يعرض 1 - 20 نتائج من 48 نتيجة بحث عن '"Н. В. Журкова"', وقت الاستعلام: 0.53s تنقيح النتائج
  1. 1
    Academic Journal

    المساهمون: Not declared, Отсутствует

    المصدر: Current Pediatrics; Том 23, № 3 (2024); 188-196 ; Вопросы современной педиатрии; Том 23, № 3 (2024); 188-196 ; 1682-5535 ; 1682-5527

    وصف الملف: application/pdf

    Relation: https://vsp.spr-journal.ru/jour/article/view/3525/1380; Niemann A. Ein unbekanntes Krankheitsbild. Jahrb Kinderheillkd. 1914;9:1.; Pick L. Über die lipoidzellige splenohepatomegalie typus Niemann-Pick als stoffwechselerkrankung. Med Klin (Munich). 1927;23:1483–1486.; Schuchman EH, Desnick RJ. Types A and B NiemannPick disease. Mol Genet Metab. 2017;120(1-2):27–33. https://doi.org/10.1016/j.ymgme.2016.12.008; Pfrieger FW. The Niemann-Pick type diseases — A synopsis of inborn errors in sphingolipid and cholesterol metabolism. Prog Lipid Res. 2023;90:101225. https://doi.org/10.1016/j.plipres.2023.101225; Niemann-Pick disease. In: Genes and Disease [Internet]. National Center for Biotechnology Information (US). Bethesda (MD): National Center for Biotechnology Information (US); 1998. Available online: https://www.ncbi.nlm.nih.gov/books/NBK22176. Accessed on December 20, 2023.; Вашакмадзе Н.Д., Журкова Н.В. Семь вопросов о болезни Ниманна – Пика // Вопросы современной педиатрии. — 2023. — Т. 22. — № 6. — С. 572–576. — https://doi.org/10.15690/vsp.v22i6.2702; Cerón-Rodríguez M, Vázquez-Martínez ER, García-Delgado C, et al. Niemann-Pick disease A or B in four pediatric patients and SMPD1 mutation carrier frequency in the Mexican population. Ann Hepatol. 2019;18(4):613–619. https://doi.org/10.1016/j.aohep.2018.12.004; Wang R, Qin Z, Huang L, et al. SMPD1 expression profile and mutation landscape help decipher genotype-phenotype association and precision diagnosis for acid sphingomyelinase deficiency. Hereditas. 2023;160(1):11. https://doi.org/10.1186/s41065-023-00272-1; Schuchman EH, Wasserstein MP. Types A and B NiemannPick disease. Best Pract Res Clin Endocrinol Metab. 2015;29(2): 237–247. https://doi.org/10.1016/j.beem.2014.10.002; Kingma SD, Bodamer OA, Wijburg FA. Epidemiology and diagnosis of lysosomal storage disorders; challenges of screening. Best Pract Res Clin Endocrinol Metab. 2015;29(2):145–157. https://doi.org/10.1016/j.beem.2014.08.004; Prevalence of rare diseases: Bibliographic data. Orphanet Report Series, Rare Diseases collection. 2023 Number 1: Diseases in alphabetical order. Available online: http://www.orpha.net/orphacom/cahiers/docs/GB/Prevalence_of_rare_diseases_by_alphabetical_list.pdf. Accessed on December 10, 2023.; Jones SA, McGovern M, Lidove O, et al. Clinical relevance of endpoints in clinical trials for acid sphingomyelinase deficiency enzyme replacement therapy. Mol Genet Metab. 2020;131(1-2): 116–123. https://doi.org/10.1016/j.ymgme.2020.06.008; Nicholson AG, Florio R, Hansell DM, et al. Pulmonary involvement by Niemann-Pick disease. A report of six cases. Histopathology. 2006;48(5):596–603. https://doi.org/10.1111/j.1365-2559.2006.02355.x; Freitas HMP, Mançano AD, Rodrigues RS, et al. Niemann-Pick disease type B: HRCT assessment of pulmonary involvement. J Bras Pneumol. 2017;43(6):451–455. https://doi.org/10.1590/S1806-37562017000000062; Levran O, Desnick RJ, Schuchman EH. Type A Niemann-Pick disease: a frameshift mutation in the acid sphingomyelinase gene (fsP330) occurs in Ashkenazi Jewish patients. Hum Mutat. 1993;2(4):317–319. https://doi.org/10.1002/humu.1380020414; Ricci V, Stroppiano M, Corsolini F, et al. Screening of 25 Italian patients with Niemann-Pick A reveals fourteen new mutations, one common and thirteen private, in SMPD1. Hum Mutat. 2004;24(1):105. https://doi.org/10.1002/humu.9258; Qureshi K, Abdulmajeed ZG, Saleem S, et al. Niemann-Pick Disease Type A: A Rare Disease With a Fatal Outcome. Cureus. 2022;14(2):21955. https://doi.org/10.7759/cureus.21955; Ngoenmak T, Somran J, Foonoi M, et al. Case report of a novel variant in SMPD1 of Niemann-Pick disease type A with a liver histology from Thailand. Glob Pediat. 2024;7:100096. https://doi.org/10.1016/j.gpeds.2023.100096; Семячкина А.Н., Букина Т.М., Курбатов М.Б. и др. Болезнь Ниманна–Пика типа А у детей // Российский вестник перинатологии и педиатрии. — 2008. — № 4. — С. 52–57.; Hartnett ME, Kavalaraki M, Bhagat N, Zhao CS. Cherry-Red Spot. In: American Academy of Ophthalmology: Official website. January 12, 2024. Available online: https://eyewiki.aao.org/Cherryred_spot. Accessed on June 05, 2024.; Sen Sarma M, Tripathi PR. Natural history and management of liver dysfunction in lysosomal storage disorders. World J Hepatol. 2022;14(10):1844–1861. https://doi.org/10.4254/wjh.v14.i10.1844; Imrie J, Mengel KE, Cassiman D, et al. Cause of death in patients with attenuated acid sphingomyelinase deficiency: Comprehensive literature review and report of new cases. Mol Genet Metab. 2016;117:S60. https://doi.org/10.1016/j.ymgme.2015.12.298; Tirelli C, Rondinone O, Italia M, et al. The Genetic Basis, Lung Involvement, and Therapeutic Options in Niemann-Pick Disease: A Comprehensive Review. Biomolecules. 2024;14(2):211. https://doi.org/10.3390/biom14020211; Pan YW, Tsai MC, Yang CY, et al. Enzyme replacement therapy for children with acid sphingomyelinase deficiency in the real world: A single center experience in Taiwan. Mol Genet Metab Rep. 2023;34:100957. https://doi.org/10.1016/j.ymgmr.2023.100957ё; https://vsp.spr-journal.ru/jour/article/view/3525

  2. 2
    Academic Journal

    المساهمون: Not declared, Отсутствует

    المصدر: Current Pediatrics; Том 23, № 3 (2024); 162-167 ; Вопросы современной педиатрии; Том 23, № 3 (2024); 162-167 ; 1682-5535 ; 1682-5527

    وصف الملف: application/pdf

    Relation: https://vsp.spr-journal.ru/jour/article/view/3521/1376; Gümüş E, Özen H. Glycogen storage diseases: An update. World J Gastroenterol. 2023;29(25):3932–3963. https://doi.org/10.3748/wjg.v29.i25.3932; Баранов А.А., Намазова-Баранова Л.С., Сурков А.Н. и др. Ведение детей с гликогеновой болезнью (нозологические формы с поражением печени). Современные клинические рекомендации // Педиатрическая фармакология. — 2020. — Т. 17. — № 4. — С. 303–317. — https://doi.org/10.15690/pf.v17i4.2159; Sim SW, Weinstein DA, Lee YM, Jun HS. Glycogen storage disease type Ib: role of glucose-6-phosphate transporter in cell metabolism and function. FEBS Lett. 2020;594(1):3–18. https://doi.org/10.1002/1873-3468.13666; Jang Y, Park TS, Park BC, et al. Aberrant glucose metabolism underlies impaired macrophage differentiation in glycogen storage disease type Ib. FASEB J. 2023;37(11):e23216. https://doi.org/10.1096/fj.202300592RR; Сурков А.Н. Гликогеновая болезнь у детей: современные представления (часть I) // Вопросы современной педиатрии. — 2012. — Т. 11. — № 2. — С. 30–42. — https://doi.org/10.15690/vsp.v11i2.208; Сурков А.Н., Черников В.В., Баранов А.А. и др. Результаты оценки качества жизни детей с печеночной формой гликогеновой болезни // Педиатрическая фармакология. — 2013. — Т. 10. — № 4. — С. 90–94. — https://doi.org/10.15690/pf.v10i4.759; Dale DC, Bolyard AA, Marrero T, et al. Neutropenia in glycogen storage disease Ib: outcomes for patients treated with granulocyte colony-stimulating factor. Curr Opin Hematol. 2019;26(1):16–21. https://doi.org/10.1097/MOH.0000000000000474; Grünert SC, Venema A, LaFreniere J, et al. Patient-reported outcomes on empagliflozin treatment in glycogen storage disease type Ib: An international questionnaire study. JIMD Rep. 2023;64(3):252–258. https://doi.org/10.1002/jmd2.12364; Li AM, Thyagu S, Maze D, et al. Prolonged granulocyte colony stimulating factor use in glycogen storage disease type 1b associated with acute myeloid leukemia and with shortened telomere length. Pediatr Hematol Oncol. 2018;35(1):45–51. https://doi.org/10.1080/08880018.2018.1440675; Pinsk M, Burzynski J, Yhap M, et al. Acute myelogenous leukemia and glycogen storage disease 1b. J Pediatr Hematol Oncol. 2002;24(9):756–758. https://doi.org/10.1097/00043426-200212000-00015; Schroeder T, Hildebrandt B, Mayatepek E, et al. A patient with glycogen storage disease type Ib presenting with acute myeloid leukemia (AML) bearing monosomy 7 and translocation t(3;8) (q26;q24) after 14 years of treatment with granulocyte colony-stimulating factor (G-CSF): a case report. J Med Case Rep. 2008; 2:319. https://doi.org/10.1186/1752-1947-2-319; Wortmann SB, Van Hove JLK, Derks TGJ, et al. Treating neutropenia and neutrophil dysfunction in glycogen storage disease type Ib with an SGLT2 inhibitor. Blood. 2020;136(9):1033–1043. https://doi.org/10.1182/blood.2019004465; Fortuna D, McCloskey LJ, Stickle DF. Model analysis of effect of canagliflozin (Invokana), a sodium-glucose cotransporter 2 inhibitor, to alter plasma 1,5-anhydroglucitol. Clin Chim Acta. 2016;452: 138–141. https://doi.org/10.1016/j.cca.2015.11.010; Tazawa S, Yamato T, Fujikura H, et al. SLC5A9/SGLT4, a new Na+-dependent glucose transporter, is an essential transporter for mannose, 1,5-anhydro-D-glucitol, and fructose. Life Sci. 2005;76(9):1039–1050. https://doi.org/10.1016/j.lfs.2004.10.016; Grünert SC, Derks TGJ, Adrian K, et al. Efficacy and safety of empagliflozin in glycogen storage disease type Ib: data from an international questionnaire. Genet Med. 2022;24(8):1781–1788. https://doi.org/10.1016/j.gim.2022.04.001; D’Acierno M, Resaz R, Iervolino A, et al. Dapagliflozin Prevents Kidney Glycogen Accumulation and Improves Renal Proximal Tubule Cell Functions in a Mouse Model of Glycogen Storage Disease Type 1b. J Am Soc Nephrol. 2022;33(10):1864–1875. https://doi.org/10.1681/ASN.2021070935; Resaz R, Raggi F, Segalerba D. The SGLT2-inhibitor dapagliflozin improves neutropenia and neutrophil dysfunction in a mouse model of the inherited metabolic disorder GSDIb. Mol Genet Metab Rep. 2021;29:100813. https://doi.org/10.1016/j.ymgmr.2021.100813; Tahara A, Takasu T, Yokono M, et al. Characterization and comparison of sodium-glucose cotransporter 2 inhibitors in pharmacokinetics, pharmacodynamics, and pharmacologic effects. J Pharmacol Sci. 2016;130(3):159–169. https://doi.org/10.1016/j.jphs.2016.02.003; Шумилова Н.А., Павлова С.И. Глифлозины: гликемические и негликемические эффекты // Acta medica Eurasica. — 2019. — № 1. — С. 44–51.; Kaczor M, Greczan M, Kierus K, et al. Sodium-glucose cotransporter type 2 channel inhibitor: breakthrough in the treatment of neutropenia in patients with glycogen storage disease type 1b? JIMD Rep. 2022;63(3):199–206. https://doi.org/10.1002/jmd2.12278; Makrilakis K, Barmpagianni A, Veiga-da-Cunha M. Repurposing of empagliflozin as a possible treatment for neutropenia and inflammatory bowel disease in glycogen storage disease type Ib: a case report. Cureus. 2022;14(7):e27264. https://doi.org/10.7759/cureus.27264; Grünert SC, Elling R, Maag B, et al. Improved inflammatory bowel disease, wound healing and normal oxidative burst under treatment with empagliflozin in glycogen storage disease type Ib. Orphanet J Rare Dis. 2020;15(1):218. https://doi.org/10.1186/s13023-020-01503-8; Bidiuk J, Gaciong ZA, Sobieraj P. The overall benefits of empagliflozin treatment in adult siblings with glycogen storage disease type Ib: one year experience. Arch Med Sci. 2022;18(4):1095–1099. https://doi.org/10.5114/aoms/150029; Hexner-Erlichman Z, Veiga-da-Cunha M, Zehavi Y, et al. Favorable outcome of empagliflozin treatment in two pediatric glycogen storage disease type 1b patients. Front Pediatr. 2022;10:1071464. https://doi.org/10.3389/fped.2022; Grünert SC, Rosenbaum-Fabian S, Schumann A, et al. Two successful pregnancies and first use of empagliflozin during pregnancy in glycogen storage disease type Ib. JIMD Rep. 2022;63(4):303–308. https://doi.org/10.1002/jmd2.12295; Амосова М.В., Фадеев В.В. Эмпаглифлозин — новые показания к применению — поворотный момент в лечении сахарного диабета 2-го типа // Медицинский Совет. — 2017. — № 3. — С. 38–43.; Alsahli M, Gerich JE. Renal glucose metabolism in normal physiological conditions and in diabetes. Diabetes Res Clin Pract. 2017;133:1–9. https://doi.org/10.1016/j.diabres.2017.07.033; Букатина Т.М., Казаков А.С., Вельц Н.Ю. и др. Ингибиторы натрий-глюкозного котранспортера 2: риск кетоацидоза // Безопасность и риск фармакотерапии. — 2016. — № 2. — С. 33–37.; Goldenberg RM, Berard LD, Cheng AYY, et al. SGLT2 Inhibitor-associated Diabetic Ketoacidosis: Clinical Review and Recommendations for Prevention and Diagnosis. Clin Ther. 2016;38(12):2654–2664.e1. https://doi.org/10.1016/j.clinthera.2016.11.002; https://vsp.spr-journal.ru/jour/article/view/3521

  3. 3
    Academic Journal

    المساهمون: Not specified., Отсутствует.

    المصدر: Current Pediatrics; Том 23, № 1 (2024); 6-12 ; Вопросы современной педиатрии; Том 23, № 1 (2024); 6-12 ; 1682-5535 ; 1682-5527

    وصف الملف: application/pdf

    Relation: https://vsp.spr-journal.ru/jour/article/view/3394/1356; Germain DP. Fabry disease. Orphanet J Rare Dis. 2010; 5: 30. doi: https://doi.org/10.1186/1750-1172-5-30; Hopkin RJ, Bissler J, Banikazemi M, et al. Characterization of Fabry Disease in 352 Pediatric Patients in the Fabry Registry. Pediatr Res. 2008;64(5):550–555. doi: https://doi.org/10.1203/PDR.0b013e318183f132; Schiffmann R, Hughes DA, Linthorst GE, et al. Screening, diagnosis, and management of patients with Fabry disease: conclusions from a “Kidney Disease: Improving Global Outcomes” (KDIGO) Controversies Conference. Kidney Int. 2017;91(2): 284–293. doi: https://doi.org/10.1016/j.kint.2016.10.004; Каровайкина Е.А., Моисеев А.С., Буланов Н.М. и др. Скрининг, диагностика и лечение болезни Фабри // Клиническая фармакология и терапия. — 2019. — Т. 28. — № 3. — С. 68–74. — doi: https://doi.org/1010.32756/0869-5490-2019-3-68-74; Ouyang Y, Chen B, Pan X, et al. Clinical significance of plasma globotriaosylsphingosine levels in Chinese patients with Fabry disease. Exp Ther Med. 2018;15(4):3733-42. doi: https://doi.org/10.3892/etm.2018.5889.; Nowak A, Mechtler TP, Desnick RJ, Kasper DC. Plasma LysoGb3: A useful biomarker for the diagnosis and treatment of Fabry disease heterozygotes. Mol Genet Metab. 2017;120(1-2):57–61. doi: https://doi.org/10.1016/j.ymgme.2016.10.006; Maruyama H, Miyata K, Mikame M, et al. Effectiveness of plasma lyso-Gb3 as a biomarker for selecting high-risk patients with Fabry disease from multispecialty clinics for genetic analysis. Genet Med. 2019;21(1):44–52. doi: https://doi.org/10.1038/gim.2018.31; Maron MS, Xin W, Sims KB, et al. Identification of Fabry disease in a tertiary referral cohort of patients with hypertrophic cardiomyopathy. Am J Med. 2018;131(2):200.e1–200.e8. doi: https://doi.org/10.1016/j.amjmed.2017.09.010; Newman DB, Miranda WR, Matern D, et al. Cost efficacy of α-galactosidase A enzyme screening for Fabry disease. Mayo Clin Proc. 2019;94(1):84–88. doi: https://doi.org/10.1016/j.mayocp.2018.08.009; Wozniak MA, Kittner SJ, Tuhrim S, et al. Frequency of unrecognized Fabry disease among young European-American and African-American men with first ischemic stroke. Stroke. 2010;41(1): 78–81. doi: https://doi.org/10.1161/STROKEAHA.109.558320; Rolfs A, Buttcher T, Zschiesche M, et al. Prevalence of Fabry disease in patients with cryptogenic stroke: a prospective study. Lancet. 2005;366(9499):1794–1796. doi: https://doi.org/10.1016/S0140-6736(05)67635-0; Reisin RC, Mazziotti J, Cejas LL, et al. Prevalence of Fabry disease in young patients with stroke in Argentina. J Stroke Cerebrovasc Dis. 2018;27(3):575–582. doi: https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.09.045; Song X, Xue S, Zhao J, Wu J. Screening for Fabry’s disease in young patients with ischemic stroke in a Chinese population. Int J Neurosci. 2017;127(4):350–355. doi: https://doi.org/10.3109/00207454.2016.1166107; Laney DA, Fernh PM. Diagnosis of Fabry disease via analysis of family history. J Genet Counsel. 2008;17(1):79–83. doi: https://doi.org/10.1007/s10897-007-9128-x; Болезнь Фабри: клинические рекомендации / Ассоциация медицинских генетиков; Союз педиатров России. — 2019. — 53 c.; Moore DF, Goldin E, Gelderman MP, et al. Apoptotic abnormalities in differential gene expression in peripheral blood mononuclear cells from children with Fabry disease. Acta Paediatr. 2008;97(457): 48–52. doi: https://doi.org/10.1111/j.1651-2227.2008.00654.x; De Francesco PN, Mucci JM, Ceci R, et al. Fabry disease peripheral blood immune cells release inflammatory cytokines: role of globotriaosylceramide. Mol Genet Metab. 2013;109(1):93–99. doi: https://doi.org/10.1016/j.ymgme.2013.02.003; Fujinaga S, Murakami H, Kubota M, et al. Is there a pathogenic association between Fabry’s disease and IgA nephropathy? Clin Nephrol Case Stud. 2013;1:14–17. doi: https://doi.org/10.5414/CNCS107994; Martinez P, Aggio M, Rozenfeld P. High incidence of autoantibodies in Fabry disease patients. J Inherit Metab Dis. 2007;30(3): 365–369. doi: https://doi.org/10.1007/s10545-007-0513-2; Lyon MF. Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature. 1961;190:372–373. doi: https://doi.org/10.1038/190372a0; Фирсов К.В., Котов А.С. Неврологические проявления болезни Фабри у детей и подростков // Русский журнал детской неврологии. — 2017. — Т. 12. — № 3. — С. 51–57. — doi: https://doi.org/10.17650/2073-8803-2017-12-3-51-57; Yoo HW. Fabry disease: current treatment and future perspective. J Genet Med. 2023;20(1):6-14. doi: https://doi.org/10.5734/JGM.2023.20.1.6; McCafferty EH, Scott LJ. Migalastat: a review in Fabry disease. Drugs. 2019;79(5):543–554. doi: https://doi.org/10.1007/s40265-019-01090-4; Войтенков В.Б., Екушева Е.В. Болевой синдром при болезни Фабри: семиотика, диагностика и лечение // РМЖ. — 2019. — № 9. — С. 50–54.; Моисеев С.В., Исмаилова Д.С., Моисеев А.С. и др. Вихревидная кератопатия (cornea verticillata) при болезни Фабри // Терапевтический архив. — 2018. — Т. 90. — № 12. — С. 17–22. — doi: https://doi.org/10.26442/00403660.2018.12.000003; Gambini G, Scartozzi L, Giannuzzi F, et al. Ophthalmic anifestations in Fabry Disease: Updated Review. J Pers Med. 2023;13(6):904. doi: https://doi.org/10.3390/jpm13060904; Cordeiro CA, Oréfice F, Lasmar EP, et al. Cornea verticillata — a clinical marker of Fabry disease: case report. Arq Bras Oftalmol. 2007;70(4):701–705. doi: https://doi.org/10.1590/s0004-27492007000400024; Tondel C, Bostad L, Hirth A, Svarstad E. Renal biopsy findings in children and adolescents with Fabry disease and minimal albuminuria. Am J Kidney Dis. 2008;51(5):767–776. doi: https://doi.org/10.1053/j.ajkd.2007.12.032; Моисеев С.В., Мершина Е.А., Синицын В.Е. и др. Магнитнорезонансная томография в диагностике поражения сердца при болезни Фабри // Клиническая фармакология и терапия. — 2017. — Т. 26. — № 3. — С. 13–20.; Cortes-Saladelafont E, Fernandez-Martin J, Ortolano S. Fabry Disease and Central Nervous System Involvement: From Big to Small, from Brain to Synapse. Int J Mol Sci. 2023;24(6):5246. doi: https://doi.org/10.3390/ijms24065246; Моисеев А.С., Тао Е.А., Буланов Н.М. и др. Поражение центральной нервной системы при болезни Фабри // Клиническая фармакология и терапия. — 2022. — Т. 31. — № 1. — С. 32–38. — doi: https://doi.org/10.32756/0869-5490-2022-1-32-38; Моисеев С.В., Новиков П.И., Буланов Н.М. и др. Болезнь Фабри в практике ревматолога // Клиническая фармакология и терапия. — 2018. — Т. 27. — № 1. — С. 39–45; Manna R, Cauda R, Feriozzi S, et al. Recommendations for the inclusion of Fabry disease as a rare febrile condition in existing algorithms for fever of unknown origin. Intern Emerg Med. 2017;12(7):1059–1067. doi: https://doi.org/10.1007/s11739-017-1704-y; Sakuraba H, Togawa T, Tsukimura T, et al. Plasma lyso-Gb3: a biomarker for monitoring Fabry patients during enzyme replacement therapy. Clin Exp Nephrol. 2018;22(4):843–849. doi: https://doi.org/10.1007/s10157-017-1525-3; Polo G, Burlina A, Ranieri E, et al. Plasma and dried blood spot lysosphingolipids for the diagnosis of different sphingolipidoses: a comparative study. Clin Chem Lab Med. 2019;57(12): 1863–1874. doi: https://doi.org/10.1515/cclm-2018-1301; Ortiz A, Germain DP, Desnick RJ, et al. Fabry disease revisited: Management and treatment recommendations for adult patients. Mol Genet Metab. 2018;123(4):416–427. doi: https://doi.org/10.1016/j.ymgme.2018.02.014; Biegstraaten M, Arngrнmsson R, Barbey F, et al. Recommendations for initiation and cessation of enzyme replacement therapy in patients with Fabry disease: the European Fabry Working Group consensus document. Orphanet J Rare Dis. 2015;10:36. doi: https://doi.org/10.1186/s13023-015-0253-6; Инструкция по медицинскому применению препарата Реплагал. № ЛСР-00551/09.; Инструкция по медицинскому применению препарата Фабразим. № ЛСР-003334/09.; Hwang S, Lee BH, Kim WS, et al. A phase II, multicenter, open-label trial to evaluate the safety and efficacy of ISU303 (Agalsidase beta) in patients with Fabry disease. Medicine (Baltimore). 2022;101(37):e30345. doi: https://doi.org/10.1097/MD.0000000000030345; Germain DP, Elliott PM, Falissard B, et al. The effect of enzyme replacement therapy on clinical outcomes in male patients with Fabry disease: A systematic literature review by a European panel of experts. Mol Genet Metab Rep. 2019;19:100454. doi: https://doi.org/10.2174/1381612826666200317142412; Germain DP, Arad M, Burlina A, et al. The effect of enzyme replacement therapy on clinical outcomes in female patients with Fabry disease — A systematic literature review by a European panel of experts. Mol Genet Metab. 2019;126(3):224–235. doi: https://doi.org/10.1016/j.ymgme.2018.09.007; Hopkin RJ, Cabrera G, Charrow J, et al. Risk factors for severe clinical events in male and female patients with Fabry disease treated with agalsidase beta enzyme replacement therapy: data from the Fabry Registry. Mol Genet Metab. 2016;119(1-2): 151–159. doi: https://doi.org/10.1016/j.ymgme.2016.06.007; Riccio E, Pisani A. New insights in efficacy of different enzyme replacement therapy dosages in Fabry disease: switch studies data following agalsidase beta shortage. Clin Genet. 2023;103(3): 371–376. doi: https://doi.org/10.1111/cge.14266; Lenders M, Brand E. Fabry disease: the current treatment landscape. Drugs. 2021;81(6):635–645. doi: https://doi.org/10.1007/s40265-021-01486-1; Germain DP, Altarescu G, Barriales-Villa R, et al. An expert consensus on practical clinical recommendations and guidance for patients with classic Fabry disease. Mol Genet Metab. 2022;137 (1-2):49–61. doi: https://doi.org/10.1016/j.ymgme.2022.07.010; Politei JM, Bouhassira D, Germain DP, et al. Pain in Fabry disease: practical recommendations for diagnosis and treatment. CNS Neurosci Ther. 2016;22(7):568–576. doi: https://doi.org/10.1111/cns.12542; Mehta A, West ML. Therapeutic goals in the treatment of Fabry disease. Genet Med. 2010;12(11):713–720. doi: https://doi.org/10.1097/GIM.0b013e3181f6e676; Laney DA, Bennett RL, Clarke V, et al. Fabry disease practice guidelines: recommendations of the National Society of Genetic Counselors. J Genet Couns. 2013;22(5):555–564. doi: https://doi.org/10.1007/s10897-013-9613-3; https://vsp.spr-journal.ru/jour/article/view/3394

