-
1Academic Journal
المؤلفون: E. V. Bychkova, N. A. Semenova, G. B. Sagoyan, R. A. Khagurov, D. M. Guseva, I. V. Volodin, A. S. Smirnov, V. V. Strelnikov, Е. В. Бычкова, Н. А. Семенова, Г. Б. Сагоян, Р. А. Хагуров, Д. М. Гусева, И. В. Володин, А. С. Смирнов, В. В. Стрельников
المساهمون: The study was conducted with the financial support of Novartis Pharma., Исследование проведено при финансовой поддержке ООО Новартис Фарма
المصدر: Medical Genetics; Том 23, № 7 (2024); 24-32 ; Медицинская генетика; Том 23, № 7 (2024); 24-32 ; 2073-7998
مصطلحات موضوعية: сосудистые мальформации, PIK3CA, segmental overgrowth, vascular malformations, парциальный гигантизм
وصف الملف: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/2506/1803; Keppler-Noreuil K.M., Rios J.J., Parker V.E., et al. PIK3CA-related overgrowth spectrum (PROS): diagnostic and testing eligibility criteria, differential diagnosis, and evaluation. Am J Med Genet A. 2015;167A(2):287-295. doi:10.1002/ajmg.a.36836; Thorpe L.M., Yuzugullu H., Zhao J.J. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nat Rev Cancer. 2015;15(1):7-24. doi:10.1038/nrc3860; Kuentz P., St-Onge J., Duffourd Y., et al. Molecular diagnosis of PIK3CA-related overgrowth spectrum (PROS) in 162 patients and recommendations for genetic testing. Genet Med. 2017;19(9):989997. doi:10.1038/gim.2016.220; Mirzaa G., Timms A.E., Conti V., et al. PIK3CA-associated developmental disorders exhibit distinct classes of mutations with variable expression and tissue distribution. JCI Insight. 2016;1(9):e87623. doi:10.1172/jci.insight.87623; Faivre L., Crépin J.C., Réda M., et al. Low risk of embryonic and other cancers in PIK3CA-related overgrowth spectrum: Impact on screening recommendations. Clin Genet. 2023;104(5):554-563. doi:10.1111/cge.14410; Cooley Coleman J.A., Gass J.M., Srikanth S., et al. Clinical and functional characterization of germline PIK3CA variants in patients with PIK3CA-related overgrowth spectrum disorders. Hum Mol Genet. 2023;32(9):1457-1465. doi:10.1093/hmg/ddac296; De Graer C., Marangoni M., Romnée S., et al. Novel features of PIK3CA-Related Overgrowth Spectrum: Lesson from an aborted fetus presenting a de novo constitutional PIK3CA mutation. Eur J Med Genet. 2020;63(4):103775. doi:10.1016/j.ejmg.2019.103775; Canaud G., Hammill A.M., Adams D., et al. A review of mechanisms of disease across PIK3CA-related disorders with vascular manifestations. Orphanet J Rare Dis. 2021;16(1):306. Published 2021 Jul 8. doi:10.1186/s13023-021-01929-8; Queisser A., Seront E., Boon L.M., Vikkula M. Genetic Basis and Therapies for Vascular Anomalies. Circ Res. 2021;129(1):155-173. doi:10.1161/CIRCRESAHA.121.318145; Nathan N., Keppler-Noreuil K.M., Biesecker L.G., et al. Mosaic Disorders of the PI3K/PTEN/AKT/TSC/mTORC1 Signaling Pathway. Dermatol Clin. 2017;35(1):51-60. doi:10.1016/j.det.2016.07.001; Gazzin A., Leoni C., Viscogliosi G., et al. Work-Up and Treatment Strategies for Individuals with PIK3CA-Related Disorders: A Consensus of Experts from the Scientific Committee of the Italian Macrodactyly and PROS Association. Genes (Basel). 2023;14(12):2134. doi:10.3390/genes14122134; Do H., Dobrovic A. Dramatic reduction of sequence artefacts from DNA isolated from formalin-fixed cancer biopsies by treatment with uracil-DNA glycosylase. Oncotarget. 2012;3(5):546-558. doi:10.18632/oncotarget.503; Sater V., Viailly P.J., Lecroq T., et al. UMI-Gen: A UMI-based read simulator for variant calling evaluation in paired-end sequencing NGS libraries. Comput Struct Biotechnol J. 2020;18:2270-2280. Published 2020 Aug 27. doi:10.1016/j.csbj.2020.08.011; McNulty S., Evenson M., Corliss M., et al. Diagnostic utility of next-generation sequencing for disorders of somatic mosaicism: a five-year cumulative cohort. Am J Hum Genet. 2019;105(4):734-746. doi:10.1016/j.ajhg.2019.09.002; Hucthagowder V., Shenoy A., Corliss M., et al. Utility of clinical high-depth next generation sequencing for somatic variant detection in the PIK3CA-related overgrowth spectrum. Clin Genet. 2017;91(1):79-85. doi:10.1111/cge.12819; Mussa A., Leoni C., Iacoviello M., et al. Genotypes and phenotypes heterogeneity in PIK3CA-related overgrowth spectrum and overlapping conditions: 150 novel patients and systematic review of 1007 patients with PIK3CA pathogenetic variants. J Med Genet. 2023;60(2):163-173. doi:10.1136/jmedgenet-2021-108093; Piacitelli A.M., Jensen D.M., Brandling-Bennett H., et al. Characterization of a severe case of PIK3CA-related overgrowth at autopsy by droplet digital polymerase chain reaction and report of PIK3CA sequencing in 22 patients. Am J Med Genet A. 2018;176(11):23012308. doi:10.1002/ajmg.a.40487; Baker C.L., Vaughn C.P., Samowitz W.S. A PIK3CA pyrosequencing-based assay that excludes pseudogene interference. J Mol Diagn. 2012;14(1):56-60. doi:10.1016/j.jmoldx.2011.08.004; Douzgou S., Rawson M., Baselga E., et al. A standard of care for individuals with PIK3CA-related disorders: An international expert consensus statement. Clin Genet. 2022;101(1):32-47. doi:10.1111/cge.14027; Сагоян Г.Б., Клецкая И.С., Имянитов Е.Н. и др. Спектр синдромов избыточного роста, связанных с мутацией PIK3CA. Обзор литературы. Российский журнал детской гематологии и онкологии. 2022;9(1):29-44. https://doi.org/10.21682/2311-1267-2022-9-1-29-44; https://hgvs-nomenclature.org; Madsen R.R., Vanhaesebroeck B., Semple R.K. Cancer-Associated PIK3CA Mutations in Overgrowth Disorders. Trends Mol Med. 2018;24(10):856-870. doi:10.1016/j.molmed.2018.08.003
-
2Academic Journal
المؤلفون: Natalia A. Averkina, Madlena E. Bagaeva, Aleksander A. Baranov, Nato D. Vashakmadze, Elena A. Vishneva, Olga S. Gundobina, Nataliya V. Zhurkova, Elena V. Kaitukova, Elena V. Komarova, Tea V. Margieva, Leyla S. Namazova-Baranova, Valeria P. Novikova, Elena E. Petryaykina, Mariya M. Platonova, Aleksander S. Potapov, Olga Ya. Smirnova, Tatiana V. Strokova, Andrey N. Surkov, Nataliya N. Taran, Marina V. Fedoseenko, Nataliya A. Semenova, Inga V. Anisimova, Svetlana A. Repina, Dmitriy M. Subbotin, Valeria V. Sviridova, Anatoliy I. Havkin, Ekaterina A. Yablokova, Galina V. Volynets, Irina V. Sadovnikova, Elena L. Tumanova, Н. А. Аверкина, М. Э. Багаева, А. А. Баранов, Н. Д. Вашакмадзе, Е. А. Вишнева, О. С. Гундобина, Н. В. Журкова, Е. В. Кайтукова, Е. В. Комарова, Т. В. Маргиева, Л. С. Намазова-Баранова, В. П. Новикова, Е. Е. Петряйкина, М. М. Платонова, А. С. Потапов, О. Я. Смирнова, Т. В. Строкова, А. Н. Сурков, Н. Н. Таран, М. В. Федосеенко, Н. А. Семёнова, И. В. Анисимова, С. А. Репина, Д. М. Субботин, В. В. Свиридова, А. И. Хавкин, Е. А. Яблокова, Г. В. Волынец, И. В. Садовникова, Е. Л. Туманова
المساهمون: Not specified., Отсутствует
