يعرض 1 - 20 نتائج من 136 نتيجة بحث عن '"НИЗКОМОЛЕКУЛЯРНЫЕ ГЕПАРИНЫ"', وقت الاستعلام: 0.85s تنقيح النتائج
  1. 1
    Academic Journal

    المساهمون: The event was held with the support of Russian Phlebological Association and National Association of Specialists in Thrombosis, Clinical Hemostasiology and Hemorheology., Мероприятие проведено при поддержке общероссийской общественной организации «Ассоциация флебологов России» и Национальной ассоциации специалистов по тромбозам, клинической гемостазиологии и гемореологии.

    المصدر: FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology; Online First ; ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология; Online First ; 2070-4933 ; 2070-4909

    وصف الملف: application/pdf

    Relation: https://www.pharmacoeconomics.ru/jour/article/view/1015/537; Бокерия Л.А., Затевахин И.И., Кириенко А.И. и др. Российские клинические рекомендации по диагностике, лечению и профилактике венозных тромбоэмболических осложнений (ВТЭО). Флебология. 2015; 9 (4-2): 1–52.; Селиверстов Е.И., Лобастов К.В., Илюхин Е.А. и др. Профилактика, диагностика и лечение тромбоза глубоких вен. Рекомендации российских экспертов. Флебология. 2023; 17 (3): 152–296. https://doi.org/10.17116/flebo202317031152.; Cardiovascular Disease Educational and Research Trust; European Venous Forum; North American Thrombosis Forum; International Union of Angiology; Union Internationale du Phlebologie. Prevention and treatment of venous thromboembolism: international consensus statement (guidelines according to scientific evidence). Clin Appl Thromb Hemost. 2013; 19 (2): 116–8. https://doi.org/10.1177/1076029612474840.; Darzi A.J., Karam S.G., Charide R., et al. Prognostic factors for VTE and bleeding in hospitalized medical patients: a systematic review and meta-analysis. Blood. 2020; 135 (20): 1788–810. https://doi.org/10.1182/blood.2019003603.; Anderson D.R., Morgano G.P., Bennett C., et al. American Society of Hematology 2019 guidelines for management of venous thromboembolism: prevention of venous thromboembolism in surgical hospitalized patients. Blood Adv. 2019; 3 (23): 3898–944. https://doi.org/10.1182/bloodadvances.2019000975.; Schünemann H.J., Cushman M., Burnett A.E., et al. American Society of Hematology 2018 guidelines for management of venous thromboembolism: prophylaxis for hospitalized and nonhospitalized medical patients. Blood Adv. 2018; 2 (22): 3198–225. https://doi.org/10.1182/bloodadvances.2018022954.; Nicolaides A.N., Fareed J., Spyropoulos A.C., et al. Prevention and management of venous thromboembolism. International Consensus Statement. Guidelines according to scientific evidence. Int Angiol. 2024; 43 (1): 1–222. https://doi.org/10.23736/S0392-9590.23.05177-5.; Duranteau J., Taccone F.S., Verhamme P., Ageno W. European guidelines on perioperative venous thromboembolism prophylaxis: intensive care. Eur J Anaesthesiol. 2018; 35 (2): 142–6. https://doi.org/10.1097/EJA.0000000000000707.; Gee E. The National VTE Exemplar Centres Network response to implementation of updated NICE guidance: venous thromboembolism in over 16s: reducing the risk of hospital-acquired deep vein thrombosis or pulmonary embolism (NG89). Br J Haematol. 2019; 186 (5): 792–3. https://doi.org/10.1111/bjh.16010.; Encke A., Haas S., Kopp I. Clinical practice guideline: the prophylaxis of venous thromboembolism. Dtsch Arztebl Int. 2016; 113 (31–32): 532–8. https://doi.org/10.3238/arztebl.2016.0532.; Khan F., Rahman A., Carrier M., et al. Long term risk of symptomatic recurrent venous thromboembolism after discontinuation of anticoagulant treatment for first unprovoked venous thromboembolism event: systematic review and meta-analysis. BMJ. 2019; 366: l4363. https://doi.org/10.1136/bmj.l4363.; Heit J.A., Ashrani A., Crusan D.J., et al. Reasons for the persistent incidence of venous thromboembolism. Thromb Haemost. 2017; 117 (2): 390–400. https://doi.org/10.1160/TH16-07-0509.; Лебедев Н.Н., Бабицкий А.А., Шихметов А.Н. и др. Современные подходы и нерешенные вопросы профилактики венозных тромбоэмболических осложнений при хирургических вмешательствах. Вестник Национального медико-хирургического центра им. Н.И. Пирогова. 2023; 18 (1): 126–33. https://doi.org/10.25881/20728255_2023_18_1_126.; Андрияшкин А.В., Кулиев С.А., Никишков А.С. и др. Профилактика венозных тромбоэмболических осложнений у больных с послеоперационными вентральными грыжами: результаты обсервационного поперечного исследования. Флебология. 2017; 11 (1): 17–20. https://doi.org/10.17116/flebo201711117-20.; Ян С. Инцидентность венозных тромбозовв европейской популяции: роль хирургических вмешательств. Медицина неотложных состояний. 2017; 4: 24–9.; Костюченко М.В. Современные методы профилактики тромбоэмболических осложнений в послеоперационном периоде. Consilium Medicum. 2019; 21 (8): 102–7.; Arshad N., Isaksen T., Hansen J.B., Brækkan S.K. Time trends in incidence rates of venous thromboembolism in a large cohort recruited from the general population. Eur J Epidemiol. 2017; 32 (4): 299–305. https://doi.org/10.1007/s10654-017-0238-y.; Heit J.A., O'Fallon W.M., Petterson T.M., et al. Relative impact of risk factors for deep vein thrombosis and pulmonary embolism: a population-based study. Arch Intern Med. 2002; 162 (11): 1245–8. https://doi.org/10.1001/archinte.162.11.1245.; Gangireddy C., Rectenwald J.R., Upchurch G.R., et al. Risk factors and clinical impact of postoperative symptomatic venous thromboembolism. J Vasc Surg. 2007; 45 (2): 335–41. https://doi.org/10.1016/j.jvs.2006.10.034.; Wilson S., Chen X., Cronin M., et al. Thrombosis prophylaxis in surgical patients using the Caprini Risk Score. Curr Probl Surg. 2022; 59 (11): 101221. https://doi.org/10.1016/j.cpsurg.2022.101221.; Meknas D., Brækkan S.K., Hansen J.B., Morelli V.M. Surgery as a trigger for incident venous thromboembolism: results from a population-based case-crossover study. TH Open. 2023; 7 (3): e244–50. https://doi.org/10.1055/a-2159-9957.; Петриков А.С. Парнапарин натрия – современные возможности терапии и профилактики венозных тромбоэмболических осложнений. Хирургия. Журнал имени Н.И. Пирогова. 2020; 11: 115–26. https://doi.org/10.17116/hirurgia2020111115.; Кузнецов М.Р., Марченко И.П., Федоров Е.Е. Профилактика венозных тромбоэмболических осложнений в хирургии. Амбулаторная хирургия. 2018; 1–2: 20–5. https://doi.org/10.21518/1995-14772018-1-2-20-25.; Grimnes G., Isaksen T., Tichelaar Y.I.G.V., et al. Acute infection as a trigger for incident venous thromboembolism: results from a population-based case-crossover study. Res Pract Thromb Haemost. 2017; 2 (1): 85–92. https://doi.org/10.1002/rth2.12065.; Bjøri E., Johnsen H.S., Hansen J.B., Brækkan S.K. Hospitalization as a trigger for venous thromboembolism – results from a population-based case-crossover study. Thromb Res. 2019; 176: 115–9. https://doi.org/10.1016/j.thromres.2019.02.024.; Heit J.A., Silverstein M.D., Mohr D.N., et al. Risk factors for deep vein thrombosis and pulmonary embolism: a population-based case-control study. Arch Intern Med. 2000; 160 (6): 809–15. https://doi.org/10.1001/archinte.160.6.809.; Salzman E.W., Hirsh J. Prevention of venous thromboembolism. In: Colman R.W., Hirsh J., Marder V.J. (Eds.) Hemostasis and thrombosis, basic principles and clinical practice. New York, NY: Lippincott; 1982: 986 pp.; Rogers S.O. Jr., Kilaru R.K., Hosokawa P., et al. Multivariable predictors of postoperative venous thromboembolic events after general and vascular surgery: results from the patient safety in surgery study. J Am Coll Surg. 2007; 204 (6): 1211–21. https://doi.org/10.1016/j.jamcollsurg.2007.02.072.; Lobastov K., Urbanek T., Stepanov E., et al. The thresholds of Caprini score associated with increased risk of venous thromboembolism across different specialties: a systematic review. Ann Surg. 2023; 277 (6): 929–37. https://doi.org/10.1097/SLA.0000000000005843.; Hanh B.M., Cuong L.Q., Son N.T., et al. Determination of risk factors for venous thromboembolism by an adapted Caprini scoring system in surgical patients. J Pers Med. 2019; 9 (3): 36. https://doi.org/10.3390/jpm9030036.; Albayati M.A., Grover S.P., Saha P., et al. Postsurgical inflammation as a causative mechanism of venous thromboembolism. Semin Thromb Hemost. 2015; 41 (6): 615–20. https://doi.org/10.1055/s-0035-1556726.; Cofrancesco E., Cortellaro M., Leonardi P., et al. Markers of hemostatic system activation during thromboprophylaxis with recombinant hirudin in total hip replacement. Thromb Haemost. 1996; 75 (3): 407–11.; Arnesen H., Dahl O.E., Aspelin T., et al. Sustained prothrombotic profile after hip replacement surgery: the influence of prolonged prophylaxis with dalteparin. J Thromb Haemost. 2003; 1 (5): 971–5. https://doi.org/10.1046/j.1538-7836.2003.00111.x.; Samama C.M., Thiry D., Elalamy I., et al. Perioperative activation of hemostasis in vascular surgery patients. Anesthesiology. 2001; 94 (1): 74–8. https://doi.org/10.1097/00000542-200101000-00015.; Лобастов К.В., Дементьева Г.И., Лаберко Л.А. Современные представления об этиологии и патогенезе венозного тромбоза: переосмысление триады Вирхова. Флебология. 2019; 13 (3): 227–35. https://doi.org/10.17116/flebo201913031227.; Лобастов К.В., Баринов В.Е., Счастливцев И.В., Лаберко Л.А. Шкала Caprini как инструмент для индивидуальной стратификации риска развития послеоперационных венозных тромбоэмболий в группе высокого риска. Хирургия. Журнал им. Н.И. Пирогова. 2014; 114 (12): 16–23.; Pandor A., Tonkins M., Goodacre S., et al. Risk assessment models for venous thromboembolism in hospitalised adult patients: a systematic review. BMJ Open. 2021; 11 (7): e045672. https://doi.org/10.1136/bmjopen-2020-045672.; Лобастов К.В., Ковальчук А.В., Барганжия А.Б. и др. Приверженность использованию шкалы Каприни среди отечественных специалистов: результаты электронного анкетирования. Хирург. 2022; 6: 54–66. https://doi.org/10.33920/med-15-2206-06.; Gould M.K., Garcia D.A., Wren S.M., et al. Prevention of VTE in nonorthopedic surgical patients: antithrombotic therapy and prevention of thrombosis, 9 th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012; 141 (2 Suppl.): e227S–77S. https://doi.org/10.1378/chest.11-2297.; Pannucci C.J., Dreszer G., Wachtman C.F., et al. Postoperative enoxaparin prevents symptomatic venous thromboembolism in high-risk plastic surgery patients. Plast Reconstr Surg. 2011; 128 (5): 1093–103. https://doi.org/10.1097/PRS.0b013e31822b6817.; Obi A.T., Pannucci C.J., Nackashi A., et al. Validation of the Caprini venous thromboembolism risk assessment model in critically ill surgical patients. JAMA Surg. 2015; 150 (10): 941–8. https://doi.org/10.1001/jamasurg.2015.1841.; Yarlagadda B.B., Brook C.D., Stein D.J., Jalisi S. Venous thromboembolism in otolaryngology surgical inpatients receiving chemoprophylaxis. Head Neck. 2014; 36 (8): 1087–93. https://doi.org/10.1002/hed.23411.; Lobastov K., Barinov V., Schastlivtsev I., et al. Validation of the Caprini risk assessment model for venous thromboembolism in high-risk surgical patients in the background of standard prophylaxis. J Vasc Surgery. 2016; 4 (2): 153–60. https://doi.org/10.1016/j.jvsv.2015.09.004.; Серебрийский И.И. «Глобальные» и «локальные» тесты системы гемостаза в диагностике гиперкоагуляционного синдрома. Справочник заведующего клинико-диагностической лабораторией. 2012; 12: 27–34.; Ярец Ю.И. Тромбоэластография: основные показатели, интерпретация результатов. URL: https://www.rcrm.by/upload/science/posob_doctor/2018-26.pdf (дата обращения 10.04.2024).; Шулутко А.М., Атауллаханов Ф.И., Баландина А.Н. и др. Применение теста тромбодинамики для оценки состояния системы гемостаза. М.: Первый Московский государственный медицинский университет им. И.М. Сеченова; 2015: 72 с.; Lobastov K., Dementieva G., Soshitova N., et al. Utilization of the Caprini score in conjunction with thrombodynamic testing reduces the number of unpredicted postoperative venous thromboembolism events in patients with colorectal cancer. J Vasc Surg Venous Lymphat Disord. 2020; 8 (1): 31–41. https://doi.org/10.1016/j.jvsv.2019.06.015.; Кательницкая О.В., Кит О.И., Гуськова Н.К. и др. Оценка функционального состояния свертывающенй системы в послеоперационном периоде у больных со злокачественными новообразованиями органов желудочно-кишечного тракта. Известия высших учебных заведений. Северо-Кавказский регион. Серия: Естественные науки. 2017; 4-2: 48–57.; Петриков А.С., Сучков И.А., Ройтман Е.В. и др. Первичная профилактика венозных тромбоэмболических осложнений умеренного и высокого риска у хирургических пациентов с грыжами передней брюшной стенки. Тромбоз, гемостаз и реология. 2024; 1: 57–70. https://doi.org/10.25555/THR.2024.1.1087.; Wall V., Fleming K.I., Tonna J.E., et al. Anti-factor Xa measurements in acute care surgery patients to examine enoxaparin dose. Am J Surg. 2018; 216 (2): 222–9. https://doi.org/10.1016/j.amjsurg.2017.07.014.; Pannucci C.J., Fleming K.I., Bertolaccini C.B., et al. Assessment of anti-factor Xa levels of patients undergoing colorectal surgery given once-daily enoxaparin prophylaxis: a clinical study examining enoxaparin pharmacokinetics. JAMA Surg. 2019; 154 (8): 697–704. https://doi.org/10.1001/jamasurg.2019.1165.; Pannucci C.J., Fleming K.I., Holoyda K., et al. Enoxaparin 40 mg per day is inadequate for venous thromboembolism prophylaxis after thoracic surgical procedure. Ann Thorac Surg. 2018; 106 (2): 404–11. https://doi.org/10.1016/j.athoracsur.2018.02.085.; Pannucci C.J., Rockwell W.B., Ghanem M., et al. Inadequate enoxaparin dosing predicts 90-day venous thromboembolism risk among plastic surgery inpatients: an examination of enoxaparin pharmacodynamics. Plast Reconstr Surg. 2017; 139 (4): 1009–20. https://doi.org/10.1097/PRS.0000000000003159.; Khoursheed M., Al-Bader I., Al-Asfar F., et al. Therapeutic effect of low-molecular weight heparin and incidence of lower limb deep venous thrombosis and pulmonary embolism after laparoscopic bariatric surgery. Surg Laparosc Endosc Percutan Tech. 2013; 23 (6): 491–3. https://doi.org/10.1097/SLE.0b013e31828e3c92.; Rowan B.O., Kuhl D.A., Lee M.D., et al. Anti-Xa levels in bariatric surgery patients receiving prophylactic enoxaparin. Obes Surg. 2008; 18 (2): 162–6. https://doi.org/10.1007/s11695-007-9381-y.; Faraklas I., Ghanem M., Brown A., Cochran A. Evaluation of an enoxaparin dosing calculator using burn size and weight. J Burn Care Res. 2013; 34 (6): 621–7. https://doi.org/10.1097/BCR.0b013e3182a2a855.; Pannucci C.J., Fleming K.I., Bertolaccini C., et al. Optimal dosing of prophylactic enoxaparin after surgical procedures: results of the double-blind, randomized, controlled FIxed or Variable Enoxaparin (FIVE) Trial. Plast Reconstr Surg. 2021; 147 (4): 947–58. https://doi.org/10.1097/PRS.0000000000007780.; Wu T., Xia X., Chen W., et al. The effect of anti-Xa monitoring on the safety and efficacy of low-molecular-weight heparin anticoagulation therapy: a systematic review and meta-analysis. J Clin Pharm Ther. 2020; 45 (4): 602–8. https://doi.org/10.1111/jcpt.13169.; Verhoeff K., Raffael K., Connell M., et al. Relationship between anti-Xa level achieved with prophylactic low-molecular weight heparin and venous thromboembolism in trauma patients: a systematic review and meta-analysis. J Trauma Acute Care Surg. 2022; 93 (2): e61–70. https://doi.org/10.1097/TA.0000000000003580.; Guyatt G.H., Akl E.A., Crowther M. Executive summary: anti-thrombotic therapy and prevention of thrombosis: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2012; 141 (2 Suppl.): 7S–47S. https://doi.org/10.1378/chest.1412S3.; Hutt Centeno E., Militello M., Gomes M.P. Anti-Xa assays: what is their role today in antithrombotic therapy? Cleve Clin J Med. 2019; 86 (6): 417–25. https://doi.org/10.3949/ccjm.86a.18029.; Kufel W.D., Seabury R.W., Darko W., et al. Clinical feasibility of monitoring enoxaparin anti-xa concentrations: are we getting it right? Hosp Pharm. 2017; 52 (3): 214–20. https://doi.org/10.1310/hpj5203-214.; Smythe M.A., Priziola J., Dobesh P.P., et al. Guidance for the practical management of the heparin anticoagulants in the treatment of venous thromboembolism. J Thromb Thrombolysis. 2016; 41 (1): 165–86. https://doi.org/10.1007/s11239-015-1315-2.; Pezzuoli G., Neri Serneri G.G., Settembrini P., et al. Prophylaxis of fatal pulmonary embolism in general surgery using low-molecular weight heparin Cy 216: a multicentre, double-blind, randomized, controlled, clinical trial versus placebo (STEP). STEP-Study Group. Int Surg. 1989; 74 (4): 205–10.; Marassi A., Balzano G., Mari G., et al. Prevention of postoperative deep vein thrombosis in cancer patients. A randomized trial with low molecular weight heparin (CY 216). Int Surg. 1993; 78 (2): 166–70.; Bergqvist D., Flordal P.A., Friberg B., et al. Thromboprophylaxis with a low molecular weight heparin (tinzaparin) in emergency abdominal surgery. A double-blind multicenter trial. Vasa. 1996; 25 (2): 156–60.; Kakkar V.V., Boeckl O., Boneu B., et al. Efficacy and safety of a low-molecular-weight heparin and standard unfractionated heparin for prophylaxis of postoperative venous thromboembolism: European multicenter trial. World J Surg. 1997; 21 (1): 2–8. https://doi.org/10.1007/s002689900185.; Efficacy and safety of enoxaparin versus unfractionated heparin for prevention of deep vein thrombosis in elective cancer surgery: a double-blind randomized multicentre trial with venographic assessment. ENOXACAN Study Group. Br J Surg. 1997; 84 (8): 1099–103.; Creperio G., Marabini M., Ciocia G., et al. Evaluation of the effectiveness and safety of Fragmin (Kabi 2165) versus calcium heparin in the prevention of deep venous thrombosis in general surgery. Minerva Chir. 1990; 45 (17): 1101–6 (in Italian).; Garcea D., Martuzzi F., Santelmo N., et al. Post-surgical deep vein thrombosis prevention: evaluation of the risk/benefit ratio of fractionated and unfractionated heparin. Curr Med Res Opin. 1992; 12 (9): 572–83. https://doi.org/10.1185/03007999209111524.; Gazzaniga G.M., Angelini G., Pastorino G., et al. Enoxaparin in the prevention of deep venous thrombosis after major surgery: multicentric study. The Italian Study Group. Int Surg. 1993; 78 (3): 271–5.; Haas S. Low molecular weight heparins in the prevention of venous thromboembolism in nonsurgical patients. Semin Thromb Hemost. 