  4. 4
    Academic Journal

    المساهمون: Not declared, Отсутствует

    المصدر: Current Pediatrics; Том 23, № 3 (2024); 181-187 ; Вопросы современной педиатрии; Том 23, № 3 (2024); 181-187 ; 1682-5535 ; 1682-5527

    وصف الملف: application/pdf

    Relation: https://vsp.spr-journal.ru/jour/article/view/3524/1379; Saat H, Sahin I, Duzkale N, et al. Genetic etiology of ichthyosis in Turkish patients: Next-generation sequencing identified seven novel mutations. Medeni Med J. 2022;37(2):126–130. https://doi.org/10.4274/mmj.galenos.2022.39924; Ихтиоз у детей: клинические рекомендации. — Союз педиатров России; 2016. — С. 6.; Oji V, Tadini G, Akiyama M, et al. Revised nomenclature and classification of inherited ichthyoses: Results of the first Ichthyosis Consensus Conference in Sorèze 2009. J Am Acad Dermatol. 2010;63(4):607–641. https://doi.org/10.1016/j.jaad.2009.11.020; Mazereeuw-Hautier J, Vahlquist A, Traupe H, et al. Management of Congenital ichthyoses: European guidelines of care, part one. Br J Dermatol. 2018;180(2):272–281. https://doi.org/10.1111/bjd.17203; McLeod JM. Three cases of ‘ichthyosis follicularis’ associated with baldness. Br J Dermatol. 1909;21:165–189.; Wang H, Humbatova A, Liu Y, et al. Mutations in SREBF1, Encoding Sterol Regulatory Element Binding Transcription Factor 1, Cause Autosomal-Dominant IFAP Syndrome. Am J Hum Genet. 2020;107(1):34–45. https://doi.org/10.1016/j.ajhg.2020.05.006; Morice-Picard F, Michaud V, Lasseaux E, et al. Hereditary Mucoepithelial Dysplasia Results from Heterozygous Variants at p.Arg557 Mutational Hotspot in SREBF1, Encoding a Transcription Factor Involved in Cholesterol Homeostasis. J Invest Dermatol. 2020;140(6):1289–1292.e2. https://doi.org/10.1016/j.jid.2019.10.014; Chacon-Camacho OF, Arce-Gonzalez R, Ordaz-Robles T, et al. Exome sequencing identifies a SREBF1 recurrent ARG557CYS mutation as the cause of hereditary mucoepithelial dysplasia in a family with high clinical variability. Am J Med Genet A. 2020;182(11):2773–2777. https://doi.org/10.1002/ajmg.a.61849; Migliavacca MP, Fock RA, Almeida N, et al. A Brazilian case of IFAP syndrome with severe congenital ichthyosis and limb malformations caused by a rare variant in MBTPS2. Rev Paul Pediatr. 2023;41:e2022057. https://doi.org/10.1590/1984-0462/2023/41/2022057; Okutman O, Muller J, Baert Y, et al. Exome sequencing reveals a nonsense mutation in TEX15 causing spermatogenic failure in a Turkish family. Hum Mol Genet. 2015;24(19):5581–5588. https://doi.org/10.1093/hmg/ddv290; Mao L, Wang Y, An L, et al. Molecular Mechanisms and Clinical Phenotypes of GJB2 Missense Variants. Biology (Basel). 2023;12(4):505. https://doi.org/10.3390/biology12040505; Irurzun I, Natale MI, Agostinelli ML, et. al. Ichthyosis follicularis, atrichia and photophobia (IFAP) and hereditary mucoepithelial dysplasia: Two syndromes that share a common clinical spectrum. Pediatr Dermatol. 2021;38(3):568–574. https://doi.org/10.1111/pde.14560; Nagakeerthana S, Rangaraj M, Karthikeyan K. Ichthyosis Follicularis, Alopecia, and Photophobia Syndrome. Int J Trichology. 2017;9(2):67–69. https://doi.org/10.4103/ijt.ijt_69_16; Mégarbané H, Mégarbané A. Ichthyosis follicularis, alopecia, and photophobia (IFAP) syndrome. Orphanet J Rare Dis. 2011;6:29. https://doi.org/10.1186/1750-1172-6-29; Traboulsi E, Waked N, Mégarbané H, Mégarbané A. Ocular findings in ichthyosis follicularis-alopecia-photophobia (IFAP) syndrome. Ophthalmic Genet. 2004;25(2):153–156. https://doi.org/10.1080/13816810490514405; Höpker LM, Ribeiro CG, Oliveira LM, Moreira AT. Ichthyosis follicularis, alopecia and photophobia syndrome (IFAP): report of the first case with ocular and cutaneous manifestations in Brazil with a favorable response to treatment. Arq Bras Oftalmol. 2011;74(1):55–57. https://doi.org/10.1590/s0004-27492011000100013; Cursiefen C, Schlötzer-Schrehardt U, Holbach LM, et al. Ocular findings in ichthyosis follicularis, atrichia, and photophobia syndrome. Arch Ophthalmol. 1999;117(5):681–684. https://doi.org/10.1001/archopht.117.5.681; Basilious A, Fung SSM, Ali A. Limbal Stem Cell Dysfunction in Ichthyosis Follicularis, Alopecia, and Photophobia Syndrome. Cornea. 2020;39(10):1321–1324. https://doi.org/10.1097/ICO.0000000000002393; Cammarata-Scalisi F, Willoughby CE, Cárdenas Tadich A, et al. Clinical, etiopathogenic, and therapeutic aspects of KID syndrome. Dermatol Ther. 2020;33(4):e13507. https://doi.org/10.1111/dth.13507; Rajesh S, Loganathan E, Shanmukhappa AG. Ichthyosis Follicularis with Alopecia and Photophobia Syndrome with Coexisting Palmoplantar Keratoderma Treated with Acitretin. Int J Trichology. 2022;14(6):213–215. https://doi.org/10.4103/ijt.ijt_9_22; https://vsp.spr-journal.ru/jour/article/view/3524

  5. 5
    Academic Journal

    المصدر: Current Pediatrics; Том 22, № 6 (2023); 560-571 ; Вопросы современной педиатрии; Том 22, № 6 (2023); 560-571 ; 1682-5535 ; 1682-5527

    وصف الملف: application/pdf

    Relation: https://vsp.spr-journal.ru/jour/article/view/3358/1352; Dalili S, Talea A, Aghajany-Nasab M, et al. Clinical Features and Laboratory Diagnosis of Aminoacidopathies: A Narrative Review. Arch Neurosci. 2023;10(3):e136721. doi: https://doi.org/10.5812/ans-136721; Aliu E, Kanungo S, Arnold GL. Amino acid disorders. Ann Transl Med. 2018;6(24):471–476. doi: https://doi.org/10.21037/atm.2018.12.12; Приказ Минздрава России № 274н от 21 апреля 2022 г. «Об утверждении порядка оказания медицинской помощи пациентам с врожденными и/или наследственными заболеваниями». Доступно по: https://base.garant.ru/404987183. Ссылка активна на 03.12.2023.; Lee N, Kim D. Toxic Metabolites and Inborn Errors of Amino Acid Metabolism: What One Informs about the Other. Metabolites. 2022;12(6):527–532. doi: https://doi.org/10.3390/metabo12060527; Классическая фенилкетонурия и другие виды гиперфенилаланинемии: клинические рекомендации / Ассоциация медицинских генетиков; Инициатива специалистов педиатрии и неонатологии в развитии клинических практик; Союз педиатров России. — 2020. — 112 с. Доступно по: https://www.pediatr-russia.ru/information/klin-rek/proekty-klinicheskikh-rekomendatsiy/%D0%9A%D0%A0%20%D0%A4%D0%9A%D0%A3_%D0%93%D0%A4%D0%90%20%D0%B2%20%D0%9C%D0%97%20%D0%A0%D0%A4.pdf. Ссылка активна на: 03.12.2023.; Zielonka M, Kölker S, Gleich F, et al. Early Prediction of Phenotypic Severity in Citrullinemia Type 1. Ann Clin Transl Neurol. 2019;6(9):1858–1871. doi: https://doi.org/10.1002/acn3.50886; Amino acid: Part 8. In: The Online Metabolic and Molecular Bases of Inherited Disease. Valle DL, Antonarakis S, Ballabio A, et al., eds. McGraw Hill; 2019. Available online: https://ommbid.mhmedical.com/content.aspx?bookid=2709&sectionid=225069235. Accessed on December 03, 2023.; Carter MT, Srour M, Au PB, et al. Genetic and metabolic investigations for neurodevelopmental disorders: position statement of the Canadian College of Medical Geneticists (CCMG). J Med Genet. 2023;60(6):523–532. doi: https://doi.org/10.1136/jmg-2022-108962; Михайлова С.В., Захарова Е.Ю., Петрухин А.С. Нейрометаболические заболевания у детей и подростков: диагностика и подходы к лечению. — 2-е изд., перераб. и доп. — М.: Литтерра; 2019. — 368 с.; Hajji H, Imbard A, Spraul A, et al. Initial presentation, management and follow-up data of 33 treated patients with hereditary tyrosinemia type 1 in the absence of newborn screening. Mol Genet Metab Rep. 2022;8(33):1009–1033. doi: https://doi.org/10.1016/j.ymgmr.2022.100933; Наследственная тирозинемия I типа: клинические рекомендации / Союз педиатров России; Ассоциация медицинских генетиков. — 2021. — 62 с. Доступно по: https://pediatr-russia.ru/information/klin-rek/proekty-klinicheskikh-rekomendatsiy/КР%20тирозинемия%20_финал.pdf. Ссылка активна на 03.12.2023.; Čulic V, Betz RC, Refke M, et al. Tyrosinemia type II (Richner– Hanhart syndrome): A new mutation in the TAT gene. Eur J Med Genet. 2011;54(3):205–208. doi: https://doi.org/10.1016/j.ejmg.2010.11.013; Najafi R, Mostofizadeh N, Hashemipour MA. Case of Tyrosinemia Type III with Status Epilepticus and Mental Retardation. Adv Biomed Res. 2018;7:7. doi: https://doi.org/10.4103/2277-9175.223740; Roopnarinesingh RC, Donlon NE, Reynolds JV. Alkaptonuria: clinical manifestations and an updated approach to treatment of a rare disease. BMJ Case Rep. 2021;14(12):e244240. doi: https://doi.org/10.1136/bcr-2021-244240; Болезнь «кленового сиропа» у детей: клинические рекомендации / Союз педиатров России. — Минздрав России; 2018. — 35 с. Доступно по: https://www.pediatr-russia.ru/information/klin-rek/deystvuyushchie-klinicheskie-rekomendatsii/%D0%91%D0%BE%D0%BB%D0%B5%D0%B7%D0%BD%D1%8C%20%D0%BA%D0%BB%D0%B5%D0%BD%D0%BE%D0%B2%D0%BE%D0%B3%D0%BE%20%D1%81%D0%B8%D1%80%D0%BE%D0%BF%D0%B0%20%D0%B4%D0%B5%D1%82%D0%B8%20%D0%A1%D0%9F%D0%A0.v2_2018.pdf. Ссылка активна на 03.12.2023.; Pode-Shakked N. Clues and challenges in the diagnosis of intermittent maple syrup urine disease. Eur J Med Genet. 2020;63(6): 103–109. doi: https://doi.org/10.1016/j.ejmg.2020.103901; Нарушение обмена серосодержащих аминокислот (гомоцистинурия): клинические рекомендации / Союз педиатров России; Ассоциация медицинских генетиков. — 2022. — 44 с. Доступно по: https://www.pediatr-russia.ru/information/klin-rek/proekty-klinicheskikh-rekomendatsiy/%D0%93%D0%BE%D0%BC%D0%BE%D1%86%D0%B8%D1%81%D1%82%D0%B8%D0%BD%D1%83%D1%80%D0%B8%D1%8F_1.06.2021.pdf. Ссылка активна на 03.12.2023.; Bittmann S, Villalon G, Moschuring-Alieva E, et al. Current and Novel Therapeutical Approaches of Classical Homocystinuria in Childhood With Special Focus on Enzyme Replacement Therapy, Liver-Directed Therapy and Gene Therapy. J Clin Med Res. 2023;15(2):76–83. doi: https://doi.org/10.14740/jocmr4843; Bayrak H, Yıldız Y, Olgaç A, et al. Genotypic and phenotypic features in Turkish patients with classic nonketotic hyperglycinemia. Metab Brain Dis. 2021;36(6):1213–1222. doi: https://doi.org/10.1007/s11011-021-00718-3; Huynh MT, Landais E, Agathe JS, et al. Novel homozygous GLDC variant causing late-onset glycine encephalopathy: A case report and updated review of the literature. Mol Genet Metab Rep. 2023;6(34):1009–1059. doi: https://doi.org/10.1016/j.ymgmr; Нарушения цикла образования мочевины: методические рекомендации / Cоюз педиатров России; Ассоциация медицинских генетиков; Российское общество неонатологов; Национальная ассоциация детских реабилитологов. — 2022. — 72 с. Доступно по: https://www.pediatr-russia.ru/news/%D0%9C%D0%A0_%D0%BD%D0%B0%D1%80%D1%83%D1%88%D0%B5%D0%BD%D0%B8%D0%B5%20%D1%86%D0%B8%D0%BA%D0%BB%D0%B0%20%D0%BC%D0%BE%D1%87%D0%B5%D0%B2%D0%B8%D0%BD%D1%8B_%D1%80%D0%B5%D0%B4_04.02.22.pdf. Ссылка активна на 03.12.2023.; Matsumoto S, Häberle J, Kido J, et al. Urea cycle disorders-update. J Hum Genet. 2019;64(9):833–847. doi: https://doi.org/10.1038/s10038-019-0614-4; Bernstein L, Rohr F, Van Calcar S. Nutrition Management of Inherited Metabolic Diseases. 2nd ed. Cham, Switzerland: Springer; 2015. 277 p. doi: https://doi.org/10.1007/978-3-319-14621-8; Распоряжение Правительства Российской Федерации от 11 декабря 2019 г. № 2984-р «Об утверждении перечня специализированных продуктов лечебного питания для детей-инвалидов на 2020 г.». Доступно по: https://www.garant.ru/products/ipo/prime/doc/73120657. Ссылка активна на 03.12.2023.; Cunningham A, Rohr F, Splett P, et al. Nutrition management of PKU with pegvaliase therapy: update of the web-based PKU nutrition management guideline recommendations. Orphanet J Rare Dis. 2023;18(1):155–161. doi: https://doi.org/10.1186/s13023-023-02751-0; https://vsp.spr-journal.ru/jour/article/view/3358

  6. 6
    Academic Journal

    المصدر: Current Pediatrics; Том 22, № 6 (2023); 572-576 ; Вопросы современной педиатрии; Том 22, № 6 (2023); 572-576 ; 1682-5535 ; 1682-5527

