International Conference on Harmonisation; 1997.; ICH Q5A Viral Safety Evaluation of Biotechnology Products Derived from Cell Lines of Human or Animal Origin. International Conference on Harmonisation; 1997.; Европейская Фармакопея 7.0 (07/2010: 2206). Филграстим, раствор концентрированный. 2010; 4037-40.; ICH Q5С Quality of Biotechnological Products: Stability Testing of Biotechnological/Biological Products. International Conference on Harmonisation; 1995.; ICH Q1A (R2) Stability Testing of New Drug Substances and Products. International Conference on Harmonisation; 2003.; Similar biological medicinal products containing biotechnology-derived proteins as active substance: non-clinical and clinical issues. EMEA/CHMP/BMWP/42832/2005.; Similar biological medicinal products containing biotechnology-derived proteins as active substance: quality issues. EMEA/CHMP/BMWP/49348/2005.; Guideline on similar biological medicinal products containing biotechnology-derived proteins as active substance: quality issues (revision 1) EMEA/CHMP/BWP/247713/2012. London. 2014.; Guideline on similar medicinal products containing recombinant granulocyte-colony stimulating factor. EMEA/CHMP/BMWP/31329/2005.; ICH Q2A Validation of Analytical Procedures. International Conference on Harmonisation; 1994.; ICH Q2B Validation of Analytical Procedures: Methodology. International Conference on Harmonisation; 1996.; Guideline on bioanalytical method validation. EMEA/CHMP/EWP/192217/2009.; ICH Q6B Specifications: Test Procedures and Acceptance Criteria for Biotechnological/Biological Products. International Conference on Harmonisation; 1999.; Guideline on Comparability of Medicinal Products Containing Biotechnology-Derived Proteins as Drug Substance: Non-clinical and Clinical Issues. CPMP/3097/02.; ICH topic Q5E, Step 5 Note for Guidance on Biotechnological/Biological Products Subject to changes in their Manufacturing Process. CHMP/ ICH/5721/03. EMA. June 2005.; Guideline on Comparability of Biotechnology-Derived Medicinal Products after a Change in the Manufacturing Process. Non-Clinical and Clinical Issues. EMEA/CPMP/BMWP/101695/2006. London. 19 July 2007.; https://www.biopreparations.ru/jour/article/view/2; undefined