1999; 25 (Suppl. 3): 101–5.; Hartl P., Brücke P., Dienstl E., Vinazzer H. Prophylaxis of thromboembolism in general surgery: comparison between standard heparin and fragmin. Thromb Res. 1990; 57 (4): 577–84. https://doi.org/10.1016/0049-3848(90)90074-m.; Hoffmann R., Largiadèr F. Perioperative prevention of thromboembolism with standard heparin and low molecular weight heparin, evaluation of postoperative hemorrhage. A double-blind, prospective, randomized and mono-center study. Langenbecks Arch Chir. 1992; 377 (5): 258–61 (in German). https://doi.org/10.1007/BF00189469.; Kakkar V.V., Cohen A.T., Edmonson R.A., et al. Low molecular weight versus standard heparin for prevention of venous thromboembolism after major abdominal surgery. The Thromboprophylaxis Collaborative Group. Lancet. 1993; 341 (8840): 259–65. https://doi.org/10.1016/0140-6736(93)92614-y.; Koppenhagen K., Tröster E., Matthes M., Häring R. Prevention of thrombosis with low molecular weight heparin as the only substance and/or with DHE: results of clinical studies. Langenbecks Arch Chir Suppl II Verh Dtsch Ges Chir. 1990; 1163–6 (in German).; Koppenhagen K., Adolf J., Matthes M., et al. Low molecular weight heparin and prevention of postoperative thrombosis in abdominal surgery. Thromb Haemost. 1992; 67 (6): 627–30.; McLeod R.S., Geerts W.H., Sniderman K.W., et al. Subcutaneous heparin versus low-molecular-weight heparin as thromboprophylaxis in patients undergoing colorectal surgery: results of the Canadian colorectal DVT prophylaxis trial: a randomized, double-blind trial. Ann Surg. 2001; 233 (3): 438–44. https://doi.org/10.1097/00000658-200103000-00020.; Moreno Gonzalez E., Fontcuberta J., de la Llama F. Prophylaxis of thromboembolic disease with RO-11 (ROVI), during abdominal surgery. EMRO1 (Grupo Fstudio Multicintrico RO-11). Hepatogastroenterology. 1996; 43 (9): 744–7.; Nurmohamed M.T., Verhaeghe R., Haas S., et al. A comparative trial of a low molecular weight heparin (enoxaparin) versus standard heparin for the prophylaxis of postoperative deep vein thrombosis in general surgery. Am J Surg. 1995; 169 (6): 567–71. https://doi.org/10.1016/s0002-9610(99)80222-0.; Wolf H., Encke A., Haas S., Welzel D. Comparison of the efficacy and safety of Sandoz low molecular weight heparin and unfractionated heparin: interim analysis of a multicenter trial. Semin Thromb Hemost. 1991; 17 (4): 343–6. https://doi.org/10.1055/s-2007-1002632.; Liezorovicz A., Picolet H., Peyrieux J.C., Boissel J.P. Prevention of perioperative deep vein thrombosis in general surgery: a multicentre double blind study comparing two doses of Logiparin and standard heparin. H.B.P.M. Research Group. Br J Surg. 1991; 78 (4): 412–6. https://doi.org/10.1002/bjs.1800780410.; Breddin H.K. Low molecular weight heparins in the prevention of deep-vein thrombosis in general surgery. Semin Thromb Hemost. 1999; 25 (Suppl. 3): 83–9.; Jørgensen L.N., Wille-Jørgensen P., Hauch O. Prophylaxis of postoperative thromboembolism with low molecular weight heparins. Br J Surg. 1993; 80 (6): 689–704. https://doi.org/10.1002/bjs.1800800607.; Koch A., Ziegler S., Breitschwerdt H., Victor N. Low molecular weight heparin and unfractionated heparin in thrombosis prophylaxis: meta-analysis based on original patient data. Thromb Res. 2001; 102 (4): 295–309. https://doi.org/10.1016/s0049-3848(01)00251-1.; Koch A., Bouges S., Ziegler S., et al. Low molecular weight heparin and unfractionated heparin in thrombosis prophylaxis after major surgical intervention: update of previous meta-analyses. Br J Surg. 1997; 84 (6): 750–9.; Leizorovicz A., Haugh M.C., Chapuis F.R., et al. Low molecular weight heparin in prevention of perioperative thrombosis. BMJ. 1992; 305 (6859): 913–20. https://doi.org/10.1136/bmj.305.6859.913.; Mismetti P., Laporte S., Darmon J.Y., et al. Meta-analysis of low molecular weight heparin in the prevention of venous thromboembolism in general surgery. Br J Surg. 2001; 88 (7): 913–30. https://doi.org/10.1046/j.0007-1323.2001.01800.x.; Nurmohamed M.T., Rosendaal F.R., Büller H.R., et al. Low-molecular-weight heparin versus standard heparin in general and orthopaedic surgery: a meta-analysis. Lancet. 1992; 340 (8812): 152–6. https://doi.org/10.1016/0140-6736(92)93223-a.; Palmer A.J., Schramm W., Kirchhof B., Bergemann R. Low molecular weight heparin and unfractionated heparin for prevention of thromboembolism in general surgery: a meta-analysis of randomised clinical trials. Haemostasis. 1997; 27 (2): 65–74. https://doi.org/10.1159/000217436.; Wille-Jørgensen P., Rasmussen M.S., Andersen B.R., Borly L. Heparins and mechanical methods for thromboprophylaxis in colorectal surgery. Cochrane Database Syst Rev. 2003; 4: CD001217. https://doi.org/10.1002/14651858.CD001217.; Warkentin T.E., Roberts R.S., Hirsh J., Kelton J.G. An improved definition of immune heparin-induced thrombocytopenia in postoperative orthopedic patients. Arch Intern Med. 2003; 163 (20): 2518–24. https://doi.org/10.1001/archinte.163.20.2518.; Warkentin T.E., Levine M.N., Hirsh J., et al. Heparin-induced thrombocytopenia in patients treated with low-molecular-weight heparin or unfractionated heparin. N Engl J Med. 1995; 332 (20): 1330–5. https://doi.org/10.1056/NEJM199505183322003.; Шевченко Ю.Л., Лядов К.В., Стойко Ю.М. и др. Профилактика тромбоэмболических осложнений в многопрофильном хирургическом стационаре. Лечебное дело. 2005; 3: 3–15.; Шевченко Ю.Л., Лядов К.В., Стойко Ю.М. и др. Компьютерная программа “DecisionMatrix” в определении индивидуального риска тромбоэмболических осложнений у больных хирургического профиля. Хирургия. Журнал им. Н.И. Пирогова. 2004; 7: 38–41.; Замятин М.Н., Стойко Ю.М., Петрова Н.В. Патофизиологические основы выбора антикоагулянтов для профилактики и лечения тромботических осложнений в многопрофильном стационаре. Клиническая патофизиология. 2017; 22 (1): 3–10.; Kalodiki E., Leong W. SASAT (South Asian Society on Atherosclerosis & Thrombosis) proposal for regulatory guidelines for generic low-molecular weight heparins (LMWHs). Clin Appl Thromb Hemost. 2009; 15 (1): 8–11. https://doi.org/10.1177/1076029608329113.; Agnelli G., Bergqvist D., Cohen A.T., et al. Randomized clinical trial of postoperative fondaparinux versus perioperative dalteparin for prevention of venous thromboembolism in high-risk abdominal surgery. Br J Surg. 2005; 92 (10): 1212–20. https://doi.org/10.1002/bjs.5154.; Collins R., Baigent C., Sandercock P., Peto R. Antiplatelet therapy for thromboprophylaxis: the need for careful consideration of the evidence from randomised trials. Antiplatelet Trialists’ Collaboration. BMJ. 1994; 309 (6963): 1215–7. https://doi.org/10.1136/bmj.309.6963.1215.; Бицадзе В.О., Слуханчук Е.В., Хизроева Д.Х. и др. Антикоагулянтные, противовоспалительные, противовирусные и противоопухолевые свойства гепаринов. Акушерство, гинекология и репродукция. 2021; 15 (3): 295–312. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2021.216.; Открытое рандомизированное перекрестное сравнительное исследование фармакодинамики (фармакодинамической эквивалентности), безопасности и переносимости препаратов Надропарин кальция, раствор для подкожного введения (ЗАО «ФармФирма «Сотекс», Россия) и Фраксипарин, раствор для подкожного введения (Аспен Фарма Трейдинг Лимитед, Ирландия) при однократном подкожном введении здоровым добровольцам. GRLS Base. Протокол № KI/1118-1. URL: https://grlsbase.ru/clinicaltrails/clintrail/480 (дата обращения 10.04.2024).; Macie C., Forbes L., Foster G.A., Douketis J.D. Dosing practices and risk factors for bleeding in patients receiving enoxaparin for the treatment of an acute coronary syndrome. Chest. 2004; 125 (5): 1616–21. https://doi.org/10.1378/chest.125.5.1616.; Witt D.M., Nieuwlaat R., Clark N.P., et al. American Society of Hematology 2018 guidelines for management of venous thromboembolism: optimal management of anticoagulation therapy. Blood Adv. 2018; 2 (22): 3257–91. https://doi.org/10.1182/bloodadvances.2018024893.; Spyropoulos A.C., Preblick R., Kwong W.J., et al. Is adherence to the American College of Chest Physicians recommended anticoagulation treatment duration associated with different outcomes among patients with venous thromboembolism? Clin Appl Thromb Hemost. 2017; 23 (6): 532–41. https://doi.org/10.1177/1076029616680475.; Фролов Д.В., Петров В.И., Суханова Г.А. и др. Первичная профилактика венозных тромбоэмболических осложнений: современное состояние проблемы. Флебология. 2022; 16 (2): 164–74. https://doi.org/10.17116/flebo202216021164.; Инструкция по медицинскому применению лекарственного препарата Фраксипарин ® . Государственный реестр лекарственных средств. URL: https://grls.rosminzdrav.ru/Grls_View_v2.aspx?routingGuid=47fefb31-a433-4f0a-a1c9-d82b3f3e4476 (дата обращения 10.04.2024).; Parkin L., Sweetland S., Balkwill A., et al. Body mass index, surgery, and risk of venous thromboembolism in middle-aged women: a cohort study. Circulation. 2012; 125 (15): 1897–904. https://doi.org/10.1161/CIRCULATIONAHA.111.063354.; Pahlkotter M.K., Mohidul S., Moen M.R., et al. BMI and VTE risk in emergency general surgery, does size matter? An ACS-NSQIP database analysis. Am Surg. 2020; 86 (12): 1660–5. https://doi.org/10.1177/0003134820940272.; Rahmani J., Haghighian Roudsari A., Bawadi H., et al. Relationship between body mass index, risk of venous thromboembolism and pulmonary embolism: a systematic review and dose-response meta-analysis of cohort studies among four million participants. Thromb Res. 2020; 192: 64–72. https://doi.org/10.1016/j.thromres.2020.05.014.; Venclauskas L., Maleckas A., Arcelus J. European guidelines on perioperative venous thromboembolism prophylaxis: surgery in the obese patient. Eur J Anaesthesiol. 2018; 35 (2): 147–53. https://doi.org/10.1097/EJA.0000000000000703.; Freeman A.L., Pendleton R.C., Rondina M.T. Prevention of venous thromboembolism in obesity. Expert Rev Cardiovasc Ther. 2010; 8 (12): 1711–21. https://doi.org/10.1586/erc.10.160.; Shelkrot M., Miraka J., Perez M.E. Appropriate enoxaparin dose for venous thromboembolism prophylaxis in patients with extreme obesity. Hosp Pharm. 2014; 49 (8): 740–7. https://doi.org/10.1310/hpj4908-740.; Liu J., Qiao X., Wu M., et al. Strategies involving low-molecular-weight heparin for the treatment and prevention of venous thromboembolism in patients with obesity: a systematic review and meta-analysis. Front Endocrinol. 2023; 14: 1084511. https://doi.org/10.3389/fendo.2023.1084511.; Simone E.P., Madan A.K., Tichansky D.S., et al. Comparison of two low molecular weight heparin dosing regimens for patients undergoing laparoscopic bariatric surgery. Surg Endosc. 2008; 22 (11): 2392–5. https://doi.org/10.1007/s00464-008-9997-6.; Freeman A., Horner T., Pendleton R.C., Rondina M.T. Prospective comparison of three enoxaparin dosing regimens to achieve target antifactor Xa levels in hospitalized, medically ill patients with extreme obesity. Am J Hematol. 2012; 87 (7): 740–3. https://doi.org/10.1002/ajh.23228.; Ludwig K.P., Simons H.J., Mone M., et al. Implementation of an enoxaparin protocol for venous thromboembolism prophylaxis in obese surgical intensive care unit patients. Ann Pharmacother. 2011; 45 (11): 1356–62. https://doi.org/10.1345/aph.1Q313.; Chang C.K., Higgins R.M., Rein L., et al. Effectiveness of body mass index-based prophylactic enoxaparin dosing in bariatric surgery patients. J Surg Res. 2023; 287: 168–75. https://doi.org/10.1016/j.jss.2023.01.018.; Garcia D.A., Baglin T.P., Weitz J.I., et al. Parenteral anticoagulants: antithrombotic therapy and prevention of thrombosis, 9 th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012; 141 (2 Suppl.): e24S–43S. https://doi.org/10.1378/chest.11-2291.; Стойко Ю.М., Замятин М.Н. Специфическая профилактика тромбоэмболических осложнений у пациентов с высоким и очень высоким риском. Трудный пациент. 2007; 5 (6–7): 35–8.; Scurr J.H., Coleridge-Smith P.D., Hasty J.H. Deep venous thrombosis: a continuing problem. BMJ. 1988; 297 (6640): 28. https://doi.org/10.1136/bmj.297.6640.28.; Arcelus J.I., Caprini J.A., Traverso C.I. Venous thromboembolism after hospital discharge. Semin Thromb Hemost. 1993; 19 (Suppl. 1): 142–6.; Caron A., Depas N., Chazard E., et al. Risk of pulmonary embolism more than 6 weeks after surgery among cancer-free middle-aged patients. JAMA Surg. 2019; 154 (12): 1126–32. https://doi.org/10.1001/jamasurg.2019.3742.; Arcelus J.I., Monreal M., Caprini J.A., et al. Clinical presentation and time-course of postoperative venous thromboembolism: results from the RIETE Registry. Thromb Haemost. 2008; 99 (3): 546–51. https://doi.org/10.1160/TH07-10-0611.; Bergqvist D., Lindblad B. A 30-year survey of pulmonary embolism verified at autopsy: an analysis of 1274 surgical patients. Br J Surg. 1985; 72 (2): 105–8. https://doi.org/10.1002/bjs.1800720211.; Agnelli G., Bolis G., Capussotti L., et al. A clinical outcome-based prospective study on venous thromboembolism after cancer surgery: the @RISTOS project. Ann Surg. 2006; 243 (1): 89–95. https://doi.org/10.1097/01.sla.0000193959.44677.48.; Merkow R.P., Bilimoria K.Y., McCarter M.D., et al. Post-discharge venous thromboembolism after cancer surgery: extending the case for extended prophylaxis. Ann Surg. 2011; 254 (1): 131–7. https://doi.org/10.1097/SLA.0b013e31821b98da.; Expósito-Ruiz M., Arcelus J.I., Caprini J.A., et al. Timing and characteristics of venous thromboembolism after noncancer surgery. J Vasc Surg Venous Lymphat Disord. 2021; 9 (4): 859–67.e2. https://doi.org/10.1016/j.jvsv.2020.11.017.; Singh T., Lavikainen L.I., Halme A.L.E., et al. Timing of symptomatic venous thromboembolism after surgery: meta-analysis. Br J Surg. 2023; 110 (5): 553–61. https://doi.org/10.1093/bjs/znad035.; Egger B., Schmid S.W., Naef M., et al. Efficacy and safety of weight-adapted nadroparin calcium vs. heparin sodium in prevention of clinically evident thromboembolic complications in 1,190 general surgical patients. Dig Surg. 2000; 17 (6): 602–9. https://doi.org/10.1159/000051969.; Lausen I., Jensen R., Jorgensen L.N., et al. Incidence and prevention of deep venous thrombosis occurring late after general surgery: randomised controlled study of prolonged thromboprophylaxis. Eur J Surg. 1998; 164 (9): 657–63. https://doi.org/10.1080/110241598750005534.; Heit J.A., Melton L.J. 3 rd , Lohse C.M., et al. Incidence of venous thromboembolism in hospitalized patients vs community residents. Mayo Clin Proc. 2001; 76 (11): 1102–10. https://doi.org/10.4065/76.11.1102.; Rasmussen M.S. Preventing thromboembolic complications in cancer patients after surgery: a role for prolonged thromboprophylaxis. Cancer Treat Rev. 2002; 28 (3): 141–4. https://doi.org/10.1016/s0305-7372(02)00043-9.; Bergqvist D., Agnelli G., Cohen A.T., et al. Duration of prophylaxis against venous thromboembolism with enoxaparin after surgery for cancer. N Engl J Med. 2002; 346 (13): 975–80. https://doi.org/10.1056/NEJMoa012385.; Rasmussen M.S., Jorgensen L.N., Wille-Jørgensen P., et al. Prolonged prophylaxis with dalteparin to prevent late thromboembolic complications in patients undergoing major abdominal surgery: a multicenter randomized open-label study. J Thromb Haemost. 2006; 4 (11): 2384–90. https://doi.org/10.1111/j.1538-7836.2006.02153.x.; Felder S., Rasmussen M.S., King R., et al. Prolonged thrombophylaxis with low molecular weight heparin for abdominal or pelvic surgery. Cochrane Database Syst Rev. 2019: 3 (3): CD004318. https://doi.org/10.1002/14651858.CD004318.pub4.; Kakkar V.V., Balibrea J.L., Martínez-González J., Prandoni P. Extended prophylaxis with bemiparin for the prevention of venous thromboembolism after abdominal or pelvic surgery for cancer: the CANBESURE randomized study. J Thromb Haemost. 2010; 8 (6): 1223–9. https://doi.org/10.1111/j.1538-7836.2010.03892.x.; Kaatz S., Spyropoulos A.C. Venous thromboembolism prophylaxis after hospital discharge: transition to preventive care. Hosp Pract. 2011; 39 (3): 7–15. https://doi.org/10.3810/hp.2011.08.574.; Amin A.N., Lenhart G., Princic N., et al. Retrospective administrative database study of the time period of venous thromboembolism risk during and following hospitalization for major orthopedic or abdominal surgery in real-world US patients. Hosp Pract. 2011; 39 (2): 7–17. https://doi.org/10.3810/hp.2011.04.390.; Clayton J.K., Anderson J.A., McNicol G.P. Preoperative prediction of postoperative deep vein thrombosis. Br Med J. 1976; 2 (6041): 910–2. https://doi.org/10.1136/bmj.2.6041.910.; Knoll W., Fergusson N., Ivankovic V., et al. Extended thromboprophylaxis following major abdominal/pelvic cancer-related surgery: a systematic review and meta-analysis of the literature. Thromb Res. 2021: 204: 114–22. https://doi.org/10.1016/j.thromres.2021.06.010.; https://www.pharmacoeconomics.ru/jour/article/view/1015