    وصف الملف: application/pdf

    Relation: https://vsp.spr-journal.ru/jour/article/view/3357/1351; Schuchman EH, Desnick RJ. Types A and B Niemann-Pick disease. Mol Genet Metab. 2017;120(1-2):27–33. doi: https://doi.org/10.1016/j.ymgme.2016.12.008; Beutler E, Grabowski GA. Gaucher disease. In: The Metabolic and Molecular Bases of Inherited Disease. Vol. 3. Scriver CR, Beaudet AL, Sly WS, Valle D, eds. New York: McGraw-Hill: 2001. pp. 3635–3668.; Niemann A. Ein unbekanntes Krankheitsbild. Jahrb Kinderheillkd. 1914;79:1.; Pick L. Über die lipoidzellige splenohepatomegalie typus Niemann-Pick als stoffwechselerkrankung. Med Klin (Munich). 1927; 23:1483–1486.; Niemann-Pick disease In: Genes and Disease [Internet]. National Center for Biotechnology Information (US). Bethesda (MD): National Center for Biotechnology Information (US); 1998. Available online: https://www.ncbi.nlm.nih.gov/books/NBK22176. Accessed on December 20, 2023.; Arslan N, Coker M, Gokcay GF, et al. Expert opinion on patient journey, diagnosis and clinical monitoring in acid sphingomyelinase deficiency in Turkey: a pediatric metabolic disease specialist’s perspective. Front Pediatr. 2023;11:1113422. doi: https://doi.org/10.3389/fped.2023.1113422; Jones SA, McGovern M, Lidove O, et al. Clinical relevance of endpoints in clinical trials for acid sphingomyelinase deficiency enzyme replacement therapy. Mol Genet Metab. 2020;131(1-2):116–123. doi: https://doi.org/10.1016/j.ymgme.2020.06.008; Nicholson AG, Florio R, Hansell DM, et al. Pulmonary involvement by Niemann-Pick disease. A report of six cases. Histopathology. 2006;48(5):596–603. doi: https://doi.org/10.1111/j.1365-2559.2006.02355.x; Freitas HMP, Mançano AD, Rodrigues RS, et al. Niemann-Pick disease type B: HRCT assessment of pulmonary involvement. J Bras Pneumol. 2017;43(6):451–455. doi: https://doi.org/10.1590/S1806-37562017000000062; Iaselli F, Rea G, Cappabianca S, et al. Adult-onset pulmonary involvement in Niemann-Pick disease type B. Monaldi Arch Chest Dis. 2011;75(4):235–240. doi: https://doi.org/10.4081/monaldi.2011.211; Ishii H, Takahashi T, Toyono M, et al. Acid sphingomyelinase deficiency: cardiac dysfunction and characteristic findings of the coronary arteries. J Inherit Metab Dis. 2006;29(1):232–234. doi: https://doi.org/10.1007/s10545-006-0226-y; Tassoni JP Jr, Fawaz KA, Johnston DE. Cirrhosis and portal hypertension in a patient with adult Niemann-Pick disease. Gastroenterology. 1991;100(2):567–569. doi: https://doi.org/10.1016/0016-5085(91)90233-b; Lever AM, Ryder JB. Cor pulmonale in an adult secondary to Niemann-Pick disease. Thorax. 1983;38(11):873–874. doi: https://doi.org/10.1136/thx.38.11.873; McGovern MM, Wasserstein MP, Aron A, et al. Ocular manifestations of Niemann-Pick disease type B. Ophthalmology. 2004;111(7): 1424–1427. doi: https://doi.org/10.1016/j.ophtha.2003.10.034; Wasserstein M, Godbold J, McGovern M.M. Skeletal manifestations in pediatric and adult patients with Niemann Pick disease type B. J Inherit Metab Dis. 2013;36(1):123–127. doi: https://doi.org/10.1007/s10545-012-9503-0; Schuchman E.H. The pathogenesis and treatment of acid sphingomyelinase-deficient Niemann–Pick disease. J Inherit Metab Dis. 2007; 30(5):654–663. doi: https://doi.org/10.1007/s10545-007-0632-9; Schuchman EH, Wasserstein MP. Types A and B Niemann-Pick disease. Best Pract Res Clin Endocrinol Metab. 2015;29(2):237–247. doi: https://doi.org/10.1016/j.beem.2014.10.002; Kingma SD, Bodamer OA, Wijburg FA. Epidemiology and diagnosis of lysosomal storage disorders; challenges of screening. Best Pract Res Clin Endocrinol Metab. 2015;29(2):145–157. doi: https://doi.org/10.1016/j.beem.2014.08.004; Prevalence of rare diseases: Bibliographic data. Orphanet Report Series, Rare Diseases collection. 2023 Number 1: Diseases in alphabetical order. Available online: http://www.orpha.net/orphacom/cahiers/docs/GB/Prevalence_of_rare_diseases_by_alphabetical_list.pdf. Accessed on December 10, 2023.; Poorthuis HM, Wevers RA, Kleijer WJ, et al. The frequency of lysosomal storage diseases in The Netherlands. Hum Genet. 1999;105(1-2): 151–156. doi: https://doi.org/10.1007/s004399900075; McGovern MM, Schuchman EH. Acid sphingomyelinase deficiency. In: Gene Reviews [Internet]. Pagon RA, Bird TC, Dolan CR, Stephens K, eds. Seattle (WA): University of Washington, Seattle; 1993–2006.; Meikle P, Hopwood JJ, Clague AR, et al. Prevalence of lysosomal storage disorders. JAMA. 1999;281(3):249–254. doi: https://doi.org/10.1001/jama.281.3.249; McGovern MM, Wasserstein MP, Giugliani R, et al. A prospective, cross-sectional survey study of the natural history of Niemann–Pick disease type B. Pediatrics. 2008;122(2):e341–e349. doi: https://doi.org/10.1542/peds.2007-3016; Thurberg BL, Wasserstein MP, Schiano T, et al. Liver and skin histopathology in adults with acid sphingomyelinase deficiency (Niemann–Pick disease type B). Am J Surg Pathol. 2012;36(8): 1234–1246. doi: https://doi.org/10.1097/PAS.0b013e31825793ff; Acuna M, Martínez P, Moraga C, et al. Epidemiological, clinical and biochemical characterization of the p.(Ala359Asp) SMPD1 variant causing Niemann–Pick disease type B. Eur J Hum Genet. 2016; 24(2):208–213. doi: https://doi.org/10.1038/ejhg.2015.89; Cassiman D, Packman S, Bembi B, et al. Cause of death in patients with chronic visceral and chronic neurovisceral acid sphingomyelinase deficiency (Niemann-Pick disease type B and B variant): literature review and report of new cases. Mol Genet Metab. 2016;118(3):206–213. doi: https://doi.org/10.1016/j.ymgme.2016.05.001; McGovern MM, Aron A, Brodie SE, et al. Natural history of type A Niemann–Pick disease: possible endpoints for therapeutic trials. Neurology. 2006;66(2):228–232. doi: https://doi.org/10.1212/01.wnl.0000194208.08904.0c; McGovern MM, Lippa N, Bagiella E, et al. Morbidity and mortality in type B Niemann–Pick disease. Genet Med. 2013;15(8):618–623. doi: https://doi.org/10.1038/gim.2013.4; Faverio P, Stainer A, De Giacomi F, et al. Molecular pathways and respiratory involvement in lysosomal storage diseases. Int J Mol Sci. 2019;20(2):327. doi: https://doi.org/10.3390/ijms20020327; Wasserstein M, Dionisi-Vici C, Giugliani R, et al. Recommendations for clinical monitoring of patients with acid sphingomyelinase deficiency (ASMD). Mol Genet Metab. 2019;126(2):98–105. doi: https://doi.org/10.1016/j.ymgme.2018.11.014; Volders P, Van Hove J, Lories RJ, et al. Niemann–Pick disease type B: an unusual clinical presentation with multiple vertebral fractures. Am J Med Genet. 2002;109(1):42–51. doi: https://doi.org/10.1002/ajmg.10278; McGovern MM, Pohl-Worgall T, Deckelbaum RJ, et al. Lipid abnormalities in children with types A and B Niemann Pick disease. J Pediatr. 2004;145(1):77–81. doi: https://doi.org/10.1016/j.jpeds.2004.02.048; Walton DS, Robb RM, Crocker AC. Ocular manifestations of group A Niemann-Pick disease. Am J Ophthalmol. 1978;85(2):174–180. doi: https://doi.org/10.1016/s0002-9394(14)75945-8; Libert J, Toussaint D, Guiselings R. Ocular findings in Niemann-Pick disease. Am J Ophthalmol. 1975;80(6):991–1002. doi: https://doi.org/10.1016/0002-9394(75)90327-x; Lowe D, Martin F, Sarks J. Ocular manifestations of adult Niemann-Pick disease: a case report. Aust N Z J Ophthalmol. 1986;14(1):41–47. doi: https://doi.org/10.1111/j.1442-9071.1986.tb00006.x; Hollak CE, de Sonnaville ES, Cassiman D, et al. Acid sphingomyelinase (Asm) deficiency patients in the Netherlands and Belgium: disease spectrum and natural course in attenuated patients. Mol Genet Metab. 2012; 107(3):526–533. doi: https://doi.org/10.1016/j.ymgme.2012.06.015; Geberhiwot T, Wasserstein M, Wanninayake S, et al. Consensus clinical management guidelines for acid sphingomyelinase deficiency (Niemann–Pick disease types A, B and A/B). Orphanet J Rare Dis. 2023;18(1):85. doi: https://doi.org/10.1186/s13023-023-02686-6; Harzer K, Rolfs A, Bauer P, et al. Niemann–Pick disease type A and B are clinically but also enzymatically heterogeneous: pitfall in the laboratory diagnosis of sphingomyelinase deficiency associated with the mutation Q292 K. Neuropediatrics. 2003;34(6):301–306. doi: https://doi.org/10.1055/s-2003-44668; Mihaylova V, Hantke J, Sinigerska I, et al. Highly variable neural involvement in sphingomyelinase-deficient Niemann–Pick disease caused by an ancestral Gypsy mutation. Brain. 2007;130(Pt 4): 1050–1061. doi: https://doi.org/10.1093/brain/awm026; Wasserstein MP, Aron A, Brodie SE, et al. Acid sphingomyelinase deficiency: prevalence and characterization of an intermediate phenotype of Niemann–Pick disease. J Pediatr. 2006;149(4):554–559. doi: https://doi.org/10.1016/j.jpeds.2006.06.034; Pavlu-Pereira H, Asfaw B, Poupctová H, et al. Acid sphingo-myelinase deficiency. Phenotype variability with prevalence of intermediate phenotype in a series of twenty-five Czech and Slovak patients. A multi-approach study. J Inherit Metab Dis. 2005;28(2):203–227. doi: https://doi.org/10.1007/s10545-005-5671-5; Imrie J, Mengel KE, Cassiman D, et al. Cause of death in patients with attenuated acid sphingomyelinase deficiency: Comprehensive literature review and report of new cases. Mol Genet Metab. 2016; 117:S60. doi: https://doi.org/10.1016/j.ymgme.2015.12.298; Sen Sarma M, Tripathi PR. Natural history and management of liver dysfunction in lysosomal storage disorders. World J Hepatol. 2022; 14(10):1844–1861. doi: https://doi.org/10.4254/wjh.v14.i10.1844; https://vsp.spr-journal.ru/jour/article/view/3357

  7. 7
    Academic Journal

    المصدر: Current Pediatrics; Том 22, № 6 (2023); 554-559 ; Вопросы современной педиатрии; Том 22, № 6 (2023); 554-559 ; 1682-5535 ; 1682-5527

    وصف الملف: application/pdf

    Relation: https://vsp.spr-journal.ru/jour/article/view/3361/1355; Hampe CS, Wesley J, Lund TC, et al. Mucopolysaccharidosis Type I: Current Treatments, Limitations, and Prospects for Improvement. Biomolecules. 2021;11(2):189. doi: https://doi.org/10.3390/biom11020189; Neufeld EF, Muenzer J. The Mucopolysaccharidoses. In: The Online Metabolic and Molecular Bases of Inherited Disease. Valle DL, Antonarakis S, Ballabio A, et al., eds. McGraw Hill; 2019–2023. Available online: https://ommbid.mhmedical.com/content.aspx?bookid=2709&sectionid=225544161. Accessed on December 04, 2023.; Вашакмадзе Н.Д., Костик М.М., Журкова Н.В. и др. Характеристика суставного синдрома у детей с мукополисахаридозом I типа // Вопросы современной педиатрии. —2021. — Т. 20. — № 6S. — С. 567–575. — doi: https://doi.org/10.15690/vsp.v20i6S.2364; Резолюция Совета экспертов. Результаты мониторинга пациентов с МПС I типа. Критерии возобновления ФЗТ при МПС I типа после ТГСК // Педиатрическая фармакология. — 2022. — Т. 19. — № 3. — С. 291–293. — doi: https://doi.org/10.15690/pf.v19i3.2459; Мукополисахаридоз, тип I: клинические рекомендации / Союз педиатров России; Ассоциация медицинских генетиков. — Минздрав России; 2021. — 75 с. Доступно по: https://cr.minzdrav.gov.ru/recomend/380_2. Ссылка активна на 04 декабря 2023.; Eisengart JB, Rudser KD, Tolar J, et al. Enzyme replacement is associated with better cognitive outcomes after transplant in Hurler syndrome. J Pediatr. 2013;162(2):375–380. doi: https://doi.org/10.1016/j.jpeds.2012.07.052; Gardin A, Castelle M, Pichard S, et al. Long-term follow-up after haematopoietic stem cell transplantation for mucopolysaccharidosis type I-H: a retrospective study of 51 patients. Bone Marrow Transplant. 2023;58(3):295–302. doi: https://doi.org/10.1038/s41409-022-01886-1; Lund TC, Miller WP, Liao AY, et al. Open issues in Mucopolysaccharidosis type I-Hurler. Orphanet J Rare Dis. 2017;12(1): 112. doi: https://doi.org/10.1186/s13023-017-0662-9; Guffon N, Pettazzoni M, Pangaud N, et al. Long term disease burden post-transplantation: three decades of observations in 25 Hurler patients successfully treated with hematopoietic stem cell transplantation (HSCT). Orphanet J Rare Dis. 2021;16(1):60–64. doi: https://doi.org/10.1186/s13023-020-01644-w; Lund TC, Miller WP, Liao AY, et al. Post-transplant laronidase augmentation for children with Hurler syndrome: biochemical outcomes. Sci Rep. 2019;9(1):141–145. doi: https://doi.org/10.1038/s41598-019-50595-1; https://vsp.spr-journal.ru/jour/article/view/3361

  8. 8
    Academic Journal

    المساهمون: Not specified., Отсутствует

    المصدر: Pediatric pharmacology; Том 21, № 3 (2024); 263-288 ; Педиатрическая фармакология; Том 21, № 3 (2024); 263-288 ; 2500-3089 ; 1727-5776

    وصف الملف: application/pdf

    Relation: https://www.pedpharma.ru/jour/article/view/2467/1608; Ellingwood SS, Cheng A. Biochemical and Clinical Aspects of Glycogen Storage Diseases. J Endocrinol. 2018;238(3):131–141. https://doi.org/10.1530/JOE-18-0120; Lei KJ, Chen YT, Chen H, et al. Genetic basis of glycogen storage disease type 1a: prevalent mutations at the glucose-6-phosphatase locus. Am J Hum Genet. 1995;57(4):766–771.; Chen YT. Glycogen storage diseases. In: The Metabolic Bases of Inherited Disease. 8th edn. Scriver CR, Beaudet AL, Sly WS, Valle D, eds. New York: McGraw-Hill; 2000. pp. 1521–1551.; Зайчик А.Ш., Чурилов Л.П. Основы общей патологии. Ч. 2. Основы патохимии: учебное пособие для студентов медицинских вузов. — СПб.: ЭЛБИ; 2000. — 688 с.; Brody LC, Abel KJ, Castilla LH, et al. Construction of a transcription map surrounding the BRCA1 locus of human chromosome 17. Genomics. 1995;25(1):238–247. https://doi.org/10.1016/0888-7543(95)80131-5; Цыгин А.Н. Сочетанные заболевания печени и почек у детей // Клиническая нефрология. — 2009. — № 3. — С. 47–51.; Chen YT. Type I glycogen storage disease: kidney involvement, pathogenesis and its treatment. Pediatr Nephrol. 1991;5(1):71–76. https://doi.org/10.1007/BF00852851; Ueno N, Tomita M, Ariga T, et al. Impaired monocyte function in glycogen storage disease type Ib. Eur J Pediatr. 1986;145(4):312–314. https://doi.org/10.1007/BF00439409; Leuzzi R, Banhegyi G, Kardon T, et al. Inhibition of microsomal glucose-6-phosphate transport in human neutrophils results in apoptosis: a potential explanation for neutrophil dysfunction in glycogen storage disease type 1b. Blood. 2003;101(6):2381–2387. https://doi.org/10.1182/blood-2002-08-2576; Shen J, Bao Y, Liu HM, et al. Mutations in exon 3 of the glycogen debranching enzyme gene are associated with glycogen storage disease type III that is differentially expressed in liver and muscle. J Clin Invest. 1996;98(2):352–357. https://doi.org/10.1172/JCI118799; Li XH, Gong QM, Ling Y, et al. Inherent lipid metabolic dysfunction in glycogen storage disease IIIa. Biochem Biophys Res Commun. 2014;455(1-2):90–97. https://doi.org/10.1016/j.bbrc.2014.10.096; Moses SW, Parvari R. The variable presentations of glycogen storage disease type IV: a review of clinical, enzymatic and molecular studies. Curr Mol Med. 2002;2(2):177–188. https://doi.org/10.2174/1566524024605815; Burwinkel B, Bakker HD, Herschkovitz E, et al. Mutations in the liver glycogen phosphorylase gene (PYGL) underlying glycogenosis type VI (Hers disease). Am J Hum Genet. 1998;62(4):785–791. doi: https://doi.org/10.1086/301790; Chang S, Rosenberg MJ, Morton H, et al. Identification of a mutation in liver glycogen phosphorylase in glycogen storage disease type VI. Hum Molec Genet. 1998;7(5):865–870. doi: https://doi.org/10.1093/hmg/7.5.865; Hug G, Schubert WK, Chuck G. Deficient activity of dephoshophosphorylase kinase and accumulation of glycogene in the liver. J Clin Invest. 1969;48(4):704–715. https://doi.org/10.1172/JCI106028; Lerner A, Iancu TC, Bashan N, et al. A new variant of glycogen storage disease. Type IXc. Am J Dis Child. 1982;136(5):406–410. https://doi.org/10.1001/archpedi.1982.03970410024004; Stone WL, Basit H, Adil A. Glycogen Storage Disease. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK459277. Accessed on June 01, 2024.; Ozen H. Glycogen storage diseases: new perspectives. World J Gastroenterol. 2007;13(18):2541–2553. https://doi.org/10.3748/wjg.v13.i18.2541; Kishnani PS, Austin SL, Arn P, et al. Glycogen storage disease type III diagnosis and management guidelines. Genet Med. 2010;12(7):446–463. https://doi.org/10.1097/GIM.0b013e3181e655b6; Hendrickx J, Willems PJ. Genetic deficiencies of the glycogen phosphorylase system. Hum Genet. 1996;97(5):551–556. doi: https://doi.org/10.1007/BF02281858; Краснопольская К.Д. Наследственные болезни обмена веществ: справочное пособие для врачей. — М.: РОО «Центр социальной адаптации и реабилитации детей «Фохат»; 2005. — 364 с.; Rake JP, Visser G, Labrune P, et al. Guidelines for management of glycogen storage disease type I — European Study on Glycogen Storage Disease Type I (ESGSD I). Eur J Pediatr. 2002;161(Suppl 1):S112–S119. https://doi.org/10.1007/s00431-002-1016-7; Kishnani PS, Austin SL, Abdenur JE, et al. Diagnosis and management of glycogen storage disease type I: a practice guideline of the American College of Medical Genetics and Genomics. Genet Med. 2014;16(11):e1. https://doi.org/10.1038/gim.2014.128; Humbert M, Labrune P, Simonneau G. Severe pulmonary arterial hypertension in type1 glycogen storage disease. Eur J Pediatr. 2002;161(Suppl 1):S93–S96. https://doi.org/10.1007/s00431-002-1012-y; Лобзин В.С., Сайкова Л.А., Шиман А.Г. Нервно-мышечные болезни. — СПб.: Гиппократ; 1998. — 224 с. [Lobzin VS, Saikova LA, Shiman AG. Nervno-myshechnye bolezni. St. Petersburg: Gippokrat; 1998. 224 p. (In Russ).]; Visser G, Rake JP, Labrune P, et al. Consensus guidelines for management of glycogen storage disease type 1b — European Study on Glycogen Storage Disease Type 1. Eur J Pediatr. 2002;161(Suppl 1):S120–S123. https://doi.org/10.1007/s00431-002-1017-6; Visser G, Rake JP, Fernandes J, et al. Neutropenia, neutrophil dysfunction, and infl ammatory bowel disease in glycogen storage disease type Ib: results of the European Study on Glycogen Storage Disease type I. J Pediatr. 2000;137;(2):187–191. https://doi.org/10.1067/mpd.2000.105232; Kure S, Hou DC, Suzuki Y, et al. Glycogen storage disease type Ib without neutropenia. J Pediatr. 2000;137(2):253–256. https://doi.org/10.1067/mpd.2000.107472; Melis D, Fulceri R, Parenti G, et al. Genotype/phenotype correlation in glycogen storage disease type 1b: a multicentre study and review of the literature. Eur J Pediatr. 2005;164(8):501–508. https://doi.org/10.1007/s00431-005-1657-4; Shen JJ, Chen YT. Molecular characterization of glycogen storage disease type III. Curr Mol Med. 2002;2(2):167–175. https://doi.org/10.2174/1566524024605752; L’Herminé-Coulomb A, Beuzen F, Bouvier R, et al. Fetal type IV glycogen storage disease: clinical, enzymatic, and genetic data of a pure muscular form with variable and early antenatal manifestations in the same family. Am J Med Genet. 2005;139A(2):118–122. https://doi.org/10.1002/ajmg.a.30945; Szymańska E, Szymańska S, Truszkowska G, et al. Variable clinical presentation of glycogen storage disease type IV: from severe hepatosplenomegaly to cardiac insufficiency. Some discrepancies in genetic and biochemical abnormalities. Arch Med Sci. 2018;14(1):237–247. https://doi.org/10.5114/aoms.2018.72246; Malfatti E, Barnérias C, Hedberg-Oldfors C, et al. A novel neuromuscular form of glycogen storage disease type IV with arthrogryposis, spinal stiffness and rare polyglucosan bodies in muscle. Neuromuscul Disord. 2016;26(10):681–687. https://doi.org/10.1016/j.nmd.2016.07.005; Roscher A, Patel J, Hewson S, et al. The natural history of glycogen storage disease types VI and IX: Long-term outcome from the largest metabolic center in Canada. Mol Genet Metab. 2014;113(3):171–176. https://doi.org/10.1016/j.ymgme.2014.09.005285; Hodax JK, Uysal S, Quintos JB, Phornphutkul C. Glycogen storage disease type IX and growth hormone deficiency presenting as severe ketotic hypoglycemia. J Pediatr Endocrinol Metab. 2017;30(2):247–251. https://doi.org/10.1515/jpem-2016-0342; Сурков А.Н. Гликогеновая болезнь у детей: новые аспекты патогенеза, современные подходы к диагностике, оптимизация ведения пациентов: автореф. дис. … докт. мед. наук. — М.; 2019. — 47 с.; Баранов А.А., Намазова-Баранова Л.С., Сурков А.Н. и др. Гликогеновая болезнь у детей: учебное пособие / Союз педиатров России. — М.: ПедиатрЪ; 2012. — 128 с. — (Болезни детского возраста от А до Я).; Kishnani PS, Goldstein J, Austin SL, et al. Diagnosis and Management of Glycogen Storage Diseases Type VI and IX: a clinical practice resource of the American College of Medical Genetics and Genomics (ACMG). Genet Med. 2019;21(4):772–789. https://doi.org/10.1038/s41436-018-0364-2; Anastasopoulou C. Glycogen Storage Diseases Types I–VII. In: Medscape. Updated: Dec 01, 2022. Available online: https://emedicine.medscape.com/article/1116574-overview. Accessed on June 01, 2024.; Steunenberg TAH, Peeks F, Hoogeveen IJ, et. al. Safety issues associated with dietary management in patients with hepatic glycogen storage disease. Mol Genet Metab. 2018;125(Issues 1-2):79–85. https://doi.org/10.1016/j.ymgme.2018.07.004; Ng K, Mogul DB. Pediatric Liver Tumors. Clin Liver Dis. 2018;22(4):753–772. https://doi.org/10.1016/j.cld.2018.06.008; Laumonier H, Bioulac-Sage P, Laurent C, et al. Hepatocellular adenomas: magnetic resonance imaging features as a function of molecular pathological classification. Hepatology. 2008;48:808–818. https://doi.org/10.1002/hep.22417; Khanna R, Verma SK. Pediatric hepatocellular carcinoma. World J Gastroenterol. 2018;24(35):3980–3999. https://doi.org/10.3748/wjg.v24.i35.3980; Bali DS, Chen YT, Austin S, Goldstein JL. Glycogen Storage Disease Type I. In: GeneReviews® [Internet]. Adam MP, Feldman J, Mirzaa GM, et al., eds. Seattle (WA): University of Washington, Seattle; 1993–2020. Available online: https://www.ncbi.nlm.nih.gov/books/NBK1312. Accessed on June 01, 2024.; Sharari S, Abou-Alloul M, Hussain K, Ahmad Khan F. FanconiBickel Syndrome: A Review of the Mechanisms That Lead to Dysglycaemia. Int J Mol Sci. 2020;21(17):628. https://doi.org/10.3390/ijms21176286; Gupta N, Nambam B, Weinstein DA, Shoemaker LR. Late Diagnosis of Fanconi-Bickel Syndrome: Challenges With the Diagnosis and Literature Review. J Inborn Errors Metab Screen. 2016;4:1–6. https://doi.org/10.1177/2326409816679430; Cori GT. Glycogen structure and enzyme dificiencies in Glycogen Storage Disease. Harvey Lect. 1954;48:145–171.; Дворяковская Г.М., Уварова Е.В., Дворяковский И.В. и др. Роль ультразвуковой диагностики при обследовании детей с печеночной формой гликогенозов // Ультразвуковая и функциональная диагностика. — 2002. — № 4. — С. 53–59.; Pereira NL, Grogan M, Dec GW. Spectrum of Restrictive and Infiltrative Cardiomyopathies: Part 1 of a 2-Part Series. J Am Coll Cardiol. 2018;71(10):1130–1148. https://doi.org/10.1016/j.jacc.2018.01.016; Schreuder AB, Rossi A, Grünert SC, Derks TGJ. Glycogen Storage Disease Type III. In: GeneReviews® [Internet]. Adam MP, Feldman J, Mirzaa GM, et al., eds. Seattle (WA): University of Washington, Seattle; 1993–2020. Available online: https://www.ncbi.nlm.nih.gov/books/NBK26372. Accessed on June 01, 2024.; Mogahed EA, Girgis MY, Sobhy R, et al. Skeletal and cardiac muscle involvement in children with glycogen storage disease type III. Eur J Pediatr. 2015;174(11):1545–1548. https://doi.org/10.1007/s00431-015-2546-0; Magoulas PL, El-Hattab AW. Glycogen Storage Disease Type IV. In: GeneReviews® [Internet]. Adam MP, Feldman J, Mirzaa GM, et al., eds. Seattle (WA): University of Washington, Seattle; 1993–2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK115333. Accessed on June 01, 2024.; Попович Ю.Г., Чибисов И.В., Потапова-Виноградова И.Н. и др. Клинико-биохимические и морфологические особенности печеночной формы гликогенозов у детей // Педиатрия. Журнал им. Г.Н. Сперанского. — 1988. — № 1. — С. 35–39.; Pathology of the liver. MacSween RNM, Burt AD, Portmann BC, et al., eds. 4th edn. London: Churchill Livingstone; 2001. 982 p.; Клиническая диетология детского возраста: руководство для врачей / под ред. Т.Э. Боровик, К.С. Ладодо. — М.: ООО «Медицинское информационное агентство»; 2008. — 614 с.; Уварова Е.В. Течение гликогеновой болезни печени у детей в условиях комплексной терапии: автореф. дис. … канд. мед. наук. — М.; 2005. — 28 с.; Heller S, Worona L, Consuelo A. Nutritional therapy for glycogen storage diseases. J Pediatr Gastroenterol Nutr. 2008;47(Suppl 1):15–21. https://doi.org/10.1097/MPG.0b013e3181818ea5; Melis D, Della Casa R, Parini R, et al. Vitamin E supplementation improves neutropenia and reduces the frequency of infections in patients with glycogen storage disease type 1b. Eur J Pediatr. 2009;168(9):1069–1074. https://doi.org/10.1007/s00431-008-0889-5; Hicks J, Wartchow E, Mierau G. Glycogen storage diseases: a brief review and update on clinical features, genetic abnormalities, pathologic features, and treatment. Ultrastruct Pathol. 2011;35(5):183–196. https://doi.org/10.3109/01913123.2011.601404; Adeva-Andany MM, Calvo-Castro I, Fernández-Fernández C, et al. Significance of l-carnitine for human health. IUBMB Life. 2017;69(8):578–559. https://doi.org/10.1002/iub.1646; Parikh NS, Ahlawat R. Glycogen Storage Disease Type I. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK534196. Accessed on June 06, 2024.; Ozen H, Ciliv G, Koçak N, et al. Short-term effect of captopril on microalbuminuria in children with glycogen storage disease type Ia. J Inherit Metab Dis. 2000;23(5):459–463. https://doi.org/10.1023/a:1005608113270; Quinlivan R, Martinuzzi A, Schoser B. Pharmacological and nutritional treatment for McArdle disease (Glycogen Storage Disease type V). Cochrane Database Syst Rev. 2014;2014(11):CD003458. https://doi.org/10.1002/14651858.CD003458.pub5; Martinuzzi A, Liava A, Trevisi E, et al. Randomized, placebocontrolled, double-blind pilot trial of ramipril in McArdle’s disease. Muscle Nerve. 2008;37(3):350–357. https://doi.org/10.1002/mus.20937; Wicker C, Roda C, Perry A, et al. Infectious and digestive complications in glycogen storage disease type Ib: Study of a French cohort. Mol Genet Metab Rep. 2020;23:100581. https://doi.org/10.1016/j.ymgmr.2020.100581; Visser G, Rake JP, Labrune P, et al. Granulocyte colonystimulating factor in glycogen storage disease type 1b. Results of the European Study on Glycogen Storage Disease Type 1. Eur J Pediatr. 2002;161(Suppl 1):S83–S87. https://doi.org/10.1007/s00431-002-1010-0; Dale DC, Bolyard AA, Marrero T, et al. Neutropenia in glycogen storage disease Ib: outcomes for patients treated with granulocyte colony-stimulating factor. Curr Opin Hematol. 2019;26(1):16–21. https://doi.org/10.1097/MOH.0000000000000474; Melis D, Parenti G, Della Casa R, et al. Crohn’s-like ileo-colitis in patients affected by glycogen storage disease Ib: two years’ follow-up of patients with a wide spectrum of gastrointestinal signs. Acta Paediatr. 2003;92(12):1415–1421. https://doi.org/10.1080/08035250310007033; Melis D, Della Casa R, Balivo F, et al. Involvement of endocrine system in a patient affected by glycogen storage disease 1b: speculation on the role of autoimmunity. Ital J Pediatr. 2014;40(1):30. https://doi.org/10.1186/1824-7288-40-30; Gong YZ, Zhong XM, Zou JZ. Infliximab treatment of glycogenosis Ib with Crohn’s-like enterocolitis: A case report. World J Clin Cases. 2021;9(19):5280–5286. https://doi.org/10.12998/wjcc.v9.i19.5280; Davis MK, Rufo PA, Polyak SF, Weinstein DA. Adalimumab for the treatment of Crohn-like colitis and enteritis in glycogen storage disease type Ib. J Inherit Metab Dis. 2008;31(Suppl 3):505–509. https://doi.org/10.1007/s10545-007-0774-9; Готье С.В., Цирульникова О.М., Мнацаканян Д.С. и др. Трансплантация печени у детей с болезнями накопления гликогена: оценка риска и необходимость ее проведения // Вестник трансплантологии и искусственных органов. — 2013. — Т. 15. — № 1. — С. 67–74. — https://doi.org/10.15825/1995-1191-2013-1-67-74; Филин А .В., С еменков А .В., Короте ева Н. А . и др. Родственная пересадка фрагментов печени при гликогенозах I типа: первый российский опыт // Трансплантология. — 2011 . — № 2–3. — С. 24–28 . — doi: ht tps://doi.org/10.23873/20740506-20110-2-3-24-28; Boers SJ, Visser G, Smit PG, Fuchs SA. Liver transplantation in glycogen storage disease type I. Orphanet J Rare Dis. 2014;9:47. https://doi.org/10.1186/1750-1172-9-47; Oshita A, Itamoto T, Amano H, et al. Perioperative management of benign hepatic tumors in patients with glycogen storage disease type Ia. J Hepatobiliary Pancreat Surg. 2008;15(2):200–203. https://doi.org/10.1007/s00534-007-1244-3; Brady MT. Immunization recommendations for children with metabolic disorders: more data would help. Pediatrics. 2006;118(2):810–813. https://doi.org/10.1542/peds.2006-0846.; Cerutti M, De Lonlay P, Menni F, et al. Vaccination coverage of patients with inborn errors of metabolism and the attitudes of their parents towards vaccines. Vaccine. 2015;33(48):6520–6524. https://doi.org/10.1016/j.vaccine.2015.10.073; https://www.pedpharma.ru/jour/article/view/2467

