يعرض 1 - 4 نتائج من 4 نتيجة بحث عن '"М. Ю. Шантаревич"', وقت الاستعلام: 0.31s تنقيح النتائج
  1. 1
    Academic Journal

    المصدر: Medical Visualization; Том 27, № 3 (2023); 84-93 ; Медицинская визуализация; Том 27, № 3 (2023); 84-93 ; 2408-9516 ; 1607-0763

    وصف الملف: application/pdf

    Relation: https://medvis.vidar.ru/jour/article/view/1372/830; Allemani C., Matsuda T., Di Carlo V. et al. CONCORD Working Group. Global surveillance of trends in cancer survival 2000-14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet. 2018; 391 (10125): 1023–1075. https://doi.org/10.1016/S0140-6736(17)33326-3; Hassanipour S., Vali M., Gaffari-Fam S. et al. The survival rate of hepatocellular carcinoma in Asian countries: a systematic review and meta-analysis. EXCLI J. 2020; 19: 108–130. https://doi.org/10.17179/excli2019-1842; Siegel R., Naishadham D., Jemal A. Cancer statistics. 2013. CA Cancer J. Clin. 2013; 63: 11–30. https://doi.org/10.3322/caac.21166; Кармазановский Г.Г., Шантаревич М.Ю. Обзор международных клинических рекомендаций и результатов клинических исследований по диагностике гепатоцеллюлярного рака за 2014–2020 годы. Анналы хирургической гепатологии. 2021; 26 (1): 12–24. https://doi.org/10.16931/1995-5464.2021112-24.; Ломовцева К.Х. Дифференциальная диагностика образований печени солидной структуры: роль диффузионно-взвешенных изображений и гепатоспецифичных контрастных средств: Дис. . канд. мед. наук. М., 2018. 117 с.; Ломовцева К.Х., Кармазановский Г.Г. Диффузионновзвешенные изображения при очаговой патологии печени: обзор литературы. Медицинская визуализация. 2015; 6: 50–60.; Semaan S., ViettiVioli N., Lewis S. et al. Hepatocellular carcinoma detection in liver cirrhosis: diagnostic performance of contrast-enhanced CT vs. MRI with extracellular contrast vs. gadoxetic acid. Eur. Radiol. 2020; 30 (2): 1020–1030. https://doi.org/10.1007/s00330-019-06458-4. PMID: 31673837; An C., Lee C.H., Byun J.H. et al. Intraindividual comparison between gadoxetate-enhanced magnetic resonance imaging and dynamic computed tomography for characterizing focal hepatic lesions: a multicenter, multireader study. Korean J. Radiol. 2019; 20 (12): 1616–1626. https://doi.org/10.3348/kjr.2019.0363; Omata M., Cheng A.L., Kokudo N. et al. Asia-Pacific clinical practice guidelines on the management of hepatocellular carcinoma: a 2017 update. Hepatol. Int. 2017; 11 (4): 317–370. https://doi.org/10.1007/s12072-017-9799-9. PMID: 28620797; PMCID: PMC5491694; Гайдель А.В., Зельтер, П.М., Капишников А.В., Храмов А.Г. Возможности текстурного анализа компьютерных томограмм в диагностике хронической обструктивной болезни. Компьютерная оптика. 2014; 38 (4): 843–850.; Гайдель А.В., Первушкин С.С. Исследование текстурных признаков для диагностики заболеваний костной ткани по рентгеновским изображениям. Компьютерная оптика. 2013; 37.1: 113–119.; Park H.J., Park B., Lee S.S. Radiomics and Deep Learning: Hepatic Applications. Korean J. Radiol. 2020; 21 (4): 387–401. https://doi.org/10.3348/kjr.2019.0752; Ganeshan B., Miles K.A. Quantifying tumour heterogeneity with CT. Cancer Imaging. 2013; 13 (1): 140–149. https://doi.org/10.1102/1470-7330.2013.0015. PMID: 23545171; PMCID: PMC3613789.; Liang W., Shao J., Liu W. et al. Differentiating Hepatic Epithelioid Angiomyolipoma From Hepatocellular Carcinoma and Focal Nodular Hyperplasia via Radiomics Models. Front. Oncol. 