  2. 2
    Academic Journal

    المصدر: Obstetrics, Gynecology and Reproduction; Vol 18, No 3 (2024); 382-400 ; Акушерство, Гинекология и Репродукция; Vol 18, No 3 (2024); 382-400 ; 2500-3194 ; 2313-7347

    وصف الملف: application/pdf

    Relation: https://www.gynecology.su/jour/article/view/2104/1225; Haley K.M. Neonatal venous thromboembolism. Front Pediatr. 2017;5:136. https://doi.org/10.3389/fped.2017.00136.; Bhat R., Kumar R., Kwon S. et al. Risk factors for neonatal venous and arterial thromboembolism in the neonatal intensive care unit – a case control study. J Pediatr. 2018;195:28–32. https://doi.org/10.1016/j.jpeds.2017.12.015.; van Ommen C.H., Heijboer H., Büller H.R. et al. Venous thromboembolism in childhood: a prospective two-year registry in the Netherlands. J Pediatr. 2001;139(5):676–81. https://doi.org/10.1067/mpd.2001.118192.; Chalmers E.A. Neonatal thrombosis. J Clin Pathol. 2000;53(6):419–23. https://doi.org/10.1136/jcp.53.6.419.; Robinson V., Achey M.A., Nag U.P. et al. Thrombosis in infants in the neonatal intensive care unit: analysis of a large national database. J Thromb Haemost. 2021;19(2):400–7. https://doi.org/10.1111/jth.15144.; Saracco P., Bagna R., Gentilomo C. et al.; Neonatal Working Group of Registro Italiano Trombosi Infantili (RITI). Clinical data of neonatal systemic thrombosis. J Pediatr. 2016;171:60–66.e1. https://doi.org/10.1016/j.jpeds.2015.12.035.; Levy-Mendelovich S., Cohen O., Klang E., Kenet G. 50 years of pediatric hemostasis: knowledge, diagnosis, and treatment. Semin Thromb Hemost. 2023;49(3):217–24. https://doi.org/10.1055/s-0042-1756704.; Makatsariya A., Bitsadze V., Khizroeva J. et al. Neonatal thrombosis. J Matern Fetal Neonatal Med. 2022;35(6):1169–77. https://doi.org/10.1080/14767058.2020.1743668.; Song S., Li Z., Zhao G. et al. Epidemiology and risk factors for thrombosis in children and newborns: systematic evaluation and meta-analysis. BMC Pediatr. 2023;23(1):292. https://doi.org/10.1186/s12887-023-04122-x.; Andrew M., David M., Adams M. et al. Venous thromboembolic complications (VTE) in children: first analyses of the Canadian Registry of VTE. Blood. 1994;83:1251–7.; Schmidt B., Andrew M. Neonatal thrombosis: report of a prospective Canadian and international registry. Pediatrics. 1995;96(5 Pt 1):939–43.; Nowak-Göttl U., von Kries R., Göbel U. Neonatal symptomatic thromboembolism in Germany: two-year survey. Arch Dis Child Fetal Neonatal Ed. 1997;76(3):F163–7. https://doi.org/10.1136/fn.76.3.f163.; Tuckuviene R., Christensen A.L., Helgestad J. et al. Pediatric venous and arterial noncerebral thromboembolism in Denmark: a nationwide population-based study. J Pediatr. 2011;159(4):663–9. https://doi.org/10.1016/j.jpeds.2011.03.052.; Andrew M., Paes B., Milner R. et al. Development of the human coagulation system in the full-term infant. Blood. 1987;70(1):165–72.; Achey M.A., Nag U.P., Robinson V.L. et al. The developing balance of thrombosis and hemorrhage in pediatric surgery: clinical implications of age-related changes in hemostasis. Clin Appl Thromb Hemost. 2020;26;1076029620929092. https://doi.org/10.1177/1076029620929092.; Del Vecchio A., Latini G., Henry E., Christensen R.D. Template bleeding times of 240 neonates born at 24 to 41 weeks gestation. J Perinatol. 2008;28(6):427–31. https://doi.org/10.1038/jp.2008.10.; Andrew M., Paes B., Bowker J., Vegh P. Evaluation of an automated bleeding time device in the newborn. Am J Hematol. 1990;35(4):275–7. https://doi.org/10.1002/ajh.2830350411.; Boudewijns M., Raes M., Peeters V. et al. Evaluation of platelet function on cord blood in 80 healthy term neonates using the Platelet Function Analyser (PFA-100); shorter in vitro bleeding times in neonates than adults. Eur J Pediatr. 2003;162(3):212–3. https://doi.org/10.1007/s00431-002-1093-7.; Andrew M., Vegh P., Johnston M. et al. Maturation of the hemostatic system during childhood. Blood. 1992;80(8):1998–2005.; Cvirn G., Gallistl S., Leschnik B., Muntean W. Low tissue factor pathway inhibitor (TFPI) together with low antithrombin allows sufficient thrombin generation in neonates. J Thromb Haemost. 2003;1(2):263–8. https://doi.org/10.1046/j.1538-7836.2003.00081.x.; Cvirn G., Gallistl S., Rehak T. et al. Elevated thrombin-forming capacity of tissue factor-activated cord compared with adult plasma. J Thromb Haemost. 2003;1(8):1785–90. https://doi.org/10.1046/j.1538-7836.2003.00320.x.; Andrew M., Paes B., Milner R. et al. Development of the human coagulation system in the healthy premature infant. Blood. 1988;72(5):1651–7.; Neary E., McCallion N., Kevane B. et al. Coagulation indices in very preterm infants from cord blood and postnatal samples. J Thromb Haemost. 2015;13(11):2021–30. https://doi.org/10.1111/jth.13130.; Nako Y., Ohki Y., Harigaya A. et al. Plasma thrombomodulin level in very low birthweight infants at birth. Acta Paediatr. 1997;86(10):1105–9. https://doi.org/10.1111/j.1651-2227.1997.tb14817.x.; Wiedmeier S.E., Henry E., Sola-Visner M.C., Christensen R.D. Platelet reference ranges for neonates, defined using data from over 47,000 patients in a multihospital healthcare system. J Perinatol. 2009;29(2):130–6. https://doi.org/10.1038/jp.2008.141.; Sillers L., Van Slambrouck C., Lapping-Carr G. Neonatal thrombocytopenia: etiology and diagnosis. Pediatr Ann. 2015;44(7):e175– 80. https://doi.org/10.3928/00904481-20150710-11.; Bednarek F.J., Bean S., Barnard M.R. et al. The platelet hyporeactivity of extremely low birth weight neonates is age-dependent. Thromb Res. 2009;124(1):42–5. https://doi.org/10.1016/j.thromres.2008.10.004.; Waller A.K., Lantos L., Sammut A. et al. Flow cytometry for near-patient testing in premature neonates reveals variation in platelet function: a novel approach to guide platelet transfusion. Pediatr Res. 2019;85():874–84. https://doi.org/10.1038/s41390-019-0316-9.; Sitaru A.G., Holzhauer S., Speer C.P. et al. Neonatal platelets from cord blood and peripheral blood. Platelets. 2005;16(3–4):203–10. https://doi.org/10.1080/09537100400016862.; Andres O., Schulze H., Speer C.P. Platelets in neonates: Central mediators in haemostasis, antimicrobial defence and inflammation. Thromb Haemost. 2015;113(1):3–12. https://doi.org/10.1160/TH14-05-0476.; Davenport P., Sola-Visner M. Platelets in the neonate: not just a small adult. Res Pract Thromb Haemost. 2022;6(3):e12719. https://doi.org/10.1002/rth2.12719.; Israels S.J., Cheang T., Roberston C. et al. Impaired signal transduction in neonatal platelets. Pediatr Res. 1999;45(5 Pt 1):687–91. https://doi.org/10.1203/00006450-199905010-00014.; Hardy A.T., Palma-Barqueros V., Watson S.K. et al. Significant hyporesponsiveness to GPVI and CLEC-2 agonists in pre-term and full-term neonatal platelets and following immune thrombocytopenia. Thromb Haemost. 2018;118(6):1009–20. https://doi.org/10.1055/s-0038-1646924.; Schlagenhauf A., Schweintzger S., Birner-Grünberger R. et al. Comparative evaluation of PAR1, GPIb-IX-V, and integrin αIIbβ3 levels in cord and adult platelets. Hamostaseologie. 2010;30 Suppl 1:S164–7.; Palma-Barqueros V., Torregrosa J.M., Caparrós-Pérez E. et al. Developmental differences in platelet inhibition response to prostaglandin E1. Neonatology. 2020;117(1):15–23. https://doi.org/10.1159/000504173.; Pelizza M.F., Martinato M., Rosati A. et al. The new Italian registry of infantile thrombosis (RITI): a reflection on its journey, challenges and pitfalls. Front Pediatr. 2023;11:1094246. https://doi.org/10.3389/fped.2023.1094246.; Martinez-Biarge M., Ferriero D.M., Cowan F.M. Perinatal arterial ischemic stroke. Handb Clin Neurol. 2019;162:239–66. https://doi.org/10.1016/B978-0-444-64029-1.00011-4.; Lynch J.K., Hirtz D.G., DeVeber G., Nelson K.B. Report of the National Institute of Neurological Disorders and Stroke workshop on perinatal and childhood stroke. Pediatrics. 2002;109(1):116–23. https://doi.org/10.1542/peds.109.1.116.; Hunt R.W., Inder T.E. Perinatal and neonatal ischaemic stroke: a review. Thromb Res. 2006;118(1):39–48. https://doi.org/10.1016/j.thromres.2004.12.021.; Gacio S., Muñoz Giacomelli F., Klein F. Presumed perinatal ischemic stroke: a review. Arch Argent Pediatr. 2015;113(5):449–55. (English, Spanish). https://doi.org/10.5546/aap.2015.eng.449.; Elbers J., Viero S., MacGregor D. et al. Placental pathology in neonatal stroke. Pediatrics. 2011;127(3):e722–9. https://doi.org/10.1542/peds.2010-1490.; Günther G., Junker R., Sträter R. et al.; Childhood Stroke Study Group. Symptomatic ischemic stroke in full-term neonates: role of acquired and genetic prothrombotic risk factors. Stroke. 2000;31(10):2437–41. https://doi.org/10.1161/01.str.31.10.2437.; Dlamini N., Billinghurst L., Kirkham F.J. Cerebral venous sinus (sinovenous) thrombosis in children. Neurosurg Clin N Am. 2010;21(3):511–27. https://doi.org/10.1016/j.nec.2010.03.006.; deVeber G., Andrew M., Adams C. et al. Cerebral sinovenous thrombosis in children. N Engl J Med. 2001;345():417–23. https://doi.org/10.1056/NEJM200108093450604.; Wasay M., Dai A.I., Ansari M. et al. Cerebral venous sinus thrombosis in children: A multicenter cohort from the United States. J Child Neurol. 2008;23(1):26–31. https://doi.org/10.1177/0883073807307976.; Manco-Johnson M.J. How I treat venous thrombosis in children. Blood. 2006;107(1):21–9. https://doi.org/10.1182/blood-2004-11-4211.; Moharir M.D., Shroff M., Pontigon A.M. et al. A prospective outcome study of neonatal cerebral sinovenous thrombosis. J Child Neurol. 2011;26(9):1137–44. https://doi.org/10.1177/0883073811408094.; Zhu W., Zhang H., Xing Y. Clinical characteristics of venous thrombosis associated with peripherally inserted central venous catheter in premature infants. Children (Basel). 2022;9(8):1126. https://doi.org/10.3390/children9081126.; Ulloa-Ricardez A., Romero-Espinoza L., Estrada-Loza Mde J. et al. Risk factors for intracardiac thrombosis in the right atrium and superior vena cava in critically ill neonates who required the installation of a central venous catheter. Pediatr Neonatol. 2016;57(4):288–94. https://doi.org/10.1016/j.pedneo.2015.10.001.; Cholette J.M., Rubenstein J.S., Alfieris G.M. et al. Elevated risk of thrombosis in neonates undergoing initial palliative cardiac surgery. Ann Thorac Surg. 2007;84(4):1320–5. https://doi.org/10.1016/j.athoracsur.2007.05.026.; Fenton K.N., Siewers R.D., Rebovich B., Pigula F.A. Interim mortality in infants with systemic-to-pulmonary artery shunts. Ann Thorac Surg. 2003;76(1):152–6. https://doi.org/10.1016/s0003-4975(03)00168-1.; Messinger Y., Sheaffer J.W., Mrozek J. et al. Renal outcome of neonatal renal venous thrombosis: review of 28 patients and effectiveness of fibrinolytics and heparin in 10 patients. Pediatrics. 2006;118(5):e1478–84. https://doi.org/10.1542/peds.2005-1461.; Moon C.J., Kwon T.H., Lee H.S. Portal vein thrombosis and food proteininduced allergic proctocolitis in a premature newborn with hypereosinophilia: a case report. BMC Pediatr. 2021;21(1):49. https://doi.org/10.1186/s12887-021-02510-9.; Tsonis O., Gouvias T., Gkrozou F. et al. Neonatal femoral artery thrombosis at the time of birth: a case report. J Pediatr Neonatal Individ Med. 2020;9(2):e090214. https://doi.org/10.7363/090214.; Mahasandana C., Suvatte V., Marlar R.A. et al. Neonatal purpura fulminans associated with homozygous protein S deficiency. Lancet. 1990;335(8680):61–2. https://doi.org/10.1016/0140-6736(90)90201-f.; Hattenbach L.O., Beeg T., Kreuz W., Zubcov A. Ophthalmic manifestation of congenital protein C deficiency. J AAPOS. 1999;3(3):188–90. https://doi.org/10.1016/s1091-8531(99)70066-2.; Chalmers E., Cooper P., Forman K. et al. Purpura fulminans: recognition, diagnosis and management. Arch Dis Child. 2011;96(11):1066–71. https://doi.org/10.1136/adc.2010.199919.; Marlar R.A., Montgomery R.R., Broekmans A.W. Diagnosis and treatment of homozygous protein C deficiency. Report of the Working Party on Homozygous Protein C Deficiency of the Subcommittee on Protein C and Protein S, International Committee on Thrombosis and Haemostasis. J Pediatr. 1989;114(4 Pt 1):528–34. https://doi.org/10.1016/s0022-3476(89)80688-2.; van Ommen C.H., Sol J.J. Developmental hemostasis and management of central venous catheter thrombosis in neonates. Semin Thromb Hemost. 2016;42(7):752–9. https://doi.org/10.1055/s-0036-1592299.; Thornburg C.D., Smith P.B., Smithwick M.L. et al. Association between thrombosis and bloodstream infection in neonates with peripherally inserted catheters. Thromb Res. 2008;122(6):782–5. https://doi.org/10.1016/j.thromres.2007.10.001.; Bhatt M.D., Chan A.K. Venous thrombosis in neonates. Fac Rev. 2021;10;20. https://doi.org/10.12703/r/10-20.; Dubbink-Verheij G.H., Pelsma I.C.M., van Ommen C.H. et al. Femoral vein catheter is an important risk factor for catheter-related thrombosis in (near-)term neonates. J Pediatr Hematol Oncol. 2018;40(2):e64–e68. https://doi.org/10.1097/MPH.0000000000000978.; Amankwah E.K., Atchison C.M., Arlikar S. et al. Risk factors for hospitalassociated venous thromboembolism in the neonatal intensive care unit. Thromb Res. 2014;134(2):305–9. https://doi.org/10.1016/j.thromres.2014.05.036.; Tuckuviene R., Christensen A.L., Helgested J. et al. Infant, obstetrical and maternal characteristics associated with thromboembolism in infancy: a nationwide population-based case-control study. Arch Dis Child Fetal Neonatal Ed. 2012;97(2):F417–22. https://doi.org/10.1136/archdischild-2011-300665.; Bhat R., Kwon S., Zaniletti I. et al. Risk factors associated with venous and arterial neonatal thrombosis in the intensive care unit: a multicentre casecontrol study. Lancet Haematol. 2022;9(3):e200–e207. https://doi.org/10.1016/S2352-3026(21)00399-9.; Vorobev A.V., Bitsadze V.O., Khizroeva J.Kh. et al. Neonatal thrombosis: risk factors and principles of prophylaxis. Obstetrics, Gynecology and Reproduction. 2021;15(4):390–403. (In Russ.). https://doi.org/10.17749/2313-7347/ob.gyn.rep.2021.233.; Walker S.C., Creech C.B., Domenico H.J. et al. A real-time risk-prediction model for pediatric venous thromboembolic events. Pediatrics. 2021;147(6):e2020042325. https://doi.org/10.1542/peds.2020-04232.; Ovesen P.G., Jensen D.M., Damm P. et al. Maternal and neonatal outcomes in pregnancies complicated by gestational diabetes. a nationwide study. J Matern Fetal Neonatal Med. 2015;28(14):1720–4. https://doi.org/10.3109/14767058.2014.966677.; Simchen M.J., Goldstein G., Lubetsky A. et al. Factor v Leiden and antiphospholipid antibodies in either mothers or infants increase the risk for perinatal arterial ischemic stroke. Stroke. 2009;40(1):65–70. https://doi.org/10.1161/STROKEAHA.108.527283.; Kenet G., Lütkhoff L.K., Albisetti M. et al. Impact of thrombophilia on risk of arterial ischemic stroke or cerebral sinovenous thrombosis in neonates and children: a systematic review and meta-analysis of observational studies. Circulation. 2010;121(16):1838–47. https://doi.org/10.1161/CIRCULATIONAHA.109.913673.; Campos L.M., Kiss M.H., D'Amico E.A., Silva C.A. Antiphospholipid antibodies and antiphospholipid syndrome in 57 children and adolescents with systemic lupus erythematosus. Lupus. 2003;12(11):820–6. https://doi.org/10.1191/0961203303lu471oa.; Kenet G., Aronis S., Berkun Y. et al. Impact of persistent antiphospholipid antibodies on risk of incident symptomatic thromboembolism in children: a systematic review and meta-analysis. Semin Thromb Hemost. 2011;37(7):802–9. https://doi.org/10.1055/s-0031-1297171.; Avcin T., Cimaz R., Meroni P.L. Recent advances in antiphospholipid antibodies and antiphospholipid syndromes in pediatric populations. Lupus. 2002;11(1):4–10. https://doi.org/10.1191/0961203302lu146rr.; Berkun Y., Padeh S., Barash J. et al. Antiphospholipid syndrome and recurrent thrombosis in children. Arthritis Rheum. 2006;55(6):850–5. https://doi.org/10.1002/art.22360.; Berkun Y., Simchen M.J., Strauss T. et al. Antiphospholipid antibodies in neonates with stroke--a unique entity or variant of antiphospholipid syndrome? Lupus. 2014;23(10):986–93. https://doi.org/10.1177/0961203314531842.; Boffa M.C., Lachassinne E. Infant perinatal thrombosis and antiphospholipid antibodies: a review. Lupus. 2007;16(8):634–41. https://doi.org/10.1177/0961203307079039.; Miyakis S., Lockshin M.D., Atsumi T. et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J Thromb Haemost. 2006;4(2):295– 306. https://doi.org/10.1111/j.1538-7836.2006.01753.x.; Young G., Albisetti M., Bonduel M. et al. Impact of inherited thrombophilia on venous thromboembolism in children: a systematic review and metaanalysis of observational studies. Circulation. 2008;118(13):1373–82. https://doi.org/10.1161/CIRCULATIONAHA.108.789008.; Nowak-Göttl U., Junker R., Kreuz W. et al.; Childhood Thrombophilia Study Group. Risk of recurrent venous thrombosis in children with combined prothrombotic risk factors. Blood. 2001;97(4):858–62. https://doi.org/10.1182/blood.v97.4.858.; Limperger V., Kenet G., Goldenberg N.A. et al. Impact of high-risk thrombophilia status on recurrence among children with a first non-centralvenous-catheter-associated VTE: an observational multicentre cohort study. Br J Haematol. 2016;175(1):133–40. https://doi.org/10.1111/bjh.14192.; Fletcher-Sandersjöö A., Bellander B.M. Is COVID-19 associated thrombosis caused by overactivation of the complement cascade? A literature review. Thromb Res. 2020;194:36–41. https://doi.org/; Gashimova N.R., Pankratyeva L.L., Bitsadze V.O. et al. Intrauterine activation of the fetal immune system in response to maternal COVID-19. Obstetrics, Gynecology and Reproduction. 2023;17(2):188–201. (In Russ.). https://doi.org/10.17749/2313-7347/ob.gyn.rep.2023.404.; Bitsadze V.O., Grigoreva K.N., Khizroeva J.K. et al. Novel coronavirus infection and Kawasaki disease. J Matern Fetal Neonatal Med. 2022;35(16):3044–8. https://doi.org/10.1080/14767058.2020.1800633.; Barrero-Castillero A., Beam K.S., Bernardini L.B. et al.; Harvard NeonatalPerinatal Fellowship COVID-19 Working Group. COVID-19: neonatalperinatal perspectives. J Perinatol. 2021;41(5):940–51. https://doi.org/10.1038/s41372-020-00874-x.; Leeman R., Shoag J., Borchetta M. et al. Clinical implications of hematologic and hemostatic abnormalities in children with COVID-19. J Pediatr Hematol Oncol. 2022;44(1):e282–e286. https://doi.org/10.1097/MPH.0000000000002176.; Helms J., Tacquard C., Severac F. et al.; CRICS TRIGGERSEP Group (Clinical research in intensive care and sepsis trial group for global evaluation and research in sepsis). High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Med. 2020;46():1089–98. https://doi.org/10.1007/s00134-020-06062-x.; Campi F., Longo D., Bersani I. et al. Neonatal cerebral venous thrombosis following maternal SARS-CoV-2 infection in pregnancy. Neonatology. 2022;119(2):268–72. https://doi.org/10.1159/00052053.; Baergen R.N., Heller D.S. Placental pathology in COVID-19 positive mothers: preliminary findings. Pediatr Dev Pathol. 2020;23():177–80. https://doi.org/10.1177/1093526620925569.; Dashraath P., Wong J.L.J., Lim M.X.K. et al. Coronavirus disease 2019 (COVID-19) pandemic and pregnancy. Am J Obstet Gynecol. 2020;222(6):521–31. https://doi.org/10.1016/j.ajog.2020.03.021.; Stephens A.J., Barton J.R., Bentum N.A. et al. General guidelines in the management of an obstetrical patient on the labor and delivery unit during the COVID-19 pandemic. Am J Perinatol. 2020;37(8):829–36. https://doi.org/10.1055/s-0040-1710308.; Monagle P., Chan A.K.C., Goldenberg N.A. et al. Antithrombotic therapy in neonates and children: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians EvidenceBased Clinical Practice Guidelines. Chest. 2012;141(2 Suppl):e737S– e801S. https://doi.org/10.1378/chest.11-2308.; Ting J., Yeung K., Paes B. et al.; Thrombosis and Hemostasis in Newborns (THiN) Group. How to use low-molecular-weight heparin to treat neonatal thrombosis in clinical practice. Blood Coagul Fibrinolysis. 2021;32(8):531–8. https://doi.org/10.1097/MBC.0000000000001052.; Kenet G., Cohen O., Bajorat T., Nowak-Göttl U. Insights into neonatal thrombosis. Thromb Res. 2019;181 Suppl 1:S33–S36. https://doi.org/10.1016/S0049-3848(19)30364-0.; Monagle P., Newall F. Management of thrombosis in children and neonates: practical use of anticoagulants in children. Hematol Am Soc Hematol Educ Program. 2018;2018(1):399–404. https://doi.org/10.1182/asheducation-2018.1.399.; Male C., Thom K., O’Brien S.H. Direct oral anticoagulants: what will be their role in children? Thromb Res. 2019;173:178–85. https://doi.org/10.1016/j.thromres.2018.06.021.; Pagowska-Klimek I. Perioperative thromboembolism prophylaxis in children – is it necessary? Anaesthesiol Intensive Ther. 2020;52(4):316– 22. https://doi.org/10.5114/ait.2020.97599.; https://www.gynecology.su/jour/article/view/2104

  3. 3
    Academic Journal

    المساهمون: The work was financially supported by Aspen Health LLC. The company does not approve or support drug administration outside prescribing information., Работа выполнена при финансовой поддержке ООО «Аспен Хэлс». Компания не поддерживает и не одобряет применение препаратов вне инструкции по медицинскому применению.