المصدر: Pediatric pharmacology; Том 21, № 3 (2024); 263-288 ; Педиатрическая фармакология; Том 21, № 3 (2024); 263-288 ; 2500-3089 ; 1727-5776
مصطلحات موضوعية: дети, glycogen-storage disease, glycogenosis, clinical guidelines, children, болезни накопления гликогена, гликогеноз, клинические рекомендации
وصف الملف: application/pdf
Relation: https://www.pedpharma.ru/jour/article/view/2467/1608; Ellingwood SS, Cheng A. Biochemical and Clinical Aspects of Glycogen Storage Diseases. J Endocrinol. 2018;238(3):131–141. https://doi.org/10.1530/JOE-18-0120; Lei KJ, Chen YT, Chen H, et al. Genetic basis of glycogen storage disease type 1a: prevalent mutations at the glucose-6-phosphatase locus. Am J Hum Genet. 1995;57(4):766–771.; Chen YT. Glycogen storage diseases. In: The Metabolic Bases of Inherited Disease. 8th edn. Scriver CR, Beaudet AL, Sly WS, Valle D, eds. New York: McGraw-Hill; 2000. pp. 1521–1551.; Зайчик А.Ш., Чурилов Л.П. Основы общей патологии. Ч. 2. Основы патохимии: учебное пособие для студентов медицинских вузов. — СПб.: ЭЛБИ; 2000. — 688 с.; Brody LC, Abel KJ, Castilla LH, et al. Construction of a transcription map surrounding the BRCA1 locus of human chromosome 17. Genomics. 1995;25(1):238–247. https://doi.org/10.1016/0888-7543(95)80131-5; Цыгин А.Н. Сочетанные заболевания печени и почек у детей // Клиническая нефрология. — 2009. — № 3. — С. 47–51.; Chen YT. Type I glycogen storage disease: kidney involvement, pathogenesis and its treatment. Pediatr Nephrol. 1991;5(1):71–76. https://doi.org/10.1007/BF00852851; Ueno N, Tomita M, Ariga T, et al. Impaired monocyte function in glycogen storage disease type Ib. Eur J Pediatr. 1986;145(4):312–314. https://doi.org/10.1007/BF00439409; Leuzzi R, Banhegyi G, Kardon T, et al. Inhibition of microsomal glucose-6-phosphate transport in human neutrophils results in apoptosis: a potential explanation for neutrophil dysfunction in glycogen storage disease type 1b. Blood. 2003;101(6):2381–2387. https://doi.org/10.1182/blood-2002-08-2576; Shen J, Bao Y, Liu HM, et al. Mutations in exon 3 of the glycogen debranching enzyme gene are associated with glycogen storage disease type III that is differentially expressed in liver and muscle. J Clin Invest. 1996;98(2):352–357. https://doi.org/10.1172/JCI118799; Li XH, Gong QM, Ling Y, et al. Inherent lipid metabolic dysfunction in glycogen storage disease IIIa. Biochem Biophys Res Commun. 2014;455(1-2):90–97. https://doi.org/10.1016/j.bbrc.2014.10.096; Moses SW, Parvari R. The variable presentations of glycogen storage disease type IV: a review of clinical, enzymatic and molecular studies. Curr Mol Med. 2002;2(2):177–188. https://doi.org/10.2174/1566524024605815; Burwinkel B, Bakker HD, Herschkovitz E, et al. Mutations in the liver glycogen phosphorylase gene (PYGL) underlying glycogenosis type VI (Hers disease). Am J Hum Genet. 1998;62(4):785–791. doi: https://doi.org/10.1086/301790; Chang S, Rosenberg MJ, Morton H, et al. Identification of a mutation in liver glycogen phosphorylase in glycogen storage disease type VI. Hum Molec Genet. 1998;7(5):865–870. doi: https://doi.org/10.1093/hmg/7.5.865; Hug G, Schubert WK, Chuck G. Deficient activity of dephoshophosphorylase kinase and accumulation of glycogene in the liver. J Clin Invest. 1969;48(4):704–715. https://doi.org/10.1172/JCI106028; Lerner A, Iancu TC, Bashan N, et al. A new variant of glycogen storage disease. Type IXc. Am J Dis Child. 1982;136(5):406–410. https://doi.org/10.1001/archpedi.1982.03970410024004; Stone WL, Basit H, Adil A. Glycogen Storage Disease. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK459277. Accessed on June 01, 2024.; Ozen H. Glycogen storage diseases: new perspectives. World J Gastroenterol. 2007;13(18):2541–2553. https://doi.org/10.3748/wjg.v13.i18.2541; Kishnani PS, Austin SL, Arn P, et al. Glycogen storage disease type III diagnosis and management guidelines. Genet Med. 2010;12(7):446–463. https://doi.org/10.1097/GIM.0b013e3181e655b6; Hendrickx J, Willems PJ. Genetic deficiencies of the glycogen phosphorylase system. Hum Genet. 1996;97(5):551–556. doi: https://doi.org/10.1007/BF02281858; Краснопольская К.Д. Наследственные болезни обмена веществ: справочное пособие для врачей. — М.: РОО «Центр социальной адаптации и реабилитации детей «Фохат»; 2005. — 364 с.; Rake JP, Visser G, Labrune P, et al. Guidelines for management of glycogen storage disease type I — European Study on Glycogen Storage Disease Type I (ESGSD I). Eur J Pediatr. 2002;161(Suppl 1):S112–S119. https://doi.org/10.1007/s00431-002-1016-7; Kishnani PS, Austin SL, Abdenur JE, et al. Diagnosis and management of glycogen storage disease type I: a practice guideline of the American College of Medical Genetics and Genomics. Genet Med. 2014;16(11):e1. https://doi.org/10.1038/gim.2014.128; Humbert M, Labrune P, Simonneau G. Severe pulmonary arterial hypertension in type1 glycogen storage disease. Eur J Pediatr. 2002;161(Suppl 1):S93–S96. https://doi.org/10.1007/s00431-002-1012-y; Лобзин В.С., Сайкова Л.А., Шиман А.Г. Нервно-мышечные болезни. — СПб.: Гиппократ; 1998. — 224 с. [Lobzin VS, Saikova LA, Shiman AG. Nervno-myshechnye bolezni. St. Petersburg: Gippokrat; 1998. 224 p. (In Russ).]; Visser G, Rake JP, Labrune P, et al. Consensus guidelines for management of glycogen storage disease type 1b — European Study on Glycogen Storage Disease Type 1. Eur J Pediatr. 2002;161(Suppl 1):S120–S123. https://doi.org/10.1007/s00431-002-1017-6; Visser G, Rake JP, Fernandes J, et al. Neutropenia, neutrophil dysfunction, and infl ammatory bowel disease in glycogen storage disease type Ib: results of the European Study on Glycogen Storage Disease type I. J Pediatr. 2000;137;(2):187–191. https://doi.org/10.1067/mpd.2000.105232; Kure S, Hou DC, Suzuki Y, et al. Glycogen storage disease type Ib without neutropenia. J Pediatr. 2000;137(2):253–256. https://doi.org/10.1067/mpd.2000.107472; Melis D, Fulceri R, Parenti G, et al. Genotype/phenotype correlation in glycogen storage disease type 1b: a multicentre study and review of the literature. Eur J Pediatr. 2005;164(8):501–508. https://doi.org/10.1007/s00431-005-1657-4; Shen JJ, Chen YT. Molecular characterization of glycogen storage disease type III. Curr Mol Med. 2002;2(2):167–175. https://doi.org/10.2174/1566524024605752; L’Herminé-Coulomb A, Beuzen F, Bouvier R, et al. Fetal type IV glycogen storage disease: clinical, enzymatic, and genetic data of a pure muscular form with variable and early antenatal manifestations in the same family. Am J Med Genet. 