2020; 10: 564307. https://doi.org/10.3389/fonc.2020.564307; Liu X., Jiang H., Chen J. et al. Gadoxetic acid disodiumenhanced magnetic resonance imaging outperformed multidetector computed tomography in diagnosing small hepatocellular carcinoma: A meta-analysis. Liver Transpl. 2017; 23 (12): 1505–1518. https://doi.org/10.1002/lt.24867; Oh J., Lee J.M., Park J. et al. Hepatocellular Carcinoma: Texture Analysis of Preoperative Computed Tomography Images Can Provide Markers of Tumor Grade and DiseaseFree Survival. Korean J. Radiol. 2019; 20 (4): 569–579. https://doi.org/10.3348/kjr.2018.0501; Wu M., Tan H., Gao F. et al. Predicting the grade of hepatocellular carcinoma based on non-contrast-enhanced MRI radiomics signature. Eur. Radiol. 2019; 29 (6): 2802–2811. https://doi.org/10.1007/s00330-018-5787-2; Шантаревич М.Ю., Кармазановский Г.Г. Применение текстурного анализа КТ и МР-изображений для определения степени дифференцировки гепатоцеллюлярного рака и его дифференциальной диагностики: обзор литературы. Research'n Practical Medicine Journal. 2022; 9 (3): 129–144.; WHO Classification of Tumours 5th Edition Digestive System Tumours by WHO Classification of Tumours Editorial Board; Nioche C., Orlhac F., Boughdad S. et al. LIFEx: a freeware for radiomic feature calculation in multimodality imaging to accelerate advances in the characterization of tumor heterogeneity. Cancer Res. 2018; 78 (16): 4786–4789. https://doi.org/10.1158/0008-5472.CAN-18-0125; Mao B., Zhang L., Ning P. et al. Preoperative prediction for pathological grade of hepatocellular carcinoma via machine learning-based radiomics. Eur. Radiol. 2020; 30 (12): 6924–6932. https://doi.org/10.1007/s00330-020-07056-5; Liu X., Khalvati F., Namdar K. et al. Can machine learning radiomics provide pre-operative differentiation of combined hepatocellular cholangiocarcinoma from hepatocellular carcinoma and cholangiocarcinoma to inform optimal treatment planning? Eur. Radiol. 2021; 31 (1): 244–255. https://doi.org/10.1007/s00330-020-07119-7; Meng X.P., Wang Y.C., Zhou J.Y. et al. Comparison of MRI and CT for the prediction of microvascular invasion in solitary hepatocellular carcinoma based on a nonradiomics and radiomics method: which imaging modality is better? J. Magn. Reson. Imaging. 2021; 54 (2): 526–536. https://doi.org/10.1002/jmri.27575.; Hu H.T., Shan Q.Y., Chen S.L. et al. CT-based radiomics for preoperative prediction of early recurrent hepatocellular carcinoma: technical reproducibility of acquisition and scanners. Radiol. Med. 2020; 125 (8): 697–705. https://doi.org/10.1007/s11547-020-01174-2; Shafiq-Ul-Hassan M., Zhang G.G., Latifi K. et al. Intrinsic dependencies of CT radiomic features on voxel size and number of gray levels. Medical physics. 201744 (3): 1050–1062. https://doi.org/10.1002/mp.12123; Sun R., Limkin E.J., Vakalopoulou M., et al. A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study. Lancet Oncol. 2018; 19 (9): 1180–1191. https://doi.org/10.1016/S1470-2045(18)30413-3; https://medvis.vidar.ru/jour/article/view/1372

  2. 2
    Academic Journal

    المصدر: Research and Practical Medicine Journal; Том 9, № 3 (2022); 129-144 ; Research'n Practical Medicine Journal; Том 9, № 3 (2022); 129-144 ; 2410-1893 ; 10.17709/2410-1893-2022-9-3

    وصف الملف: application/pdf