    المصدر: Obstetrics, Gynecology and Reproduction; Vol 17, No 6 (2023); 801-810 ; Акушерство, Гинекология и Репродукция; Vol 17, No 6 (2023); 801-810 ; 2500-3194 ; 2313-7347

    وصف الملف: application/pdf

    Relation: https://www.gynecology.su/jour/article/view/1872/1169; Rath W.H., Stelzl P. Strategies for the prevention of maternal death from venous thromboembolism clinical recommendations based on current literature. J Perinatal Med. 2023;51(2):213–8. https://doi.org/10.1515/jpm-2022-0069.; Rath W., Tsikouras P. Maternal deaths worldwide falling – but commonly preventable. Z Geburtshilfe Neonatol. 2018;222(4):143–51. (In German). https://doi.org/10.1055/a-0607-2816.; Croles F.N., Nasserinejad К., Duvekot J.J. et al. Pregnancy, thrombophilia, and the risk of a first venous thrombosis: systematic review and bayesian meta-analysis. BMJ. 2017;359:j4452. https://doi.org/10.1136/bmj.j4452.; Simioni P., Tormene D., Spiezia L. et al. Inherited thrombophilia and venous thromboembolism. Semin Thromb Hemost. 2006;32(7):700–8. https://doi.org/10.1055/s-2006-951298.; Abrahams V.M. Mechanisms of antiphospholipid antibody-associated pregnancy complications. Thromb Res. 2009;124(5):521–5. https://doi.org/10.1016/j.thromres.2009.07.011.; Макацария А.Д., Бицадзе В.О., Хизроева Д.Х. и др. Тромбопрофилактика у беременных с тромбофилией и тромбозами в анамнезе. Бюллетень СО РАМН. 2013;33(6):99–109.; Пестрикова Т.Ю., Юрасова Е.А., Юрасов И.В. и др. Профилактика тромбоэмболий. Рациональный подход к ведению пациенток в послеоперационном периоде (обзор литературы). Consilium Medicum. 2018;20(6):53–6. https://doi.org/10.26442/2075-1753_2018.6.53-56.; Bates S.M., Middeldorp S., Rodger M.et al. Guidance for the treatment and prevention of obstetric-associated venous thromboembolism. J Thromb Thrombolysis. 2016;41(1):92–128. https://doi.org/10.1007/s11239-0151309-0.; Письмо Минздрава России от 6.12.2018 N 15-4/10/2-7862 «О направлении клинических рекомендаций (протокола лечения) "Анестезия и интенсивная терапия у пациенток, получающих антикоагулянты для профилактики и лечения венозных тромбоэмболических осложнений в акушерстве"». М.: Министерство здравоохранения Российской Федерации, 2018. 50 с. (In Russ.). Режим доступа: http://zdrav.spb.ru/media/filebrowser/анестезия_и_интенсивная_терапия_у_пациенток.pdf. [Дата обращения: 30.10.2023].; Sultan A.A., Tata L.J., West J. et al. Risk factors for first venous thromboembolism around pregnancy: а population-based cohort study from the United Kingdom. Blood. 2013;121(19):3953–61. https://doi.org/10.1182/blood-2012-11-469551.; Roeters van Lennep J.E., Meijer E., Klumper F.J.C.M. et al. Prophylaxis with low-dose low-molecular-weight heparin during pregnancy and postpartum: Is it effective? J Thromb Haemost. 2011;9(3):473–80. https://doi.org/10.1111/j.1538-7836.2011.04186.x.; Greer I.A., Nelson-Piercy C. Low-molecular-weight heparins for thromboprophylaxis and treatment of venous thromboembolism in pregnancy: a systematic review of safety and efficacy. Blood. 2005;106(2):401–7. https://doi.org/10.1182/blood-2005-02-0626.; Thromboembolic Disease in Pregnancy and the Puerperium: Acute Management. Green-top Guideline No 37b. Royal College of Obstetricians and Gynaecologists (RCOG), 2015. 32 р. Режим доступа: https://www.rcog.org.uk/media/wj2lpco5/gtg-37b-1.pdf. [Дата обращения: 30.10.2023].; Бицадзе В.О., Зайнулина М.С., Хизроева Д.Х. и др. Что изменилось за год в профилактике венозных тромбоэмболических осложнений у беременных и родильниц? Акушерство, Гинекология и Репродукция. 2023;17(4):533–45. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2023.439.; American College of Obstetricians and Gynecologists' Committee on Practice Bulletins–Obstetrics. ACOG Practice Bulletin No. 197: Inherited Thrombophilias in Pregnancy. Obstet Gynecol. 2018;132(1):e18–e34. https://doi.org/10.1097/AOG.0000000000002703.; Клинические рекомендации – Венозные осложнения во время беременности и послеродовом периоде. Акушерская тромбоэмболия – 2022-2023-2024 (14.02.2022). М.: Министерство здравоохранения Российской Федерации, 2022. 66 с. Режим доступа: http://disuria.ru/_ld/11/1153_kr22O22MZ.pdf. [Дата обращения: 30.10.2023].; Regitz-Zagrosek V., Roos-Hesselink J.W., Bauersachs J. et al. 2018 ESC Guidelines for the management of cardiovascular diseases during pregnancy. Eur Heart J. 2018;39(34):3165–241. https://doi.org/10.1093/eurheartj/ehy340.; Stephenson M.L., Serra A.E., Neeper J.M. et al. A randomized controlled trial of differing doses of postcesarean enoxaparin thromboprophylaxis in obese women. J Perinatol. 2016;36(2):95–9. https://doi.org/10.1038/jp.2015.130.; Галстян Г.М., Клебанова Е.Е., Мамлеева С.Ю. и др. Иммунная тромбоцитопеническая пурпура и тромботическая тромбоцитопеническая пурпура – сложности и ошибки диагностики. Гематология и трансфузиология. 2023;68(3):317–34. https://doi.org/10.35754/0234-57302023-68-3-317-334.; Клинические рекомендации – Идиопатическая тромбоцитопеническая пурпура (ИТП) у взрослых – 2021-2022-2023 (02.09.2021). М.: Министерство здравоохранения Российской Федерации, 2021. 36 с. Режим доступа: http://disuria.ru/_ld/11/1117_kr21D69p3MZ.pdf. [Дата обращения: 30.10.2023].; Мустафакулов Г.И., Атаходжаева Ф.А., Эргашев У.Ю. Идиопатическая тромбоцитопеническая пурпура при беременности. Журнал теоретической и клинической медицины. 2016;(1):104–7.; Петров Ю.А., Спириденко Г.Ю. Идиопатическая тромбоцитопеническая пурпура. Главный врач Юга России. 2021;76(1):26–9.; Руководство по амбулаторно-поликлинической помощи в акушерстве. Под ред. В.И. Кулакова, В.Н. Прилепской, В.Е. Радзинского. М.: ГЭОТАР-Медиа, 2010. 1056 с.; Суярова З.С., Худоярова Д.Р. Ведение беременности и родов при идиопатической тромбоцитопенической пурпуре. Достижения науки и образования. 2019;(12):41–6.; Цхай В.Б., Гребенникова Э.К. Идиопатическая тромбоцитопеническая пурпура у беременных. Акушерские и перинатальные риски. Акушерство, Гинекология и Репродукция. 2015;9(2):72–9. https://doi.org/10.17749/2070-4968.2015.9.2.072-079.; https://www.gynecology.su/jour/article/view/1872

  4. 4
    Academic Journal
  5. 5
    Academic Journal

    المصدر: Obstetrics, Gynecology and Reproduction; Vol 17, No 4 (2023); 533-545 ; Акушерство, Гинекология и Репродукция; Vol 17, No 4 (2023); 533-545 ; 2500-3194 ; 2313-7347

    وصف الملف: application/pdf

    Relation: https://www.gynecology.su/jour/article/view/1770/1139; Surveillance of maternal deaths in the UK 2011-13 and lessons learned to inform maternity care from the UK and Ireland Confidential Enquiries into Maternal Deaths and Morbidity 2009-13. MBRRACE-UK, 2015. 116 р. Available at: https://maternalmentalhealthalliance.org/wp-content/uploads/MBRRACE-UK-Maternal-Report-2015-3.pdf.; Здравоохранение в России. Статистический сборник. М.: Федеральная служба государственной статистики (Росстат), 2019. 171 с. Режим доступа: https://rosstat.gov.ru/storage/mediabank/Zdravoohran-2019.pdf.; Gris J.-C., Aoun J., Rzaguliyeva L. et al. Risk assessment and management of venous thromboembolism in women during pregnancy and puerperium (SAVE): an international, cross-sectional study. TH Open. 2018;2(2):e116–e130. https://doi.org/10.1055/s-0038-1635573.; Anderson F.A., Spencer F.A. Risk factors for venous thromboembolism. Circulation. 2003;107(23 Suppl 1):9–16. https://doi.org/10.1161/01.CIR.0000078469.07362.E6.; Royal College of Obstetricians and Gynaecologists. Reducing the Risk of Venous Thromboembolism during Pregnancy and the Puerperium. Green-top Guideline No. 37a. London: RCOG, 2015. Available at: https://www.rcog.org.uk/globalassets/documents/guidelines.; Клинические рекомендации – Венозные осложнения во время беременности и послеродовом периоде. Акушерская тромбоэмболия – 2022-2023-2024 (14.02.2022). М.: Министерство здравоохранения Российской Федерации, 2022. 66 с. Режим доступа: http://disuria.ru/_ld/11/1153_kr22O22MZ.pdf.; Федеральный закон РФ от 29.11.2010 N 326-ФЗ – Об обязательном медицинском страховании в РФ – Действующая последняя редакция от 24.02.2021 – Редакция N 35 – В действии с 24.02.2021. 87 c. Режим доступа: http://disuria.ru/_ld/0/62_326FZ29112010.pdf.; Greer I.A., Nelson-Piercy С. Low molecular weight heparins for thromboprophylaxis and treatment of venous thromboembolism in pregnancy: a systematic review of safety and efficacy. Blood. 2005;106(2):401–7. https://doi.org/10.1182/blood-2005-02-0626.; Simeone R., Giacomello R., Bruno G. et al. Thrombogenesis in thrombophilic pregnancy: evaluation of low-molecular-weight heparin prophylaxis. Acta Haematol. 2017;137(4):201–6. https://doi.org/10.1159/000467385.; ACOG Practice Bulletin No. 197: Inherited Thrombophilias in Pregnancy. Obstet Gynecol. 2018;132(1):e18–e34. https://doi.org/10.1097/AOG.0000000000002703.; Bates S.M., Middeldorp S., Rodger M. et al. Guidance for the treatment and prevention of obstetric-associated venous thromboembolism. J Thromb Thrombolysis. 2016;41(1):92–128. https://doi.org/10.1007/s11239-015-1309-0.; Henriksson P., Westerlund E., Wallén H. et al. Incidence of pulmonary and venous thromboembolism in pregnancies after in vitro fertilisation: cross sectional study. BMJ. 2013;346:e8632. https://doi.org/10.1136/bmj.e8632.; Hansen A.T., Kesmodel U.S., Juul S., Hvas A.M. Increased venous thrombosis incidence in pregnancies after in vitro fertilization. Hum Reprod. 2014;29(3):611–7. https://doi.org/10.1093/humrep/det458.; Olausson N., Discacciati A., Nyman A.I. et al. Incidence of pulmonary and venous thromboembolism in pregnancies after in vitro fertilization with fresh respectively frozen-thawed embryo transfer: Nationwide cohort study. J Thromb Haemost. 2020;18(8):1965–73. https://doi.org/10.1111/jth.14840.; Arya R., Shehata H.A., Patel R.K. et al. Internal jugular vein thrombosis after assisted conception therapy. Br J Haematol. 2001;115(1):153–5. https://doi.org/10.1046/j.1365-2141.2001.03081.x.; Rova K., Henrik Passmark H., Lindqvist P.G. Venous thromboembolism in relation to in vitro fertilization: an approach to determining the incidence and increase in risk in successful cycles. Fertil Steril. 2012;97(1):95–100. https://doi.org/10.1016/j.fertnstert.2011.10.038.; Grandone E., Di Micco P.P., Villani M. et al.; RIETE Investigators. Venous thromboembolism in women undergoing assisted reproductive technologies: data from the RIETE Registry. Thromb Haemost. 2018;118(11):1962–8. https://doi.org/10.1055/s-0038-1673402.; van Lennep J.E.R., Meijer E., Klumper F.J.C.M et al. Low-molecularweight-heparin and pregnancy, when the dose does it: a nephrologist’s opinion: reply to a rebuttal. J Thromb Haemost. 2011;9(10):2129–30. https://doi.org/10.1111/j.1538-7836.2011.04441.x.; Bleker S.M., Buchmüller A., Chauleur C. et al. Low-molecular-weight heparin to prevent recurrent venous thromboembolism in pregnancy: Rationale and design of the Highlow study, a randomised trial of two doses. Thromb Res. 2016;144:62–6. https://doi.org/10.1016/j.thromres.2016.06.001.; Bistervels I.M., Buchmüller A., Wiegers H.M.G. et al. Intermediate-dose versus low-dose low-molecular-weight heparin in pregnant and postpartum women with a history of venous thromboembolism (Highlow study): an open-label, multicentre, randomised, controlled trial. Lancet. 2022;400(10365):1777–87. https://doi.org/10.1016/S0140-6736(22)02128-6.; Шмаков Р.Г., Вавилова Т.В, Николаева М.Г. и др. Краткие алгоритмы диагностики, профилактики и лечения венозных тромбоэмболических осложнений во время беременности. Акушерство и гинекология. 2022;12 (приложение):4–12.; van der Wall S.J., Klok F.A., den Exter P.L. et al. Higher adherence to treatment with low-molecular-weight-heparin Nadroparin than Enoxaparin because of side effects in cancer-associated venous thromboembolism. Hemasphere. 2018;2(1):e19. https://doi.org/10.1097/HS9.0000000000000019.; Mismetti P., Laporte S., Darmon J.Y. et al. Meta-analysis of low molecular weight heparin in the prevention of venous thromboembolism in general surgery. Br J Surg. 2001;88(7):913–30. https://doi.org/10.1046/j.0007-1323.2001.01800.x; Snijder C.A., Cornette J.M.W., Hop W.C.J. et al. Thrombophylaxis and bleeding complications after cesarean section. Acta Obstet Gynecol Scand. 2012;91(5):560–56. https://doi.org/10.1111/j.1600-0412.2012.01351.x.; Бицадзе В.О., Слуханчук Е.В., Хизроева Д.Х. и др. Антикоагулянтные, противовоспалительные, противовирусные и противоопухолевые свойства гепаринов. Акушерство, Гинекология и Репродукция. 2021;15(3):295–312. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2021.216.; Antman E.M., Hand M., Armstrong P.W. et al. 2007 focused update of the ACC/AHA 2004 guidelines for the management of patients with ST-elevation myocardial infarction: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2008;117:296–329. https://doi.org/10.1161/CIRCULATIONAHA.107.188209.; Hirsh J., Bauer K.A., Donati M.B. et al. Parenteral anticoagulants: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition). Chest. 2008;133(6 Suppl):141S–159S. https://doi.org/10.1378/chest.08-0689.; Fareed J., Walenga J.M., Hoppensteadt D. et al. Biochemical and pharmacologic inequivalence of low molecular weight heparins. Ann N Y Acad Sci. 1989;556:333–53. https://doi.org/10.1111/j.1749-6632.1989.tb22515.x.; Ofosu F.A. Differences in the safety profiles of two low-molecular-weight heparins. Thromb Haemost. 2008;99(6):989–90. https://doi.org/10.1160/TH08-05-0274.; Nenci G.G. Low molecular weight heparins: are they interchangeable? No.J Thromb Haemost. 2003;1:12–3.; van der Heijden J.F., Prins M.H., Büller H.R. Low molecular weight heparins: are they interchangeable? Haemostasis. 2000;30 Suppl 2:148– 57. https://doi.org/10.1159/000054183.; Kistler U., Kramers-de Quervain I., Munzinger U., Kucher N. Bleeding complications after systemic switch of routine prophylaxis for major orthopedic surgery. Thromb Haemost. 2008;99(6):1049–52. https://doi.org/10.1160/TH08-01-0019.; Maddineni J., Walenga J.M., Jeske W.P. et al. Product individuality of commercially available low-molecular-weight heparins and their generic versions: therapeutic implications. Clin Appl Thromb Hemost. 2006;12(3):267–76. https://doi.org/10.1177/1076029606291434.; U.S. Identifies Tainted Heparin in 11 Countries. The New York Times. April 22, 2008. Available at: https://www.nytimes.com/2008/04/22/health/policy/22fda.html.; Stevenson J.G. Clinical Data and Regulatory Issues of Biosimilar Products. Am J Manag Care. 2016;21(16 Suppl):s320–s330.; Gray E., Rigsby P., Behr-Gross M.-E. Collaborative study to establish the low-molecular-mass heparin for assay – European Pharmacopoeia Biological Reference Preparation. Pharmeuropa Bio. 2004;2004(1):59–76.; Harenberg J., Kakkar A., Bergqvist D. et al.; Subcommittee on Control of Anticoagulation of the SSC of the ISTH. Recommendations on biosimilar low-molecular-weight heparins. J Thromb Haemost. 2009;7(7):1222–5. https://doi.org/10.1111/j.1538-7836.2009.03349.x.; https://www.gynecology.su/jour/article/view/1770

  6. 6
    Academic Journal

    المصدر: Meditsinskiy sovet = Medical Council; № 6 (2023); 16-21 ; Медицинский Совет; № 6 (2023); 16-21 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/7473/6664; Knight M., Nair M., Tuffnell D., Kenyon S., Shakespeare J., Brocklehurst P., Kurinczuk J.J. (eds.). Saving Lives, Improving Mothers’ Care – Surveillance of maternal deaths in the UK 2012-14 and lessons learned to inform maternity care from the UK and Ireland Confidential Enquiries into Maternal Deaths and Morbidity 2009-14. Oxford: National Perinatal Epidemiology Unit, University of Oxford; 2016. 120 p. Available at: https://goo.su/swJFWa4.; Parunov L.A., Soshitova N.P., Ovanesov M.V., Panteleev M.A., Serebriyskiy I.I. Epidemiology of venous thromboembolism (VTE) associated with pregnancy. Birth Defects Res C Embryo Today. 2015;105:167–184. https://doi.org/10.1002/bdrc.21105.; Sultan A.A., West J., Tata L.J., Fleming K.M., Nelson‐Piercy C., Grainge M.J. Risk of first venous thromboembolism in and around pregnancy: a population‐based cohort study. Br J Haematol. 2012;156(3):366–373. https://doi.org/10.1111/j.1365-2141.2011.08956.x.; Greer I.A. Thrombosis in pregnancy: updates in diagnosis and management. Hematology Am Soc Hematol Educ Program. 2012;2012:203–207. https://doi.org/10.1182/asheducation-2012.1.203.; Якушин С.С., Никулина Н.Н., Тереховская Ю.В. Клинические проявления и диагностика тромбоэмболии легочной артерии в рутинной клинической практике (данные Регионального сосудистого центра Рязанской области). Российский медико-биологический вестник имени академика И.П. Павлова. 2022;30(1):51–62. https://doi.org/10.17816/PAVLOVJ85405.; Touhami O., Marzouk S.B., Bennasr L., Touaibia M., Souli I., Felfel M.A. et al. Are the Wells Score and the Revised Geneva Score valuable for the diagnosis of pulmonary embolism in pregnancy? Eur J Obstet Gynecol Reprod Biol. 2018;221:166–171. https://doi.org/10.1016/j.ejogrb.2017.12.049.; Elgendy I.Y., Fogerty A., Blanco-Molina A., Rosa V., Schellong S., Skride A. et al. Clinical Characteristics and Outcomes of Women Presenting with Venous Thromboembolism during Pregnancy and Postpartum Period: Findings from the RIETE Registry. Thromb Haemost. 2020;120:1454–1462. https://doi.org/10.1055/s-0040-1714211.; Murphy N., Broadhurst D.I., Khashan A.S., Gilligan O., Kenny L.C., O’Donoghue K. Gestation-specific D-dimer reference ranges: a crosssectional study. BJOG. 2015;122:395–400. https://doi.org/10.1111/1471-0528.12855.; Righini M., Robert-Ebadi H., Elias A., Sanchez O., Moigne E.L, Schmidt J. et al. Diagnosis of Pulmonary Embolism During Pregnancy: A Multicenter Prospective Management Outcome Study. Ann Intern Med. 2018;169:766–773. https://doi.org/10.7326/M18-1670.; Konstantinides S.V., Meyer G., Becattini C., Bueno H., Geersing G.J., Harjola V.P. et al. 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS): The Task Force for the diagnosis and management of acute pulmonary embolism of the European Society of Cardiology (ESC). Eur Respir J. 2019;54:1901647. https://doi.org/10.1093/eurheartj/ehz405.; MacDorman M.F., Declercq E., Cabral H., Morton C. Recent Increases in the U.S. Maternal Mortality Rate: Disentangling Trends From Measurement Issues. Obstet Gynecol. 2016;128:447–455. https://doi.org/10.1097/AOG.0000000000001556.; Chan W.S., Spencer F.A., Lee A.Y., Chunilal S., Douketis J.D., Rodger M., Ginsberg J.S. Safety of withholding anticoagulation in pregnant women with suspected deep vein thrombosis following negative serial compression ultrasound and iliac vein imaging. CMAJ. 2013;185:E194-E200. https://doi.org/10.1503/cmaj.120895.; Bates S.M., Rajasekhar A., Middeldorp S., McLintock C., Rodger M.A., James A.H. et al. American Society of Hematology 2018 guidelines for management of venous thromboembolism: venous thromboembolism in the context of pregnancy. Blood Adv. 2018;2(22):3317–3359. https://doi.org/10.1182/bloodadvances.2018024802.; Schaefer C., Hannemann D., Meister R., Eléfant E., Paulus W., Vial T. et al. Vitamin K antagonists and pregnancy outcome. Thromb Haemost. 2006;95(06):949–957. https://doi.org/10.1160/TH06-02-0108.; Quinlan D.J., McQuillan A., Eikelboom J.W. Low-molecular-weight heparin compared with intravenous unfractionated heparin for treatment of pulmonary embolism: a meta-analysis of randomized, controlled trials. Ann Intern Med. 2004;140(3):175–183. https://doi.org/10.7326/0003-4819-140-3-200402030-00008.; Martillotti G., Boehlen F., Robert‐Ebadi H., Jastrow N., Righini M., Blondon M. Treatment options for severe pulmonary embolism during pregnancy and the postpartum period: a systematic review. J Thromb Haemost. 2017;15(10):1942–1950. https://doi.org/10.1111/jth.13802.; Meyer G., Vicaut E., Danays T., Agnelli G., Becattini C., Beyer-Westendorf J. et al. Fibrinolysis for patients with intermediate-risk pulmonary embolism. N Engl J Med. 2014;370:1402–1411. https://doi.org/10.1056/NEJMoa1302097.; Leonhardt G., Gaul C., Nietsch H.H., Buerke M., Schleussner E. Thrombolytic therapy in pregnancy. J Thromb Thrombolysis. 2006;21(3):271–276. https://doi.org/10.1007/s11239-006-5709-z.; Бочарова С.М., Анфалов Д.В. Положительный опыт ведения и родоразрешения беременной с посттромбофлебитическим синдромом и ТЭЛА во время беременности. Наука молодых (Eruditio Juvenium). 2018;6(3):400–404. Режим доступа: http://naukamolod.rzgmu.ru/art/365.; https://www.med-sovet.pro/jour/article/view/7473