  9. 9
    Academic Journal

    المساهمون: Not specified., Отсутствует.

    المصدر: Current Pediatrics; Том 22, № 4 (2023); 324-330 ; Вопросы современной педиатрии; Том 22, № 4 (2023); 324-330 ; 1682-5535 ; 1682-5527

    وصف الملف: application/pdf

    Relation: https://vsp.spr-journal.ru/jour/article/view/3270/1315; Scarpa M. Mucopolysaccharidosis type II. In: GeneReviews®. Adam MP, Ardinger HH, Pagon RA, et al., eds. University of Washington, Seattle; SeattleWA: 1993.; Wraith JE, Scarpa M, Beck M, et al. Mucopolysaccharidosis type II (Hunter syndrome): a clinical review and recommendations for treatment in the era of enzyme replacement therapy. Eur J Pediatr. 2008;167(3):267–277. doi: https://doi.org/10.1007/s00431-007-0635-4; da Silva EMK, Strufldi MWL, Andriolo RB, Silva LA. Enzyme replacement therapy with idursulfase for mucopolysaccharidosis type II (Hunter Syndrome). Cochrane Database Syst Rev. 2016;2(2):CD008185. doi: https://doi.org/10.1002/14651858.CD008185.pub4; D’Avanzo F, Rigon L, Zanetti A, Tomanin R. Mucopolysaccharidosis type II: one hundred years of research, diagnosis, and treatment. Int J Mol Sci. 2020;21(4):1258. doi: https://doi.org/10.3390/ijms21041258; Stapleton M, Arunkumar N, Kubaski F, et al. Clinical presentation and diagnosis of mucopolysaccharidoses. Mol Genet Metab. 2018;125(1-2):4–17. doi: https://doi.org/10.1016/j.ymgme.2018.01.003; Demydchuk M, Hill CH, Zhou A, et al. Insights into Hunter syndrome from the structure of iduronate-2-sulfatase. Nat Commun. 2017;8:15786. doi: https://doi.org/10.1038/ncomms15786; Hunter C. A Rare Disease in Two Brothers. Proc R Soc Med. 1917;10(Sect Study Dis Child):104–116. doi: https://doi.org/10.1177/003591571701001833; Khan SA, Peracha H, Ballhausen D, et al. Epidemiology of mucopolysaccharidoses. Mol Genet Metab. 2017;121(3):227–240. doi: https://doi.org/10.1016/j.ymgme.2017.05.016; Stapleton M, Kubaski F, Mason RW, et al. Presentation and treatments for Mucopolysaccharidosis Type II (MPS II; Hunter Syndrome). Expert Opin Orphan Drugs. 2017;5(4):295-307. doi: https://doi.org/10.1080/21678707.2017.1296761; Shapiro EG, Jones SA, Escolar ML. Developmental and behavioral aspects of mucopolysaccharidoses with brain manifestations — Neurological signs and symptoms. Mol Genet Metab. 2017;122S: 1–7. doi: https://doi.org/10.1016/j.ymgme.2017.08.009; Tomanin R, Zanetti A, D’Avanzo F, et al. Clinical efficacy of Enzyme Replacement Therapy in paediatric Hunter patients, an independent study of 3.5 years. Orphanet J Rare Dis. 2014;9:129. doi: https://doi.org/10.1186/s13023-014-0129-1; Rigante D, Segni G. Cardiac structural involvement in mucopolysaccharidoses. Cardiology. 2002;98(1-2):18–20. doi: https://doi.org/10.1159/000064674; Kim C, Seo J, Chung Y, et al. Comparative study of idursulfase beta and idursulfase in vitro and in vivo. J Hum Genet. 2017;62(2): 167–174. doi: https://doi.org/10.1038/jhg.2016.133; Chung YK, Sohn YB, Sohn JM, et al. A biochemical and physicochemical comparison of two recombinant enzymes used for enzyme replacement therapies of hunter syndrome. Glycoconj J. 2014;31(4):309–315. doi: https://doi.org/10.1007/s10719-014-9523-0; Sohn YB, Cho SY, Park SW, et al. Phase I/II clinical trial of enzyme replacement therapy with idursulfase beta in patients with mucopolysaccharidosis II (Hunter Syndrome). Orphanet J Rare Dis. 2013;8:67. doi: https://doi.org/10.1186/1750-1172-8-42; Sohn YB, Cho SY, Lee J, et al. Safety and efficacy of enzyme replacement therapy with idursulfase beta in children aged younger than 6 years with Hunter syndrome. Mol Genet Metab. 2015;114(2):156–160. doi: https://doi.org/10.1016/j.ymgme.2014.08.009; Muenzer J, Gucsavas-Calikoglu M, McCandless SE, et al. A phase I/II clinical trial of enzyme replacement therapy in mucopolysaccharidosis II (Hunter syndrome). Mol Genet Metab. 2007;90(3):329–337. doi: https://doi.org/10.1016/j.ymgme.2006.09.001; Sawamoto K, Stapleton M, Alméciga-Díaz CJ, et al. Therapeutic Options for Mucopolysaccharidoses: Current and Emerging Treatments. Drugs. 2019;79(10):1103–1134. doi: https://doi.org/10.1007/s40265-019-01147-4; Bradley LA, Haddow HRM, Palomaki GE. Treatment of mucopolysaccharidosis type II (Hunter syndrome): Results from a systematic evidence review. Genet Med. 2017;19(11):1187–1201. doi: https://doi.org/10.1038/gim.2017.30; Dierenfeld AD, McEntee MF, Vogler CA, et al. Replacing the enzyme alpha-L-iduronidase at birth ameliorates symptoms in the brain and periphery of dogs with mucopolysaccharidosis type I. Sci Transl Med. 2010;2(60):60ra89. doi: https://doi.org/10.1126/scitranslmed.3001380; Вашакмадзе Н.Д., Намазова-Баранова Л.С., Журкова Н.В. и др. Мукополисахаридоз II типа: эффективность ферментозаместительной терапии // Вопросы современной педиатрии. — 2019. — Т. 18. — № 6. — С. 485–490. — doi: https://doi.org/10.15690/vsp.v18i6.2070; Lagler FB. Current and Emerging Therapies for Mucopolysaccharidoses. Handb Exp Pharmacol. 2020;261:39–56. doi: https://doi.org/10.1007/164_2019_263; Xie H, Chung J-K, Mascelli MA, McCauley TG. Pharmacokinetics and bioavailability of a therapeutic enzyme (idursulfase) in cynomolgus monkeys after intrathecal and intravenous administration. PLoS ONE. 2015;10(4):e0122453. doi: https://doi.org/10.1371/journal.pone.0122453; Muenzer J, Beck M, Eng CM, et al. Long-term, open-labeled extension study of idursulfase in the treatment of Hunter syndrome. Genet Med. 2011;13(2):95–101. doi: https://doi.org/10.1097/GIM.0b013e3181fea459; Giugliani R, Harmatz P, Jones SA, et al. Evaluation of impact of anti-idursulfase antibodies during long-term idursulfase enzyme replacement therapy in mucopolysaccharidosis II patients. Mol Genet Metab Rep. 2017;12:2–7. doi: https://doi.org/10.1016/j.ymgmr.2017.01.014; Stephan BO, Quaio CR, Spolador GM, et al. Impact of ERT and follow-up of 17 patients from the same family with a mild form of MPS II. Clinics (Sao Paulo). 2022;77:100082. doi: https://doi.org/10.1016/j.clinsp.2022.100082; https://vsp.spr-journal.ru/jour/article/view/3270

  10. 10
    Academic Journal

    المساهمون: Not specified., Отсутствует.

    المصدر: Current Pediatrics; Том 22, № 4 (2023); 305-310 ; Вопросы современной педиатрии; Том 22, № 4 (2023); 305-310 ; 1682-5535 ; 1682-5527

    وصف الملف: application/pdf

    Relation: https://vsp.spr-journal.ru/jour/article/view/3267/1312; Hingorani M, Hanson I, van Heyningen V. Aniridia. Eur J Hum Genet. 2012;20(10):1011–1017. doi: https://doi.org/10.1038/ejhg.2012.100; Воскресенская А.А., Поздеева Н.А., Васильева Т.А. и др. Клинические особенности врожденной аниридии в детском возрасте // Российская педиатрическая офтальмология. — 2016. — Т. 11. — № 3. — С. 121–129. — doi: https://doi.org/10.18821/1993-1859-2016-11-3-121-129; Tibrewal S, Ratna R, Gour A, et al. Clinical and molecular aspects of congenital aniridia — A review of current concepts. Indian J Ophthalmol. 2022;70(7):2280–2292. doi: https://doi.org/10.4103/ijo.IJO_2255_21; Bamiou DE, Free SL, Sisodiya SM, et al. Auditory interhemispheric transfer deficits, hearing difficulties, and brain magnetic resonance imaging abnormalities in children with congenital aniridia due to PAX6 mutations. Arch Pediatr Adolesc Med. 2007;161(5):463–469. doi: https://doi.org/10.1001/archpedi.161.5.463; Hu P, Meng L, Ma D, et al. A novel 11p13 microdeletion encompassing PAX6 in a Chinese Han family with aniridia, ptosis and mental retardation. Mol Cytogenet. 2015;8(1):3. doi: https://doi.org/10.1186/s13039-015-0110-2; Hanish AE, Butman JA, Thomas F, et al. Pineal hypoplasia, reduced melatonin and sleep disturbance in patients with PAX6 haplo-insufficiency. J Sleep Res. 2016;25(1):16–22. doi: https://doi.org/10.1111/jsr.12345; Lee HJ, Colby KA. A review of the clinical and genetic aspects of aniridia. Semin Ophthalmol. 2013;28(5-6):306–312. doi: https://doi.org/10.3109/08820538.2013.825293; Касман-Келнер Б., Вейстенц А., Зейц Б. Медицинское сопровождение врожденной аниридии и аниридийного синдрома (РАХ6-синдрома) // Практическая медицина. — 2015. — № 1-2. — C. 34–61.; Васильева Т.А., Поздеева Н.А., Воскресенская А.А. и др. Генетические аспекты врожденной аниридии // Практическая медицина. — 2015. — № 2-1 — С. 26–33.; Васильева Т.А., Воскресенская А.А., Поздеева Н.А. и др. Характеристика гена РАХ6 и роль его мутаций в развитии наследственной патологии органа зрения // Генетика. — 2018. — Т. 54. — № 9. — С. 979–987. — doi: https://doi.org/10.1134/S0016675818090151; Wawrocka A, Krawczynski MR. The genetics of aniridia — simple things become complicated. J Appl Genet. 2018;59(2):151–159. doi: https://doi.org/10.1007/s13353-017-0426-1; Васильева Т.А., Воскресенская А.А., Хлебникова О.В. и др. Дифференциальная диагностика наследственных форм врожденной аниридии с позиций современной генетики // Вестник РАМН. — 2017. — Т. 72. — № 4. — С. 233–241. — doi: https://doi.org/10.15690/vramn834; Ansari M, Rainger J, Hanson IM, et al. Genetic Analysis of ‘PAX6-Negative’ Individuals with Aniridia or Gillespie Syndrome. PLoS One. 2016;11(4):e0153757. doi: https://doi.org/10.1371/journal.pone.0153757; Kim KC, Lee DK, Go HS, et al. Pax6-dependent cortical glutamatergic neuronal differentiation regulates autism-like behavior in prenatally valproic acid-exposed rat offspring. Mol Neurobiol. 2014;49(1):512–528. doi: https://doi.org/10.1007/s12035-013-8535-2; Эль-Ансари А. ГАМК, дефициты нейротрансмиттера глутамата при аутизме и их нейтрализация как новая гипотеза эффективной стратегии лечения // Аутизм и нарушения развития. — 2020. — Т. 18. — № 3. — C. 46–63. — doi: https://doi.org/10.17759/autdd.2020180306; Glaser T, Jepeal L, Edwards JG, et al. PAX6 gene dosage effect in a family with congenital cataracts, aniridia, anophthalmia and central nervous system defects. Nature Genet. 1994;7(4):463–471. doi: https://doi.org/10.1038/ng0894-463; Tyas DA, Pearson H, Rashbass P, Price DJ. Pax6 regulates cell adhesion during cortical development. Cereb Cortex. 2003;13(6): 612–619. doi: https://doi.org/10.1093/cercor/13.6.612; Schmidt-Sidor B, Szymańska K, Williamson K, et al. Malformations of the brain in two fetuses with a compound heterozygosity for two PAX6 mutations. Folia Neuropathol. 2009;47(4):372–382.; Fischbach BV, Trout KL, Lewis J, et al. WAGR syndrome: a clinical review of 54 cases. Pediatrics. 2005;116(4):984–988. doi: https://doi.org/10.1542/peds.2004-0467; Yogarajah M, Matarin M, Vollmar C, et al. M. PAX6, brain structure and function in human adults: advanced MRI in aniridia. Ann Clin Transl Neurol. 2016;3(5):314–330. doi: https://doi.org/10.1002/acn3.297; Käsmann-Kellner B, Berthold S. Kongenitale Aniridie oder PAX6-Syndrom. Ophthalmologe. 2014;111(12):1144. doi: https://doi.org/10.1007/s00347-014-3058-4; Malandrini A, Mari F, Palmeri S, et al. PAX6 mutation in a family with aniridia, congenital ptosis, and mental retardation. Clin Genet. 2001;60(2):151–154. doi:https://doi.org/10.1034/j.1399-0004.2001.600210.x; Катаргина Л.А., Мазанова Е.В., Тарасенков А.О. Клинико-функциональные особенности врожденной аниридии и сочетанной с ней патологии // Российская педиатрическая офтальмология. — 2015. — Т. 10. — № 3. — С. 21–23.; Landsend ECS, Lagali N, Utheim TP. Congenital aniridia — A comprehensive review of clinical features and therapeutic approaches. Surv Ophthalmol. 2021;66(6):1031–1050. doi: https://doi.org/10.1016/j.survophthal.2021.02.011; Robinson DO, Howarth RJ, Williamson KA, et al. Genetic analysis of chromosome 11p13 and the PAX6 gene in a series of 125 cases referred with aniridia. Am J Med Genet A. 2008;146A(5):558–569. doi: https://doi.org/10.1002/ajmg.a.32209; Bobilev AM, Hudgens-Haney ME, Hamm JP, et al. Early and late auditory information processing show opposing deviations in aniridia. Brain Res. 2019;1720:146307. doi: https://doi.org/10.1016/j.brainres.2019.146307; Bamiou DE, Campbell NG, Musiek FE, et al. Auditory and verbal working memory deficits in a child with congenital aniridia due to a PAX6 mutation. Int J Audiol. 2007;46(4):196–202. doi: https://doi.org/10.1080/14992020601175952; Кельмансон И.А. Хронопатологические аспекты расстройств сна и когнитивных функций у детей с нарушениями зрения // Российский вестник перинатологии и педиатрии. — 2015. — Т. 60. — № 5. — С. 42–50.; Berntsson SG, Kristoffersson A, Daniilidou M, et al. Aniridia with PAX6 mutations and narcolepsy. J Sleep Res. 2020;29(6):e12982. doi: https://doi.org/10.1111/jsr.12982; Moosajee M, Hingorani M, Moore AT. PAX6-Related Aniridia. 2003 May 20 [Updated 2018 Oct 18]. In: GeneReviews® [Internet]. Adam MP, Everman DB, Mirzaa GM, et al., eds. Seattle (WA): University of Washington, Seattle; 1993–2022.; Guo R, Zhang X, Liu A, et al. Novel clinical presentation and PAX6 mutation in families with congenital aniridia. Front Med (Lausanne). 2022;9:1042588. doi: https://doi.org/10.3389/fmed.2022.1042588; Дамулин И.В., Тардов М.В. Клинико-патогенетические особенности мозжечковой атаксии // Трудный пациент. — 2020. — Т. 18. — № 10. — С. 17–23. — doi: https://doi.org/10.24411/2074-1995-2020-10067; Grant MK, Bobilev AM, Pierce JE, et al. Structural brain abnormalities in 12 persons with aniridia. F1000Res. 2017;6:255. doi: https://doi.org/10.12688/f1000research.11063.2; Solomon BD, Pineda-Alvarez DE, Balog JZ, et al. Compound heterozygosity for mutations in PAX6 in a patient with complex brain anomaly, neonatal diabetes mellitus, and microophthalmia. Am J Med Genet. 2009;149A(11):2543–2546. doi: https://doi.org/10.1002/ajmg.a.33081; Ugalahi MO, Ibukun FA, Olusanya BA, Baiyeroju AM. Congenital aniridia: Clinical profile of children seen at the University College Hospital, Ibadan, South-West Nigeria. Ther Adv Ophthalmol. 2021;13:25158414211019513. doi: https://doi.org/10.1177/25158414211019513; Генинг Г.Н. Влияние врожденной аниридии на палитру психических состояний пациентов с аниридией и родителей детей с аниридией // Семья и дети в современном мире: сборник материалов конференции. — СПб.: Изд-во РГПУ им. А.И. Герцена; 2019. — Т. 5. — С. 135.; Nishizawa H, Motobayashi M, Akahane M, et al. Neuro-psychological and neurophysiological features of WAGR syndrome: Detailed comprehensive evaluation of a patient with severe intellectual disability and autism spectrum disorder. Brain Dev. 2022;44(3):229–233. doi: https://doi.org/10.1016/j.braindev.2021.11.06; Han JC, Liu QR, Jones M, et al. Brain-Derived Neurotrophic Factor and Obesity in the WAGR Syndrome. N Engl J Med. 2008;359(9): 918–927. doi: https://doi.org/10.1056/NEJMoa0801119; Shinawi M, Sahoo T, Maranda B, et al. 11p14.1 microdeletions associated with ADHD, autism, developmental delay, and obesity. Am J Med Genet A. 2011;155:1272–1280. doi: https://doi.org/10.1002/ajmg.a.33878; Yamamoto T, Togawa M, Shimada S, et al. Narrowing of the responsible region for severe developmental delay and autistic behaviors in WAGR syndrome down to 1.6 Mb including PAX6, WT1, and PRRG4. Am J Med Genet A. 2014;164A(3):634–638. doi: https://doi.org/10.1002/ajmg.a.36325; Duffy KA, Trout KL, Gunckle JM, et al. Results From the WAGR Syndrome Patient Registry: Characterization of WAGR Spectrum and Recommendations for Care Management. Front Pediatr. 2021; 9:733018. doi: https://doi.org/0.3389/fped.2021.733018; https://vsp.spr-journal.ru/jour/article/view/3267