    Relation: https://www.rpmj.ru/rpmj/article/view/783/501; https://www.rpmj.ru/rpmj/article/downloadSuppFile/783/599; https://www.rpmj.ru/rpmj/article/downloadSuppFile/783/600; https://www.rpmj.ru/rpmj/article/downloadSuppFile/783/601; Состояние онкологической помощи населению России в 2019 году. Под ред. Каприна А. Д., Старинского В. В, Шахзадовой А. О. М.: МНИОИ им. П. А. Герцена − филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2020, 252 с.; Hanna RF, Miloushev VZ, Tang A, Finklestone LA, Brejt SZ, Sandhu RS, et al. Comparative 13-year meta-analysis of the sensitivity and positive predictive value of ultrasound, CT, and MRI for detecting hepatocellular carcinoma. Abdom Radiol (NY). 2016 Jan;41(1):71–90. https://doi.org/10.1007/s00261-015-0592-8; An C, Lee CH, Byun JH, Lee MH, Jeong WK, Choi SH, et al. Intraindividual Comparison between Gadoxetate-Enhanced Magnetic Resonance Imaging and Dynamic Computed Tomography for Characterizing Focal Hepatic Lesions: A Multicenter, Multireader Study. Korean J Radiol. 2019 Dec;20(12):1616–1626. https://doi.org/10.3348/kjr.2019.0363; Martins-Filho SN, Paiva C, Azevedo RS, Alves VAF. Histological Grading of Hepatocellular Carcinoma-A Systematic Review of Literature. Front Med (Lausanne). 2017;4:193. https://doi.org/10.3389/fmed.2017.00193; Okusaka T, Okada S, Ueno H, Ikeda M, Shimada K, Yamamoto J, et al. Satellite lesions in patients with small hepatocellular carcinoma with reference to clinicopathologic features. Cancer. 2002 Nov 1;95(9):1931–1937. https://doi.org/10.1002/cncr.10892; Nishie A, Yoshimitsu K, Okamoto D, Tajima T, Asayama Y, Ishigami K, et al. CT prediction of histological grade of hypervascular hepatocellular carcinoma: utility of the portal phase. Jpn J Radiol. 2013 Feb;31(2):89–98. https://doi.org/10.1007/s11604-012-0149-5; Ломовцева К. Х. Дифференциальная диагностика образований печени солидной структуры: роль диффузионно-взвешенных изображений и гепатоспецифичных контрастных средств: Дисс. … канд. мед. наук. М., 2018, 140 с.; Jeong WK, Jamshidi N, Felker ER, Raman SS, Lu DS. Radiomics and radiogenomics of primary liver cancers. Clin Mol Hepatol. 2019 Mar;25(1):21–29. https://doi.org/10.3350/cmh.2018.1007; Oh J, Lee JM, Park J, Joo I, Yoon JH, Lee DH, et al. Hepatocellular Carcinoma: Texture Analysis of Preoperative Computed Tomography Images Can Provide Markers of Tumor Grade and Disease-Free Survival. Korean J Radiol. 2019 Apr;20(4):569–579. https://doi.org/10.3348/kjr.2018.0501; Mao B, Zhang L, Ning P, Ding F, Wu F, Lu G, et al. Preoperative prediction for pathological grade of hepatocellular carcinoma via machine learning-based radiomics. Eur Radiol. 2020 Dec;30(12):6924–6932. https://doi.org/10.1007/s00330-020-07056-5; Chen W, Zhang T, Xu L, Zhao L, Liu H, Gu LR, et al. Radiomics Analysis of Contrast-Enhanced CT for Hepatocellular Carcinoma Grading. Front Oncol. 2021;11:660509. https://doi.org/10.3389/fonc.2021.660509; Wu M, Tan H, Gao F, Hai J, Ning P, Chen J, et al. Predicting the grade of hepatocellular carcinoma based on non-contrast-enhanced MRI radiomics signature. Eur Radiol. 2019 Jun;29(6):2802–2811. https://doi.org/10.1007/s00330-018-5787-2; Geng Z, Zhang Y, Wang S, Li H, Zhang C, Yin S, et al. Radiomics Analysis of Susceptibility Weighted Imaging for Hepatocellular Carcinoma: Exploring the Correlation between Histopathology and Radiomics Features. Magn Reson Med Sci. 2021 Sep 1;20(3):253–263. https://doi.org/10.2463/mrms.mp.2020-0060; Chen W, DelProposto Z, Liu W, Kassir M, Wang Z, Zhao J, et al. Susceptibility-weighted imaging for the noncontrast evaluation of hepatocellular carcinoma: a prospective study with histopathologic correlation. PLoS One. 2014;9(5):e98303. https://doi.org/10.1371/journal.pone.0098303; Yang S, Lin J, Lu F, Han Z, Fu C, Gu H. Use of Ultrasmall Superparamagnetic Iron Oxide Enhanced Susceptibility Weighted Imaging and Mean Vessel Density Imaging to Monitor Antiangiogenic Effects of Sorafenib on Experimental Hepatocellular Carcinoma. Contrast Media Mol Imaging. 