  7. 7
    Academic Journal
  8. 8
    Academic Journal

    المساهمون: The article was prepared within the framework of basic scientific topic № 122040400024-7. The investigation has not been sponsored, Статья подготовлена в рамках фундаментальной темы № 122040400024-7. Исследование не имело спонсорской поддержки

    المصدر: Modern Rheumatology Journal; Том 17, № 5 (2023); 15-21 ; Современная ревматология; Том 17, № 5 (2023); 15-21 ; 2310-158X ; 1996-7012

    وصف الملف: application/pdf

    Relation: https://mrj.ima-press.net/mrj/article/view/1471/1390; Решетняк ТМ, Чельдиева ФА, Нурбаева КС и др. Антифосфолипидный синдром: диагностика, механизм развития, вопросы терапии. Тромбоз, гемостаз и реология. 2020;(4):4-21.; Erton ZB, Erkan D. Treatment advances in antiphospholipid syndrome: 2022 update. Curr Opin Pharmacol. 2022 Aug;65:102212. doi:10.1016/j.coph.2022.102212. Epub 2022 May 27.; Кондратьева ЛВ, Решетняк ТМ, Патрушева НЛ и др. Влияние полиморфизма цитохрома Р450 на эффективность и безопасность терапии варфарином у пациентов с антифосфолипидным синдромом. Научно-практическая ревматология. 2006;44(4):63-69.; Сатыбалдыева МА, Решетняк ТМ. Новые оральные антикоагулянты в терапии антифосфолипидного синдрома. Научно-практическая ревматология. 2016;54(2):219-226.; Решетняк ТМ, Нурбаева КС. Прямые оральные антикоагулянты при антифосфолипидном синдроме. Научно-практическая ревматология. 2020;58(6):708–715.; Cohen H, Efthymiou M, Isenberg DA. Use of direct oral anticoagulants in antiphospholipid syndrome. J Thromb Haemost. 2018; 16(6):1028–39. doi:10.1111/jth.14017.; Miyakis S, Lockshin MD, Atsumi T et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J Thromb Haemost. 2018 Jun;16(6):1028-1039. doi:10.1111/jth.14017. Epub 2018 May 13.; Petri M, Orbai AM, Alarcon GS, et al. Derivation and validation of systemic lupus international collaborating clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum. 2012 Aug;64(8):2677-86. doi:10.1002/art.34473.; Taylor W, Gladman D, Helliwell P, et al. Classification criteria for psoriatic arthritis: development of new criteria from a large international study. Arthritis Rheum. 2006 Aug;54(8):2665-73. doi:10.1002/art.21972.; Cronin M, Dengler N, Krauss ES, et al. Completion of the Updated Caprini Risk Assessment Model (2013 Version). Clin Appl Thromb Hemost. 2019 Jan-Dec;25:10760 29619838052. doi:10.1177/1076029619838052.; Pisters R, Lane DA, Nieuwlaat R, et al. A novel user friendly score (HAS BLED) to assess 1 year risk of major bleeding in patients with atrial fibrillation: the Euro Heart Survey. Chest. 2010 Nov;138(5):1093-100. doi:10.1378/chest.10-0134. Epub 2010 Mar 18.; Cuker A, Arepally GM, Chong BH, et al. American Society of Hematology 2018 guide-lines for management of venous thromboembolism: heparin-induced thrombocytopenia. Blood Adv. 2018 Nov 27;2(22):3360-3392. doi:10.1182/bloodadvances.2018024489.; Середавкина НВ, Решетняк ТМ, Сатыбалдыева МА и др. Эффективность и переносимость селективных и неселективных ингибиторов Ха-фактора при антифосфолипидном синдроме и системной красной волчанке: уровень анти-Ха-активности. Терапевтический архив. 2019; 91(5):19-25.; Кириенко АИ, Панченко ЕП, Андрияшкин ВВ. Венозный тромбоз в практике терапевта и хирурга. Москва: Планида; 2012.; Кондратьева ЛВ, Патрушева НЛ, Патрушев ЛИ и др. Рецидивы тромбозов и геморрагических осложнений у больных с антифосфолипидным синдромом на фоне терапии варфарином и аспирином. Терапевтический архив. 2010;82(5):33-39.; Решетняк ТМ. Лечение антифосфолипидного синдрома: современные стандарты. Тромбоз, гемостаз и реология. 2016; (1):11-20.; Середавкина НВ, Решетняк ТМ, Насонов ЕЛ. Низкомолекулярные гепарины и фондапаринукс в терапии антифосфолипидного синдрома: лабораторный контроль и применение. Тромбоз, гемостаз и реология. 2017;(3):12-21.; Grau E, Tenias JM, Real E, et al. Home treatment of deep venous thrombosis with low molecular weight heparin: Long-term incidence of recurrent venous thromboembolism. Am J Hematol. 2001 May;67(1):10-4. doi:10.1002/ajh.1069.; Vargas-Hitos JA, Ateka-Barrutia O, Sangle S, et al. Efficacy and safety of long-term low molecular weight heparin in patients with antiphospholipid syndrome. Ann Rheum Dis. 2011 Sep;70(9):1652-4. doi:10.1136/ard.2011.150268. Epub 2011 May 30.; Swahn E, Wallentin L. Low-molecular-weight heparin (Fragmin) during instability in coronary artery disease (FRISC). FRISC Study Group. Am J Cardiol. 1997 Sep 4;80(5A): 25E-29E. doi:10.1016/s0002-9149(97)00486-4.; Glueck CJ, Freiberg RA, Wissman R, et al. Long term anticoagulation (4-16 years) stops progression of idiopathic hip osteonecrosis associated with familial thrombophilia. Adv Orthop. 2015;2015:138382. doi:10.1155/2015/138382. Epub 2015 Jan 29.; Frank M, Sodin-Semrl S, Rozman B, et al. Effects of low-molecular-weight heparin on adhesion and vesiculation of phospholipid membranes: a possible mechanism for the treatment of hypercoagulability in antiphospholipid syndrome. Ann N Y Acad Sci. 2009 Sep; 1173:874-86. doi:10.1111/j.1749-6632.2009.04745.x.; Bick RL, Rice J. Long-term outpatient dalteparin (fragmin) therapy for arterial and venous thrombosis: efficacy and safety – a preliminary report. Clin Appl Thromb Hemost. 1999 Oct;5 Suppl 1:S67-71. doi:10.1177/10760296990050s112.; Gordon O, Almagor Y, Fridler D, et al. De novo neonatal antiphospholipid syndrome: a case report and review of the literature. Semin Arthritis Rheum. 2014 Oct;44(2):241-5. doi:10.1016/j.semarthrit.2014.04.003.; Baron BW, Baron JM. Four-year follow-up of two patients on maintenance therapy with fondaparinux and mycophenolate mofetil for microthrombotic antiphospholipid syndrome. Lupus. 2019 Jul;28(8):1003-1006. doi:10.1177/0961203319851863. Epub 2019 May 24.; Середавкина НВ, Чельдиева ФА, Лила АМ, Решетняк ТМ. Протромботическое состояние при ревматоидном артрите. Здравоохранение Таджикистана. 2022; (4):82-91.; https://mrj.ima-press.net/mrj/article/view/1471

  9. 9
    Academic Journal

    المساهمون: The review was funded by RFBR, project number 20-04-60274., Обзор выполнен при финансовой поддержке РФФИ в рамках научного проекта РФФИ №20-04-60274.

    المصدر: Obstetrics, Gynecology and Reproduction; Vol 16, No 2 (2022); 158-175 ; Акушерство, Гинекология и Репродукция; Vol 16, No 2 (2022); 158-175 ; 2500-3194 ; 2313-7347