  11. 11
    Academic Journal

    المساهمون: We express our gratitude to Snezhana Aleksandrovna Mitina, the president of the “Hunter syndrome” interregional charitable public organization, for all her help in collecting the materials used in this article, Выражаем благодарность президенту Межрегиональной благотворительной общественной организации «Хантерсиндром» Снежане Александровне Митиной за помощь в сборе материалов, использованных в настоящей статье

    المصدر: Current Pediatrics; Том 21, № 6S (2022); 570-576 ; Вопросы современной педиатрии; Том 21, № 6S (2022); 570-576 ; 1682-5535 ; 1682-5527

    وصف الملف: application/pdf

    Relation: https://vsp.spr-journal.ru/jour/article/view/3072/1255; Kakkis E, Marsden D. Urinary glycosaminoglycans as a potential biomarker for evaluating treatment efficacy in subjects with mucopolysaccharidoses. Mol Genet Metab. 2020;130(1):7–15. doi: https://doi.org/10.1016/j.ymgme.2020.02.006; Yee KS, Alexanderian D, Feng Y, et al. Impact of the Timing of Enzyme Replacement Therapy Initiation and Cognitive Impairment Status on Outcomes for Patients with Mucopolysaccharidosis II (MPS II) in the United States: A Retrospective Chart Review. J Health Econ Outcomes Res. 2022;9(2):67–76. doi: https://doi.org/10.36469/001c.36540; Khan SA, Peracha H, Ballhausen D, et al. Epidemiology of mucopolysaccharidoses. Mol Genet Metab. 2017; 121(3):227–240. doi: https://doi.org/10.1016/j.ymgme.2017.05.016; Wikman-Jorgensen PE, López Amorós A, Peris García J, et al. Enzyme replacement therapy for the treatment of Hunter disease: A systematic review with narrative synthesis and meta-analysis. Mol Genet Metab. 2020;131(1-2):206–210. doi: https://doi.org/10.1016/j.ymgme.2020.07.005; Whiteman DA, Kimura A. Development of idursulfase therapy for mucopolysaccharidosis type II (Hunter syndrome): the past, the present and the future. Drug Des Devel Ther. 2017;11:2467–2480. doi: https://doi.org/10.2147/dddt.s139601; Muenzer J, Botha J, Harmatz P, et al. Evaluation of the longterm treatment effects of intravenous idursulfase in patients with mucopolysaccharidosis II (MPS II) using statistical modeling: data from the Hunter Outcome Survey (HOS). Orphanet J Rare Dis. 2021;16(1):456–469. doi: https://doi.org/10.1186/s13023-021-02052-4; Tomita K, Okamoto S, Seto T, Hamazaki T. Real world longterm outcomes in patients with mucopolysaccharidosis type II: A retrospective cohort study. Mol Genet Metab Rep. 2021;29: 1008–1016. doi: https://doi.org/10.1016/j.ymgmr.2021.100816; Bratulic S, Limeta A, Maccari F, et al. Analysis of normal levels of free glycosaminoglycans in urine and plasma in adults. J Biol Chem. 2022;298(2):101575. doi: https://doi.org/10.1016/j.jbc.2022.101575; Concolino D, Deodato F, Parini R. Enzyme replacement therapy: efficacy and limitations. Ital J Pediatr. 2018;44(2):120. doi: https://doi.org/10.1186/s13052-018-0562-1; Вашакмадзе Н.Д., Намазова-Баранова Л.С., Журкова Н.В. и др. Мукополисахаридоз II типа: эффективность ферментозаместительной терапии // Вопросы современной педиатрии. — 2019. — Т. 18. — № 6. — С. 485–490. — doi: https://doi.org/10.15690/vsp.v18i6.2070; Grant N, Sohn YB, Ellinwood NM, et al. Timing is everything: Clinical courses of Hunter syndrome associated with age at initiation of therapy in a sibling pair. Mol Genet Metab Rep. 2022;30:100845. https://doi.org/10.1016/j.ymgmr.2022.100845; https://vsp.spr-journal.ru/jour/article/view/3072

  12. 12
    Academic Journal

    المساهمون: Not specified, Отсутствует

    المصدر: Current Pediatrics; Том 21, № 6S (2022); 522-528 ; Вопросы современной педиатрии; Том 21, № 6S (2022); 522-528 ; 1682-5535 ; 1682-5527

    وصف الملف: application/pdf

    Relation: https://vsp.spr-journal.ru/jour/article/view/3089/1250; Goetzman ES. Advances in the Understanding and Treatment of Mitochondrial Fatty Acid Oxidation Disorders. Curr Genet Med Rep. 2017;5(3):132–142. doi: https://doi.org/10.1007/s40142-017-0125-6; Vishwanath VA. Fatty Acid Beta-Oxidation Disorders: A Brief Review. Ann Neurosci. 2016;23(1):51–55. doi: https://doi.org/10.1159/000443556; Merritt JL 2nd, Norris M, Kanungo S. Fatty acid oxidation disorders. Ann Transl Med. 2018;6(24):473. doi: https://doi.org/10.21037/atm.2018.10.57; Ambrose A, Sheehan M, Bahl S, et al. Outcomes of mitochondrial long chain fatty acid oxidation and carnitine defects from a single center metabolic genetics clinic. Orphanet J Rare Dis. 2022;17(1):360. doi: https://doi.org/10.1186/s13023-022-02512-5; Kennedy S, Potter BK, Wilson K, et al. The first three years of screening for medium chain acyl-CoA dehydrogenase deficiency (MCADD) by newborn screening Ontario. BMC Pediatr. 2010;10:82. doi: https://doi.org/10.1186/1471-2431-10-82; Houten SM, Violante S, Ventura FV, Wanders RJA. The biochemistry and physiology of mitochondrial fatty acid beta-oxidation and its genetic disorders. Annu Rev Physiol. 2016;78:23–44. doi: https://doi.org/10.1146/annurev-physiol-021115-105045; Gharbawy E, Vockley A. Inborn Errors of Metabolism with Myopathy: Defects of Fatty Acid Oxidation and the Carnitine Shuttle System. Pediatr Clin North Am. 2018;65(2):317–335. doi: https://doi.org/10.1016/j.pcl.2017.11.006; Knottnerus SJG, Bleeker JC, Wüst RCI, et al. Disorders of mitochondrial long-chain fatty acid oxidation and the carnitine shuttle. Rev Endocr Metab Disord. 2018;19(1):93–106. doi: https://doi.org/10.1007/s11154-018-9448-1; Smith E, Fernandez C, Melander O, Ottosson F. Altered Acylcarnitine Metabolism Is Associated With an Increased Risk of Atrial Fibrillation. J Am Heart Assoc. 2020;9(21):e016737. doi: https://doi.org/10.1161/JAHA.120.016737; Wanders RJA, Visser G, Ferdinandusse S, et al. Mitochondrial Fatty Acid Oxidation Disorders: Laboratory Diagnosis, Pathogenesis, and the Complicated Route to Treatment. J Lipid Atheroscl. 2020;9(3):313–333. doi: https://doi.org/10.12997/jla.2020.9.3.313; Mütze U, Nennstiel U, Odenwald B, et al. Sudden neonatal death in individuals with medium-chain acyl-coenzyme A dehydrogenase deficiency: limit of newborn screening. Eur J Pediatr. 2022;181(6):2415–2422. doi: https://doi.org/10.1007/s00431022-04421-y; De Pasquale L, Meo P, Fulia F, et al. A fatal case of neonatal onset multiple acyl-CoA dehydrogenase deficiency caused by novel mutation of ETFDH gene: case report. Ital J Pediatr. 2022;48(1):164. doi: https://doi.org/10.1186/s13052-022-01356-w; Gjorgjievski N, Dzekova-Vidimliski P, Petronijevic Z, et al. Carnitine Palmitoyltransferase II Deficiency (CPT II) Followed By Rhabdomyolysis and Acute Kidney Injury. Open Access Maced J Med Sci. 2018;6(4):666–668. doi: https://doi.org/10.3889/oamjms.2018.158; Ramanathan R, Ibdah JA. Mitochondrial Dysfunction and Acute Fatty Liver of Pregnancy. Int J Mol Sci. 2022;23(7):3595. doi: https://doi.org/10.3390/ijms23073595; Ivin N, Della Torre V, Sanders F, Youngman M. Rhabdomyolysis caused by carnitine palmitoyltransferase 2 deficiency: A case report and systematic review of the literature. Intensive Care Soc. 2020;21(2):165–173. doi: https://doi.org/10.1177/1751143719889766; El-Gharbawy A, Vockley J. Inborn Errors of Metabolism with Myopathy: Defects of Fatty Acid Oxidation and the Carnitine Shuttle System. Pediatr Clin North Am. 2018;65(2):317–335. doi: https://doi.org/10.1016/j.pcl.2017.11.006; Lund AM, Skovby F, Vestergaard H, et al. Clinical and biochemical monitoring of patients with fatty acid oxidation disorders. J Inherit Metab Dis. 2010;33(5):495–500. doi: https://doi.org/10.1007/s10545-009-9000-2; Нарушения митохондриального β-окисления жирных кислот: клинические рекомендации. Минздрав России; 2021. Доступно по: https://www.pediatr-russia.ru/information/klin-rek/proekty-klinicheskikh-rekomendatsiy/КР%20НОЖК_финал_pdf. Ссылка активна на 25.12.2022.; Bosch AM, Abeling NG, Ijlst L, et al. Brown-Vialetto-Van Laere and Fazio Londe syndrome is associated with a riboflavin transporter defect mimicking mild MADD: a new inborn error of metabolism with potential treatment. J Inherit Metab Dis. 2011;34(1):159–164. doi: https://doi.org/10.1007/s10545-010-9242-z; Nutrition Management of Inherited Metabolic Diseases. Bernstein LE, Rohr F, Helm JR, eds. Springer; 2015. doi: https://doi.org/10.1007/978-3-319-14621; Aldubayan SH, Rodan LH, Berry GT, Levy HL. Acute Illness Protocol for Fatty Acid Oxidation and Carnitine Disorders. Pediatr Emerg Care. 2017;33(4):296–301. doi: http://doi.org/10.1097/PEC.0000000000001093; Кулебина Е.А., Сурков А.Н., Потапов А.С. и др. Диагностика и лечение дефицита 3-гидроксиацил-КоА дегидрогеназы жирных кислот с длинной углеродной цепью у ребенка 8 месяцев // Российский педиатрический журнал. — 2020. — Т. 23. — № 4. — С. 274–279. — doi: http://doi.org/10.18821/1560-9561-202023-4-274-279; Приказ Министерства здравоохранения Российской Федерации № 274н от 21 апреля 2022 г. «Об утверждении порядка оказания медицинской помощи пациентам с врожденными и/или наследственными заболеваниями». Доступно по: https://rg.ru/documents/2022/07/14/minzdrav-prikaz274-site-dok.html. Ссылка активна на 25.12.2022.; https://vsp.spr-journal.ru/jour/article/view/3089

  13. 13
    Academic Journal

    المساهمون: Not specified, Источник финансирования отсутствует

    المصدر: Current Pediatrics; Том 21, № 6S (2022); 529-534 ; Вопросы современной педиатрии; Том 21, № 6S (2022); 529-534 ; 1682-5535 ; 1682-5527

    وصف الملف: application/pdf

    Relation: https://vsp.spr-journal.ru/jour/article/view/3080/1251; Nakashima Y, Tomatsu S, Hori T, et al. Mucopolysaccharidosis IV A: Molecular cloning of the human N-acetylgalactosamine-6sulfatase gene (GALNS) and analysis of the 5-flanking region. Genomics. 1994;20(1):99–104. doi: https://doi.org/10.1006/geno.1994.1132; Jezela-Stanek A, Różdżyńska-Świątkowska A, Kulpanovich A, et al. Novel data on growth phenotype and causative genotypes in 29 patients with Morquio (Morquio-Brailsford) syndrome from Central-Eastern Europe. J Appl Genet. 2019;60(2):163–174. doi: https://doi.org/10.1007/s13353-019-00491-1; Hendriksz CJ, Harmatz P, Beck M, et al. Review of clinical presentation and diagnosis of mucopolysaccharidosis IVA. Mol Genet Metab. 2013;110(1-2):54–64. doi: https://doi.org/10.1016/j.ymgme.2013.04.002; Hendriksz CJ, Berger KI, Giugliani R, et al. International guidelines for the management and treatment of Morquio A syndrome. Am J Med Genet A. 2015;167A(1):11–25. doi: https://doi.org/10.1002/ajmg.a.36833; Khan S, Alméciga-Díaz CJ, Sawamoto K, et al. Mucopolysaccharidosis IVA and glycosaminoglycans. Mol Genet Metab. 2017;120(1-2): 78–95. doi: https://doi.org/10.1016/j.ymgme.2016.11.007; Sawamoto K, Alméciga-Díaz CJ, Mason RW, et al. Mucopolysaccharidosis type IVA: Clinical features, biochemistry, diagnosis, genetics, and treatment. In: Mucopolysaccharidoses Update. Tomatsu S, Lavery C, Giugliani R, eds. New York, NY: Nova Science Publishers; 2018. pp. 235–272.; Brailsford JF. Chondro-osteo-dystrophy, roentgenopgraphic & clinical features of a child with dislocation of vertebrae. Am J Surg. 1929;7:404–410.; Morquio L. Sur une forme de dystrophie osseuse familial. Arch Med Enfants Paris. 1929;32:129–135.; Nelson J, Crowhurst J, Carey B, Greed L. Incidence of the mucopolysaccharidoses in Western Australia. Hum Genet. 2003;123A(3): 310–313. doi: https://doi.org/10.1002/ajmg.a.20314; Nelson J. Incidence of the mucopolysaccharidoses in Northern Ireland. Hum Genet. 1997;101(3):355–358. doi: https://doi.org/10.1007/s004390050641; Sawamoto K, González J, Piechnik M, et al. Mucopolysaccharidosis IVA: Diagnosis, Treatment, and Management. Int J Mol Sci. 2020;21(4):1517. doi: https://doi.org/10.3390/ijms21041517; Morrone A, Caciotti A, Atwood R, et al. Morquio A syndromeassociated mutations: A review of alterations in the GALNS gene and a new locus-specific database. Hum Mutat. 2014;35(11): 1271–1279. doi: https://doi.org/10.1002/humu.22635; Peracha H, Sawamoto K, Averill L, et al. Diagnosis and prognosis of Mucopolysaccharidosis IVA. Mol Genet Metab. 2018;125 (1-2):18–37. doi: https://doi.org/10.1016/j.ymgme.2018.05.004; Doherty C, Stapleton M, Piechnik M, et al. Effect of enzyme replacement therapy on the growth of patients with Morquio A. J Hum Genet. 2019;64(7):625–635. doi: https://doi.org/10.1038/s10038-019-0604-6; Do Cao J, Wiedemann A, Quinaux T, et al. 30 months followup of an early enzyme replacement therapy in a severe Morquio A patient: About one case. Mol Genet Metab Rep. 2016;9:42–45. doi: https://doi.org/10.1016/j.ymgmr.2016.10.001; Dhawale AA, Thacker MM, Belthur MV, et al. The Lower Extremity in Morquio Syndrome. J Pediatr Orthop. 2012;32(5):534–540. doi: https://doi.org/10.1097/BPO.0b013e318259fe57; Tomatsu S, Yasuda E, Patel P, et al. Morquio A syndrome: Diagnosis and current and future therapies. Pediatr Endocrinol Rev. 2014; 12 Suppl 1(0-1):141–151.; White KK, Jester A, Bache CE, et al. Orthopedic management of the extremities in patients with Morquio A syndrome. J Child Orthop. 2014;8(4):295–304. doi: https://doi.org/10.1007/s11832-014-0601-4; Tomatsu S, Averill LW, Sawamoto K, et al. Obstructive airway in Morquio A syndrome, the past, the present and the future. Mol Genet Metab. 2016;117(2):150–156. doi: https://doi.org/10.1016/j.ymgme.2015.09.007; Lavery C, Hendriksz C. Mortality in Patients with Morquio Syndrome A. JIMD Rep. 2015;15:59–66. doi: https://doi.org/10.1007/8904_2014_298; Pizarro C, Davies RR, Theroux M, et al. Surgical Reconstruction for Severe Tracheal Obstruction in Morquio A Syndrome. Ann Thorac Surg. 2016;102(4):e329–e331. doi: https://doi.org/10.1016/j.athoracsur.2016.02.113; Sumner J, Tomatsu S, Stapleton M, et al. Management of tracheal obstruction in MPS. In: Mucopolysaccharidoses Update. Tomatsu S, Lavery C, Giugliani R, eds. New York, NY: Nova Science Publishers; 2018. pp. 689–710; Harmatz PR, Mengel E, Geberhiwot T, et al. Impact of elosulfase alfa in patients with morquio A syndrome who have limited ambulation: An open-label, phase 2 study. Am J Med Genet A. 2017;173(2):375–383. doi: https://doi.org/10.1002/ajmg.a.38014; Leone A, Rigante D, Amato DZ, et al. Spinal involvement in mucopolysaccharidoses: a review. Childs Nerv Syst. 2015;31(2): 203–212. doi: https://doi.org/10.1007/s00381-014-2578-1; Nicolini F, Corradi D, Bosio S, Gherli T. Aortic valve replacement in a patient with Morquio syndrome. Heart Surg Forum. 2008;11(2): E96–E98. doi: https://doi.org/10.1532/HSF98.20071197; Braunlin EA, Harmatz PR, Scarpa M, et al. Cardiac disease in patients with mucopolysaccharidosis: presentation, diagnosis and management. J Inherit Metab Dis. 2011;34(6):1183–1197. doi: https://doi.org/10.1007/s10545-011-9359-8; John RM, Hunter D, Swanton RH. Echocardiographic abnormalities in type IV mucopolysaccharidosis. Arch Dis Child. 1990; 65(70):746–749. doi: https://doi.org/10.1136/adc.65.7.746; Lin HY, Chuang CK, Ke YY, et al. Long-term effects of enzyme replacement therapy for Taiwanese patients with mucopolysaccharidosis IVA. Pediatr Neonatol. 2019;60(3):342–343. doi: https://doi.org/10.1016/j.pedneo.2018.08.005; https://vsp.spr-journal.ru/jour/article/view/3080

  14. 14
    Academic Journal

    المساهمون: Not specified, Отсутствует

    المصدر: Current Pediatrics; Том 21, № 6S (2022); 577-582 ; Вопросы современной педиатрии; Том 21, № 6S (2022); 577-582 ; 1682-5535 ; 1682-5527