2005;139A(2):118–122. https://doi.org/10.1002/ajmg.a.30945; Szymańska E, Szymańska S, Truszkowska G, et al. Variable clinical presentation of glycogen storage disease type IV: from severe hepatosplenomegaly to cardiac insufficiency. Some discrepancies in genetic and biochemical abnormalities. Arch Med Sci. 2018;14(1):237–247. https://doi.org/10.5114/aoms.2018.72246; Malfatti E, Barnérias C, Hedberg-Oldfors C, et al. A novel neuromuscular form of glycogen storage disease type IV with arthrogryposis, spinal stiffness and rare polyglucosan bodies in muscle. Neuromuscul Disord. 2016;26(10):681–687. https://doi.org/10.1016/j.nmd.2016.07.005; Roscher A, Patel J, Hewson S, et al. The natural history of glycogen storage disease types VI and IX: Long-term outcome from the largest metabolic center in Canada. Mol Genet Metab. 2014;113(3):171–176. https://doi.org/10.1016/j.ymgme.2014.09.005285; Hodax JK, Uysal S, Quintos JB, Phornphutkul C. Glycogen storage disease type IX and growth hormone deficiency presenting as severe ketotic hypoglycemia. J Pediatr Endocrinol Metab. 2017;30(2):247–251. https://doi.org/10.1515/jpem-2016-0342; Сурков А.Н. Гликогеновая болезнь у детей: новые аспекты патогенеза, современные подходы к диагностике, оптимизация ведения пациентов: автореф. дис. … докт. мед. наук. — М.; 2019. — 47 с.; Баранов А.А., Намазова-Баранова Л.С., Сурков А.Н. и др. Гликогеновая болезнь у детей: учебное пособие / Союз педиатров России. — М.: ПедиатрЪ; 2012. — 128 с. — (Болезни детского возраста от А до Я).; Kishnani PS, Goldstein J, Austin SL, et al. Diagnosis and Management of Glycogen Storage Diseases Type VI and IX: a clinical practice resource of the American College of Medical Genetics and Genomics (ACMG). Genet Med. 2019;21(4):772–789. https://doi.org/10.1038/s41436-018-0364-2; Anastasopoulou C. Glycogen Storage Diseases Types I–VII. In: Medscape. Updated: Dec 01, 2022. Available online: https://emedicine.medscape.com/article/1116574-overview. Accessed on June 01, 2024.; Steunenberg TAH, Peeks F, Hoogeveen IJ, et. al. Safety issues associated with dietary management in patients with hepatic glycogen storage disease. Mol Genet Metab. 2018;125(Issues 1-2):79–85. https://doi.org/10.1016/j.ymgme.2018.07.004; Ng K, Mogul DB. Pediatric Liver Tumors. Clin Liver Dis. 2018;22(4):753–772. https://doi.org/10.1016/j.cld.2018.06.008; Laumonier H, Bioulac-Sage P, Laurent C, et al. Hepatocellular adenomas: magnetic resonance imaging features as a function of molecular pathological classification. Hepatology. 2008;48:808–818. https://doi.org/10.1002/hep.22417; Khanna R, Verma SK. Pediatric hepatocellular carcinoma. World J Gastroenterol. 2018;24(35):3980–3999. https://doi.org/10.3748/wjg.v24.i35.3980; Bali DS, Chen YT, Austin S, Goldstein JL. Glycogen Storage Disease Type I. In: GeneReviews® [Internet]. Adam MP, Feldman J, Mirzaa GM, et al., eds. Seattle (WA): University of Washington, Seattle; 1993–2020. Available online: https://www.ncbi.nlm.nih.gov/books/NBK1312. Accessed on June 01, 2024.; Sharari S, Abou-Alloul M, Hussain K, Ahmad Khan F. FanconiBickel Syndrome: A Review of the Mechanisms That Lead to Dysglycaemia. Int J Mol Sci. 2020;21(17):628. https://doi.org/10.3390/ijms21176286; Gupta N, Nambam B, Weinstein DA, Shoemaker LR. Late Diagnosis of Fanconi-Bickel Syndrome: Challenges With the Diagnosis and Literature Review. J Inborn Errors Metab Screen. 2016;4:1–6. https://doi.org/10.1177/2326409816679430; Cori GT. Glycogen structure and enzyme dificiencies in Glycogen Storage Disease. Harvey Lect. 1954;48:145–171.; Дворяковская Г.М., Уварова Е.В., Дворяковский И.В. и др. Роль ультразвуковой диагностики при обследовании детей с печеночной формой гликогенозов // Ультразвуковая и функциональная диагностика. — 2002. — № 4. — С. 53–59.; Pereira NL, Grogan M, Dec GW. Spectrum of Restrictive and Infiltrative Cardiomyopathies: Part 1 of a 2-Part Series. J Am Coll Cardiol. 2018;71(10):1130–1148. https://doi.org/10.1016/j.jacc.2018.01.016; Schreuder AB, Rossi A, Grünert SC, Derks TGJ. Glycogen Storage Disease Type III. In: GeneReviews® [Internet]. Adam MP, Feldman J, Mirzaa GM, et al., eds. Seattle (WA): University of Washington, Seattle; 1993–2020. Available online: https://www.ncbi.nlm.nih.gov/books/NBK26372. Accessed on June 01, 2024.; Mogahed EA, Girgis MY, Sobhy R, et al. Skeletal and cardiac muscle involvement in children with glycogen storage disease type III. Eur J Pediatr. 2015;174(11):1545–1548. https://doi.org/10.1007/s00431-015-2546-0; Magoulas PL, El-Hattab AW. Glycogen Storage Disease Type IV. In: GeneReviews® [Internet]. Adam MP, Feldman J, Mirzaa GM, et al., eds. Seattle (WA): University of Washington, Seattle; 1993–2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK115333. Accessed on June 01, 2024.; Попович Ю.Г., Чибисов И.В., Потапова-Виноградова И.Н. и др. Клинико-биохимические и морфологические особенности печеночной формы гликогенозов у детей // Педиатрия. Журнал им. Г.Н. Сперанского. — 1988. — № 1. — С. 35–39.; Pathology of the liver. MacSween RNM, Burt AD, Portmann BC, et al., eds. 4th edn. London: Churchill Livingstone; 2001. 982 p.; Клиническая диетология детского возраста: руководство для врачей / под ред. Т.Э. Боровик, К.С. Ладодо. — М.: ООО «Медицинское информационное агентство»; 2008. — 614 с.; Уварова Е.В. Течение гликогеновой болезни печени у детей в условиях комплексной терапии: автореф. дис. … канд. мед. наук. — М.; 2005. — 28 с.; Heller S, Worona L, Consuelo A. Nutritional therapy for glycogen storage diseases. J Pediatr Gastroenterol Nutr. 2008;47(Suppl 1):15–21. https://doi.org/10.1097/MPG.0b013e3181818ea5; Melis D, Della Casa R, Parini R, et al. Vitamin E supplementation improves neutropenia and reduces the frequency of infections in patients with glycogen storage disease type 1b. Eur J Pediatr. 2009;168(9):1069–1074. https://doi.org/10.1007/s00431-008-0889-5; Hicks J, Wartchow E, Mierau G. Glycogen storage diseases: a brief review and update on clinical features, genetic abnormalities, pathologic features, and treatment. Ultrastruct Pathol. 2011;35(5):183–196. https://doi.org/10.3109/01913123.2011.601404; Adeva-Andany MM, Calvo-Castro I, Fernández-Fernández C, et al. Significance of l-carnitine for human health. IUBMB Life. 2017;69(8):578–559. https://doi.org/10.1002/iub.1646; Parikh NS, Ahlawat R. Glycogen Storage Disease Type I. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK534196. Accessed on June 06, 2024.; Ozen H, Ciliv G, Koçak N, et al. Short-term effect of captopril on microalbuminuria in children with glycogen storage disease type Ia. J Inherit Metab Dis. 2000;23(5):459–463. https://doi.org/10.1023/a:1005608113270; Quinlivan R, Martinuzzi A, Schoser B. Pharmacological and nutritional treatment for McArdle disease (Glycogen Storage Disease type V). Cochrane Database Syst Rev. 2014;2014(11):CD003458. https://doi.org/10.1002/14651858.CD003458.pub5; Martinuzzi A, Liava A, Trevisi E, et al. Randomized, placebocontrolled, double-blind pilot trial of ramipril in McArdle’s disease. Muscle Nerve. 