    وصف الملف: application/pdf

    Relation: https://www.gynecology.su/jour/article/view/1319/1009; https://www.gynecology.su/jour/article/view/1319/1012; Lopes L., Spencer F.A., Neumann I. et al. Bleeding risk in atrial fibrillation patients taking vitamin K antagonists: systematic review and metaanalysis. Clin Pharmacol Ther. 2013;94(3):367–75. https://doi.org/10.1038/clpt.2013.99.; Chai-Adisaksopha C., Crowther M., Isayama T., Lim W. The impact of bleeding complications in patients receiving target-specific oral anticoagulants: a systematic review and meta-analysis. Blood. 2014;124(15):2450–8. https://doi.org/10.1182/blood-2014-07-590323.; Garcia D.A., Baglin T.P., Weitz J.I., Samama M.M. Parenteral anticoagulants: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2012;141(2 Suppl):e24S–e43S. https://doi.org/10.1378/chest.11-2291.; Buller H.R., Davidson B.L., Decousus H. et al. Fondaparinux or enoxaparin for the initial treatment of symptomatic deep venous thrombosis: a randomized trial. Ann Intern Med. 2004;140(11):867–73. https://doi.org/10.7326/0003-4819-140-11-200406010-00007.; Beyer-Westendorf J., Michalski F., Tittl L. et al. Management and outcomes of vaginal bleeding and heavy menstrual bleeding in women of reproductive age on direct oral anti-factor Xa inhibitor therapy: a case series. Lancet Haematol. 2016;3(10):e480–e488. https://doi.org/10.1016/S2352-3026(16)30111-9.; Gong I.Y., Schwarz U.I., Crown N. et al. Clinical and genetic determinants of warfarin pharmacokinetics and pharmacodynamics during treatment initiation. PloS One. 2011;6(11):e27808. https://doi.org/10.1371/journal.pone.0027808.; Pirmohamed M., Burnside G., Eriksson N. et al. A randomized trial of genotype-guided dosing of warfarin. N Engl J Med. 2013;369(24):2294– 303. https://doi.org/10.1056/NEJMoa1311386.; Hirsh J., Anand S.S., Halperin J.L., Fuster V. Guide to anticoagulant therapy: Heparin: a statement for healthcare professionals from the American Heart Association. Circulation. 2001;103(24):2994–3018. https://doi.org/10.1161/01.cir.103.24.2994.; Olsson S.B., Executive Steering Committee of the SPORTIF III Investigators. Stroke prevention with the oral direct thrombin inhibitor ximelagatran compared with warfarin in patients with non-valvular atrial fibrillation (SPORTIF III): randomised controlled trial. Lancet. 2003;362(9397):1691–8. https://doi.org/10.1016/s0140-6736(03)14841-6.; Stangier J., Rathgen K., Stahle H. et al. The pharmacokinetics, pharmacodynamics and tolerability of dabigatran etexilate, a new oral direct thrombin inhibitor, in healthy male subjects. Br J Clin Pharmacol. 2007;64(3):292–303. https://doi.org/10.1111/j.1365-2125.2007.02899.x.; Eriksson B.I., Dahl O.E., Huo M.H. et al. Oral dabigatran versus enoxaparin for thromboprophylaxis after primary total hip arthroplasty (RE-NOVATE II). Thromb Haemost. 2011;105(4):721–9. https://doi.org/10.1160/TH10-10-0679.; Eriksson B., Dahl O., Rosencher N. et al. Oral dabigatran etexilate vs. subcutaneous enoxaparin for the prevention of venous thromboembolism after total knee replacement: the RE-MODEL randomized trial. J Thromb Haemost. 2007;5(11):2178–85. https://doi.org/10.1111/j.1538-7836.2007.02748.x.; Schulman S., Kearon C., Kakkar A.K. et al. Dabigatran versus warfarin in the treatment of acute venous thromboembolism. N Engl J Med. 2009;361(24):2342–52. https://doi.org/10.1056/NEJMoa0906598.; Schulman S., Kearon C., Kakkar A.K. et al. Extended use of dabigatran, warfarin, or placebo in venous thromboembolism. N Engl J Med. 2013;368(8):709–18. https://doi.org/10.1056/NEJMoa1113697.; Connolly S.J., Ezekowitz M.D., Yusuf S. et al. Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med. 2009;361(12):1139–51. https://doi.org/10.1056/NEJMoa0905561.; Samama M.M. The mechanism of action of rivaroxaban – an oral, direct Factor Xa inhibitor – compared with other anticoagulants. Thromb Res. 2011;127(6):497–504. https://doi.org/10.1016/j.thromres.2010.09.008.; Kakkar A.K., Brenner B., Dahl O.E. et al. Extended duration rivaroxaban versus short-term enoxaparin for the prevention of venous thromboembolism after total hip arthroplasty: a double-blind, randomised controlled trial. Lancet. 2008;372(9632):31–9. https://doi.org/10.1016/S0140-6736(08)60880-6.; Patel M.R., Mahaffey K.W., Garg J. et al. Rivaroxaban versus warfarin in nonvalvular Atrial fibrillation. N Engl J Med. 2011;365(10):883–91. https://doi.org/10.1056/NEJMoa1009638.; Lassen M.R., Raskob G.E., Gallus A. et al. Apixaban versus enoxaparin for thromboprophylaxis after knee replacement (ADVANCE-2): a randomised double-blind trial. Lancet. 2010;375(9717):807–15. https://doi.org/10.1016/S0140-6736(09)62125-5.; Lassen M.R., Gallus A., Raskob G.E. et al. Apixaban versus enoxaparin for thromboprophylaxis after hip replacement. N Engl J Med. 2010;363(26):2487–98. https://doi.org/10.1056/NEJMoa1006885.; Granger C.B., Alexander J.H., McMurray J.J. et al. Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med. 2011;365(11):981–92. https://doi.org/10.1056/NEJMoa1107039.; Agnelli G., Buller H.R., Cohen A. et al. Oral apixaban for the treatment of acute venous thromboembolism. N Engl J Med. 2013;369(9):799–808. https://doi.org/10.1056/NEJMoa1302507.; Hokusai-VTE Investigators; Buller H.R., Decousus H., Grosso M.A. et al. Edoxaban versus warfarin for the treatment of symptomatic venous thromboembolism. N Engl J Med. 2013;369(15):1406–15. https://doi.org/10.1056/NEJMoa1306638.; Giugliano R.P., Ruff C.T., Braunwald E. et al. Edoxaban versus warfarin in patients with atrial fibrillation. N Engl J Med. 2013;369(22):2093–104. https://doi.org/10.1056/NEJMoa1310907.; Weitz J.I., Chan N.C. Advances in antithrombotic therapy. Arterioscler Thromb Vasc Biol. 2019;39(1):7–12. https://doi.org/10.1161/ ATVBAHA.118.310960.; Pirlog A.-M., Pirlog C.D., Maghiar M.A. DOACs vs vitamin K antagonists: a comparison of phase III clinical trials and a prescriber support tool. Open Access Maced J Med Sci. 2019;7(7):1226–32. https://doi.org/10.3889/oamjms.2019.289.; Hellenbart E.L., Faulkenberg K.D., Finks S.W. Evaluation of bleeding in patients receiving direct oral anticoagulants. Vasc Health Risk Manag. 2017;13:325–42. https://doi.org/10.2147/VHRM.S121661.; Wheeler A.P., Gailani D. Why factor XI deficiency is a clinical concern. Expert Rev Hematol. 2016;9(7):629–37. https://doi.org/10.1080/17474086.2016.1191944.; Gomez K., Bolton-Maggs P. Factor XI deficiency. Haemophilia. 2008;14(6):1183–9. https://doi.org/10.1111/j.1365-2516.2008.01667.x.; Preis M., Hirsch J., Kotler A. et al. Factor XI deficiency is associated with lower risk for cardiovascular and venous thromboembolism events. Blood. 2017;129(9):1210–5. https://doi.org/10.1182/blood-2016-09742262.; Georgi B., Mielke J., Chaffin M. et al. Leveraging human genetics to estimate clinical risk reductions achievable by inhibiting factor XI. Stroke. 2019;50(11):3004–12. https://doi.org/10.1161/STROKEAHA.119.026545.; Mavromanoli A.C., Barco S., Konstantinides S.V. Antithrombotics and new interventions for venous thromboembolism: Exploring possibilities beyond factor IIa and factor Xa inhibition. Res Pract Thromb Haemost. 2021;5(4):10.1002/rth2.12509. https://doi.org/10.1002/rth2.12509.; Yau J.W., Liao P., Fredenburgh J.C. et al. Selective depletion of factor XI or factor XII with antisense oligonucleotides attenuates catheter thrombosis in rabbits. Blood. 2014;123(13):2102–7. https://doi.org/10.1182/blood-2013-12-540872.; Crosby J.R., Marzec U., Revenko A.S. et al. Antithrombotic effect of antisense factor XI oligonucleotide treatment in primates. Arterioscler Thromb Vasc Biol. 2013;33(7):1670–8. https://doi.org/10.1161/ATVBAHA.113.301282.; Buller H.R., Bethune C., Bhanot S. et al. Factor XI antisense oligonucleotide for prevention of venous thrombosis. N Engl J Med. 2015;372(3):232–40. https://doi.org/10.1056/NEJMoa1405760.; Eikelboom J., Floege J., Thadhani R. et al. Anticoagulation in patients with kidney failure on dialysis: factor XI as a therapeutic target. Kidney Int. 2021;100(6):1199–207. https://doi.org/10.1016/j.kint.2021.08.028.; Verhamme P., Yi B.A., Segers A. et al. Abelacimab for prevention of venous thromboembolism. N Engl J Med. 2021;385(7):609–17. https://doi.org/10.1056/NEJMoa2105872.; Weitz J.I., Bauersachs R., Becker B. et al. Effect of osocimab in preventing venous thromboembolism among patients undergoing knee arthroplasty: the FOXTROT randomized clinical trial. JAMA. 2020;323(2):130–9. https://doi.org/10.1001/jama.2019.20687.; Eikelboom J.W., Connolly S.J., Brueckmann M. et al. Dabigatran versus warfarin in patients with mechanical heart valves. N Engl J Med. 2013;369(13):1206–14. https://doi.org/10.1056/NEJMoa1300615.; Jaffer I.H., Stafford A.R., Fredenburgh J.C. et al. Dabigatran is less effective than warfarin at attenuating mechanical heart valve-induced thrombin generation. J Am Heart Assoc. 2015;4(8):e002322. https://doi.org/10.1161/JAHA.115.002322.; Bethune C., Walsh M., Jung B. et al. Pharmacokinetics and pharmacodynamics of Ionis-FXIRx, an antisense inhibitor of factor XI, in patients with end-stage renal disease on hemodialysis. Blood. 2017;130(Suppl 1):1116. https://doi.org/10.1182/BLOOD.V130.SUPPL_1.1116.1116.; Kearon C., Akl E.A., Ornelas J. et al. Antithrombotic therapy for VTE disease: CHEST guideline and expert panel report. Chest. 2016;149(2):315–52. https://doi.org/10.1016/j.chest.2015.11.026.; Tripodi A. D-dimer testing in laboratory practice. Clin Chem. 2011;57(9):1256–62. https://doi.org/10.1373/clinchem.2011.166249.; Palareti G., Cosmi B., Legnani C. et al. D-dimer testing to determine the duration of anticoagulation therapy. N Engl J Med. 2006;355(17):1780–9. https://doi.org/10.1056/NEJMoa054444.; Douketis J., Tosetto A., Marcucci M. et al. Patient-level meta-analysis: effect of measurement timing, threshold, and patient age on ability of D-dimer testing to assess recurrence risk after unprovoked venous thromboembolism. Ann Intern Med. 2010;153(8):523–31. https://doi.org/10.7326/0003-4819-153-8-201010190-00009.; Palareti G., Cosmi B., Legnani C. et al. D-dimer to guide the duration of anticoagulation in patients with venous thromboembolism: a management study. Blood. 2014;124(2):196–203. https://doi.org/10.1182/blood-2014-01-548065.; Rodger M.A., Kahn S.R., Wells P.S. et al. Identifying unprovoked thromboembolism patients at low risk for recurrence who can discontinue anticoagulant therapy. CMAJ. 2008;179(5):417–26. https://doi.org/10.1503/cmaj.080493.; Douxfils J., Gosselin R.C. Laboratory assessment of direct oral anticoagulants. Semin Thromb Hemost. 2017;43(3):277–90. https://doi.org/10.1055/s-0036-1597296.; Schulman S., Kearon C., Subcommittee on Control of Anticoagulation of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis. Definition of major bleeding in clinical investigations of antihemostatic medicinal products in non-surgical patients. J Thromb Haemost. 2005;3(4):692–4. https://doi.org/10.1111/j.1538-7836.2005.01204.x.; Kaatz S., Ahmad D., Spyropoulos A., Schulman S., Subcommittee on Control of Anticoagulation. Definition of clinically relevant non-major bleeding in studies of anticoagulants in atrial fibrillation and venous thromboembolic disease in non-surgical patients: communication from the SSC of the ISTH. J Thromb Haemost. 2015;13(11):2119–26. https://doi.org/10.1111/jth.13140.; Douketis J.D., Arneklev K., Goldhaber S.Z. et al. Comparison of bleeding in patients with nonvalvular atrial fibrillation treated with ximelagatran or warfarin: assessment of incidence, case-fatality rate, time course and sites of bleeding, and risk factors for bleeding. Arch Intern Med. 2006;166(8):853–9. https://doi.org/10.1001/archinte.166.8.853.; Schulman S., Beyth R.J., Kearon C., Levine M.N. Hemorrhagic complications of anticoagulant and thrombolytic treatment: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition). Chest. 2008;133(6):257S–298S. https://doi.org/10.1378/chest.08-0674.; Crowther M., Lim W. Low molecular weight heparin and bleeding in patients with chronic renal failure. Curr Opin Pulm Med. 2007;13(5):409– 13. https://doi.org/10.1097/MCP.0b013e328216430d.; Fifth Organization to Assess Strategies in Acute Ischemic Syndromes Investigators; Yusuf S., Mehta S.R., Chrolavicius S. et al. Comparison of fondaparinux and enoxaparin in acute coronary syndromes. N Engl J Med. 2006;354(14):1464–76. https://doi.org/10.1056/NEJMoa055443.; Yusuf S., Mehta S.R., Chrolavicius S. et al. Effects of fondaparinux on mortality and reinfarction in patients with acute ST-segment elevation myocardial infarction: the OASIS-6 randomized trial. JAMA. 2006;295(13):1519–30. https://doi.org/10.1001/jama.295.13.joc60038.; Turpie A.G., Bauer K.A., Eriksson B.I., Lassen M.R. Fondaparinux vs enoxaparin for the prevention of venous thromboembolism in major orthopedic surgery: a meta-analysis of 4 randomized double-blind studies. Arch Intern Med. 2002;162(16):1833–40. https://doi.org/10.1001/archinte.162.16.1833.; Reilly P.A., Lehr T., Haertter S. et al. The effect of dabigatran plasma concentrations and patient characteristics on the frequency of ischemic stroke and major bleeding in atrial fibrillation patients: the RE-LY Trial (Randomized Evaluation of Long-Term Anticoagulation Therapy). J Am Coll Cardiol. 2014;63(4):321–8. https://doi.org/10.1016/j.jacc.2013.07.104.; Connolly S.J., Wallentin L., Ezekowitz M.D. et al. The long-term multicenter observational study of dabigatran treatment in patients with atrial fibrillation (RELY-ABLE) study. Circulation. 2013;128(3):237–43. https://doi.org/10.1161/CIRCULATIONAHA.112.001139.; Dans A.L., Connolly S.J., Wallentin L. et al. Concomitant use of antiplatelet therapy with dabigatran or warfarin in the Randomized Evaluation of Long-Term Anticoagulation Therapy (RE-LY) trial. Circulation. 2013;127(5):634–40. https://doi.org/10.1161/CIRCULATIONAHA.112.115386.; Halperin J.L., Halperin JL, Wojdyla D. et al. Efficacy and safety of rivaroxaban compared with warfarin among elderly patients with nonvalvular atrial fibrillation in the Rivaroxaban Once Daily, Oral, Direct Factor Xa Inhibition Compared With Vitamin K Antagonism for Prevention of Stroke and Embolism Trial in Atrial Fibrillation (ROCKET AF). Circulation. 2014;130(2):138–46. https://doi.org/10.1161/CIRCULATIONAHA.113.005008.; Crowther M.A., Douketis J.D., Schnurr T. et al. Oral vitamin K lowers the international normalized ratio more rapidly than subcutaneous vitamin K in the treatment of warfarin-associated coagulopathy: a randomized, controlled trial. Ann Intern Med. 2002;137(4):251–4. https://doi.org/10.7326/0003-4819-137-4-200208200-00009.; DeZee K.J., Shimeall W.T., Douglas K.M. et al. Treatment of excessive anticoagulation with phytonadione (vitamin K): a meta-analysis. Arch Intern Med. 2006;166(4):391–7. https://doi.org/10.1001/.391.; Watson H.G., Baglin T., Laidlaw S.L. et al. A comparison of the efficacy and rate of response to oral and intravenous Vitamin K in reversal of over-anticoagulation with warfarin. Br J Haematol. 2001;115(1):145–9. https://doi.org/10.1046/j.1365-2141.2001.03070.x.; Holbrook A., Schulman S., Witt D.M. et al. Evidence-based management of anticoagulant therapy: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians EvidenceBased Clinical Practice Guidelines. Chest. 2012;141(2 Suppl):e152S– e184S. https://doi.org/10.1378/chest.11-2295.; Makris M., Greaves M., Phillips W.S. et al. Emergency oral anticoagulant reversal: the relative efficacy of infusions of fresh frozen plasma and clotting factor concentrate on correction of the coagulopathy. Thromb Haemost. 1997;77(3):477–80.; Holland .L, Warkentin T.E., Refaai M. et al. Suboptimal effect of a threefactor prothrombin complex concentrate (Profilnine-SD) in correcting supratherapeutic international normalized ratio due to warfarin overdose. Transfusion. 2009;49(6):1171–7. https://doi.org/10.1111/j.1537-2995.2008.02080.x.; Dentali F., Marchesi C., Pierfranceschi M.G. et al. Safety of prothrombin complex concentrates for rapid anticoagulation reversal of vitamin K antagonists. A meta-analysis. Thromb Haemost. 2011;106(3):429–38. https://doi.org/10.1160/TH11-01-0052.; Nishijima D.K., Dager W.E., Schrot R.J., Holmes J.F. The efficacy of factor VIIa in emergency department patients with warfarin use and traumatic intracranial hemorrhage. Acad Emerg Med. 2010;17(3):244– 51. https://doi.org/10.1111/j.1553-2712.2010.00666.x.; Pinner N.A., Hurdle A.C., Oliphant C. et al. Treatment of warfarin-related intracranial hemorrhage: a comparison of prothrombin complex concentrate and recombinant activated factor VII. World Neurosurg. 2010;74(6):631–5. https://doi.org/10.1016/j.wneu.2010.06.030.; Levi M., Levy J.H., Andersen H.F., Truloff D. Safety of recombinant activated factor VII in randomized clinical trials. N Engl J Med. 2010;363(19):1791–800. https://doi.org/10.1056/NEJMoa1006221.; Wojcik C., Schymik M.L., Cure E.G. Activated prothrombin complex concentrate factor VIII inhibitor bypassing activity (FEIBA) for the reversal of warfarin-induced coagulopathy. Int J Emerg Med. 2009;2(4):217–25. https://doi.org/10.1007/s12245-009-0125-8.; Pai M., Crowther M.A. Neutralization of heparin activity. Handb Exp Pharmacol. 2012;(207):265-77. https://doi.org/10.1007/978-3-64223056-1_11.; van Veen J.J., Maclean R.M., Hampton K.K. et al. Protamine reversal of low molecular weight heparin: clinically effective? Blood Coagul Fibrinolysis. 2011;22(7):565–70. https://doi.org/10.1097/MBC.0b013e3283494b3c.; Nybo M., Madsen J.S. Serious anaphylactic reactions due to protamine sulfate: a systematic literature review. Basic Clin Pharmacol Toxicol. 2008;103(2):192–6. https://doi.org/10.1111/j.1742-7843.2008.00274.x.; Horrow J.C. Protamine: a review of its toxicity. Anesth Analg. 1985;64(3):348–61.; Bakchoul T., Zollner H., Amiral J. et al. Anti-protamine-heparin antibodies: incidence, clinical relevance, and pathogenesis. Blood. 2013;121(15):2821–7. https://doi.org/10.1182/blood-2012-10-460691.; Longstaff C., Hogwood J., Gray E. et al. Neutralization of the anticoagulant effects of heparin by histones in blood plasma and purified systems. Thromb Haemost. 2016;115(3):591–9. https://doi.org/10.1160/TH15-03-0214.; Chan S., Kong M., Minning D. et al. Assessment of recombinant factor VIIa as an antidote for bleeding induced in the rabbit by low molecular weight heparin. J Thromb Haemost. 2003;1(4):760–5. https://doi.org/10.1046/j.1538-7836.2003.00101.x.; Lauritzen B., Hedner U., Johansen P. et al. Recombinant human factor VIIa and a factor VIIa-analogue reduces heparin and low molecular weight heparin (LMWH)-induced bleeding in rats. J Thromb Haemost. 2008;6(5):804–11. https://doi.org/10.1111/j.1538-7836.2008.02933.x.; Bijsterveld N.R., Moons A.H., Boekholdt S.M. et al. Ability of recombinant factor VIIa to reverse the anticoagulant effect of the pentasaccharide fondaparinux in healthy volunteers. Circulation. 2002;106(20):2550–4. https://doi.org/10.1161/01.cir.0000038501.87442.02.; Bijsterveld N.R., Vink R., van Aken B.E. et al. Recombinant factor VIIa reverses the anticoagulant effect of the long-acting pentasaccharide idraparinux in healthy volunteers. Br J Haematol. 2004;124(5):653–8. https://doi.org/10.1111/j.1365-2141.2003.04811.x.; Firozvi K., Deveras R.A.E., Kessler C.M. Reversal of low-molecular-weight heparin-induced bleeding in patients with pre-existing hypercoagulable states with human recombinant activated factor VII concentrate. Am J Hematol. 2006;81(8):582–9. https://doi.org/0.1002/ajh.2065.; Nagler M., Haslauer M., Wuillemin W.A. Fondaparinux – data on efficacy and safety in special situations. Thromb Res. 2012;129(4):407–17. https://doi.org/10.1016/j.thromres.2011.10.037.; Gerotziafas G.T., Depasse F., Chakroun T. et al. Recombinant factor VIIa partially reverses the inhibitory effect of fondaparinux on thrombin generation after tissue factor activation in platelet rich plasma and whole blood. Thromb Haemost. 2004;91(3):531–7. https://doi.org/10.1160/TH03-07-0483.; Lisman T., Bijsterveld N., Adelmeijer J. et al. Recombinant factor VIIa reverses the in vitro and ex vivo anticoagulant and profibrinolytic effects of fondaparinux. J Thromb Haemost. 2003;1(11):2368–73. https://doi.org/10.1046/j.1538-7836.2003.00536.x.; Akwaa F., Spyropoulos A.C. Treatment of bleeding complications when using oral anticoagulants for prevention of strokes. Curr Treat Options Cardiovasc Med. 2013;15(3):288–98. https://doi.org/10.1007/s11936013-0238-5.; van Ryn J., Stangier J., Haertter S. et al. Dabigatran etexilate – a novel, reversible, oral direct thrombin inhibitor: interpretation of coagulation assays and reversal of anticoagulant activity. Thromb Haemost. 2010;103(6):1116–27. https://doi.org/10.1160/TH09-11-0758.; Stangier J., Rathgen K., Stahle H., Mazur D. Influence of renal impairment on the pharmacokinetics and pharmacodynamics of oral dabigatran etexilate: an open-label, parallel-group, single-centre study. Clin Pharmacokinet. 2010;49(4):259–68. https://doi.org/10.2165/11318170-000000000-00000.; Khadzhynov D., Wagner F., Formella S. et al. Effective elimination of dabigatran by haemodialysis. A phase I single-centre study in patients with end-stage renal disease. Thromb Haemost. 2013;109(4):596–605. https://doi.org/10.1160/TH12-08-0573.; Zhou W., Schwarting S., Illanes S. et al. Hemostatic therapy in experimental intracerebral hemorrhage associated with the direct thrombin inhibitor dabigatran. Stroke. 2011;42(12):3594–9. https://doi.org/10.1161/STROKEAHA.111.624650.; Eerenberg E.S., Kamphuisen P.W., Sijpkens M.K. et al. Reversal of rivaroxaban and dabigatran by prothrombin complex concentrate: a randomized, placebo-controlled, crossover study in healthy subjects. Circulation. 2011;124(14):1573–9. https://doi.org/10.1161/CIRCULATIONAHA.111.029017.; Marlu R., Hodaj E., Paris A. et al. Effect of non-specific reversal agents on anticoagulant activity of dabigatran and rivaroxaban. Thromb Haemost. 2012;108(2):217–24. https://doi.org/10.1160/TH12-03-0179.; Dager W.E., Gosselin R.C., Roberts A.J. Reversing dabigatran in lifethreatening bleeding occurring during cardiac ablation with factor eight inhibitor bypassing activity. Crit Care Med. 2013;41(5):e42–6. https://doi.org/10.1097/CCM.0b013e31827caaa3.; Schulman S., Ritchie B., Goy J.K. et al. Activated prothrombin complex concentrate for dabigatran-associated bleeding. Br J Haematol. 2014;164(2):308–10. https://doi.org/10.1111/bjh.12620.; van Ryn J., Schurer J., Kink-Eiband M., Clemens A. The successful reversal of dabigatran-induced bleeding by coagulation factor concentrates in a rat tail bleeding model do not correlate with ex vivo markers of anticoagulation. Blood. 2011;118(21):2316. https://doi.org/10.1182/blood.V118.21.2316.2316.; Pollack C.V., Reilly P.A., van Ryn J. et al. Idarucizumab for dabigatran reversal – full cohort analysis. N Engl J Med. 2017;377(5):431–41. https://doi.org/10.1056/NEJMoa1707278.; Zhang D., Frost C.E., He K. et al. Investigating the enteroenteric recirculation of apixaban, a factor Xa inhibitor: administration of activated charcoal to bile duct-cannulated rats and dogs receiving an intravenous dose and use of drug transporter knockout rats. Drug Metab Dispos. 2013;41(4):906–15. https://doi.org/10.1124/dmd.112.050575.; Godier A., Miclot A., Le Bonniec B. et al. Evaluation of prothrombin complex concentrate and recombinant activated factor VII to reverse rivaroxaban in a rabbit model. Anesthesiology. 2012;116(1):94–102. https://doi.org/10.1097/ALN.0b013e318238c036.; Fukuda T., Honda Y., Kamisato C. et al. Reversal of anticoagulant effects of edoxaban, an oral, direct factor Xa inhibitor, with haemostatic agents. Thromb Haemost. 2012;107(2):253–9. https://doi.org/10.1160/TH11-090668.; Majeed A., Agren A., Holmstrom M. et al. Management of rivaroxabanor apixaban-associated major bleeding with prothrombin complex concentrates: a cohort study. Blood. 2017;130(15):1706–12. https://doi.org/10.1182/blood-2017-05-782060.; Schulman S., Gross P.L., Ritchie B. et al. Prothrombin complex concentrate for major bleeding on factor Xa inhibitors: a prospective cohort study. Thromb Haemosts. 2018;118(5):842–51. https://doi.org/10.1055/s-0038-1636541.; Gruber A., Marzec U.M., Buetehorn U., Hanson S., Perzborn E. Potential of activated prothrombin complex concentrate and activated factor VII to reverse the anticoagulant effects of rivaroxaban in primates. Blood. 2008;112(11):3825. https://doi.org/10.1182/blood.V112.11.3825.3825.; Lu G., DeGuzman F.R., Hollenbach S.J. A specific antidote for reversal of anticoagulation by direct and indirect inhibitors of coagulation factor Xa. Nat Med. 2013;19(4):446–51. https://doi.org/10.1038/nm.3102.; Mark C., Kitt M.M., Vandana M. et al. A phase 2 randomized, doubleblind, placebo-controlled trial demonstrating reversal of rivaroxabaninduced anticoagulation in healthy subjects by andexanet alfa (PRT064445), an antidote for FXa inhibitors. Blood. 2013;122(21):3636. https://doi.org/10.1182/BLOOD.V122.21.3636.3636.; Connolly S.J., Crowther M., Eikelboom J.W. et al. Full study report of andexanet alfa for bleeding associated with factor Xa inhibitors. N Engl J Med. 2019;380(14):1326–35. https://doi.org/10.1056/NEJMoa1814051.; Laulicht B., Bakhru S., Lee C. et al. Small molecule antidote for anticoagulants. Circulation. 2012;126(Suppl 1):11395.; HALT-IT Trial Collaborators. Effects of a high-dose 24-h infusion of tranexamic acid on death and thromboembolic events in patients with acute gastrointestinal bleeding (HALT-IT): an international randomised, double-blind, placebo-controlled trial. Lancet. 2020;395(10241):1927– 36. https://doi.org/10.1016/S0140-6736(20)30848-5.; Hemphill J.C., Greenberg S.M., Anderson C.S. et al. Guidelines for the management of spontaneous intracerebral hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2015;46(7):2032–60. https://doi.org/10.1161/STR.0000000000000069.; Lansberg M.G., O'Donnell M.J., Khatri P. et al. Antithrombotic and thrombolytic therapy for ischemic stroke: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012;141(2 Suppl):e601S–e636S. https://doi.org/10.1378/chest.11-2302.; Pennlert J., Overholser R., Asplund K. et al. Optimal timing of anticoagulant treatment after intracerebral hemorrhage in patients with atrial fibrillation. Stroke. 2017;48(2):314–20. https://doi.org/10.1161/STROKEAHA.116.014643.; Nielsen P.B., Larsen T.B., Skjoth F., Lip G.Y. Outcomes associated with resuming warfarin treatment after hemorrhagic stroke or traumatic intracranial hemorrhage in patients with atrial fibrillation. JAMA Intern Med. 2017;177(4):563–70. https://doi.org/10.1001/jamainternmed.2016.9369.; Gralnek I.M., Dumonceau J.-M., Kuipers E.J. et al. Diagnosis and management of nonvariceal upper gastrointestinal hemorrhage: European Society of Gastrointestinal Endoscopy (ESGE) Guideline. Endoscopy. 2015;47(10):a1–a46. https://doi.org/10.1055/s-0034-1393172.; Majeed A., Wallvik N., Eriksson J. et al. Optimal timing of vitamin K antagonist resumption after upper gastrointestinal bleeding. Thromb Haemost. 2017;117(3):491–9. https://doi.org/10.1160/TH16-07-0498.; https://www.gynecology.su/jour/article/view/1319

  10. 10
    Academic Journal

    المؤلفون: E. Grandone, Э. Грандоне

    المصدر: Obstetrics, Gynecology and Reproduction; Vol 16, No 1 (2022); 90-95 ; Акушерство, Гинекология и Репродукция; Vol 16, No 1 (2022); 90-95 ; 2500-3194 ; 2313-7347