2017;2017:9265098. https://doi.org/10.1155/2017/9265098; Zhou W, Zhang L, Wang K, Chen S, Wang G, Liu Z, et al. Malignancy characterization of hepatocellular carcinomas based on texture analysis of contrast-enhanced MR images. J Magn Reson Imaging. 2017 May;45(5):1476–1484. https://doi.org/10.1002/jmri.25454; Feng M, Zhang M, Liu Y, Jiang N, Meng Q, Wang J, et al. Texture analysis of MR images to identify the differentiated degree in hepatocellular carcinoma: a retrospective study. BMC Cancer. 2020 Jun 30;20(1):611. https://doi.org/10.1186/s12885-020-07094-8; Yang X, Yuan C, Zhang Y, Wang Z. Magnetic resonance radiomics signatures for predicting poorly differentiated hepatocellular carcinoma: A SQUIRE-compliant study. Medicine (Baltimore). 2021 May 14;100(19):e25838. https://doi.org/10.1097/MD.0000000000025838; Mokrane FZ, Lu L, Vavasseur A, Otal P, Peron JM, Luk L, et al. Radiomics machine-learning signature for diagnosis of hepatocellular carcinoma in cirrhotic patients with indeterminate liver nodules. Eur Radiol. 2020 Jan;30(1):558–570. https://doi.org/10.1007/s00330-019-06347-w; Zhong X, Tang H, Lu B, You J, Piao J, Yang P, et al. Differentiation of Small Hepatocellular Carcinoma From Dysplastic Nodules in Cirrhotic Liver: Texture Analysis Based on MRI Improved Performance in Comparison Over Gadoxetic Acid-Enhanced MR and Diffusion-Weighted Imaging. Front Oncol. 2019;9:1382. https://doi.org/10.3389/fonc.2019.01382; Zhong X, Guan T, Tang D, Li J, Lu B, Cui S, et al. Differentiation of small (≤ 3 cm) hepatocellular carcinomas from benign nodules in cirrhotic liver: the added additive value of MRI-based radiomics analysis to LI-RADS version 2018 algorithm. BMC Gastroenterol. 2021 Apr 7;21(1):155. https://doi.org/10.1186/s12876-021-01710-y; Raman SP, Schroeder JL, Huang P, Chen Y, Coquia SF, Kawamoto S, et al. Preliminary data using computed tomography texture analysis for the classification of hypervascular liver lesions: generation of a predictive model on the basis of quantitative spatial fre quency measurements--a work in progress. J Comput Assist Tomogr. 2015 Jun;39(3):383–395. https://doi.org/10.1097/RCT.0000000000000217; Stocker D, Marquez HP, Wagner MW, Raptis DA, Clavien PA, Boss A, et al. MRI texture analysis for differentiation of malignant and benign hepatocellular tumors in the non-cirrhotic liver. Heliyon. 2018 Nov;4(11):e00987. https://doi.org/10.1016/j.heliyon.2018.e00987; Wu J, Liu A, Cui J, Chen A, Song Q, Xie L. Radiomics-based classification of hepatocellular carcinoma and hepatic haemangioma on precontrast magnetic resonance images. BMC Med Imaging. 2019 Mar 11;19(1):23. https://doi.org/10.1186/s12880-019-0321-9; Nie P, Yang G, Guo J, Chen J, Li X, Ji Q, et al. A CT-based radiomics nomogram for differentiation of focal nodular hyperplasia from hepatocellular carcinoma in the non-cirrhotic liver. Cancer Imaging. 2020 Feb 24;20(1):20. https://doi.org/10.1186/s40644-020-00297-z; Nie P, Wang N, Pang J, Yang G, Duan S, Chen J, et al. CT-Based Radiomics Nomogram: A Potential Tool for Differentiating Hepatocellular Adenoma From Hepatocellular Carcinoma in the Noncirrhotic Liver. Acad Radiol. 