2008;37(3):350–357. https://doi.org/10.1002/mus.20937; Wicker C, Roda C, Perry A, et al. Infectious and digestive complications in glycogen storage disease type Ib: Study of a French cohort. Mol Genet Metab Rep. 2020;23:100581. https://doi.org/10.1016/j.ymgmr.2020.100581; Visser G, Rake JP, Labrune P, et al. Granulocyte colonystimulating factor in glycogen storage disease type 1b. Results of the European Study on Glycogen Storage Disease Type 1. Eur J Pediatr. 2002;161(Suppl 1):S83–S87. https://doi.org/10.1007/s00431-002-1010-0; Dale DC, Bolyard AA, Marrero T, et al. Neutropenia in glycogen storage disease Ib: outcomes for patients treated with granulocyte colony-stimulating factor. Curr Opin Hematol. 2019;26(1):16–21. https://doi.org/10.1097/MOH.0000000000000474; Melis D, Parenti G, Della Casa R, et al. Crohn’s-like ileo-colitis in patients affected by glycogen storage disease Ib: two years’ follow-up of patients with a wide spectrum of gastrointestinal signs. Acta Paediatr. 2003;92(12):1415–1421. https://doi.org/10.1080/08035250310007033; Melis D, Della Casa R, Balivo F, et al. Involvement of endocrine system in a patient affected by glycogen storage disease 1b: speculation on the role of autoimmunity. Ital J Pediatr. 2014;40(1):30. https://doi.org/10.1186/1824-7288-40-30; Gong YZ, Zhong XM, Zou JZ. Infliximab treatment of glycogenosis Ib with Crohn’s-like enterocolitis: A case report. World J Clin Cases. 2021;9(19):5280–5286. https://doi.org/10.12998/wjcc.v9.i19.5280; Davis MK, Rufo PA, Polyak SF, Weinstein DA. Adalimumab for the treatment of Crohn-like colitis and enteritis in glycogen storage disease type Ib. J Inherit Metab Dis. 2008;31(Suppl 3):505–509. https://doi.org/10.1007/s10545-007-0774-9; Готье С.В., Цирульникова О.М., Мнацаканян Д.С. и др. Трансплантация печени у детей с болезнями накопления гликогена: оценка риска и необходимость ее проведения // Вестник трансплантологии и искусственных органов. — 2013. — Т. 15. — № 1. — С. 67–74. — https://doi.org/10.15825/1995-1191-2013-1-67-74; Филин А .В., С еменков А .В., Короте ева Н. А . и др. Родственная пересадка фрагментов печени при гликогенозах I типа: первый российский опыт // Трансплантология. — 2011 . — № 2–3. — С. 24–28 . — doi: ht tps://doi.org/10.23873/20740506-20110-2-3-24-28; Boers SJ, Visser G, Smit PG, Fuchs SA. Liver transplantation in glycogen storage disease type I. Orphanet J Rare Dis. 2014;9:47. https://doi.org/10.1186/1750-1172-9-47; Oshita A, Itamoto T, Amano H, et al. Perioperative management of benign hepatic tumors in patients with glycogen storage disease type Ia. J Hepatobiliary Pancreat Surg. 2008;15(2):200–203. https://doi.org/10.1007/s00534-007-1244-3; Brady MT. Immunization recommendations for children with metabolic disorders: more data would help. Pediatrics. 2006;118(2):810–813. https://doi.org/10.1542/peds.2006-0846.; Cerutti M, De Lonlay P, Menni F, et al. Vaccination coverage of patients with inborn errors of metabolism and the attitudes of their parents towards vaccines. Vaccine. 2015;33(48):6520–6524. https://doi.org/10.1016/j.vaccine.2015.10.073; https://www.pedpharma.ru/jour/article/view/2467
-
3Academic Journal
المؤلفون: G. B. Sagoyan, N. V. Zhukov, V. V. Strelnikov, R. A. Khagurov, A. M. Suleymanova, Yu. M. Mareeva, R. V. Garbuzov, E. N. Imyanitov, Yu. V. Dinikina, S. I. Kutsev, E. K. Donyush, K. I. Kirgizov, N. A. Semenova, Yu. A. Polyaev, I. S. Kletskaya, A. A. Maschan, S. R. Varfolomeeva, Г. Б. Сагоян, Н. В. Жуков, В. В. Стрельников, Р. А. Хагуров, А. М. Сулейманова, Ю. М. Мареева, Р. В. Гарбузов, Е. Н. Имянитов, Ю. В. Диникина, С. И. Куцев, Е. К. Донюш, К. И. Киргизов, Н. А. Семенова, Ю. А. Поляев, И. С. Клецкая, А. А. Масчан, С. Р. Варфоломеева
المصدر: Russian Journal of Pediatric Hematology and Oncology; Том 10, № 2 (2023); 117-130 ; Российский журнал детской гематологии и онкологии (РЖДГиО); Том 10, № 2 (2023); 117-130 ; 2413-5496 ; 2311-1267
مصطلحات موضوعية: сиролимус, PIK3CA mutation, overgrowth spectrum, CLOVES, CLAPO, Klippel–Trenaunay syndrome, macrodactyly, lipomatosis, vascular malformations, epidermal nevus, alpelisib, sirolimus, мутация PIK3CA, спектр синдромов избыточного роста, синдром Клиппеля– Треноне, макродактилия, липоматоз, сосудистые мальформации, эпидермальный невус, алпелисиб
وصف الملف: application/pdf
Relation: https://journal.nodgo.org/jour/article/view/944/831; https://journal.nodgo.org/jour/article/view/944/832; Сагоян Г.Б., Клецкая И.С., Имянитов Е.Н., Мареева Ю.М., Жуков Н.В., Хагуров Р.А., Сулейманова А.М. Спектр синдромов избыточного роста, связанных с мутацией PIK3CA. Обзор литературы. Российскийжурнал детской гематологии и онкологии. 2022;9(1):29–44. doi:10.21682/2311-1267-2022-9-1-29-44.; Canaud G., Hammill A.M., Adams D., Vikkula M., Keppler-Noreuil K.M. A review of mechanisms of disease across PIK3CA-related disorders with vascular manifestations. Orphanet J Rare Dis. 2021;16(1):306. doi:10.1186/s13023-021-01929-8.; Nunnery S.E., Mayer I.A. Targeting the PI3K/AKT/mTOR Pathway in Hormone-Positive Breast Cancer Drugs. 2020;80:1685–97. doi:10.1007/s40265-020-01394-w.; Madsen R.R., Vanhaesebroeck B., Semple R.K. Cancer-Associated PIK3CA Mutations in Overgrowth Disorders. Trends Mol Med. 2018;24(10):856–70. doi:10.1016/j.molmed.2018.08.003.; Douzgou S., Rawson M., Baselga E., Danielpour M., Faivre L., Kashanian A., Keppler-Noreuil K.M., Kuentz P., Mancini G.M.S., Maniere M.C., Martinez-Glez V., Parker V.E., Semple R.K., Srivastava S., Vabres P., De Wit M.Y., Graham J.M. Jr, Clayton-Smith J., Mirzaa G.M., Biesecker L.G. A standard of care for individuals with PIK3CA-related disorders: An international expert consensus statement. Clin Genet. 2022;101(1):32–47. doi:10.1111/cge.14027.; Mirzaa G., Graham J.M. Jr, Keppler-Noreuil K.M. PIK3CA-Related Overgrowth Spectrum. In: Adam M.P., Everman D.B., Mirzaa G.M., eds. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2023.; Keppler-Noreuil K.M., Rios J.J., Parker V.E., Semple R.K., Lindhurst M.J., Sapp J.C., Alomari A., Ezaki M., Dobyns W., Biesecker L.G. PIK3CArelated overgrowth spectrum (PROS): diagnostic and testing eligibility criteria, diff erential diagnosis, and evaluation. Am J Med Genet A. 2015;167A(2):287–95. doi:10.1002/ajmg.a.36836.; Canaud G., López Gutiérrez J.C., Irvine A., Ankrah N., Ridolfi A., Adams D.M. LBA23 EPIK-P1: Retrospective chart review study of patients (pts) with PIK3CA-related Overgrowth Spectrum (PROS) who have received alpelisib (ALP) as part of a compassionate use programme. Dev Ther. 2021;32(Suppl 5):S1297. doi:10.1016/j.annonc.2021.08.2097.; Garreta Fontelles G., Pardo Pastor J., Grande Moreillo C. Alpelisib to treat CLOVES syndrome, a member of the PIK3CA-related overgrowth syndrome spectrum. Br J Clin Pharmacol. 