    وصف الملف: application/pdf

    Relation: https://www.gynecology.su/jour/article/view/1246/996; Mara M., Koryntova D., Rezabek K.et al. Thromboembolic complications in patients undergoing in vitro fertilization: retrospective clinical study. Ceska Gynekol. 2004;69(4):312–6. [Article in Czech].; Grandone E., Colaizzo D., Vergura P. et al. Age and homocysteine plasma levels are risk factors for thrombotic complications after ovarian stimulation. Hum Reprod. 2004;19(8):1796–9. https://doi.org/10.1093/humrep/deh346.; Chan W.S., Ginsberg J.S. A review of upper extremity deep vein thrombosis in pregnancy: unmasking the ‘ART’ behind the clot. J Thromb Haemost. 2006;4(8):1673–7. https://doi.org/10.1111/j.1538-7836.2006.02026.x.; Chan W.S. The ‘ART’of thrombosis: a review of arterial and venous thrombosis in assisted reproductive technology. Curr Opin Obstet Gynecol. 2009;21(3):207–18. https://doi.org/10.1097/GCO.0b013e328329c2b8.; Chan W.S., Dixon M.E. The “ART” of thromboembolism: a review of assisted reproductive technology and thromboembolic complications. Thromb Res. 2008;121(6):713–26. https://doi.org/10.1016/j.thromres.2007.05.023.; Piazza G. Oh heavy burden: recognizing the risk of venous thromboembolism in women undergoing assisted reproduction. Thromb Haemost. 2018;118(12):2011–3. https://doi.org/10.1055/s-0038-1676073.; Henriksson P., Westerlund E., Wallen H. et al. Incidence of pulmonary and venous thromboembolism in pregnancies after in vitro fertilisation: cross sectional study. BMJ. 2013;346:e8632. https://doi.org/10.1136/bmj.e8632.; Sennström M., Rova K., Hellgren M. et al. Thromboembolism and in vitro fertilization–a systematic review. Acta Obstet Gynecol Scand. 2017;96(9):1045–52. https://doi.org/10.1111/aogs.13147.; Marongiu F., Mameli A., Grandone E., Barcellona D. et al. Pulmonary thrombosis: a clinical pathological entity distinct from pulmonary embolism? Semin Thromb Hemost. 2019;45(8):778–83. https://doi.org/10.1055/s-0039-1696942.; Grandone E., Di Micco P.P., Villani M. et al. Venous thromboembolism in women undergoing assisted reproductive technologies: data from the RIETE registry. Thromb Hemost. 2018;118(11):1962–8. https://doi.org/10.1055/s-0038-1673402.; Cantwell R., Clutton-Brock T., Cooper G. et al. Saving mothers' lives: reviewing maternal deaths to make motherhood safer: 2006–-2008. The eighth report of the confidential enquiries into maternal deaths in the United Kingdom. BJOG. 2011;118 Suppl 1:1–203. https://doi.org/10.1111/j.1471-0528.2010.02847.x.; Braat D.D.M., Schutte J.M., Bernardus R.E. et al. Maternal death related to IVF in the Netherlands 1984–2008. Hum Reprod. 2010;25(7):1782–6. https://doi.org/10.1093/humrep/deq080.; Selter J., Huang Y., Becht L.C.G. et al. Use of fertility preservation services in female reproductive-aged cancer patients. Am J Obstet Gynecol. 2019;221(4):328.e1–328.e16. https://doi.org/10.1016/j.ajog.2019.05.009.; Rova K., Passmark H., Lindqvist P.G. et al. Venous thromboembolism in relation to in vitro fertilization: an approach to determining the incidence and increase in risk in successful cycles. Fertil Steril. 2012;97(1):95–100. https://doi.org/10.1016/j.fertnstert.2011.10.038.; Zore T., Joshi N.V., Lizneva D., Azziz R. Polycystic ovarian syndrome: long-term health consequences. Semin Reprod Med. 2017;35(3):271–81. https://doi.org/10.1055/s-0037-1603096.; Bates S.M., Greer I.A., Middeldorp S. et al. VTE, thrombophilia, antithrombotic therapy, and pregnancy: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012;141(2 Suppl):e691S–e736S. https://doi.org/10.1378/chest.11-2300.; Bates S.M., Rajasekhar A., Middeldorp S. et al. American Society of Hematology 2018 guidelines for management of venous thromboembolism: venous thromboembolism in the context of pregnancy. Blood Adv. 2018;2(22):3317–59. https://doi.org/10.1182/bloodadvances.2018024802.; The Management of Ovarian Hyperstimulation Syndrome. Green-top Guideline No. 5. RCOG, 2016. 22 p. Available at: https://www.rcog.org.uk/globalassets/documents/guidelines/green-top-guidelines/gtg_5_ohss.pdf.; Lindqvist P.G., Dahlbäck B. Bleeding complications associated with low molecular weight heparin prophylaxis during pregnancy. Thromb Haemost. 2000;84(7):140–1.; Galambosi P.J., Kaaja R.J., Stefanovi V., Ulander V.-M. et al. Safety of low-molecular-weight heparin during pregnancy: a retrospective controlled cohort study. Eur J Obstet Gynecol Reprod Biol. 2012;163(2):154–9. https://doi.org/10.1016/j.ejogrb.2012.05.010.; https://www.gynecology.su/jour/article/view/1246

  11. 11
    Academic Journal
  12. 12
    Academic Journal
  13. 13
    Academic Journal
  14. 14
    Academic Journal

    المصدر: Messenger of ANESTHESIOLOGY AND RESUSCITATION; Том 18, № 1 (2021); 84-92 ; Вестник анестезиологии и реаниматологии; Том 18, № 1 (2021); 84-92 ; 2541-8653 ; 2078-5658

    وصف الملف: application/pdf

    Relation: https://www.vair-journal.com/jour/article/view/501/471; Государственный реестр лекарственных средств. Инструкция по медицинскому применению препарата Гепабене. [Электронный ресурс]. URL: https://grls.rosminzdrav.ru/Grls_View_v2.aspx?routingGuid=1629b696-7bc5-422b-a3ef-ee4eb400fde3&t= (дата обращения: 19.01.2020).; Государственный реестр лекарственных средств. Инструкция по медицинскому применению препарата Урсосан. [Электронный ресурс]. URL: https://grls.rosminzdrav.ru/Grls_View_v2.aspx?routingGuid=75ee02eb-a348-49eb-bd05-d74f693f081a&t= (дата обращения: 19.01.2020).; Государственный реестр лекарственных средств. Инструкция по применению лекарственного препарата для медицинского применения Креон 25000. [Электронный ресурс]. URL: https://grls.rosminzdrav.ru/Grls_View_v2.aspx?routingGuid=8ac439cc-d78c-4d8f-9ffe-a085984979fb&t= (дата обращения: 19.01.2020).; Ивашкин В. Т., Барановский А. Ю., Райхельсон К. Л. и др. Лекарственные поражения печени (клинические рекомендации для врачей) // Российский журнал гастроэнтерологии, гепатологии, колопроктологии. ‒ 2019. ‒ Т. 29, № 1. ‒ С. 101‒131. https://doi.org/10.22416/1382-4376-2019-29-1-101-131.; Пиманов С. И., Макаренко Е. В. Идиосинкразические лекарственные поражения печени: диагностика и лечение // Медицинский совет. ‒ 2017. ‒ № 5. ‒ С. 100‒107. https://doi.org/10.21518/2079-701X-2017-5-100-107.; Arora N., Goldhaber S. Z. Anticoagulants and transaminase elevation // Circulation. ‒ 2006. ‒ Vol. 113, № 15. ‒ P. 698‒702. https://doi.org/10.1161/CIRCULATIONAHA.105.603100.; Baker E. L., Loewenthal T., Salerno E. et al. Probable enoxaparin-induced hepatotoxicity // Am. J. Heal. Pharm. ‒ 2009. ‒ Vol. 66, № 7. ‒ P. 638‒641. https://doi.org/10.2146/ajhp080311.; Bosco M., Kish T. Hepatotoxicity with elevated bilirubin secondary to prophylactic doses of unfractionated heparin: a case report and review of heparin-induced hepatotoxicity // J. Pharm. Technol. ‒ 2019. ‒ Vol. 35, № 1. ‒ P. 36‒40. https://doi.org/10.1177/8755122518803363.; Cano-Paniagua A., Amariles P., Angulo N. et al. Epidemiology of drug-induced liver injury in a University Hospital from Colombia: updated RUCAM being used for prospective causality assessment // Ann. Hepatol. ‒ 2019. ‒ Vol. 18, № 3. ‒ P. 501‒507. https://doi.org/10.1016/j.aohep.2018.11.008.; Carlson M. K., Gleason P. P., Sen S. Elevation of hepatic transaminases after enoxaparin use: case report and review of unfractionated and low-molecular-weight heparin-induced hepatotoxicity // Pharmacotherapy. ‒ 2001. ‒ Vol. 21, № 1. ‒ P. 108‒113. https://doi.org/10.1592/phco.21.1.108.34436.; Danan G., Teschke R. RUCAM in drug and herb induced liver injury: the update // Int. J. Mol. Sci. ‒ 2015. ‒ Vol. 17, № 1. ‒ P. 1‒33. https://doi.org/10.3390/ijms17010014.; Di Saia P. J., Creasman W. T., Mannel R. S. et al. Clinical Gynecologic Oncology 9th edition. ‒ Philadelphia, PA. Elsevier, Inc. ‒ 2018. ‒ P. 1‒631.; Faraoni D., Comes R. F., Geerts W. et al. European guidelines on perioperative venous thromboembolism prophylaxis // Eur. J. Anaesthesiol. ‒ 2018. ‒ Vol. 35, № 2. ‒ P. 90‒95. https://doi.org/10.1097/EJA.0000000000000710.; Guidance for industry drug-induced liver injury: premarketing clinical evaluation. ‒ 2009. ‒ P. 1‒25. [Электронный ресурс]. URL: https://www.health.qld.gov.au/__data/assets/pdf_file/0023/147533/qh-gdl-951.pdf (дата обращения: 19.01.2020).; Guideline for anticoagulation and prophylaxis using low molecular weight heparin (LMWH) in adult inpatients. ‒ 2016. ‒ P. 1‒15. [Электронный ресурс]. URL: https://www.health.qld.gov.au/__data/assets/pdf_file/0023/147533/qh-gdl-951.pdf (дата обращения 19.01.2020).; Hahn K. J., Morales S. J., Lewis J. H. Enoxaparin-induced liver injury: case report and review of the literature and FDA adverse event reporting system (FAERS) // Drug. Saf. ‒ 2015. ‒ Vol. 2, № 1. ‒ P. 1‒11. https://doi.org/10.1007/s40800-015-0018-0.; Harrill A. H., Roach J., Fier I. et al. The effects of heparins on the liver: application of mechanistic serum biomarkers in a randomized study in healthy volunteers // Clin. Pharmacol. Ther. ‒ 2012. ‒ Vol. 92, № 2. ‒ P. 214‒220. https://doi.org/10.1038/clpt.2012.40.; Hayashi P. H., Rockey D. C., Fontana R. J. et al. Death and liver transplantation within 2 years of onset of drug-induced liver injury // Hepatology. ‒ 2017. ‒ Vol. 66, № 4. ‒ P. 1275‒1285. https://doi.org/10.1002/hep.29283.; Hoofnagle J. H., Björnsson E. S. Drug-induced liver injury-types and phenotypes // N. Engl. J. Med. ‒ 2019. ‒ Vol. 381, № 3. ‒ P. 264‒273. https://doi.org/10.1056/NEJMra1816149.; Hui C., Yuen M., Ng I. O. et al. Low molecular weight heparin-induced liver toxicity // J. Clin. Pharmacol. ‒ 2001. ‒ Vol. 41. ‒ P. 691‒694. https://doi.org/10.1177/00912700122010465.; Kleiner D. E., Chalasani N. P., Lee W. M. et al. Hepatic histological findings in suspected drug-induced liver injury: systematic evaluation and clinical associations // Hepatology. ‒ 2014. ‒ Vol. 59, № 2. ‒ P. 661‒670. https://doi.org/10.1002/hep.26709.; Leo M., Ponziani F. R., Nesci A. et al. Low molecular weight heparin as cause of liver injury: case report and literature review // Eur. Rev. Med. Pharmacol. Sci. ‒ 2019. ‒ Vol. 23, № 17. ‒ P. 7649‒7654. https://doi.org/10.26355/eurrev_201909_18888.; Nguyen A., Dasgupta A., Wahed A. Management of hemostasis and coagulopathies for surgical and critically ill patients: an evidence-based approach 1st edition. ‒ Elsevier, Inc. ‒ 2016. ‒ P. 1-174.; Nissenson A. R., Fine R. N. Handbook of dialysis therapy. Philadelphia, PA. Elsevier, Inc. ‒ 2017. ‒ P. 1‒1171.; Robles-Diaz M., Isabel Lucena M., Kaplowitz N. et al. Use of hy’s law and a new composite algorithm to predict acute liver failure in patients with drug-induced liver injury // Gastroenterology. ‒ 2014. ‒ Vol. 147, № 1. ‒ P. 109‒118.e5. https://doi.org/10.1053/j.gastro.2014.03.050.; Sonnenblick M., Oren A., Jacobsonn W. Hyper-transaminasemia with heparin therapy // Br. Med. J. ‒ 1975. ‒ Vol. 3. ‒ P. 77. https://doi.org/10.1136/bmj.3.5975.77.; Thakkar S., Li T., Liu Z. et al. Drug-induced liver injury severity and toxicity (DILIst): binary classification of 1279 drugs by human hepatotoxicity // Drug. Discov. Today. ‒ 2019. ‒ Vol. 25, № 1. ‒ Р. 201‒208. https://doi.org/10.1016/j.drudis.2019.09.022.; Watkins P.B. Idiosyncratic drug-induced liver injury in patients: detection, severity assessment, and regulatory implications 1st edition // Advanc. Pharmacol. ‒ 2019. ‒ Vol. 85. ‒ P. 165‒193. https://doi.org/10.1016/bs.apha.2019.02.004.; https://www.vair-journal.com/jour/article/view/501

  15. 15
    Academic Journal

    المصدر: Obstetrics, Gynecology and Reproduction; Vol 15, No 1 (2021); 22-31 ; Акушерство, Гинекология и Репродукция; Vol 15, No 1 (2021); 22-31 ; 2500-3194 ; 2313-7347

    وصف الملف: application/pdf

    Relation: https://www.gynecology.su/jour/article/view/931/890; Cervera R., Piette J.C., Font J. et al. Antiphospholipid syndrome: clinical and immunologic manifestations and patterns of disease expression in a cohort of 1,000 patients. Arthritis Rheum. 2002;46(4):1019-27. https://doi.org/10.1002/art.10187.; Miyakis S., Lockshin M.D., Atsumi T. et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J Thromb Haemost. 2006;4(2):295-306. https://doi.org/10.1111/j.1538-12.7836.2006.01753.x.; Sciascia S., Sanna G., Murru V. et al. Anti-prothrombin (aPT) and antiphosphatidylserine/prothrombin (aPS/PT) antibodies and the risk of thrombosis in the antiphospholipid syndrome. A systematic review. Thromb Haemost. 2014;111(2):354-64. https://doi.org/10.1160/TH13-06-0509.; Reynaud Q., Lega J.C., Mismetti P. et al. Risk of venous and arterial thrombosis according to type of antiphospholipid antibodies in adults without systemic lupus erythematosus: A systematic review and metaanalysis. Autoimm Rev. 2014;13(6):595-608. https://doi.org/10.1016/j.autrev.2013.11.004.; Hoxha A., Mattia E., Tonello M. et al. Antiphosphatidylserine/prothrombin antibodies as biomarkers to identify severe primary antiphospholipid syndrome. Clin Chem Lab Med. 2017;55(6):890-8. https://doi.org/10.1515/cclm-2016-0638.; Becarevic M. The IgG and IgM isotypes of anti-annexin A5 antibodies: relevance for primary antiphospholipid syndrome. J Thromb Thrombolysis. 2016;42(4):552-7. https://doi.org/10.1007/s11239-016-1389-5.; Sebire N.J., Fox H., Backos M. et al. Defective endovascular trophoblast invasion in primary antiphospholipid antibody syndrome-associated early pregnancy failure. Hum Reprod. 2002;17(4):1067-71. https://doi.org/10.1093/humrep/17.4.1067.; Di Simone N., Marana R., Castellani R. et al. Decreased expression of heparin-binding epidermal growth factor-like growth factor as a newly identified pathogenic mechanism of antiphospholipid-mediated defective placentation. Arthritis Rheum. 2010;62(5):1504-12. https://doi.org/10.1002/art.27361.; Abrahams V.M., Chamley L.W., Salmon J.E. Emerging treatment models in rheumatology: antiphospholipid syndrome and pregnancy: pathogenesis to translation. Arthritis Rheum. 2017;69(9):1710-21. https://doi.org/10.1002/art.40136.; D'Ippolito S., Meroni P.L., Koike T. et al. Obstetric antiphospholipid syndrome: a recent classification for an old defined disorder. Autoimmun Rev. 2014;13(9):901-8. https://doi.org/10.1016/j.autrev.2014.05.004.; Holers V.M., Girardi G., Mo L. et al. Complement C3 activation is required for antiphospholipid antibody-induced fetal loss. J Exp Med. 2002;195(2):211-20. https://doi.org/10.1084/jem.200116116.; Levine A.B., Lockshin M.D. Antiphospholipid syndrome. In: Contraception and pregnancy in patients with rheumatic disease. Eds. L.R. Sammaritano, B.L. Bermas. New York, NY: Springer, 2014. 109-137.; Ruffatti A., Favaro M., Calligaro A. et al. Management of pregnant women with antiphospholipid antibodies. Expert Rev Clin Immunol. 2019;15(4):347-58. https://doi.org/10.1080/1744666X.2019.1565995.; Rai R., Cohen H., Dave M., Regan L. Randomised controlled trial of aspirin and aspirin plus heparin in pregnant women with recurrent miscarriage associated with phospholipid antibodies (or antiphospholipid antibodies). BMJ. 1997;314(7076):253-7. https://doi.org/10.1136/bmj.314.7076.253.; Mak A., Cheung M.W., Cheak A.A., Ho R.C. Combination of heparin and aspirin is superior to aspirin alone in enhancing live births in patients with recurrent pregnancy loss and positive anti-phospholipid antibodies: a meta-analysis of randomized controlled trials and meta-regression. Rheumatology (Oxford). 2010;49(2):281-8. https://doi.org/10.1093/rheumatology/kep373.; Bates S.M., Greer I.A., Middeldorp S. et al. VTE, thrombophilia, antithrombotic therapy, and pregnancy: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012;141(2 Suppl):e691S-e736S. https://doi.org/10.1378/chest.11-2300.; Gris J.C., Bouvier S., Molinari N. et al. Comparative incidence of a first thrombotic event in purely obstetric antiphospholipid syndrome with pregnancy loss: the NOH-APS observational study. Blood. 2012;119(11):2624-32. https://doi.org/10.1182/blood-2011-09-381913.; Thomsen A.J., Greer I.A. Thromboembolic disease in pregnancy and the puerperium: acute management (Green-top guideline no. 37b). Royal College of Obstetricians and Gynaecologists, 2015. 32 p. Available at: https://www.rcog.org.uk/globalassets/documents/guidelines/gtg-37b.pdf. [Accessed: 12.12.2019].; Bao S.H., Sheng S.L., Liao H. et al. Use of D-dimer measurement to guide anticoagulant treatment in recurrent pregnancy loss associated with antiphospholipid syndrome. Am J Reprod Immunol. 2017;78(6):e12770. https://doi.org/10.1111/aji.12770.; Erkan D., Patel S., Nuzzo M. et al. Management of the controversial aspects of the antiphospholipid syndrome pregnancies: a guide for clinicians and researchers. Rheumatology (Oxford). 2008;47(Suppl 3):iii23-7. https://doi.org/10.1093/rheumatology/ken181.; Ruffatti A., Salvan E., Del Ross T. et al. Treatment strategies and pregnancy outcomes in antiphospholipid syndrome patients with thrombosis and triple antiphospholipid positivity: a European multicentre retrospective study. Thromb Haemost. 2014;112(6):727-35. https://doi.org/10.1160/TH14120001.; Bramham K., Thomas M., Nelson-Piercy C. et al. First-trimester low-dose prednisolone in refractory antiphospholipid antibody-related pregnancy loss. Blood. 2011;117(25):6948-51. https://doi.org/10.1182/blood-2011-02-339234.; Mekinian A., Lazzaroni M.G., Kuzenko A. et al. The efficacy of hydroxychloroquine for obstetrical outcome in anti-phospholipid syndrome: data from a European multicenter retrospective study. Autoimmun Rev. 2015;14(6):498-502. https://doi.org/10.1016/j.autrev.2015.01.012.; Sciascia S., Hunt B.J., Talavera-Garcia E. et al. The impact of hydroxychloroquine treatment on pregnancy outcome in women with antiphospholipid antibodies. Am J Obstet Gynecol. 2016;214(2):273. e1-273.e8. https://doi.org/10.1016/j.ajog.2015.09.078.; Bertolaccini M.L., Contento G., Lennen R. et al. Complement inhibition by hydroxychloroquine prevents placental and fetal brain abnormalities in antiphospholipid syndrome. J Autoimmun. 2016;75:30-38. https://doi.org/10.1016/j.jaut.2016.04.008.; Mekinian A., Alijotas-Reig J., Carrat F. et al. Refractory obstetrical antiphospholipid syndrome: features, treatment and outcome in a European multicenter retrospective study. Autoimmun Rev. 2017;16(7):730-4. https://doi.org/10.1016/j.autrev.2017.05.006.; Saccone G., Berghella V., Maruotti G.M. et al. Antiphospholipid antibody profile based obstetric outcomes of primary antiphospholipid syndrome: the PREGNANTS study. Am J Obstet Gynecol. 2017;216(5):525.e1-525. e12. https://doi.org/10.1016/j.ajog.2017.01.026.; Empson M., Lassere M., Craig J., Scott J. Prevention of recurrent miscarriage for women with antiphospholipid antibody or lupus anticoagulant. Cochrane Database Syst Rev. 2005;18(2):CD002859. https://doi.org/10.1002/14651858.CD002859.pub2.; Tenti S., Cheleschi S., Guidelli G.M. et al. Intravenous immunoglobulins and antiphospholipid syndrome: how, when and why? A review of the literature. Autoimmun Rev. 2016;15(3):226-35. https://doi.org/10.1016/j.autrev.2015.11.009.; Branch D.W., Peaceman A.M., Druzin M. et al. A multicenter, placebo-controlled pilot study of intravenous immune globulin treatment of antiphospholipid syndrome during pregnancy. The Pregnancy Loss Study Group. Am J Obstet Gynecol. 2000;181(1 Pt 1):122-7. https://doi.org/10.1016/s0002-9378(00)70500-x.; Nakamura Y., Yoshida K., Itoh S. et al. Immunoadsorption plasmapheresis as a treatment for pregnancy complicated by systemic lupus erythematosus with positive antiphospholipid antibodies. Am J Reprod Immunol. 1999;41(5):307-11. https://doi.org/10.1111/j.1600-0897.1999.tb00443.x.; Bortolati M., Marson P., Chiarelli S. et al. Case reports of the use of immunoadsorption or plasma exchange in high-risk pregnancies of women with antiphospholipid syndrome. Ther Apher Dial. 2009;13(2):157-60. https://doi.org/10.1111/j.1744-9987.2009.00671.x.; Hauser A.C., Hauser L., Pabinger-Fasching I. et al. The course of anticardiolipin antibody levels under immunoadsorption therapy. Am J Kidney Dis. 2005;46(3):446-54. https://doi.org/10.1053/j.ajkd.2005.05.023.; El-Haieg D.O., Zanati M.F., El-Foual F.M. Plasmapheresis and pregnancy outcome in patients with antiphospholipid syndrome. Int J Gynaecol Obstet. 2007;99(3):236-41. https://doi.org/10.1016/j.ijgo.2007.05.045.; Ruffatti A., Marson P., Pengo V. et al. Plasma exchange in the management of high risk pregnant patients with primary antiphospholipid syndrome. A report of 9 cases and a review of the literature. Autoimmun Rev. 2007;6(3):196-202. https://doi.org/10.1016/j.autrev.2006.11.002.; Rose H.L., Ho W.K. Management of very high risk pregnancy with secondary anti-phospholipid syndrome and triple positivity to the antiphospholipid antibodies. J Thromb Thrombolysis. 2014;38(4):453-6. https://doi.org/10.1007/s11239-014-1080-7.; Mayer-Pickel K., Horn S., Lang U., Cervar-Zivkovic M. Response to plasmapheresis measured by angiogenic factors in a woman with antiphospholipid syndrome in pregnancy. Case Rep Obstet Gynecol. 2015;2015:123408. https://doi.org/10.1155/2015/123408.; Ruffatti A., Favaro M., Hoxha A. et al. Apheresis and intravenous immunoglobulins used in addition to conventional therapy to treat high-risk pregnant antiphospholipid antibody syndrome patients. A prospective study. J Reprod Immunol. 2016;115:14-9. https://doi.org/10.1016/j.jri.2016.03.004.; https://www.gynecology.su/jour/article/view/931