    وصف الملف: application/pdf

    Relation: https://vsp.spr-journal.ru/jour/article/view/3088/1256; Ockerman PA, Lund MD. A generalised storage disorder resembling Hurler’s syndrome. Lancet. 1967;290(7509):239–241. doi: https://doi.org/10.1016/S0140-6736(67)92303-3; Ockerman PA, Autio S, Norden NE. Diagnosis of mannosidosis. Lancet. 1973;301(7796):207–208. doi: https://doi.org/10.1016/s0140-6736(73)90045-7; Malm D, Nilssen Ø. Alpha-Mannosidosis. October 11, 2001 [Updated July 18, 2019]. In: GeneReviews® [Internet]. Adam MP, Ardinger HH, Pagon RA, et al., eds. Seattle (WA): University of Washington, Seattle; 1993–2021. Available online: https://www.ncbi.nlm.nih.gov/books/NBK1396. Accessed on December 12, 2022.; Beck M, Olsen KJ, Wraith JE, et al. Natural history of alphamannosidosis a longitudinal study. Orphan J Rare Dis. 2013;8:88. doi: https://doi.org/10.1186/1750-1172-8-88; Malm D, Nilssen Ø. Alpha-mannosidosis. Orphan J Rare Dis. 2008;3(1):21. doi: https://doi.org/10.1186/1750-1172-3-21; Poupetová H, Ledvinová J, Berná L, et al. The birth prevalence of lysosmal storage disorders in the Czech republic: Comparison with data in different populations. J Inherit Metab Dis. 2010;33(4): 387–396. doi: https://doi.org/10.1007/s10545-010-9093-7; Menendez-Sainz C, Gonzalez-Quevedo A, Gonzalez-Garcia S, et al. High proportion of mannosidosis and fucosidosis among lysosomal storage diseases in Cuba. Genet Mol Res. 2012; 11(3):2352–2359. doi: https://doi.org/10.4238/2012; Riise Stensland HM, Klenow HB, Van Nguyen L, et al. Identification of 83 novel alpha-mannosidosis-associated sequence variants: Functional analysis of MAN2B1 missense mutations. Hum Mutat. 2012;33(3):511–520. doi: https://doi.org/10.1002/humu.22005; Paciotti S, Codini M, Tasegian A, et al. Lysosomal alphamannosidase and alpha-mannosidosis. Front Biosci (Landmark Ed). 2017;22(1):157–167. doi: https://doi.org/10.2741/4478; Noll RB, Netzloff ML, Kulkarni R. Long-term follow-up of biochemical and cognitive functioning in patients with mannosidosis. Arch Neurol. 1989;46(5):507–509. doi: https://doi.org/10.1001/archneur.1989.00520410041020; Ara JR, Mayayo E, Marzo ME, et al. Neurological impairment in alpha-mannosidosis: a longitudinal clinical and MRI study of a brother and sister. Childs Nerv Syst. 1999;15(8):369–371. doi: https://doi.org/10.1007/s003810050416; Santoro L, Zampini L, Padella L, et al. Early biochemical effects of velmanase alfa in a 7-month-old infant with alpha-mannosidosis. JIMD Rep. 2020;55(1):15–21. doi: https://doi.org/10.1002/jmd2.12144; Aylsworth AS, Taylor HA, Stuart CM, Thomas GH. Mannosidosis: phenotype of a severely affected child and characterization of alphamannosidase activity in cultured fibroblasts from the patient and his parents. J Pediatr. 1976;88(5):814–818. doi: https://doi.org/10.1016/s0022-3476(76)81120-1; Malm D, Halvorsen DS, Tranebjaerg L, Sjursen H. Immunodeficiency in alpha-mannosidosis: a matched case-control study on immunoglobulins, complement factors, receptor density, phagocytosis and intracellular killing in leucocytes. Eur J Pediatr. 2000;159(9):699–703. doi: https://doi.org/10.1007/s004310000545; Matlach J, Zindel T, Amraoui Y, et al. Retinal and optic nerve degeneration in α-mannosidosis. Orphanet J Rare Dis. 2018;13(1):88. doi: https://doi.org/10.1186/s13023-018-0829-z; Autio S, Louhimo T, Helenius M. The clinical course of mannosidosis. Ann Clin Res. 1982;14(2):93–97.; Guffona N, Tylki-Szymanska A, Borgwardtc L, et al. Recognition of alpha-mannosidosis in paediatric and adult patients: Presentation of a diagnostic algorithm from an international working group. Mol Genet Metab. 2019;126(4):470–474. doi: https://doi.org/10.1016/j.ymgme.2019.01.024; Chester MA, Lundblad A, Öckerman PA, Autio S. Mannosidosis. In: Genetic Errors of Glycoprotein Metabolism. Durand P, O’Brian J, eds. Milan, Italy: Edi-Ermes; 1982. pp. 89–120.; Hennermann JB, Raebe EM, Donà F, et al. Mortality in patients with alpha-mannosidosis: a review of patients’ data and the literature. Orphanet J Rare Dis. 2022;17(1):287. doi: https://doi.org/10.1186/s13023-022-02422-6; https://vsp.spr-journal.ru/jour/article/view/3088

  15. 15
    Academic Journal

    المساهمون: Not specified, Отсутствует

    المصدر: Current Pediatrics; Том 21, № 6S (2022); 548-557 ; Вопросы современной педиатрии; Том 21, № 6S (2022); 548-557 ; 1682-5535 ; 1682-5527

    وصف الملف: application/pdf; application/vnd.openxmlformats-officedocument.wordprocessingml.document

    Relation: https://vsp.spr-journal.ru/jour/article/view/3097/1253; https://vsp.spr-journal.ru/jour/article/view/3097/1268; Michaud M, Belmatoug N, Catros F, et al. Mucopolysaccharidosis: A review. Rev Med Interne. 2020;41(3):180–188. doi: https://doi.org/10.1016/j.revmed.2019.11.010; Muenzer J. Overview of the mucopolysaccharidoses. Rheumatology (Oxford). 2011;50(Suppl 5):v4–v12. doi: https://doi.org/10.1093/rheumatology/ker394; Simonaro CM, D’Angelo M, He X, et al. Mechanism of glycosaminoglycan-mediated bone and joint disease: implications for the mucopolysaccharidoses and other connective tissue diseases. Am J Pathol. 2008;172(1):112–122. doi: https://doi.org/10.2353/ajpath.2008.070564; Beck M, Arn P, Giugliani R, et al. The natural history of MPS I: global perspectives from the MPS I Registry. Genet Med. 2014;16(10): 759–765. doi: https://doi.org/10.1038/gim.2014.25; Cimaz R, Coppa GV, Koné-Paut I, et al. Joint contractures in the absence of inflammation may indicate mucopolysaccharidosis. Pediatr Rheumatol Online J. 2009;7:18. doi: https://doi.org/10.1186/1546-0096-7-18; Petty RE, Southwood TR, Manners P, et al. International League of Associations for Rheumatology. International League of Associations for Rheumatology classification of juvenile idiopathic arthritis: second revision, Edmonton, 2001. J Rheumatol. 2004;31(2):390–392.; Muenzer J, Wraith JE, Clarke LA. Mucopolysaccharidosis I: management and treatment guidelines. Pediatrics. 2009;123(1): 19–29. doi: https://doi.org/10.1542/peds.2008-0416; Viskochil D, Muenzer J, Guffon N, et al. Carpal tunnel syndrome in mucopolysaccharidosis I: a registry-based cohort study. Dev Med Child Neurol. 2017;59(12):1269–1275. doi: https://doi.org/10.1111/dmcn.13545; Tylki-Szymańska A, De Meirleir L, Di Rocco M, et al. Easy-to-use algorithm would provide faster diagnoses for mucopolysaccharidosis type I and enable patients to receive earlier treatment. Acta Paediatr. 2018;107(8):1402–1408. doi: https://doi.org/10.1111/apa.14417. PMID: 29797470; Guffon N, Journeau P, Brassier A, et al. Growth impairment and limited range of joint motion in children should raise suspicion of an attenuated form of mucopolysaccharidosis: expert opinion. Eur J Pediatr. 2019;178(4):593–603. doi: https://doi.org/10.1007/s00431-019-03330-x; Rigoldi M, Verrecchia E, Manna R, Mascia MT. Clinical hints to diagnosis of attenuated forms of Mucopolysaccharidoses. Ital J Pediatr. 2018;44(Suppl 2):132. doi: https://doi.org/10.1186/s13052-018-0551-4; Clarke LA, Hollak CE. The clinical spectrum and pathophysiology of skeletal complications in lysosomal storage disorders. Best Pract Res Clin Endocrinol Metab. 2015;29(2):219–235. doi: https://doi.org/10.1016/j.beem.2014.08.010; Peck SH, Casal ML, Malhotra NR, et al. Pathogenesis and treatment of spine disease in the mucopolysaccharidoses. Mol Genet Metab. 2016;118(4):232–243. doi: https://doi.org/10.1016/j.ymgme.2016.06.002; Borgo A, Cossio A, Gallone D, et al. Orthopaedic challenges for mucopolysaccharidoses. Ital J Pediatr. 2018;44(Suppl 2):123. doi: https://doi.org/10.1186/s13052-018-0557-y; Baronio F, Zucchini S, Zulian F, et al. Proposal of an Algorithm to Early Detect Attenuated Type I Mucopolysaccharidosis (MPS Ia) among Children with Growth Abnormalities. Medicina (Kaunas). 2022;58(1):97. doi: https://doi.org/10.3390/medicina58010097; Foster HE, Kay LJ, Friswell M, et al. Musculoskeletal screening examination (pGALS) for school-age children based on the adult GALS screen. Arthritis Rheum. 2006;55(5):709–716. doi: https://doi.org/10.1002/art.22230; Valayannopoulos V, Wijburg FA. Therapy for the mucopolysaccharidoses. Rheumatology (Oxford). 2011;50(Suppl 5):v49–v59. doi: https://doi.org/10.1093/rheumatology/ker396; Al-Sannaa NA, Bay L, Barbouth DS, et al. Early treatment with laronidase improves clinical outcomes in patients with attenuated MPS I: a retrospective case series analysis of nine sibships. Orphanet J Rare Dis. 2015;10:131. doi: https://doi.org/10.1186/s13023-015-0344-4; https://vsp.spr-journal.ru/jour/article/view/3097

  16. 16
    Academic Journal

    المساهمون: Not specified, Отсутствует

    المصدر: Pediatric pharmacology; Том 20, № 5 (2023); 498-506 ; Педиатрическая фармакология; Том 20, № 5 (2023); 498-506 ; 2500-3089 ; 1727-5776

    وصف الملف: application/pdf

    Relation: https://www.pedpharma.ru/jour/article/view/2361/1535; Chou JY, Jun HS, Mansfield BC. Type I glycogen storage diseases: disorders of the glucose-6-phosphatase/glucose-6-phosphate transporter complexes. J Inherit Metab Dis. 2015;38(3):511–519. doi: https://doi.org/10.1007/s10545-014-9772-x; Сурков А.Н. Гликогеновая болезнь у детей: современные представления (часть I) // Вопросы современной педиатрии. — 2012. — Т. 11. — № 2. — С. 30–42. — doi: https://doi.org/10.15690/vsp.v11i2.208; Veiga-da-Cunha M, Gerin I, Chen Y-T, et al. A gene on chromosome 11q23 coding for a putative glucose-6-phosphate translocase is mutated in glycogen-storage disease types Ib and Ic. Am J Hum Genet. 1998;63(4):976–983. doi: https://doi.org/10.1086/302068; Баранов А.А., Намазова-Баранова Л.С., Сурков А.Н. и др. Гликогеновая болезнь у детей: учебное пособие. — М.: ПедиатрЪ; 2012. — 128 с.; Kishnani PS, Austin SL, Abdenur JE, et al. Diagnosis and management of glycogen storage disease type I: a practice guideline of the American college of medical genetics and genomics. Genet Med. 2014;16(11):e1–e29. doi: https://doi.org/10.1038/gim.2014.128; Visser G, Rake J-P, Fernandes J, et al. Neutropenia, neutrophil dysfunction, and inflammatory bowel disease in glycogen storage disease type Ib: results of the European study on glycogen storage disease type I. J Pediatr. 2000;137(2):187–191. doi: https://doi.org/10.1067/mpd.2000.105232; Chen MA, Weinstein DA. Glycogen storage diseases: diagnosis, treatment and outcome. Transl Sci Rare Dis. 2016;1:45–72. doi: https://doi.org/10.3233/TRD-160006; Wortmann SB, Van Hove JLK, Derks TGJ, et al. Treating neutropenia and neutrophil dysfunction in glycogen storage disease type Ib with an SGLT2 inhibitor. Blood. 2020;136(9):1033–1043. doi: https://doi.org/10.1182/blood.2019004465; Veiga-da-Cunha M, Chevalier N, Stephenne X, et al. Failure to eliminate a phosphorylated glucose analog leads to neutropenia in patients with G6PT and G6PC3 deficiency. Proc Natl Acad Sci USA. 2019;116(4):1241–1250. doi: https://doi.org/10.1073/pnas.1816143116; Yamanouchi T, Tachibana Y, Akanuma H, et al. Origin and disposal of 1,5-anhydroglucitol, a major polyol in the human body. Am J Physiol Metab. 1992;263(2 Pt 1):E268–E273. doi: https://doi.org/10.1152/ajpendo.1992.263.2.E268; Crane RK, Sols A. The non-competitive inhibition of brain hexokinase by glucose-6-Phosphate and related compounds. J Biol Chem. 1954;210(2):597–606. doi: https://doi.org/10.1016/S0021-9258(18)65385-2; Maiorana A, Tagliaferri F, Dionisi-Vici C. Current understanding on pathogenesis and effective treatment of glycogen storage disease type Ib with empagliflozin: new insights coming from diabetes for its potential implications in other metabolic disorders. Front Endocrinol (Lausanne). 2023;14:1145111. doi: https://doi.org/10.3389/fendo.2023.1145111; Melis D, Parenti G, Della Casa R, et al. Crohn’s-like ileo-colitis in patients affected by glycogen storage disease Ib: two years’ follow-up of patients with a wide spectrum of gastrointestinal signs. Acta Paediatr. 2003;92(12):1415–1421. doi: https://doi.org/10.1080/08035250310007033; Wicker C, Roda C, Perry A, et al. Infectious and digestive complications in glycogen storage disease type Ib: study of a French cohort. Mol Genet Metab Rep. 2020;23:100581. doi: https://doi.org/10.1016/j.ymgmr.2020.100581; Rake JP, Visser G, Labrune P, et al. European Study on glycogen storage disease type I (ESGSD I). Guidelines for management of glycogen storage disease type I — European study on glycogen storage disease type I (ESGSD I). Eur J Pediatr. 2002;161 Suppl:S112–S119. doi: https://doi.org/10.1007/s00431-002-1016-7; Visser G, Rake J, Labrune P, et al. Consensus guidelines for management of glycogen storage disease type 1b — European study on glycogen storage disease type 1. Eur J Pediatr. 2002;161 Suppl:S120–S123. doi: https://doi.org/10.1007/s00431-002-1017-6; Сурков А.Н., Черников В.В., Баранов А.А. и др. Результаты оценки качества жизни детей с печеночной формой гликогеновой болезни // Педиатрическая фармакология. — 2013. — Т. 10. — № 4. — С. 90–94. — doi: https://doi.org/10.15690/pf.v10i4.759; Visser G, Rake J, Labrune P, et al. Granulocyte colony-stimulating factor in glycogen storage disease type 1b. Results of the European study on glycogen storage disease type 1. Eur J Pediatr. 2002;161 Suppl:S83–S87. doi: https://doi.org/10.1007/s00431-002-1010-0; Li AM, Thyagu S, Maze D, et al. Prolonged granulocyte colony stimulating factor use in glycogen storage disease type 1b associated with acute myeloid leukemia and with shortened telomere length. Pediatr Hematol Oncol. 2018;35(1):45–51. doi: https://doi.org/10.1080/08880018.2018.1440675; Dale DC, Bolyard AA, Marrero T, et al. Neutropenia in glycogen storage disease Ib. Curr Opin Hematol. 2019;26:16–21. doi: https://doi.org/10.1097/MOH.0000000000000474; Boulanger C, Stephenne X, Diederich J, et al. Successful use of empagliflozin to treat neutropenia in two G6PC3-deficient children: impact of a mutation in SGLT5. J Inherit Metab Dis. 2022;45(4):759–768. doi: https://doi.org/10.1002/jimd.12509; Makrilakis K, Barmpagianni A, Veiga-da-Cunha M. Repurposing of empagliflozin as a possible treatment for neutropenia and inflammatory bowel disease in glycogen storage disease type Ib: a case report. Cureus. 2022;14(7):12–15. doi: https://doi.org/10.7759/cureus.27264; Akanuma Y, Morita M, Fukuzawa N, et al. Urinary excretion of 1,5-anhydro-D-glucitol accompanying glucose excretion in diabetic patients. Diabetologia. 1988;31(11):831–835. doi: https://doi.org/10.1007/BF00277486; Chao EC, Henry RR. SGLT2 inhibition — a novel strategy for diabetes treatment. Nat Rev Drug Discov. 2010;9(7):551–559. doi: https://doi.org/10.1038/nrd3180; Fortuna D, McCloskey LJ, Stickle DF. Model analysis of effect of canagliflozin (Invokana), a sodium–glucose cotransporter 2 inhibitor, to alter plasma 1,5-anhydroglucitol. Clin Chim Acta. 2016;452:138–141. doi: https://doi.org/10.1016/j.cca.2015.11.010; DeFronzo RA, Hompesch M, Kasichayanula S, et al. Characterization of renal glucose reabsorption in response to dapagliflozin in healthy subjects and subjects with type 2 diabetes. Diabetes Care. 2013;36(10):3169–3176. doi: https://doi.org/10.2337/dc13-0387; Grünert SC, Elling R, Maag B, et al. Improved inflammatory bowel disease, wound healing and normal oxidative burst under treatment with empagliflozin in glycogen storage disease type Ib. Orphanet J Rare Dis. 2020;15(1):218. doi: https://doi.org/10.1186/s13023-020-01503-8; Rossi A, Miele E, Fecarotta S, et al. Crohn disease-like enterocolitis remission after empagliflozin treatment in a child with glycogen storage disease type Ib: a case report. Ital J Pediatr. 2021;47(1):149. doi: https://doi.org/10.1186/s13052-021-01100-w; Ceccarani C, Bassanini G, Montanari C, et al. Proteobacteria overgrowth and butyrate-producing taxa depletion in the gut microbiota of glycogen storage disease type 1 patients. Metabolites. 2020;10(4):133. doi: https://doi.org/10.3390/metabo10040133; Mikami M, Arai A, Mizumoto H. Empagliflozin ameliorated neutropenia in a girl with glycogen storage disease Ib. Pediatr Int. 2021;63(11):1394–1396. doi: https://doi.org/10.1111/ped.14629; Kaczor M, Greczan M, Kierus K, et al. Sodium-glucose cotransporter type 2 channel inhibitor: breakthrough in the treatment of neutropenia in patients with glycogen storage disease type 1b? JIMD Rep. 2022;63(3):199–206. doi: https://doi.org/10.1002/jmd2.12278; Grünert SC, Rosenbaum-Fabian S, Schumann A, et al. Two successful pregnancies and first use of empagliflozin during pregnancy in glycogen storage disease type Ib. JIMD Rep. 2022;63(4):303–308. doi: https://doi.org/10.1002/jmd2.12295; Halligan RK, Dalton RN, Turner C, et al. Understanding the role of SGLT2 inhibitors in glycogen storage disease type Ib: the experience of one UK centre. Orphanet J Rare Dis. 2022;17(1):195. doi: https://doi.org/10.1186/s13023-022-02345-2; Bidiuk J, Gaciong Z, Sobieraj P. The overall benefits of empagliflozin treatment in adult siblings with glycogen storage disease type Ib: one year experience. Arch Med Sci. 2022;18(4):1095–1099. doi: https://doi.org/10.5114/aoms/150029; Hexner-Erlichman Z, Veiga-da-Cunha M, Zehavi Y, et al. Favorable outcome of empagliflozin treatment in two pediatric glycogen storage disease type 1b patients. Front Pediatr. 2022;10:1071464. doi: https://doi.org/10.3389/fped.2022.1071464; Tallis E, Karsenty CL, Grimes AB, et al. Untargeted metabolomic profiling in a patient with glycogen storage disease Ib receiving empagliflozin treatment. JIMD Rep. 2022;63(4):309–315. doi: https://doi.org/10.1002/jmd2.12304; Mathis T, Poms M, Köfeler H, et al. Untargeted plasma metabolomics identifies broad metabolic perturbations in glycogen storage disease type I. J Inherit Metab Dis. 2022;45(2):235–247. doi: https://doi.org/10.1002/jimd.12451; Grünert SC, Derks TGJ, Adrian K, et al. Efficacy and safety of empagliflozin in glycogen storage disease type Ib: data from an international questionnaire. Genet Med. 2022;24(8):1781–1788. doi: https://doi.org/10.1016/j.gim.2022.04.001; Rajas F, Labrune P, Mithieux G. Glycogen storage disease type 1 and diabetes: learning by comparing and contrasting the two disorders. Diabetes Metab. 2013;39(5):377–877. doi: https://doi.org/10.1016/j.diabet.2013.03.002; Курбатова О.В., Измайлова Т.Д., Сурков А.Н. и др. Митохондриальная дисфункция у детей с печеночными формами гликогеновой болезни // Вестник Российской академии медицинских наук. — 2014. — Т. 69. — № 7-8. — С. 78–84. — doi: https://doi.org/10.15690/vramn.v69i7-8.1112; Melis D, Rossi A, Pivonello R, et al. Glycogen storage disease type ia (GSD Ia) but not glycogen storage disease type Ib (GSD Ib) is associated to an increased risk of metabolic syndrome: possible role of microsomal glucose 6-phosphate accumulation. Orphanet J Rare Dis. 2015;10:91. doi: https://doi.org/10.1186/s13023-015-0301-2; Rossi A, Simeoli C, Salerno M, et al. Imbalanced cortisol concentrations in glycogen storage disease type I: evidence for a possible link between endocrine regulation and metabolic derangement. Orphanet J Rare Dis. 2020;15(1):99. doi: https://doi.org/10.1186/s13023-020-01377-w; Rossi A, Ruoppolo M, Formisano P, et al. Insulin-resistance in glycogen storage disease type Ia: linking carbohydrates and mitochondria? J Inherit Metab Dis. 2018;41(6):985–995. doi: https://doi.org/10.1007/s10545-018-0149-4; Bhattacharya K. Dietary dilemmas in the management of glycogen storage disease type I. J Inherit Metab Dis. 2011;34(3):621–629. doi: https://doi.org/10.1007/s10545-011-9322-8; Dahlberg KR, Ferrecchia IA, Dambska-Williams M, et al. Cornstarch requirements of the adult glycogen storage disease Ia population: a retrospective review. J Inherit Metab Dis. 2020;43(2):269–278. doi: https://doi.org/10.1002/jimd.12160; Rossi A, Hoogeveen IJ, Bastek VB, et al. Dietary lipids in glycogen storage disease type III: a systematic literature study, case studies, and future recommendations. J Inherit Metab Dis. 2020;43(4):770–777. doi: https://doi.org/10.1002/jimd.12224; Qian H, Chao X, Williams J, et al. Autophagy in liver diseases: a review. Mol Aspects Med. 2021;82:100973. doi: https://doi.org/10.1016/j.mam.2021.100973; Halaby CA, Young SP, Austin S, et al. Liver fibrosis during clinical ascertainment of glycogen storage disease type III: a need for improved and systematic monitoring. Genet Med. 2019;21(12):2686–2694. doi: https://doi.org/10.1038/s41436-019-0561-7; Gautam S, Zhang L, Lee C, et al. Molecular mechanism underlying impaired hepatic autophagy in glycogen storage disease type Ib. Hum Mol Genet. 2023;32(2):262–275. doi: https://doi.org/10.1093/hmg/ddac197; Busch V, Gempel K, Hack A, et al. Treatment of glycogenosis type V with ketogenic diet. Ann Neurol. 2005;58(2):341. doi: https://doi.org/10.1002/ana.20565; Vorgerd M, Zange J. Treatment of glycogenosys type V (McArdle disease) with creatine and ketogenic diet with clinical scores and with 31P-MRS on working leg muscle. Acta Myol. 2007;26(1):61–63.; Løkken N, Hansen KK, Storgaard JH, et al. Titrating a modified ketogenic diet for patients with McArdle disease: a pilot study. J Inherit Metab Dis. 2020;43(4):778–786. doi: https://doi.org/10.1002/jimd.12223; Similä ME, Auranen M, Piirilä PL. Beneficial effects of ketogenic diet on phosphofructokinase deficiency (Glycogen storage disease type VII). Front Neurol. 2020;11:57. doi: https://doi.org/10.3389/fneur.2020.00057; Donnan JR, Grandy CA, Chibrikov E, et al. Comparative safety of the sodium glucose co-transporter 2 (SGLT2) inhibitors: a systematic review and meta-analysis. BMJ Open. 2019;9(1):e02257. doi: https://doi.org/10.1136/bmjopen-2018-022577; Rosenstock J, Jelaska A, Frappin G, et al. Improved glucose control with weight loss, lower insulin doses, and no increased hypoglycemia with empagliflozin added to titrated multiple daily injections of insulin in obese inadequately controlled type 2 diabetes. Diabetes Care. 2014;37(7):1815–1823. doi: https://doi.org/10.2337/dc13-3055; dos Santos SS, Ramaldes LA, Gabbay MAL, et al. Use of a sodium-glucose cotransporter 2 inhibitor, empagliflozin, in a patient with rabson-mendenhall syndrome. Horm Res Paediatr. 2021;94(7-8):313–316. doi: https://doi.org/10.1159/000519613; Galderisi A, Tamborlane W, Taylor SI, et al. SGLT2i improves glycemic control in patients with congenital severe insulin resistance. Pediatrics. 2022;150(1):e2021055671. doi: https://doi.org/10.1542/peds.2021-055671; Chen Y-T, Kishnani PS, Koeberl D. Glycogen storage diseases. In: The online metabolic and molecular bases of inherited disease. Valle DL, Antonarakis S, Ballabio A, et al., eds. New York, NY: McGraw-Hill Education; 2019. Available online: https://ommbid.mhmedical.com/content.aspx?aid=1181420647. Accessed on October 17, 2023.; Ng ES-T, Gupta S, Khin SM, Mak A. Gout, anemia, and hepatomegaly in a young man with glycogen storage disease. JCR J Clin Rheumatol. 2012;18(4):222–223. doi: https://doi.org/10.1097/RHU.0b013e3182598ed1; Ouchi M, Oba K, Aoyama J, et al. Serum uric acid in relation to serum 1,5-anhydroglucitol levels in patients with and without type 2 diabetes mellitus. Clin Biochem. 2013;46(15):1436–1441. doi: https://doi.org/10.1016/j.clinbiochem.2013.06.003; https://www.pedpharma.ru/jour/article/view/2361

  17. 17
    Academic Journal

    المساهمون: Not specified., Отсутствует.