2022;88(8):3891–5. doi:10.1111/bcp.15270.; Morin G., Degrugillier-Chopinet C., Vincent M., Fraissenon A., Aubert H., Chapelle C., Hoguin C., Dubos F., Catteau B., Petit F., Mezel A., Domanski O., Herbreteau G., Alesandrini M., Boddaert N., Boutry N., Broissand C., Kevin Han T., Branle F., Sarnacki S., Blanc1 T., Guibaud L., Canaud G. Treatment of two infants with PIK3CA-related overgrowth spectrum by alpelisib. J Exp Med. 2022;219(3):e20212148. doi:10.1084/jem.20212148.; Madsen R.R., Semple R.K. PIK3CA-related overgrowth: silver bullets from the cancer arsenal? Trends Mol Med. 2022;28(4):255–7. doi:10.1016/j.molmed.2022.02.009.; Parker V.E.R., Keppler-Noreuil K.M., Faivre L., Luu M., Oden N.L., De Silva L., Sapp J.C., Andrews K., Bardou M., Chen K.Y., Darling T.N., Gautier E., Goldspiel B.R., Hadj-Rabia S., Harris J., Kounidas G., Kumar P., Lindhurst M.J., Loff roy R., Martin L., Phan A., Rother K.I., Widemann B.C., Wolters P.L., Coubes C., Pinson L., Willems M., Vincent-Delorme C.; PROMISE Working Group; Vabres P., Semple R.K., Biesecker L.G. Safety and efficacy of low-dose sirolimus in the PIK3CArelated overgrowth spectrum. Genet Med. 2019;21(5):1189–98. doi:10.1038/s41436-018-0297-9.; https://journal.nodgo.org/jour/article/view/944
-
4Academic Journal
المؤلفون: M. E. Minzhenkova, Z. G. Markova, D. A. Yurchenko, A. A. Tarlycheva, T. V. Markova, N. A. Semenova, A. F. Murtazina, V. V. Kadyshev, M. M. Gridina, E. . Viesná, V. S. Fishman, N. V. Shilova, М. Е. Миньженкова, Ж. Г. Маркова, Д. А. Юрченко, А. А. Тарлычева, Т. В. Маркова, Н. А. Семенова, А. Ф. Муртазина, В. В. Кадышев, М. М. Гридина, Э. . Весна, В. С. Фишман, Н. В. Шилова
المصدر: Medical Genetics; Том 21, № 11 (2022); 44-47 ; Медицинская генетика; Том 21, № 11 (2022); 44-47 ; 2073-7998
وصف الملف: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/2198/1663; Schluth-Bolard C., Delobel B., Sanlaville D., et al. Cryptic genomic imbalances in de novo and inherited apparently balanced chromosomal rearrangements: array CGH study of 47 unrelated cases. Eur J Med Genet. 2009;52(5):291-296.; Zhang F., Carvalho C.M., Lupski J.R.Complex human chromosomal and genomic rearrangements. Trends Genet. 2009;25(7):298-307. doi:10.1016/j.tig.2009.05.005; Gridina M., Mozheiko E., Valeev E., Nazarenko L.P., Lopatkina M.E., Markova Z.G., Yablonskaya M.I., Voinova V.Y., Shilova N.V., Lebedev I.N., Fishman V. A cookbook for DNase Hi-C. Epigenetics Chromatin. 2021 Mar 20;14(1):15. doi:10.1186/s13072-021-00389-5.; Feenstra I., Hanemaaijer N., Sikkema-Raddatz B., et al. Balanced into array: Genome-wide array analysis in 54 patients with an apparently balanced de novo chromosome rearrangement and a metaanalysis. Eur J Hum Genet. 2011;(19):1152-1160.; Higgins A.W. et al. Characterization of apparently balanced chromosomal rearrangements from the Developmental Genome Anatomy Project. Am J Hum Genet. 2008;82:712-722.; Lupia´n˜ez D.G., Kraft K., Heinrich V. et al. Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell. 2015;161:1012-1025.; Aristidou K. et al., Position effect, cryptic complexity, and direct gene disruption as disease mechanisms in de novo apparently balanced translocation cases. PLoS ONE. 2018;13:10. https://doi.org/10.1371/journal.pone.0205298; https://www.medgen-journal.ru/jour/article/view/2198
-
5Academic Journal
المؤلفون: T. V. Markova, V. M. Kenis, E. V. Melchenko, P. V. Ochirova, T. S. Nagornova, P. N. Tsabai, D. V. Osipova, N. A. Semenova, L. A. Bessonova, N. A. Demina, E. Y. Zakharova, E. L. Dadali, Т. В. Маркова, В. М. Кенис, Е. В. Мельченко, П. В. Очирова, Т. С. Нагорнова, П. Н. Цабай, Д. В. Осипова, Н. А. Семенова, Л. А. Бессонова, Н. А. Демина, Е. Ю. Захарова, Е. Л. Дадали
المصدر: Medical Genetics; Том 21, № 4 (2022); 25-37 ; Медицинская генетика; Том 21, № 4 (2022); 25-37 ; 2073-7998
مصطلحات موضوعية: метатропная дисплазия, TRPV4 gene, exome sequencing, major mutations, spondylometaphyseal dysplasia, metatropic dysplasia, Kozlowski type, ген TRPV4, секвенирование экзома, мажорные мутации, спондилометафизарная дисплазия Козловского
وصف الملف: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/2051/1559; Liedtke W., Choe Y., Martí-Renom M.A., et al. Vanilloid Receptor-Related Osmotically Activated Channel (VR-OAC), a Candidate Vertebrate Osmoreceptor. Cell. 2000;103(3):525-535. doi:10.1016/S0092-8674(00)00143-4; Rock M.J., Prenen J., Funari V.A., et al. Gain-of-function mutations in TRPV4 cause autosomal dominant brachyolmia. Nat Genet. 2008;40(8):999-1003. doi:10.1038/ng.166; Bieganski T., Beighton P., Lukaszewski M., et al. SMD Kozlowski type caused by p.Arg594His substitution in TRPV4 reveals abnormal ossification and notochordal remnants in discs and vertebrae. Eur J Med Genet. 2017;60(10):509-516. doi:10.1016/j.ejmg.2017.07.004; Nonaka K., Han X., Kato H., et al. Novel gain-of-function mutation of TRPV4 associated with accelerated chondrogenic differentiation of dental pulp stem cells derived from a patient with metatropic dysplasia. Biochem Biophys Reports. 2019;19(April):100648. doi:10.1016/j.bbrep.2019.100648; Leddy H.A., McNulty A.L., Rothfusz N.E., et al. Follistatin in chondrocytes: The link between TRPV4 channelopathies and skeletal malformations. FASEB J. 2014;28(6):2525-2537. doi:10.1096/fj.13-245936; Kozlowski K., Maroteaux P., Spranger J. La dysostose spondylometaphisaire. Press méd. 1967;75:2769-2774.; Dai J., Kim O.H., Cho T.J., et al. Novel and recurrent TRPV4 mutations and their association with distinct phenotypes within the TRPV4 dysplasia family. J Med Genet. 2010;47(10):704-709. doi:10.1136/jmg.2009.075358; Krakow D., Vriens J., Camacho N., et al. Mutations in the Gene Encoding the Calcium-Permeable Ion Channel TRPV4 Produce Spondylometaphyseal Dysplasia, Kozlowski Type and Metatropic Dysplasia. Am J Hum Genet. 2009;84(3):307-315. doi:10.1016/j.ajhg.2009.01.021; Maroteaux P., Spranger J., Wiedemann H.R. Metatrophic dwarfism. Arch Kinderheilkd. 1966;173(3):211-226.; Nishimura G., Lausch E., Savarirayan R., et al. TRPV4-associated skeletal dysplasias. Am J Med Genet Part C Semin Med Genet. 2012;160 C(3):190-204. doi:10.1002/ajmg.c.31335; Ürel-Demir G., Şimşek-Kiper P.Ö., Öncel İ., Utine G.E., Haliloğlu G., Boduroğlu K. Natural history of TRPV4-Related disorders: From skeletal dysplasia to neuromuscular phenotype. Eur J Paediatr Neurol. 