  16. 16
    Academic Journal

    المصدر: Obstetrics, Gynecology and Reproduction; Vol 15, No 4 (2021); 461-469 ; Акушерство, Гинекология и Репродукция; Vol 15, No 4 (2021); 461-469 ; 2500-3194 ; 2313-7347

    وصف الملف: application/pdf

    Relation: https://www.gynecology.su/jour/article/view/1061/926; Cartwright J.E., Fraser R., Leslie K. et al. Remodelling at the maternal-fetal interface: relevance to human pregnancy disorders. Reproduction. 2010;140(6):803-13. https://doi.org/10.1530/REP-10-0294.; Helmo F.R., Lopes A.M., Carneiro A.C. et al. Angiogenic and antiangiogenic factors in preeclampsia. Pathol Res Pract. 2018;214(1):7-14. https://doi.org/10.1016/j.prp.2017.10.021.; Yinon Y., Ben Meir E., Margolis L. et al. Low molecular weight heparin therapy during pregnancy is associated with elevated circulatory levels of placental growth factor. Placenta. 2015;36(2):121-4. https://doi.org/10.1016/j.placenta.2014.12.008.; Rodger M.A., Gris J.-C., de Vries J.I.P. et al; Low-Molecular-Weight Heparin for Placenta-Mediated Pregnancy Complications Study Group. Low-molecular-weight heparin and recurrent placenta-mediated pregnancy complications: a meta-analysis of individual patient data from randomised controlled trials. Lancet. 2016;388(10060):2629-41. https://doi.org/10.1016/S0140-6736(16)31139-4.; Cho N.H., Shaw J.E., Karuranga S. et al. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018;138:271-81. https://doi.org/10.1016/j.diabres.2018.02.023.; Wang B., Aw T.Y., Stokes K.Y. N-acetylcysteine attenuates systemic platelet activation and cerebral vessel thrombosis in diabetes. Redox Biol. 2018;14:218-28. https://doi.org/10.1016/j.redox.2017.09.005.; Chung W.S., Lin C.L., Kao C.H. Diabetes increases the risk of deep-vein thrombosis and pulmonary embolism. A population-based cohort study. Thromb Haemost. 2015;114(4):812-8. https://doi.org/10.1160/TH14-10-0868.; Wang P.C., Chen T.H., Chung C.M. et al. The effect of deep vein thrombosis on major adverse limb events in diabetic patients: a nationwide retrospective cohort study. Sci Rep. 2021;11(1):8082. https://doi.org/10.1038/s41598-021-87461-y.; ACOG Practice Bulletin No. 202: Gestational hypertension and preeclampsia. Obstet Gynecol. 2019;133:e1-25. https://doi.org/10.1097/AOG.0000000000003018.; Shastri M.D., Stewart N., Eapen M. et al. Opposing effects of low molecular weight heparins on the Release of inflammatory cytokines from peripheral blood mononuclear cells of asthmatics. PLoS One. 2015;10(3):e0118798. https://doi.org/10.1371/journal.pone.0118798.; Zhang N., Zhan Y., Shi P. et al. LMWH inhibits TNF-a and IL-6 in placental villous explants and its effects are attenuated by TLR-4/NF-kB p65 blocking in JEG-3 cells. Int J Clin Exp Med. 2018;11:674-83.; Wat J.M., Hawrylyshyn K., Baczyk D. et al. Effects of glycol-split low molecular weight heparin on placental, endothelial, and anti-inflammatory pathways relevant to preeclampsia. Biol Reprod. 2018;99(5):1082-90. https://doi.org/10.1093/biolre/ioy127.; McLaughlin K. et al. Low molecular weight heparin improves endothelial function in pregnant women at high risk of preeclampsia. Hypertension. 2017;69(1):180-8. https://doi.org/10.1161/HYPERTENSIONAHA.116.08298.; Yan Y., Ji Y., Su N. et al. Non-anticoagulant effects of low molecular weight heparins in inflammatory disorders: A review. Carbohydr Polym. 2017;160:71-81. https://doi.org/10.1016/j.carbpol.2016.12.037.; Yang C., Wu T., Huang C. Low molecular weight heparin reduces triglyceride, VLDL and cholesterol/HDL levels in hyperlipidemic diabetic patients on hemodialysis. Am J Nephrol. 1998;18(5):384-90. https://doi.org/10.1159/000013381.; Rodger M.A., Langlois N.J., de Vries J.I. et al. Low-molecular-weight heparin for prevention of placenta-mediated pregnancy complications: protocol for a systematic review and individual patient data meta-analysis (AFFIRM). Syst Rev. 2014;3:69. https://doi.org/10.1186/2046-4053-3-69.; Bujold E., Roberge S., Lacasse Y. et al. Prevention of preeclampsia and intrauterine growth restriction with aspirin started in early pregnancy: a meta-analysis. Obstet Gynecol. 2010;116(2 Pt 1):402-14. https://doi.org/10.1097/AOG.0b013e3181e9322a.; Bouvier S., Fortier M., Vincent L. et al. NETosis markers in pregnancy: effects differ according to histone subtypes. Thromb Haemost. 2021;121(7):877-90. https://doi.org/10.1055/s-0040-1722225.; Lindmark E., Siegbahn A. Tissue factor regulation and cytokine expression in monocyte-endothelial cell co-cultures: effects of a statin, an ACE-inhibitor and a low-molecular-weight heparin. Thromb Res. 2002;108(1):77-84. https://doi.org/10.1016/s0049-3848(02)00401-2.; Momot A.P., Nikolaeva M.G., Elykomov V.A., Momot K.A. The role of APC-resistance for predicting venous thrombosis and pregnancy complications in carriers of factor V Leiden (1691) G/A mutation. In: Pregnancy and Birth Outcomes. Groatia, 2018. 33-56. https://doi.org/10.5772/intechopen.72210.; Momot A.P., Nikolaeva M.G., Yasafova N.N. et al. Clinical and laboratory manifestations of the prothrombin gene mutation in women of reproductive age. J Blood Med. 2019;10:255-63. https://doi.org/10.2147/JBM.S212759.; Nikolaeva M.G., Momot A.P., Zainulina M.S. et al. Pregnancy complications in G20210A mutation carriers associated with high prothrombin activity. Thrombosis J. 2020;19:41. https://doi.org/10.1186/s12959-021-00289-4.; Momot A.P., Nikolaeva M.G., Zainulina M.S. Effects of low-molecular heparin on pregnant women with factor V mutation (GA genotype). J Hematol Blood Transfus Disord. 2018;5:20. https://doi.org/10.24966/HBTD-2999/100020(6).; Nikolaeva M.G., Vakhlova Zh.I. Gene thrombophilia carriers in Altai Krai. Software registration certificate №2020663009. 2020.; https://www.gynecology.su/jour/article/view/1061

  17. 17
    Academic Journal

    المصدر: Obstetrics, Gynecology and Reproduction; Vol 15, No 3 (2021); 225-227 ; Акушерство, Гинекология и Репродукция; Vol 15, No 3 (2021); 225-227 ; 2500-3194 ; 2313-7347

    وصف الملف: application/pdf

    Relation: https://www.gynecology.su/jour/article/view/1002/911; Хизроева Д.Х., Макацария А.Д., Бицадзе В.О. и др. Лабораторный мониторинг COVID-19 и значение определения маркеров коагулопатии. Акушерство, Гинекология и Репродукция. 2020;14(2):132–47. https://doi.org/10.17749/2313-7347.141.; Тамм М.В. Коронавирусная инфекция в Москве: прогнозы и сценарии. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2020;13(1):43–51. https://doi.org/10.17749/2070-4909.2020.13.1.43-51.; Гончарова Е.В., Донников А.Е., Кадочникова В.В. и др. Диагностика вируса, вызывающего COVID-19, методом ПЦР в реальном времени. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2020;13(1):52–63. https://doi.org/10.17749/2070-4909.2020.13.1.52-63.; Макацария А.Д., Бицадзе В.О., Хизроева Д.Х. и др. Новая коронавирусная инфекция (COVID-19) и группы риска в акушерстве и гинекологии. Акушерство, Гинекология и Репродукция. 2020;14(2):159–62. https://doi.org/10.17749/2313-7347.133.; Макацария А.Д., Григорьева К.Н., Мингалимов М.А. и др. Коронавирусная инфекция (COVID-19) и синдром диссеминированного внутрисосудистого свертывания. Акушерство, Гинекология и Репродукция. 2020;14(2):123–31. https://doi.org/10.17749/2313-7347.132.; Юпатов Е.Ю., Мальцева Л.И., Замалеева Р.С. и др. Новая коронавирусная инфекция COVID-19 в практике акушера-гинеколога: обзор современных данных и рекомендаций. Акушерство, Гинекология и Репродукция. 2020;14(2):148–58. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2020.142.; Grandone E., Di Micco P.P., Villani M. et al. Venous thromboembolism in women undergoing assisted reproductive technologies: data from the RIETE registry. Thromb Haemost. 2018;118(11):1962–8. https://doi.org/10.1055/s-0038-1673402.; Croles F.N., Nasserinejad K., Duvekot J.J. et al. Pregnancy, thrombophilia, and the risk of a first venous thrombosis: systematic review and bayesian meta-analysis. BMJ. 2017;359:j4452. https://doi.org/10.1136/bmj.j4452.; Gerotziafas G.T., Catalano M., Colgan M.-P. et al. Guidance for the management of patients with vascular disease or cardiovascular risk factors and COVID-19: position paper from VAS-European Independent Foundation in Angiology/Vascular Medicine. Thromb Haemost. 2020;120(12):1597–628. https://doi.org/10.1055/s-0040-1715798.; Billett H.H., Reyes-Gil M., Szymanski J. et al. Anticoagulation in COVID-19: effect of enoxaparin, heparin, and apixaban on mortality. Thromb Haemost. 2020;120(12):1691–9. https://doi.org/10.1055/s-0040-1720978.; Mycroft-West C.J., Su D., Pagani I. et al. Heparin inhibits cellular invasion by SARS-CoV-2: structural dependence of the interaction of the spike S1 receptor-binding domain with heparin. Thromb Haemost. 2020;120(12):1700–15. https://doi.org/10.1055/s-0040-1721319.; Bikdeli B., Madhavan M.V., Gupta A. et al. Pharmacological agents targeting thromboinflammation in COVID-19: review and implications for future research. Thromb Haemost. 2020;120(7):1004–24. https://doi.org/10.1055/s-0040-1713152.; Drouet L., Harenberg J., Torri G. The multiple faces of heparin: opportunities in COVID-19 infection and beyond. Thromb Haemost. 2020;120(10):1347–50. https://doi.org/10.1055/s-0040-1716543.; https://www.gynecology.su/jour/article/view/1002

  18. 18
    Academic Journal

    المصدر: Meditsinskiy sovet = Medical Council; № 4S (2021); 87-93 ; Медицинский Совет; № 4S (2021); 87-93 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/6214/5652; Agnelli G., Verso M. Management of Venous Thromboembolism in Patients with Cancer. J Thromb Haemost. 2011;9(1):316–324. doi:10.1111/ j.1538-78 36.2011.04346.x.; Ogren M., Bergqvist D., Wåhlander K., Eriksson H., Sternby N.H. Trousseau’s Syndrome – What Is the Evidence? A Population- Based Autopsy Study. Thromb Haemost. 2006;95(3):541–545. doi:10.1160/TH05-10-0694.; Wun T., White R.H. Epidemiology of Cancer- Related Venous Thromboembolism. Best Pract Res Clin Haematol. 2009;22(1):9–23. doi:10.1016/j.beha.2008.12.001.; Shaib W., Deng Y., Zilterman D., Lundberg B., Saif M.W. Assessing Risk and Mortality of Venous Thromboembolism in Pancreatic Cancer Patients. Anticancer Res. 2010;30(10):4261–4264. Available at: https://ar.iiarjournals. org/content/30/10/4261.long.; Magnus N., D’Asti E., Meehan B., Garnier D., Rak J. Oncogenes and the Coagulation System – Forces that Modulate Dormant and Aggressive States in Cancer. Thromb Res. 2014;133(Suppl 2):S1–S9. doi:10.1016/S0049-3848(14)50001-1.; Falanga A., Marchetti M. Hemostatic Biomarkers in Cancer Progression. Thromb Res. 2018;164(Suppl 1):S54–S61. doi:10.1016/j.thromres.2018.01.017 .; Cedervall J., Hamidi A., Olsson A.K. Platelets, NETs and Cancer. Thromb Res. 2018;164(Suppl 1):S148–S152. doi:10.1016/j.thromres.2018.01.049.; Mir Seyed Nazari P., Riedl J., Pabinger I., Ay C. The Role of Podoplanin in Cancer- Associated Thrombosis. Thromb Res. 2018;164(Suppl 1):S34–S39. doi:10.1016/j.thromres.2018.01.020.; Ten Cate H., Falanga A. Overview of the Postulated Mechanisms Linking Cancer and Thrombosis. Pathophysiol Haemost Thromb. 2008;36(3–4): 122–130. doi:10.1159/000175150.; Agnelli G, Verso M. Thromboprophylaxis during Chemotherapy in Patients with Advanced Cancer. Thromb Res. 2010;125(Suppl 2):S17–S20. doi:10.1016/S0049-3848(10)70007-4.; Российские клинические рекомендации по диагностике, лечению и профилактике венозных тромбоэмболических осложнений (ВТЭО). Флебология. 2015;9(4–2):2–52. Режим доступа: https://phlebology-sro.ru/ upload/iblock/1bf/1_diagnostika_-lechenie-i-profilaktika- venoznykhtromboembolicheskikh- oslozhneniy.pdf.; Franchini M., Bonfanti C., Lippi G. Cancer- Associated Thrombosis: Investigating the Role of New Oral Anticoagulants. Thromb Res. 2015;135(5):777–781. doi:10.1016/j.thromres.2015.02.024.; Watson H.G., Keeling D.M., Laffan M., Tait R.C., Makris M. Guideline on Aspects of Cancer- Related Venous Thrombosis. Br J Haematol. 2015;170(5):640–648. doi:10.1111/bjh.13556.; Khorana A.A., Carrier M., Garcia D.A., Lee A.Y. Guidance for the Prevention and Treatment of Cancer- Associated Venous Thromboembolism. J Thromb Thrombolysis. 2016;41(1):81–91. doi:10.1007/s11239-015-1313-4.; Gran O.V., Brækkan S.K., Hansen J.B. Prothrombotic Genotypes and Risk of Venous Thromboembolism in Cancer. Thromb Res. 2018;164(Suppl 1):S12–S18.doi:10.1016/j.thromres.2017.12.025.; Timp J.F., Braekkan S.K., Versteeg H.H., Cannegieter S.C. Epidemiology of Cancer- Associated Venous Thrombosis. Blood. 2013;122(10):1712–1723. doi:10.1182/blood-2013-04-460121.; Remiker A.S., Palumbo J.S. Mechanisms Coupling Thrombin to Metastasis and Tumorigenesis. Thromb Res. 2018;164(Suppl 1):S29–S33. doi:10.1016/j.thromres.2017.12.020.; Barni S., Bonizzoni E., Verso M., Gussoni G., Petrelli F., Perrone T., Agnelli G. The Effect of Low- Molecular- Weight Heparin in Cancer Patients: The Mirror Image of Survival? Blood. 2014;124(1):155–156. doi:10.1182/blood-2014-03-561761.; Kearon C., Akl E.A., Ornelas J., Blaivas A., Jimenez D., Bounameaux H. et al. Antithrombotic Therapy for VTE Disease: CHEST Guideline and Expert Panel Report. Chest. 2016;149(2):315–352. doi:10.1016/j.chest.2015.11.026.; Hirsh J., Warkentin T.E., Shaughnessy S.G., Anand S.S., Halperin J.L., Raschke R. et al. Heparin and low- Molecular- Weight Heparin: Mechanisms of Action, Pharmacokinetics, Dosing, Monitoring, Efficacy, and Safety. Chest. 2001;119(1 Suppl):64S–94S. doi:10.1378/chest.119.1_suppl.64s.; Сомонова О. В., Антух Э. А., Долгушин Б. И., Елизарова А. Л., Сакаева Д. Д., Сельчук В. Ю. и др. Практические рекомендации по профилактике и лечению тромбоэмболических осложнений у онкологических больных. Злокачественные опухоли. 2020;10(3s2–2):131–140. doi:10.18027/2224-5057-2020-10-3s2-47. doi:10.18027/2224-5057-2020-10-3s2-47 .; Lee A.Y., Levine M.N., Baker R.I., Bowden C., Kakkar A.K., Prins M. et al. Low- Molecular- Weight Heparin Versus a Coumarin for the Prevention of Recurrent Venous Thromboembolism in Patients With Cancer. N Engl J Med. 2003;349(2):146–153. doi:10.1056/NEJMoa025313.; Woodruff S., Lee A.Y.Y., Carrier M., Feugère G., Abreu P., Heissler J. Low- Molecular- Weight- Heparin Versus a Coumarin for the Prevention of Recurrent Venous Thromboembolism in High- and Low- Risk Patients with Active Cancer: A Post Hoc Analysis of the CLOT Study. J Thromb Thrombolysis. 2019;47(4):495–504. doi:10.1007/s11239-01901833-w.; Piran S., Schulman S. Management of Recurrent Venous Thromboembolism in Patients with Cancer: A Review. Thromb Res. 2018;164(Suppl 1):S172–S177. doi:10.1016/j.thromres.2017.12.019.; Kyrle P.A. Predicting Recurrent Venous Thromboembolism in Cancer: Is It Possible? Thromb Res. 2014;133 Suppl 2:S17–22. doi:10.1016/ S0049-3848(14)50003-5.; Lee A.Y.Y. Overview of VTE Treatment in Cancer According to Clinical Guidelines. Thromb Res. 2014;133(Suppl 2):S17–22. doi:10.1016/ j.thromres.2018.01.002.; Verso M., Franco L., Giustozzi M., Becattini C., Agnelli G. Treatment of Venous Thromboembolism in Patients with Cancer: What News from Clinical trials? Thromb Res. 2018;164(Suppl 1):S168–S171. doi:10.1016/ j.thromres.2018.01.031.; Khorana A.A., Noble S., Lee A.Y.Y., Soff G., Meyer G., O’Connell C., Carrier M. Role of Direct Oral Anticoagulants in the Treatment of Cancer- Associated Venous Thromboembolism: Guidance from the SSC of the ISTH. J Thromb Haemost. 2018;16(9):1891–1894. doi:10.1111/jth.14219.; Key N.S., Khorana A.A., Kuderer N.M., Bohlke K., Lee A.Y.Y., Arcelus J.I. et al. Venous Thromboembolism Prophylaxis and Treatment in Patients With Cancer: ASCO Clinical Practice Guideline Update. J Clin Oncol. 2020;38(5):496–520. doi:10.1200/JCO.19.01461.; Streiff M.B., Holmstrom B., Angelini D., Ashrani A., Bockenstedt P.L., Chesney C. et al. NCCN Guidelines Insights: Cancer- Associated Venous Thromboembolic Disease, Version 2.2018. J Natl Compr Canc Netw. 2018;16(11):1289–1303. doi:10.6004/jnccn.2018.0084.; https://www.med-sovet.pro/jour/article/view/6214

  19. 19
    Academic Journal
  20. 20