    المصدر: Pediatric pharmacology; Том 20, № 4 (2023); 318-336 ; Педиатрическая фармакология; Том 20, № 4 (2023); 318-336 ; 2500-3089 ; 1727-5776

    وصف الملف: application/pdf

    Relation: https://www.pedpharma.ru/jour/article/view/2343/1521; Whyte MP. Hypophosphatasia — aetiology, nosology, pathogenesis, diagnosis and treatment. Nat Rev Endocrinol. 2016;12(4):233-246. doi: https://doi.org/10.1038/nrendo.2016.14; Millan JL, Whyte MP. Alkaline phosphatase and hypophosphatasia. Calcif Tissue Int. 2016;98(4):398-416. doi: https://doi.org/10.1007/s00223-015-0079-1; Mornet E, Yvard A, Taillandier A, et al. A molecular-based estimation of the prevalence of hypophosphatasia in the European population. Ann Hum Genet. 2011;75(3):439-445. doi: https://doi.org/10.1111/j.1469-1809.2011.00642.x; Гуркина Е.Ю., Воинова В.Ю., Кузенкова Л.М. и др. Гипофосфатазия. Обзор клинических случаев, опубликованных в РФ // РМЖ. — 2021. — № 2. — С. 42-48.; Tsang T, Raghuwanshi MP. Hypophosphatasia Misdiagnosed as Osteoporosis in a Young Girl. J Endocr Soc. 2021;5(Suppl 1):A201-A202. doi: https://doi.org/10.1210/jendso/bvab048.409; Whyte MP, Zhang F, Wenkert D, et al. Hypophosphatasia: validation and expansion of the clinical nosology for children from 25 years experience with 173 pediatric patients. Bone. 2015;75:229-239. doi: https://doi.org/10.1016/j.bone.2015.02.022; Bishop N, Munns CF, Ozono K. Transformative therapy in hypophosphatasia. Arch Dis Child. 2016;101(6):514-515. doi: https://doi.org/10.1136/archdischild-2015-309579; Anderson HC, Harmey D, Camacho NP, et al. Sustained osteomalacia of long bones despite major improvement in other hypophosphatasia-related mineral deficits in tissue nonspecific alkaline phosphatase/nucleotide pyrophosphatase phosphodiesterase 1 double-deficient mice. Am J Pathol. 2005;166(6):1711-1720. doi: https://doi.org/10.1016/S0002-9440(10)62481-9; Braunstein NA. Multiple fractures, pain, and severe disability in a patient with adult-onset hypophosphatasia. Bone Rep. 2016;4:1-4. doi: https://doi.org/10.1016/j.bonr.2015.10.005; Whyte M. Hypophosphatasia. In: Genetics of bone biology and skeletal disease. Thakker RV, Whyte MP, Eisman J, Igarashi T, eds. London: Academic Press; 2013. pp. 337-360.; Whyte MP, Coburn SP, Ryan LM, et al. Hypophosphatasia: Biochemical hallmarks validate the expanded pediatric clinical nosology. Bone. 2018;110:96-106. doi: https://doi.org/10.1016/j.bone.2018.01.022; Rush ET. Childhood hypophosphatasia: to treat or not to treat. Orphanet J Rare Dis. 2018;13(1):116. doi: https://doi.org/10.1186/s13023-018-0866-7; Simon S, Resch H, Klaushofer K, et al. Hypophosphatasia: From Diagnosis to Treatment. Curr Rheumatol Rep. 2018;20(11):69. doi: https://doi.org/10.1007/s11926-018-0778-5; Khan AA, Josse R, Kannu P, et al. Hypophosphatasia: Canadian update on diagnosis and management. Osteoporos Int. 2019;30(9):1713-1722. doi: https://doi.org/10.1007/s00198-019-04921-y; Mornet E. Hypophosphatasia. Metabolism. 2018;82:142-155. doi: https://doi.org/10.1016/j.metabol.2017.08.013; Briot K, Roux C. Adult hypophosphatasia. Arch Pediatr. 2017;24(5S2):5S71-5S73. doi: https://doi.org/10.1016/S0929-693X(18)30018-6; Kishnani PS, Rush ET, Arundel P, et al. Monitoring guidance for patients with hypophosphatasia treated with asfotase alfa. Mol Genet Metab. 2017;122(1-2):4-17. doi: https://doi.org/10.1016/j.ymgme.2017.07.010; Michigami T, Ohata Y, Fujiwara M, et al. Clinical Practice Guidelines for Hypophosphatasia. Clin Pediatr Endocrinol. 2020;29(1):9-24. doi: https://doi.org/10.1297/cpe.29.9; Estey MP, Cohen AH, Colantonio DA, et al. CLSI-based transference of the CALIPER database of pediatric reference intervals from Abbott to Beckman, Ortho, Roche and Siemens Clinical Chemistry Assays: direct validation using reference samples from the CALIPER cohort. Clin Biochem. 2013;46(13-14):1197-1219. doi: https://doi.org/10.1016/j.clinbiochem.2013.04.001; Ройтман А.П., Мамедов И.С., Сухоруков В.С. Референтные интервалы активности щелочной фосфатазы у детей в сыворотке крови. Лабораторная диагностика гипофосфатазии // Лабораторная служба. — 2015. — Т. 4. — № 1. — С. 35-41. — doi: https://doi.org/10.17116/labs20154135-41; Whyte MP, Leung E, Wilcox W, et al. Hypophosphatasia: a retrospective natural history study of the severe perinatal and infantile forms. In: Poster presented at the 2014 Pediatric Academic Societies and Asian Society for Pediatric Research Joint Meeting. Vancouver, B.C., Canada, May 5, 2014. Abstract 752416.; Villa-Suarez JM, Garci'a-Fontana C, Andujar-Vera F, et al. Hypophosphatasia: A Unique Disorder of Bone Mineralization. Int J Mol Sci. 2021;22(9):4303. doi: https://doi.org/10.3390/ijms22094303; Christine Hofmann C, Girschick H, Mornet E, et al. Unexpected high intrafamilial phenotypic variability observed in hypophosphatasia. Eur J Hum Genet. 2914;22(10):1160-1164. doi: https://doi.org/10.1038/ejhg.2014.10; Mornet E. Molecular Genetics of Hypophosphatasia and Phenotype-Genotype Correlations. Subcell Biochem. 2015;76:25-43. doi: https://doi.org/10.1007/978-94-017-7197-9_2; Ishiguro T, Sugiyama Y, Ueda K, et al. Findings of amplitude-integrated electroencephalogram recordings and serum vitamin B6 metabolites in perinatal lethal hypophosphatasia during enzyme replacement therapy. Brain Dev. 2019;41(8):721-725. doi: https://doi.org/10.1016/j.braindev.2019.03.015; Martos-Moreno GA, Calzada J, Couce ML, Argente J. Hypophosphatasia: Clinical manifestations, diagnostic recommendations and therapeutic options. An Pediatr (Engl Ed). 2018;88(6):356. e1-356.e11. doi: https://doi.org/10.1016/j.anpedi.2017.06.004; Fukazawa M, Tezuka J, Sasazuki M, et al. Infantile hypophosphatasia combined with vitamin B6-responsive seizures and reticular formation lesions on magnetic resonance imaging: A case report. Brain Dev. 2018;40(2):140-144. doi: https://doi.org/10.1016/j.braindev.2017.07.015; Di Rocco F, Baujat G, Cormier-Daire V, et al. Craniosynostosis and hypophosphatasia. Arch Pediatr. 2017;24(5S2):5S89-5S92. doi: https://doi.org/10.1016/S0929-693X(18)30022-8; Vogt M, Girschick H, Schweitzer T, et al. Pediatric hypophos-phatasia: lessons learned from a retrospective single-center chart review of 50 children. Orphanet J Rare Dis. 2020;15(1):212. doi: https://doi.org/10.1186/s13023-020-01500-x; Collmann H, Mornet E, Gattenlohner S, et al. Neurosurgical aspects of childhood hypophosphatasia. Childs Nerv Syst. 2009;25(2):217-223. doi: https://doi.org/10.1007/s00381-008-0708-3; Graham BL, Steenbruggen I, Miller MR, et al. Standardization of Spirometry 2019 Update. An Official American Thoracic Society and European Respiratory Society Technical Statement. Am J Respir Crit Care Med. 2019;200(8):e70-e88. doi: https://doi.org/10.1164/rccm.201908-1590ST; Beydon N, Davis SD, Lombardi E, et al. An official American Thoracic Society/European Respiratory Society statement: pulmonary function testing in preschool children. Am J Respir Crit Care Med. 2007;175(12):1304-1345. doi: https://doi.org/10.1164/rccm.200605-642ST; Kamran A, Jennings RW. Tracheomalacia and Tracheobronchomalacia in Pediatrics: An Overview of Evaluation, Medical Management, and Surgical Treatment. Front Pediatr. 2019;7:512. doi: https://doi.org/10.3389/fped.2019.00512; Nunes ME. Hypophosphatasia. In: GeneReviews® [Internet]. Adam MP, Everman DB, Mirzaa GM, et al., eds. Seattle (WA): University of Washington, Seattle; 1993-2022.; Whyte MP, Rockman-Greenberg C, Ozono K, et al. Asfotase Alfa Treatment Improves Survival for Perinatal and Infantile Hypophosphatasia. J Clin Endocrinol Metab. 2016;101(1):334-342. doi: https://doi.org/10.1210/jc.2015-3462; Vislobokova E, Kiselnikova L, Voinova V, Sholokhova N. Dental findings in patients with hypophosphatasia. Scientific Abstracts of the 14th Congress of the European Academy of Paediatric Dentistry (EAPD) Palazzo dei Congressi, Lake Lugano, Switzerland 20th to 23rd June 2018. Eur Arch Paediatr Dent. 2019;20:152. doi: https://doi.org/10.1007/s40368-018-0390-4; Whyte MP, Greenberg CR, Salman NJ, et al. Enzymereplacement therapy in life-threatening hypophosphatasia. N Engl J Med. 2012;366(10):904-913. doi: https://doi.org/10.1056/NEJMoa1106173; Kitaoka T, Tajima T, Nagasaki K, et al. Safety and efficacy of treatment with asfotase alfa in patients with hypophosphatasia: Results from a Japanese clinical trial. Clin Endocrinol (Oxf). 2017;87(1):10-19. doi: https://doi.org/10.1111/cen.13343; Yamamoto H, Sasamoto Y, Miyamoto Y, et al. A successful treatment with pyridoxal phosphate for West syndrome in hypophosphatasia. Pediatr Neurol. 2004;30(3):216-218. doi: https://doi.org/10.1016/j.pediatrneurol.2003.08.003; de Roo MGA, Abeling NGGM, Majoie CB, et al. Infantile hypophosphatasia without bone deformities presenting with severe pyridoxine-resistant seizures. Mol Genet Metab. 2014;111(3):404-407. doi: https://doi.org/10.1016/j.ymgme.2013.09.014; Belachew D, Kazmerski T, Libman I, et al. Infantile hypophosphatasia secondary to a novel compound heterozygous mutation presenting with pyridoxine-responsive seizures. JIMD Rep. 2013;11:17-24. doi: https://doi.org/10.1007/8904_2013_217; Taketani T. Neurological Symptoms of Hypophosphatasia. Subcell Biochem. 2015;76:309-322. doi: https://doi.org/10.1007/978-94-017-7197-9_14; Nunes ML, Mugnol F, Bica I, Fiori RM. Pyridoxine-dependent seizures associated with hypophosphatasia in a newborn. J Child Neurol. 2002;17(3):222-224. doi: https://doi.org/10.1177/088307380201700314; Girschick HJ, Schneider P, Haubitz I, et al. Effective NSAID treatment indicates that hyperprostaglandinism is affecting the clinical severity of childhood hypophosphatasia. Orphanet J Rare Dis. 2006;1:24. doi: https://doi.org/10.1186/1750-1172-1-24; Bianchi ML, Bishop NJ, Guanabens N, et al. Hypophosphatasia in adolescents and adults: overview of diagnosis and treatment. Osteoporos Int. 2020 31(8):1445-1460. doi: https://doi.org/10.1007/s00198-020-05345-9; Correa Marquez RR, Behari G. Hypophosphatasia (HPP) Treatment & Management. In: Medscape. Updated: Jun 05, 2023. Available online: https://emedicine.medscape.com/article/945375-treatment#d6. Accessed on July 15, 2023.; Miyashita S, Ochiai S, Sakamoto С, et al. VP13.10: Prenatal ultrasound findings in a survived case of perinatal lethal hypophosphatasia with enzyme replacement therapy started early in life. Ultrasound Obstet Gynecol. 2020;56(S1):104-104. doi: https://doi.org/10.1002/uog.22519; Yang Y, Liu Z, Wei L, et al. Prosthodontic Rehabilitation of a Patient with Hypophosphatasia Using Dental Implants: A Case Report with Seven Years Follow-Up. J Prosthodont. 2021;30(9):742-746. doi: https://doi.org/10.1111/jopr.13419; Tournis S, Yavropoulou MP, Polyzos SA, Doulgeraki A. Hypophosphatasia. J Clin Med. 2021;10(23):5676. doi: https://doi.org/10.3390/jcm10235676; Linglart A, Biosse-Duplan M. Hypophosphatasia. Curr Osteoporos Rep. 2016;14(3):95-105. doi: https://doi.org/10.1007/s11914-016-0309-0; Simon S, Resch H. Treatment of hypophosphatasia. Wien Med Wochenschr. 2020;170(5-6):112-115. doi: https://doi.org/10.1007/s10354-020-00736-3; Коняхина Г.П., Захарова Н.А. Лечебная физкультура для детей с ограниченными возможностями здоровья: учебно-методическое пособие. — Челябинск; 2019. — 81 с.; Медико-психологическая помощь детям с нарушением психического развития в системе комплексной реабилитации: методические рекомендации. — М.: ДЗМ; 2018. — № 83. — 28 с.; Leung EC, Mhanni AA, Reed M, et al. Outcome of perinatal hypophosphatasia in manitoba mennonites: a retrospective cohort analysis. JIMD Rep. 2013;11:73-78. doi: https://doi.org/10.1007/8904_2013_224; https://www.pedpharma.ru/jour/article/view/2343

  18. 18
    Academic Journal

    المؤلفون: Inga V. Anisimova, Marina B. Albegova, Madlena E. Bagaeva, Galina V. Baidakova, Aleksandr A. Baranov, Nato D. Vashakmadze, Elena A. Vishneva, Olga S. Gundobina, Anna V. Degtiareva, Marat V. Ezhov, Maria S. Zharkova, Nataliia V. Zhurkova, Ekaterina Yu. Zaharova, Vladimir T. Ivashkin, Elena A. Kamenets, Sergey I. Kutzev, Alla E. Lavrova, Irina A. Matinian, Svetlana V. Mikhailova, Leyla S. Namazova-Baranova, Irina E. Pashkova, Elena E. Petriaykina, Tatiana M. Pervunina, Nataliia L. Pechatnikova, Nelia S. Pogosian, Svetlana A. Repina, Lilia R. Selimzianova, Tamara A. Skvortsova, Tatiana V. Strokova, Dmitriy M. Subbotin, Andrey N. Surkov, Elena L. Tumanova, Ekaterina G. Tzimbalova, И. В. Анисимова, М. Б. Албегова, М. Э. Багаева, Г. В. Байдакова, А. А. Баранов, Н. Д. Вашакмадзе, Е. А. Вишнева, О. С. Гундобина, А. В. Дегтярева, М. В. Ежов, М. С. Жаркова, Н. В. Журкова, Е. Ю. Захарова, В. Т. Ивашкин, Е. А. Каменец, С. И. Куцев, А. Е. Лаврова, И. А. Матинян, С. В. Михайлова, Л. С. Намазова-Баранова, И. Е. Пашкова, Е. Е. Петряйкина, Т. М. Первунина, Н. Л. Печатникова, Н. С. Погосян, С. А. Репина, Л. Р. Селимзянова, Т. А. Скворцова, Т. В. Строкова, Д. М. Субботин, А. Н. Сурков, Е. Л. Туманова, Е. Г. Цимбалова

    المساهمون: Not specified., Отсутствует.

    المصدر: Pediatric pharmacology; Том 20, № 4 (2023); 337-354 ; Педиатрическая фармакология; Том 20, № 4 (2023); 337-354 ; 2500-3089 ; 1727-5776