2021;32:46-55. doi:10.1016/j.ejpn.2021.03.011; Kannu P., Aftimos S., Mayne V., Donnan L., Savarirayan R. Metatropic dysplasia: Clinical and radiographic findings in 11 patients demonstrating long-term natural history. Am J Med Genet Part A. 2007;143A(21):2512-2522. doi:10.1002/ajmg.a.31941; Geneviève D., Le Merrer M., Feingold J., Munnich A., Maroteaux P., Cormier-Daire V. Revisiting metatropic dysplasia: Presentation of a series of 19 novel patients and review of the literature. Am J Med Genet Part A. 2008;146(8):992-996. doi:10.1002/ajmg.a.32191; Nemec S.F., Cohn D.H., Krakow D., Funari V.A., Rimoin D.L., Lachman R.S. The importance of conventional radiography in the mutational analysis of skeletal dysplasias (the TRPV4 mutational family). Pediatr Radiol. 2012;42(1):15-23. doi:10.1007/s00247-011-2229-6; Cho T.J., Matsumoto K., Fano V., et al. TRPV4-pathy manifesting both skeletal dysplasia and peripheral neuropathy: A report of three patients. Am J Med Genet Part A. 2012;158 A(4):795-802. doi:10.1002/ajmg.a.35268; Faye E., Modaff P., Pauli R., Legare J.Combined Phenotypes of Spondylometaphyseal Dysplasia-Kozlowski Type and Charcot-Marie-Tooth Disease Type 2C Secondary to a TRPV4 Pathogenic Variant. Mol Syndromol. 2019;10(3):154-160. doi:10.1159/000495778; Richards S., Aziz N., Bale S., et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405-424. doi:10.1038/GIM.2015.30; Andreucci E., Aftimos S., Alcausin M., et al. TRPV4 related skeletal dysplasias: a phenotypic spectrum highlighted byclinical, radiographic, and molecular studies in 21 new families. Orphanet J Rare Dis. 2011;6(1):1-8. doi:10.1186/1750-1172-6-37.; O’Conor C.J., Leddy H.A., Benefield H.C., Liedtke W.B., Guilak F. TRPV4-mediated mechanotransduction regulates the metabolic response of chondrocytes to dynamic loading. Proc Natl Acad Sci USA. 2014;111(4):1316-1321. doi:10.1073/pnas.1319569111; Nilius B., Voets T. The puzzle of TRPV4 channelopathies. EMBO Rep. 2013;14(2):152-163. doi:10.1038/embor.2012.219; Camacho N., Krakow D., Johnykutty S., et al. Dominant TRPV4 mutations in nonlethal and lethal metatropic dysplasia. Am J Med Genet Part A. 2010;152A(5):1169-1177. doi:10.1002/ajmg.a.33392; https://www.medgen-journal.ru/jour/article/view/2051
-
6Academic Journal
المؤلفون: A. N. Makarenko, L. G. Smyshlyaeva, I. V. Volchkova, S. I. Pozdeeva, S. I. Semenova, А. Н. Макаренко, Л. Г. Смышляева, И. В. Волчкова, С. И. Поздеева, Н. А. Семенова
المصدر: Vysshee Obrazovanie v Rossii = Higher Education in Russia; Том 30, № 10 (2021); 129-136 ; Высшее образование в России (Vysshee obrazovanie v Rossii = Higher Education in Russia); Том 30, № 10 (2021); 129-136 ; 2072-0459 ; 0869-3617
مصطلحات موضوعية: педагогические инновации, pedagogical education, pedagogical innovations, педагогический университет, общепрофессиональные компетенции
وصف الملف: application/pdf
Relation: https://vovr.elpub.ru/jour/article/view/3035/1725; Richter E., Brunner M., Richter D. Teacher educators’ task perception and its relationship to professional identity and teaching practice // Teaching and Teacher Education. 2021. Vol. 101. Article no. 103303. DOI: https://doi.org/10.1016/j.tate.2021.103303; Philip T.M., Souto-Manning M., Anderson L., Horn I., Carter Andrews D.J., Stillman J., Varghese M. Making Justice Peripheral by Constructing Practice as “Core”: How the Increasing Prominence of Core Practices Challenges Teacher Education // Journal of Teacher Education. 2019. Vol. 70 (3). Р. 251–264. DOI: https://doi.org/10.1177/0022487118798324; Burns A. Innovating Teacher Development: Transformative Teacher Education Through Classroom Inquiry // Innovative Practices in Language Teacher Education. 2017. Vol. 30. Р. 187–203. DOI: https://doi.org/10.1007/978-3-319-51789-6_9; Мелик-Гайказян И.В., Мелик-Гайказян М.В. Минерва и Янус: символы поклонения визуальным эффектам современного образования // ΠΡΑΞΗMΑ. Проблемы визуальной семиотики. 2019. № 4. С. 172–193. DOI:10.23951/2312-7899-2019-4-172-193; Sirotkina N.I. Against Epistemological Hierarchies: On the Value of Forming Bodily Knowledge // Education & Pedagogy journal. 2021. Vol. 1. Р. 5–20. DOI:10.23951/2782-2575-2021-1-5-20; Князева Е.Н. Визуальные образы на службе когнитивной науки // ΠΡΑΞΗMΑ. Проблемы визуальной семиотики. 2020. № 1. С. 58–75. DOI:10.23951/2312-7899-2020-1-58-75; Симян Т.С. Интерьерное и экстерьерное пространство Ереванского государственного университета: опыт семиотического описания // ΠΡΑΞΗMΑ. Проблемы визуальной семиотики. 2020. №. 1. С. 104–120. DOI:10.23951/2312-7899-2020-1-104-120; Щебланова В.В., Логинова Л.В., Суркова И.Ю. Дискурсы городского сообщества Интернет-мемов: между конструктивной и деструктивной гражданской активностью молодёжи // ΠΡΑΞΗMΑ. Проблемы визуальной семиотики. 2020. № 3. С. 136–155. DOI:10.23951/2312-7899-2020-3-136-155; Forteza Fernandez R.F., Rubtsova E.V., Forteza Rojas S.A. Content edulcoration as ideology visualization in an English language coursebook // ΠΡΑΞΗMΑ. Journal of Visual Semiotics. 2020. No. 4. pp. 172–193. DOI:10.23951/2312-7899-2020-4-172-193; Ермолова А. И. Городское публичное пространство детства: границы и сети (на примере одной детской площадки Томска) // ΠΡΑΞΗMΑ. Проблемы визуальной семиотики. 2019. № 2. С. 177–192. DOI:10.23951/2312-7899-2019-2-177-192; Горбулева М.С., Мелик-Гайказян И.В., Первушина Н.А. Инициативы педагогической биоэтики // Высшее образование в России. 2020. Т. 29. № 6. С. 122–128. DOI:10.31992/0869-3617-2021-29-6-122-128; Яковлева А.Ф., Селезнева А.В., Емельянова Н.Н. Образ науки в представлениях молодых учёных: социокультурные измерения // ΠΡΑΞΗMΑ. Проблемы визуальной семиотики. 2020. № 4. С. 194–213.; https://vovr.elpub.ru/jour/article/view/3035
-
7Academic Journal
المؤلفون: N. A. Semenova, P. G. Tsygankova, E. L. Dadali, T. V. Strokova, N. N. Taran, I. A. Kuzmicheva, S. I. Kutsev, Н. А. Семенова, П. Г. Цыганкова, Е. Л. Дадали, Т. В. Строкова, Н. Н. Таран, И. А. Кузьмичева, С. И. Куцев
المصدر: Medical Genetics; Том 19, № 7 (2020); 95-96 ; Медицинская генетика; Том 19, № 7 (2020); 95-96 ; 2073-7998
مصطلحات موضوعية: ген TRMU, Liver failure, transient infantile, TRMU gene, печеночная недостаточность
وصف الملف: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/1461/1103; https://www.medgen-journal.ru/jour/article/view/1461
-
8Academic Journal
المؤلفون: E. I. Dadali, I. A. Akimova, N. A. Semenova, D. M. Guseva, O. A. Shchagina, A. I. Chukhrova, I. V. Kanivets, S. A. Korostelev, Е. Л. Дадали, И. А. Акимова, Н. А. Семенова, Д. М. Гусева, О. А. Щагина, А. Л. Чухрова, И. В. Канивец, С. А. Коростелев
المصدر: Neuromuscular Diseases; Том 9, № 2 (2019); 30-36 ; Нервно-мышечные болезни; Том 9, № 2 (2019); 30-36 ; 2413-0443 ; 2222-8721 ; 10.17650/2222-8721-2019-9-2
مصطلحات موضوعية: магнитно-резонансная томография, tsenopathy, magnetic resonance imaging, тсенопатии
وصف الملف: application/pdf
Relation: https://nmb.abvpress.ru/jour/article/view/324/237; Namavar Y., Barth P.G., Kasher P.R. et al. Clinical, neuroradiological and genetic findings in pontocerebellar hypoplasia. Brain 2011;134(1):143–56. DOI:10.1093/brain/awq287. PMID: 20952379.; Battini R., D’Arrigo S., Cassandrini D. et al. Novel mutations in TSEN54 in pontocerebellar hypoplasia type 2. J Child Neurol 2014;29(4):520–5. DOI:10.1177/0883073812470002. PMID: 23307886.; Bierhals T., Korenke G.C., Uyanik G., Kutsche K. Pontocerebellar hypoplasia type 2 TSEN2: rewiew of the literature and two novel mutations. Eur J Med Genet 2013;56:325–30. DOI:10.1016/j.ejmg.2013.03.009. PMID: 23562994.; Cassandrini D., Biancheri R., Tessa A. et al. Pontocerebellar hypoplasia: clinical, pathologic, and genetic studies. Neurology 2010;75:1459–64. DOI:10.1212/WNL.0b013e3181f88173. PMID: 20956791.; Namavar Y., Barth P.G., Poll-The B.T., Baas F. Classification, diagnosis and potential mechanisms in Pontocerebellar Hypoplasia. Orphanet J Rare Dis 2011;6:50. DOI:10.1186/1750-1172-6-50. PMID: 21749694.; Namavar Y., Chitayat D., Barth P.G. et al. TSEN54 mutations cause pontocerebellar hypoplasia type 5. Eur J Hum Genet 2011;19(6):724–6. DOI:10.1038/ejhg.2011.8. PMID: 21368912.; Sánchez-Albisua I., Frölich S., Barth P.G. et al. Natural course of pontocerebellar hypoplasia type 2A. Orphanet J Rare Dis 2014;9(1):70. DOI:10.1186/1750-1172-9-70. PMID: 24886362.; Brun R. Zur kenntnis der bildungsfehler des kleinhirns. Epikritische bemerkungen zur entwicklungspathologie, morphologie und klinik der umschriebenen entwicklungshemmungen des neozerebellums. Schweiz. Arch Neurol Psychiatr 1917;1:48–105.; Koster S., Case I. Two cases of hypoplasia pontocerebellaris. Acta Psychiatr Scand 1926;1:47–83. DOI:10.1111/j.1600-0447.1926.tb05648.x.; Van Dijk T., Baas F., Barth P.G et al. What’s new in pontocerebellar hypoplasia? An update on genes and subtypes. Orphanet Journal of Rare Diseases 2018;13:92. DOI:10.1186/s13023-018-0826-2. PMID: 29903031.; Budde B.S., Namavar Y., Barth P.G. et al. tRNA splicing endonuclease mutations cause pontocerebellar hypoplasia. Nature Genet 2008;40:1113–8. DOI:10.1038/ng.204.PMID: 18711368.; Paushkin S.V., Patel M., Furia B.S. et al. Identification of a human endonuclease complex reveals a link between tRNA splicing and pre-mRNA 3-prime end formation. Cell 2004;117:311–21. DOI:10.1016/S0092-8674(04)00342-3. PMID: 15109492.; Donis K.C., Mattos E.P., Silva A.A. et al. Infantile spinocerebellar ataxia type 7: case report and a review of the literature. J Neurol Sci 2015;354(1–2):118–21. DOI:10.1016/j.jns.2015.04.04.; Singh A., Faruq M., Mukerji M. et al. Infantile onset spinocerebellar ataxia 2 (SCA2): a clinical report with review of previous cases. J Child Neurol 2014;29(1):139–44. DOI:10.1177/0883073813509015. PMID: 24300164.; Feraco P., Mirabelli-Badenier M., Severino M. et al. The shrunken, bright cerebellum: a characteristic MRI finding in congenital disorders of glycosylation type 1a. Am J Neuroradiol 2012;33(11): 2062–7. DOI:10.3174/ajnr.A3151.; Boltshauser E., Doherty D. Cerebellar hypoplasia: differential diagnosis and diagnostic approach. Am J Med Genet Med Genet 2014;166(2):211–26. DOI:10.1002/ajmg.c.31398. PMID: 24839100.; Fry A.E., Cushion T.D., Pilz D.T. The genetics of lissencephaly. Am J Med Genet Part C Semin Med Genet 2014;166(2):198–210. DOI:10.1002/ajmg.c.31402. PMID: 24862549.; Hong S.E., Shugart Y.Y., Huang D.T. et al. Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nat Genet 2000;26(1):93–6. DOI:10.1038/79246. PMID: 10973257; https://nmb.abvpress.ru/jour/article/view/324
-
9Academic Journal
المؤلفون: N. A. Semenova, E. L. Dadali, A. A. Sharkov, I. A. Akimova, Н. А. Семенова, Е. Л. Дадали, А. А. Шарков, И. А. Акимова
المصدر: Neuromuscular Diseases; Том 7, № 3 (2017); 36-42 ; Нервно-мышечные болезни; Том 7, № 3 (2017); 36-42 ; 2413-0443 ; 2222-8721 ; 10.17650/2222-8721-2017-7-3
مصطلحات موضوعية: медико-генетическое консультирование, metabolic diseases, epileptic encephalopathy early infantile, chromosome syndrome, genetic counseling, болезни обмена веществ, ранняя эпилептическая энцефалопатия, хромосомный синдром
وصف الملف: application/pdf
Relation: https://nmb.abvpress.ru/jour/article/view/211/180; Мухин К. Ю., Петрухин А. С., Миронов М. Б. Эпилептические синдромы. Диагностика и терапия. Справочное руководство для врачей. М., 2008. 224 с. [Mukhin K. Yu., Petrukhin A. S., Mironov M. B. Epileptic syndromes. Diagnosis and therapy. Reference guide for doctors. Moscow, 2008. 224 p. (In Russ.)].; Zhang D., Liu X., Deng X. Genetic basis of pediatric epilepsy syndromes (review). Exp Ther Med 2017;13(5):2129–33. DOI: 110.3892/etm.2017.4267. PMID: 28565819.; Eltze C. M., Chong W. K., Cox T. et al. A population-based study of newly diagnosed epilepsy in infants. Epilepsia 2013;54(3):437–45. DOI: 110.1111/epi.12046. PMID: 23252366.; Pal D. K., Pong A. W., Chung W. K. Genetic evaluation and counseling for epilepsy. Nate Rev Neurol 2010;6(8):445–53. DOI: 110.1038/nrneurol.2010.92. PMID: 20647993.; Михайлова С. В., Захарова Е. Ю., Петрухин А. С. Нейрометаболические заболевания у детей и подростков: диагностика и подходы к лечению.; М.: Литература, 2012. 352 с. [Mikhaylova S. V., Zakharova E. Yu., Petrukhin A. S. Neurometabolic diseases in children and adolescents: Diagnosis and treatment approaches. Moscow: Literatura, 2012. 352 p. (In Russ.)].; Цшоке Й., Хоффман Г. Vademecum metabolicum. Диагностика и лечение наследственных болезней обмена веществ. М.: PRINTALLOGGI, 2013. 176 с. [Tsshoke Y., Hoffman G. Vademecum metabolicum. Diagnosis and treatment of hereditary metabolic diseases. Moscow: PRINTALLOGGI, 2013. 176 p. (In Russ.)].; Therrell B. L. Jr, Lloyd-Puryear M. A., Camp K. M., Mann M. Y. Inborn errors of metabolism identified via newborn screening: ten-year incidence data and costs of nutritional interventions for research agenda planning. Mol Genet Metab 2014;113(1–2):14–26. DOI: 110.1016/j.ymgme.2014.07.009. PMID: 25085281.; Koopman W. J., Willems P. H., Smeitink J. A. Monogenic mitochondrial disorders. N Engl J Med 2012;366(12): 1132–41. DOI: 110.1056/NEJMra1012478. PMID: 22435372.; Wedatilake Y., Brown R. M., McFarland R. et al. SURF1 deficiency: a multi-centre natural history study. Orphanet J Rare Dis 2013;8:96. DOI: 110.1186/1750-1172-8-96. PMID: 23829769.; Shapira S. K., Ledley F. D., Rosenblatt D. S., Levy H. L. Ketoacidotic crisis as; a presentation of mild (“benign”) methylmalonic acidemia. J Pediatr 1991;119(1 Pt 1):80–4. DOI: 110.1016/S0022-3476(05)81045-5. PMID: 2066863.; Lu F. L., Wang P. J., Hwu W. L. et al. Neonatal type of non-ketotic hyperglycinemia. Pediatr Neurol 1999;20(4):295–300. DOI: 110.1016/S0887-8994(98)00157-X. PMID: 10328279.; Mew N. A., Simpson K. L., Gropman A. L. et al. Urea cycle disorders overview. Gene reviews. Available online. Accessed: 176 с. [Tsshoke Y., Hoffman G. Vademecum metabolicum. Diagnosis and treatment of hereditary metabolic diseases. Moscow: PRINTALLOGGI, 2013. 