    وصف الملف: application/pdf

    Relation: https://www.pedpharma.ru/jour/article/view/2342/1520; Valayannopoulos V, Mengel E, Brassier A, Grabowski G. Lysosomal acid lipase deficiency: Expanding differential diagnosis. Mol Genet Metab. 2017;120(1-2):62-66. doi: https://doi.org/10.1016/j.ymgme.2016.11.002; Bernstein DL, Hulkova H, Bialer MG, Desnick RJ. Cholesteryl ester storage disease: review of the findings in 135 reported patients with an underdiagnosed disease. J Hepatol. 2013;58(6):1230-1243. doi: https://doi.org/10.1016/j.jhep.2013.02.014; Grabowski GA, Charnas L, Du H. Lysosomal acid lipase deficiencies: the Wolman disease/cholesteryl ester storage disease spectrum. In: Metabolic and molecular bases of inherited disease — OMMBID. Scriver Valle D, Beaudet AL, Vogelstein B, et al., eds. New York: McGraw-Hill; 2014.; Fouchier SW, Defesche JC. Lysosomal acid lipase A and the hyper-cholesterolaemic phenotype. Curr Opin Lipidol. 2013;24(4):332-338. doi: https://doi.org/10.1097/MOL.0b013e328361f6c6; Pericleous M, Kelly C, Wang T, et al. Wolman's disease and cholesteryl ester storage disorder: the phenotypic spectrum of lysosomal acid lipase deficiency. Lancet Gastroenterol Hepatol. 2017;2(9):670-679. doi: https://doi.org/10.1016/S2468-1253(17)30052-3; Santos Silva E, Klaudel-Dreszler M, Bakula A, et al. Early onset lysosomal acid lipase deficiency presenting as secondary hemophagocytic lymphohistiocytosis: Two infants treated with sebelipase alfa. Clin Res Hepatol Gastroenterol. 2018;42(5):e77-e82. doi: https://doi.org/10.1016/j.clinre.2018.03.012; Sadhukhan M, Saha A, Vara R, Bhaduri B. Infant case of lysosomal acid lipase deficiency: Wolman's disease. BMJ Case Rep. 2014;2014:bcr2013202652. doi: https://doi.org/10.1136/bcr-2013-202652; Каменец Е.А., Печатникова Н.Л., Какаулина В.С. и др. Дефицит лизосомной кислой липазы у российских больных: молекулярная характеристика и эпидемиология // Медицинская генетика. — 2019. — Т. 18. — № 8. — С. 3-16. — doi: https://doi.org/10.25557/2073-7998.2019.08.3-16; Witeck CDR, Schmitz AC, de Oliveira JMD, et al. Lysosomal acid lipase deficiency in pediatric patients: a scoping review. J Pediatr (Rio J). 2022;98(1):4-14. doi: https://doi.org/10.1016/j.jped.2021.03.003; Дегтярева А.В., Пучкова А.А., Жданова С.И., Дегтярев Д.Н. Болезнь Вольмана — тяжелая младенческая форма дефицита лизосомной кислой липазы // Неонатология: новости, мнения, обучение. — 2019. — Т. 7. — № 2. — С. 42-51. — doi: https://doi.org/10.24411/2308-2402-2019-12003; Jones SA, Valayannopoulos V, Schneider E, et al. Rapid progression and mortality of lysosomal acid lipase deficiency presenting in infants. Genet Med. 2016;18(5):452-458. doi: https://doi.org/10.1038/gim.2015.108; Маевская М.В., Ивашкин В.Т., Жаркова М.С. и др. Редкие формы неалкогольной жировой болезни печени: наследственный дефицит лизосомной кислой липазы. Российский журнал гастроэнтерологии, гепатологии, колопроктологии. — 2016. — Т. 26. — № 3. — С. 41-51. — doi: https://doi.org/10.22416/1382-4376-2016-26-3-41-51; Desai PK, Astrin KH, Thung SN, et al. Cholesteryl ester storage disease: pathologic changes in an affected fetus. Am J Med Genet. 1987;26(3):689-698. doi: https://doi.org/10.1002/ajmg.1320260324; Decarlis S, Agostoni C, Ferrante F, et al. Combined hyperlipidaemia as a presenting sign of cholesteryl ester storage disease. J Inherit Metab Dis. 2009;32 Suppl 1:S11-S13. doi: https://doi.org/10.1007/s10545-008-1027-2; Riva S, Spada M, Sciveres M, et al. Hepatocarcinoma in a child with cholesterol ester storage disease. Dig Liver Dis. 2008;40(9):784. doi: https://doi.org/10.1016/j.dld.2008.01.009; Hamilton J, Jones I, Srivastava R, Galloway P. A new method for the measurement of lysosomal acid lipase in dried blood spots using the inhibitor Lalistat 2. Clin Chim Acta. 2012;413(15-16):1207-1210. doi: https://doi.org/10.1016/j.cca.2012.03.019; Lukacs Z, Barr M, Hamilton J. Best practice in the measurement and interpretation of lysosomal acid lipase in dried blood spots using the inhibitor Lalistat 2. Clin Chim Acta. 2017;471:201-205. doi: https://doi.org/10.1016/j.cca.2017.05.027; Hoffman EP, Barr ML, Giovanni MA, et al. Lysosomal Acid Lipase Deficiency. 2015 Jul 30 [Updated 2016 Sep 1]. In: GeneReviews® [Internet]. Adam MP, Ardinger HH, Pagon RA, et al., eds. Seattle (WA): University of Washington, Seattle; 1993-2020. Available online: https://www.ncbi.nlm.nih.gov/books/NBK305870. Accessed on July 13, 2023.; Quinn AG, Burton B, Deegan P, et al. Sustained elevations in LDL cholesterol and serum transaminases from early childhood are common in lysosomal acid lipase deficiency. Mol Genet Metab. 2014;111(2):S89. doi: https://doi.org/10.1016/j.ymgme.2013.12.215; Cohen JL, Burfield J, Valdez-Gonzalez K, et al. Early diagnosis of infantile-onset lysosomal acid lipase deficiency in the advent of available enzyme replacement therapy. Orphanet J Rare Dis. 2019;14(1):198. doi: https://doi.org/10.1186/s13023-019-1129-y; Al Essa M, Nounou R, Sakati N, et al. Wolman's disease: The King Faisal Specialist Hospital and Research Centre experience. Ann Saudi Med. 1998;18(2):120-124. doi: https://doi.org/10.5144/0256-4947.1998.120; Карпищенко А.И., Москалев А.В., Кузнецов В.В., Жерегеля С.Н. Клиническая лабораторная диагностика заболеваний печени и желчевыводящих путей: руководство для врачей / под ред. А.И. Карпищенко. — М.: ГЭОТАР-Медиа; 2020. — 464 c. — doi: https://doi.org/10.33029/9704-5256-1-LIV-2020-1-464; Tolar J, Petryk A, Khan K, et al. Long-term metabolic, endocrine, and neuropsychological outcome of hematopoietic cell transplantation for Wolman disease. Bone Marrow Transplant. 2009;43(1):21-27. doi: https://doi.org/10.1038/bmt.2008.273; Kohli R, Ratziu V, Fiel MI, et al. Initial assessment and ongoing monitoring of lysosomal acid lipase deficiency in children and adults: Consensus recommendations from an international collaborative working group. Mol Genet Metab. 2020;129(2):59-66. doi: https://doi.org/10.1016/j.ymgme.2019.11.004; Hulkova H, Elleder M. Distinctive histopathological features that support a diagnosis of cholesterol ester storage disease in liver biopsy specimens. Histopathology. 2012;60(7):1107-1113. doi: https://doi.org/10.1111/j.1365-2559.2011.04164.x; Harrison SA. Management of Lysosomal Acid Lipase Deficiency for the Gastroenterologist and Hepatologist. Gastroenterol Hepatol (N Y). 2016;12(5):331-333.; Jones SA, Rojas-Caro S, Quinn AG, et al. Survival in infants treated with sebelipase Alfa for lysosomal acid lipase deficiency: an open-label, multicenter, dose-escalation study. Orphanet J Rare Dis. 2017;12(1):25. doi: https://doi.org/10.1186/s13023-017-0587-3; Burton BK, Balwani M, Feillet F, et al. A Phase 3 Trial of Sebelipase Alfa in Lysosomal Acid Lipase Deficiency. N Engl J Med. 2015;373(11):1010-1020. doi: https://doi.org/10.1056/NEJMoa1501365; Abel F, Arnoux JB, Kostyleva M, et al. Benefit of Sebelipase Alfa in Children and Adults With Lysosomal Acid Lipase Deficiency Based on Analysis of Efficacy Overall and by Baseline Alanine Aminotransferase Level. J Hepatol. 2016;64(2):298-299. doi: https://doi.org/10.1016/S0168-8278(16)00382-2; Su K, Donaldson E, Sharma R. Novel treatment options for lysosomal acid lipase deficiency: critical appraisal of sebelipase alfa. Appl Clin Genet. 2016;9:157-167. doi: https://doi.org/10.2147/TACG.S86760; Valayannopoulos V, Malinova V, Honzík T, et al. Sebelipase alfa over 52 weeks reduces serum transaminases, liver volume and improves serum lipids in patients with lysosomal acid lipase deficiency. J Hepatol. 2014;61(5):1135-1142. doi: https://doi.org/10.1016/j.jhep.2014.06.022; Maciejko JJ. Managing Cardiovascular Risk in Lysosomal Acid Lipase Deficiency. Am J Cardiovasc Drugs. 2017;17(3):217-231. doi: https://doi.org/10.1007/s40256-017-0216-5; Strebinger G, Muller E, Feldman A, Aigner E. Lysosomal acid lipase deficiency — early diagnosis is the key. Hepat Med. 2019;11:79-88. doi: https://doi.org/10.2147/HMER.S201630; Dixon DB. Non-Invasive Techniques in Pediatric Dyslipidemia. In: Endotext. Feingold KR, Anawalt B, Boyce A, et al., eds. South Dartmouth (MA): MDText.com, Inc.; 2020.; Zharkova M, Nekrasova T, Ivashkin V, et al. Fatty Liver and Systemic Atherosclerosis in a Young, Lean Patient: Rule Out Lysosomal Acid Lipase Deficiency. Case Rep Gastroenterol. 2019;13(3):498-507. doi: https://doi.org/10.1159/000504646; Erwin AL. The role of sebelipase alfa in the treatment of lysosomal acid lipase deficiency. Therap Adv Gastroenterol. 2017;10(7):553-562. doi: https://doi.org/10.1177/1756283X17705775; Венозный доступ: методические руководства. — Минздрав России; 2019. — 82 с. Доступно по: https://msestra.ru/download/file.php?id=4763. Ссылка активна на 18.07.2023.; Себелипаза альфа. Регистрационное удостоверение № ЛП-004513. Дата регистрации: 31.10.2017 // Государственный реестр лекарственных средств: официальный сайт. Доступно по: https://grls.rosminzdrav.ru/Grls_View_v2.aspx?routingGuid=1eaa9c5e-20c6-4a75-a48c-44f5271fcf4d. Ссылка активна на 14.07.2023.; Jones SA, AlSayed M, Broomfield AA, et al. Management guidelines for infantile onset lysosomal acid lipase deficiency (LALD). Mol Genet Metab. 2018;123(2):S72-S73. doi: https://doi.org/10.1016/j.ymgme.2017.12.180; Malinova V, Balwani M, Sharma R, et al. Sebelipase alfa for lysosomal acid lipase deficiency: 5-year treatment experience from a phase 2 open-label extension study. Liver Int. 2020;40(9):2203-2214. doi: https://doi.org/10.1111/liv.14603; Attachment 2 KANUMA — Sebelipase — Alexion Pharmaceuticals Australia Pty Ltd — PM-2016-01313-1-3 — Extract from the CER FINAL 14 June 2018. Available online: https://www.tga.gov.au/sites/default/files/auspar-sebelipase-alfa-180614-cer.pdf. Accessed on July 13, 2023.; Pastores GM, Hughes DA. Lysosomal Acid Lipase Deficiency: Therapeutic Options. Drug Des Devel Ther. 2020;14:591-601. doi: https://doi.org/10.2147/DDDT.S149264; Gramatges MM, Dvorak CC, Regula DP, et al. Pathological evidence of Wolman's disease following hematopoietic stem cell transplantation despite correction of lysosomal acid lipase activity. Bone Marrow Transplant. 2009;44(7):449-450. doi: https://doi.org/10.1038/bmt.2009.57; Stein J, Garty BZ, Dror Y, et al. Successful treatment of Wolman disease by unrelated umbilical cord blood transplantation. Eur J Pediatr. 2007;166(7):663-666. doi: https://doi.org/10.1007/s00431-006-0298-6; Yanir A, Allatif MA, Weintraub M, Stepensky P. Unfavorable outcome of hematopoietic stem cell transplantation in two siblings with Wolman disease due to graft failure and hepatic complications. Mol Genet Metab. 2013;109(2):224-226. doi: https://doi.org/10.1016/j.ymgme.2013.03.007; Лобанова Е.В., Лаврова А.Е., Коновалова Е.Ю. и др. Дефицит лизосомной кислой липазы у ребенка 5 лет // Педиатрия. Журнал им. Г.Н. Сперанского. — 2017. — Т. 96. — № 6. — С. 183-186.; Kale AS, Ferry GD, Hawkins EP. End-stage renal disease in a patient with cholesteryl ester storage disease following successful liver transplantation and cyclosporine immunosuppression. J Pediatr Gastroenterol Nutr. 1995;20(1):95-97. doi: https://doi.org/10.1097/00005176-199501000-00016; Ambler GK, Hoare M, Brais R, et al. Orthotopic liver transplantation in an adult with cholesterol ester storage disease. JIMD Rep. 2013;8:41-46. doi: https://doi.org/10.1007/8904_2012_155; Bernstein DL, Lobritto S, Iuga A, et al. Lysosomal acid lipase deficiency allograft recurrence and liver failure- clinical outcomes of 18 liver transplantation patients. Mol Genet Metab. 2018;124(1):11-19. doi: https://doi.org/10.1016/j.ymgme.2018.03.010; https://www.pedpharma.ru/jour/article/view/2342

  19. 19
    Academic Journal

    المصدر: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 67, № 5 (2022); 225-230 ; Российский вестник перинатологии и педиатрии; Том 67, № 5 (2022); 225-230 ; 2500-2228 ; 1027-4065

    وصف الملف: application/pdf

    Relation: https://www.ped-perinatology.ru/jour/article/view/1730/1312; Неонатология: национальное руководство. Под ред. Н.Н. Володина. М.: ГЭОТАР-МЕДИА, 2019; 896. [Neonatology: a national guide. Editor N.N. Volodin. M.: GEOTAR-MEDIA, 2019; 896. (in Russ.)]; Приказ Министерство Здравоохранения Российской Федерации от 10 августа 2017 г. № 514н «О порядке проведения профилактических медицинских осмотров несовершеннолетних» (редакция от 03.07.2018). https://pol-78.ru/wp-content/uploads/2019/10/med-osm-nesoversh.pdf/ Ссылка активна на 29.08.2022; Аксарина Н.М. Воспитание детей раннего возраста. М.: Медицина, 1977; 256.; Журба Л.Т., Мастюкова Е.М. Нарушение психомоторного развития детей первого года жизни. М.: Медицина, 1981; 272 с.; Пантюхина Г.В., Печора К.Л., Фрухт Э.Л. Диагностика нервно-психического развития детей первых трех лет жизни. М., 1983; 37 с. Metodika_diagnostiki_NPR_polnyj_variant.pdf (karagai-edu.ru); Фрухт Э.Л., Тонкова-Ямпольская Р.В. Сравнительный анализ шкал развития детей 1-го года жизни. Российский вестник перинатологии и педиатрии 1998; 2: 38-43.; Баженова О.В. Диагностика психического развития детей первого года жизни. М: МГУ, 1986; 92 с.; Bayley N. Bayley Scales of Infant and Toddler Development. Administration manual, third edition. San Antonio, TX: Harcourt, 2006; 266 p; Weiss L.G., Oakland Th., Aylward G.P. Bayley-III Clinical Use and Interpretation. A volume in Practical Resources for the Mental Health Professional. Academic Press, 2010; 256 p. DOI:10.1016/C2009-0-01670-5 10. Frankenburg W.K. The DENVER II training manual. Denver: Denver Developmental Materials, Inc.; 1992; Смирнова И.В., Самсонова Т.В. Функциональная диагностика двигательной патологии в детском возрасте. Детская медицина Северо-Запада 2012; 3(1): 36-40.; Косенкова Е.Г. Лысенко И.М., Баркун Г.К., Журавлева Л.Н. Шкалы оценки психомоторного развития детей: современный взгляд на проблему. Охрана материнства и детства 2012; 2(20): 113-118.; Кустова Т.В., Таранушенко Т.Е., Демьянова И.М. Оценка психомоторного развития ребенка раннего возраста: что должен знать врач-педиатр. Медицинский совет 2018; 11: 104-109.; Казьмина Л.В., Казьмин А.М. Дневник развития ребенка от рождения до трех лет. М.: Когито-Центр, 2008; 74 с.; Nguefack S., Ananfack E.G., Mah E., Kago D., Tatah S., Yolande F.P. et al. Psychomotor Development of Children Born Premature at the Yaounde Gynaeco-Obstetric and Pediatric Hospital (Cameroon). Open J Pediatr 2020; 10: 147- 158. DOI:10.4236/ojped.2020.101014; Espinoza Diaz C. I., Amaguaya G., Culqui M., Espinosa J., Acosta J., Procel A. et al. Prevalence, risk factors and clinical characteristics of infantile cerebral palsy. Archivos Venezolanos de Farmacología y Terapéutica. 2019; 38 (6): 778-789; Blank R., Smits-Engelsman B., Polatajko H., Wilson P. European Academy for Childhood Disability. European Academy for Childhood Disability (EACD): recommendations on the definition, diagnosis and intervention of developmental coordination disorder (long version). Dev Med Child Neurol 2012; 54(1): 54-93. DOI:10.1111/j.1469-8749.2011.04171.x; Salih M. Clinical Child Neurology. Cite as Neurological Evaluation of Infants and Children. Springer Nature Switzerland AG, 2020; 1-28. DOI:10.1007/978-3-319-43153-6; Katz K., Rosenthal A., Yosipovitch Z. Normal ranges of popliteal angle in children. J Pediatr Orthop 1992; 12(2): 229-231. DOI:10.1097/01241398-199203000-00014; Salandy S., Rai R., Gomez S., Ishak B., Tubbs R. Neurological examination of the infant. Clin Anatomy 2019; 32(6): 217-234. DOI:10.1002/ca.23352; Шайтор В.М., Емельянов В.Д. Диспраксия у детей. М.: ГЭОТАР-Медиа, 2017; 112 с.; US National Library of Medicine. Genetics Home Reference: DMD gene. 2017. Available from: https://ghr.nlm.nih.gov/gene/DMD. Ссылка активна на 29.08.2022; Birnkrant D.J., Bushby K., Bann C.M., Apkon S.D., Blackwell A., Colvin M.K. et al. for the DMD Care Considerations Working Group. Diagnosis and management of Duchenne muscular dystrophy, part 3: primary care, emergency management, psychosocial care, and transitions of care across the lifespan. Lancet Neurol 2018; 17(5): 445-455. Published online January 23, 2018; 11. DOI:10.1016/S1474- 4422(18)30026-7; Manning M., Hudgins L. Professional Practice and Guidelines Committee. Array-based technology and recommendations for utilization in medical genetics practice for detection of chromosomal abnormalities. Genet Med 2010; 12(11): 742-745. DOI:10.1097/GIM.0b013e3181f8baad; Law E., Fisher E., Eccleston C., Palermo T.M. Psychological interventions for parents of children and adolescents with chronic illness. Cochrane Database Syst Rev 2019; 3: CD009660. DOI:10.1002/14651858.CD009660.pub4; https://www.ped-perinatology.ru/jour/article/view/1730

  20. 20
    Academic Journal

    المصدر: Pediatric pharmacology; Том 19, № 3 (2022); 250-257 ; Педиатрическая фармакология; Том 19, № 3 (2022); 250-257 ; 2500-3089 ; 1727-5776

    وصف الملف: application/pdf

    Relation: https://www.pedpharma.ru/jour/article/view/2178/1400; Мукополисахаридоз тип II: клинические рекомендации / Ассоциация медицинских генетиков, Союз педиатров России. Минздрав России; 2019.; D’Avanzo F, Rigon L, Zanetti A, Tomanin R. Mucopolysaccharidosis Type II: One Hundred Years of Research, Diagnosis, and Treatment. Int J Mol Sci. 2020;21(4):1258. doi: https://doi.org/10.3390/ijms21041258; Wikman-Jorgensen PE, López Amoros A, Peris García J, et al. Enzyme replacement therapy for the treatment of Hunter disease: A systematic review with narrative synthesis and meta-analysis. Mol Genet Metab. 2020;131(1-2):206–210. doi: https://doi.org/10.1016/j.ymgme.2020.07.005; da Silva EM, Strufaldi MW, Andriolo RB, Silva LA. Enzyme replacement therapy with idursulfase for mucopolysaccharidosis type II (Hunter syndrome). Cochrane Database Syst Rev. 2016;2(2):CD008185. doi: https://doi.org/10.1002/14651858.CD008185.pub4; Burton BK, Jego V, Mikl J, Jones SA. Survival in idursulfasetreated and untreated patients with mucopolysaccharidosis type II: data from the Hunter Outcome Survey (HOS). J Inherit Metab Dis. 2017;40(6):867–874. doi: https://doi.org/10.1007/s10545-017-0075-x; Muenzer J, Wraith JE, Beck M, et al. A phase II/III clinical study of enzyme replacement therapy with idursulfase in mucopolysaccharidosis II (Hunter syndrome). Genet Med. 2006;8(8):465-473. doi: https://doi.org/10.1097/01.gim.0000232477.37660.fb; Concolino D, Deodato F, Parini R. Enzyme replacement therapy: efficacy and limitations. Ital J Pediatr. 2018;44(Suppl 2):120. doi: https://doi.org/10.1186/s13052-018-0562-1; Okuyama T, Tanaka A, Suzuki Y, et al. Japan Elaprase Treatment (JET) study: idursulfase enzyme replacement therapy in adult patients with attenuated Hunter syndrome (Mucopolysaccharidosis II, MPS II). Mol Genet Metab. 2010;99(1):18-25. doi: https://doi.org/10.1016/j.ymgme.2009.08.006; Muenzer J, Beck M, Giugliani R, et al. Idursulfase treatment of Hunter syndrome in children younger than 6 years: results from the Hunter Outcome Survey. Genet Med. 2011;13(2):102–109. doi: https://doi.org/10.1097/GIM.0b013e318206786f; Muenzer J, Beck M, Eng CM, et al. Long-term, openlabeled extension study of idursulfase in the treatment of Hunter syndrome. Genet Med. 2011;13(2):95–101. doi: https://doi.org/10.1097/GIM.0b013e3181fea459; Kim C, Seo J, Chung Y, et al. Comparative study of idursulfase beta and idursulfase in vitro and in vivo. J Hum Genet. 2017;62(2):167– 174. doi: https://doi.org/10.1038/jhg.2016.133; Khodoun M, Strait R, Orekov T, et al. Peanuts can contribute to anaphylactic shock by activating complement. J Allergy Clin Immunol. 2009;123(2):342–351. doi: https://doi.org/10.1016/j.jaci.2008.11.004; Khodoun MV, Strait R, Armstrong L, et al. Identification of markers that distinguish IgEfrom IgG-mediated anaphylaxis. Proc Natl Acad Sci U S A. 2011;108(30):12413–12418. doi: https://doi.org/10.1073/pnas.1105695108; Arias K, Chu DK, Flader K, et al. Distinct immune effector pathways contribute to the full expression of peanut-induced anaphylactic reactions in mice. J Allergy Clin Immunol. 2011;127(6):1552– 1561.e1. doi: https://doi.org/10.1016/j.jaci.2011.03.044; Vogler C, Levy B, Galvin NJ, et al. Enzyme replacement in murine mucopolysaccharidosis type VII: neuronal and glial response to β-glucuronidase requires early initiation of enzyme replacement therapy. Pediatr Res. 1999;45(6):838–844. doi: https://doi.org/10.1203/00006450-199906000-00010; Muenzer J, Beck M, Eng CM, et al. Multidisciplinary management of Hunter syndrome. Pediatrics. 2009;124(6):e1228–1239. doi: https://doi.org/10.1542/peds.2008-0999; Sohn YB, Cho SY, Park SW, et al. Phase I/II clinical trial of enzyme replacement therapy with idursulfase beta in patients with mucopolysaccharidosis II (Hunter syndrome). Orphanet J Rare Dis. 2013;8:42. doi: https://doi.org/10.1186/1750-1172-8-42; Sohn YB, Cho SY, Lee J, et al. Safety and efficacy of enzyme replacement therapy with idursulfase beta in children aged younger than 6 years with Hunter syndrome. Mol Genet Metab. 2015;114(2):156– 160. doi: https://doi.org/10.1016/j.ymgme.2014.08.009; Левина Ю.Г., Вашакмадзе Н.Д., Намазова-Баранова Л.С. и др. Аллергические реакции при ферментозаместительной терапии детей с мукополисахаридозом, тип II // Вопросы современной педиатрии. — 2021. — Т. 20. — № 6s. — С. 624– 629. — doi: https://doi.org/10.15690/vsp.v20i6S.2372; Ngu LH, Ong Peitee W, Leong HY, Chew HB. Case report of treatment experience with idursulfase beta (Hunterase) in an adolescent patient with MPS II. Mol Genet Metab Rep. 2017;12:28–32. doi: https://doi.org/10.1016/j.ymgmr.2017.05.002; Кручина Т.К., Бручиков К.В., Новик Г.А. Опыт применения препарата идурсульфаза бета у ребенка с мукополисахаридозом II типа: клинический случай // Вопросы современной педиатрии. — 2020. — Т. 19. — № 5. — С. 364–370. — doi: https://doi.org/10.15690/vsp.v19i5.2212; Ensina LF, Felix MMR, da Cunha FS, Caubet JC. Desensitization to drugs in children. Allergol Immunopathol (Madr). 2022;50(2):48– 57. doi: https://doi.org/10.15586/aei.v50i2.539; Esenboga S, Akarsu A, Ocak M, et al. Safety and efficacy of rapid drug desensitization in children. Pediatr Allergy Immunol. 2022;33(3):e13759. doi: https://doi.org/10.1111/pai.13759; Serrano CD, Gomez JF. Successful desensitization to idursulfase in a patient with type II mucopolysaccharidosis (Hunter syndrome). J Investig Allergol Clin Immunol. 2011;21(7):571– 572.; Reber LL, Hernandez JD, Galli SJ. The pathophysiology of anaphylaxis. J Allergy Clin Immunol. 2017;140(2):335–348. doi: https://doi.org/10.1016/j.jaci.2017.06.003; Matheu V, Franco A, Perez E, et al. Omalizumab for drug allergy. J Allergy Clin Immunol. 2007;120(6):1471–1472; author reply 1472–1473. doi: https://doi.org/10.1016/j.jaci.2007.07.037; https://www.pedpharma.ru/jour/article/view/2178