176 p. (In Russ.)].; Mew N. A., Simpson K. L., Gropman A. L. et al. Urea cycle disorders overview. Gene reviews. Available online. Accessed: June 22, 2017. DOI: 110.1093/med/ 9780199937837.003.0063. PMID: 20301396.; Oberholzer V. G., Levin B., Burgess E. A., Young W. F. Methylmalonic aciduria. An inborn error of metabolism leading to chronic metabolic acidosis. Arch Dis Child 1967;42(225):492–504. DOI: 110.1136/adc.42.225.492. PMID: 6061291.; Mole S. E., Williams R. E. Neuronal ceroid-lipofuscinosis. Gene Reviews. Avai lable online. Last Update: August 1, 2013. DOI: 110.1093/med/ 9780199590018.001.000. PMID: 20301601.; Schulz A., Kohlschütter A., Mink J. et al. NCL diseases – clinical perspectives. Biochim Biophys Acta 2013;1832(11):1801–6.; Beaulieu C., D’Arceuil H., Hedehus M. et al. Diffusion-weighted magnetic resonance imaging: theory and potential applications to child neurology. Semin Pediatr Neurol 1999;6(2):87–100. DOI:10.1016/s1071-9091(99)80035-7. PMID: 10404563.; Noh G. J., Asher Y. J.T., Graham J. M. Jr. Clinical review of genetic epileptic encephalopathies. Eur J Med Genet 2012;55(5):281–98. DOI: 110.1016/j.ejmg.2011.12.010. PMID: 22342633.; Дадали Е. Л., Шарков А. А., Шаркова И. В. и др. Наследственные заболевания и синдромы, сопровождающиеся фебрильными судорогами: клинико-генетические характеристики и способы диагностики. Русский журнал детской неврологии 2016;11(2): 33–41. [Dadali E. L., Sharkov A. A., Sharkova I. V. et al. Hereditary diseases and syndromes accompanied by febrile convulsions: clinical and genetic characteristics and diagnostic procedures. Russkiy zhurnal detskoy nevrologii = Russian Journal of Child Neurology 2016;11(2):33–41. (In Russ.)]. DOI: 110.17650/2073-8803-2016-11-2-33-41.; Yu F. H., Mantegazza M., Westenbroek R. E. et al. Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy. Nature Neurosci 2006;9(9):1142–9. DOI: 110.1038/nn1754. PMID: 16921370.; Meisler M. H., O’Brien J. E., Sharkey L. M. Sodium channel gene family: epilepsy mutations, geneinteractions and modifier effects. J Physiol 2010;588(Pt 11):1841–8. DOI: 110.1113/jphysiol.2010.188482. PMID: 20351042.; Audenaert D., Claes L., Ceulemans B. et al. A deletion in SCN1B is associated with febrile seizures and early-onset absence epilepsy. Neurology 2003;61(6):854–6. DOI: 110.1212/01.wnl.0000080362. 55784.1c. PMID: 14504340.; Ryan S. G., Wiznitzer M., Hollman C. et al. Benign familial neonatal convulsions: evidence for clinical and genetic heterogeneity. Ann Neurol 1991;29(5):469–73. DOI: 110.1002/ana.410290504. PMID: 1859177.; Singh N. A., Charlier C., Stauffer D. et al. A novel potassium channel gene, KCNQ2, is mutated in an inherited epilepsy of newborns. Nat Genet 1998;18(1):25–9. DOI: 110.1038/ng0198–25. PMID: 9425895.; Archer H. L., Whatley S. D., Evans J. C. et al. Gross rearrangements of the MECP2 gene are found in both classical and atypical Rett syndrome patients. J Med Genet 2006;43(5):451–6. DOI:10.1136/jmg.2005.033464. PMID: 16183801.; Witsch-Baumgartner M., Fitzky B. U., Ogorelkova M. et al. Mutational spectrum in the delta-7-sterol reductase gene and genotype-phenotype correlation in 84 patients with Smith-Lemli-Opitz syndrome. Am J Hum Genet 2000;66(2):402–12. DOI: 110.1086/302760. PMID: 10677299.; Oeseburg B., Dijkstra G. J., Groothoff J. W. et al. Prevalence of chronic health conditions in children with intellectual disability: a systematic literature review. Intellect Dev Disabil 2011;49(2):59–85. DOI: 110.1352/1934-9556-49.2.59. PMID: 21446871.; Musante L., Ropers H. H. Genetics of recessive cognitive disorders. Trends Genet 2014;30(1):32–9. DOI: 110.1016/j.tig.2013.09.008. PMID: 24176302.; Hussain S., Bakhtiar M. S., Farooq M. еt al. Genetic heterogeneity in Pakistani microcephaly families. Clin Genet 2013;83(5):446–51. DOI: 110.1111/j.1399- 0004.2012.01932.x. PMID: 22775483.; Mahmood S., Ahmad W., Hassan M. J. Autosomal recessive primary microcephaly (MCPH): clinical manifestations, genetic heterogeneity and mutation continuum. Orphanet J Rare Dis 2011;6:39. DOI: 110.1186/1750-1172-6-39. PMID: 21668957.; Kumada T., Ito M., Miyajima T. et al. Multi-institutional study on the cor relation between chromosomal abnormalities and epilepsy. Brain Dev 2005;27(2):127–34. DOI: 110.1016/j.braindev.2003.12.010. PMID: 15668053.; Valente K. D., Freitas A., Fiore L. A., Kim C. A. A study of EEG and epilepsy profile in Wolf – Hirschhorn syndrome and considerations regarding itscorrelation with other chromosomal disorders. Brain Dev 2003;25:283–7. DOI: 110.1016/s0387-7604(02)00223-1. PMID: 12767462.; Verrotti A., Carelli A., di Genova L., Striano P. Epilepsy and chromosome 18 abnormalities. A review. Seizure 2015;32:78–83. DOI: 110.1016/j.seizure 2015.09.013. PMID: 26552569.; Sorge G., Sorge A. Epilepsy and chromo so-mal abnormalities. Ital J Pediatr 2010;36:36. DOI: 110/1186/1824-7288-36-36. PMID: 20438626.; https://nmb.abvpress.ru/jour/article/view/211
-
10Academic Journal
المؤلفون: N. A. Semenova, A.I. Chubarova, Н. А. Семенова, А. И. Чубарова
المصدر: Current Pediatrics; Том 11, № 4 (2012); 128-132 ; Вопросы современной педиатрии; Том 11, № 4 (2012); 128-132 ; 1682-5535 ; 1682-5527
مصطلحات موضوعية: перцентильные график, physical development, Down syndrome, percentile charts, физическое развитие, синдром Дауна
وصف الملف: application/pdf
Relation: https://vsp.spr-journal.ru/jour/article/view/466/371; Suzanne B. Cassidy, Judit E. Allanson. Management of genetic syndromes. Wiley-Blackwel. 3d ed. 2010. Р. 309–336.; Shaw C. K., Thapalial A., Nanda S., Shaw P. Thyroid dysfunction in Down syndrome. Kathmandu University Medical Journal (KUMJ). 2006; 4 (2); 182–186.; Wexler I. D., Abu-Libdeh A., Kastiel Y. et al. Optimizing health care for individuals with Down syndrome in Israe. The Israel Medical Association Journal. 2009; 11 (11): 655–659.; Шабалов Н. П. Педиатрия. С.-Пб: СпецЛит. 2003. С. 37–57.; Cronk C., Crocker A. C., Pueschel S. M. et al. Growth charts for children with Down syndrome: 1 month to 18 years of age. Pediatrics. 1988; 10: 81–102.; Fernandes A. et al. Characterization of the somatic evolution of Portuguese children with Trisomy 21 — preliminary results. Down syndrome Research and Practice. 2001. Р. 134–138.; https://vsp.spr-journal.ru/jour/article/view/466