2021 Jun;28(6):799–807. https://doi.org/10.1016/j.acra.2020.04.027; Song S, Li Z, Niu L, Zhou X, Wang G, Gao Y, et al. Hypervascular hepatic focal lesions on dynamic contrast-enhanced CT: preliminary data from arterial phase scans texture analysis for classification. Clin Radiol. 2019 Aug;74(8):653.e11–653.e18. https://doi.org/10.1016/j.crad.2019.05.010; Oyama A, Hiraoka Y, Obayashi I, Saikawa Y, Furui S, Shiraishi K, et al. Hepatic tumor classification using texture and topology analysis of non-contrast-enhanced three-dimensional T1-weighted MR images with a radiomics approach. Sci Rep. 2019 Jun 19;9(1):8764. https://doi.org/10.1038/s41598-019-45283-z; Li Z, Mao Y, Huang W, Li H, Zhu J, Li W, et al. Texture-based classification of different single liver lesion based on SPAIR T2W MRI images. BMC Med Imaging. 2017 Jul 13;17(1):42. https://doi.org/10.1186/s12880-017-0212-x; Liang W, Shao J, Liu W, Ruan S, Tian W, Zhang X, et al. Differentiating Hepatic Epithelioid Angiomyolipoma From Hepatocellular Carcinoma and Focal Nodular Hyperplasia via Radiomics Models. Front Oncol. 2020;10:564307. https://doi.org/10.3389/fonc.2020.564307; Liu X, Khalvati F, Namdar K, Fischer S, Lewis S, Taouli B, et al. Can machine learning radiomics provide pre-operative differentiation of combined hepatocellular cholangiocarcinoma from hepatocellular carcinoma and cholangiocarcinoma to inform optimal treatment planning? Eur Radiol. 2021 Jan;31(1):244–255. https://doi.org/10.1007/s00330-020-07119-7; Mackin D, Fave X, Zhang L, Fried D, Yang J, Taylor B, et al. Measuring Computed Tomography Scanner Variability of Radiomics Features. Invest Radiol. 2015 Nov;50(11):757–765. https://doi.org/10.1097/RLI.0000000000000180; Hu HT, Shan QY, Chen SL, Li B, Feng ST, Xu EJ, et al. CT-based radiomics for preoperative prediction of early recurrent hepatocellular carcinoma: technical reproducibility of acquisition and scanners. Radiol Med. 2020 Aug;125(8):697–705. https://doi.org/10.1007/s11547-020-01174-2; Mackin D, Ger R, Dodge C, Fave X, Chi PC, Zhang L, et al. Effect of tube current on computed tomography radiomic features. Sci Rep. 2018 Feb 5;8(1):2354. https://doi.org/10.1038/s41598-018-20713-6; Park HJ, Park B, Lee SS. Radiomics and Deep Learning: Hepatic Applications. Korean J Radiol. 2020 Apr;21(4):387–401. https://doi.org/10.3348/kjr.2019.0752; Li Y, Tan G, Vangel M, Hall J, Cai W. Influence of feature calculating parameters on the reproducibility of CT radiomic features: a thoracic phantom study. Quant Imaging Med Surg. 2020 Sep;10(9):1775–1785. https://doi.org/10.21037/qims-19-921; Shafiq-Ul-Hassan M, Zhang GG, Latifi K, Ullah G, Hunt DC, Balagurunathan Y, et al. Intrinsic dependencies of CT radiomic features on voxel size and number of gray levels. Med Phys. 2017 Mar;44(3):1050–1062. https://doi.org/10.1002/mp.12123; Leijenaar RTH, Nalbantov G, Carvalho S, van Elmpt WJC, Troost EGC, Boellaard R, et al. The effect of SUV discretization in quantitative FDG-PET Radiomics: the need for standardized methodology in tumor texture analysis. Sci Rep. 2015 Aug 5;5:11075. https://doi.org/10.1038/srep11075; Ng F, Kozarski R, Ganeshan B, Goh V. Assessment of tumor heterogeneity by CT texture analysis: can the largest cross-sectional area be used as an alternative to whole tumor analysis? Eur J Radiol. 2013 Feb;82(2):342–348. https://doi.org/10.1016/j.ejrad.2012.10.023; Park HJ, Kim JH, Choi SY, Lee ES, Park SJ, Byun JY, et al. Prediction of Therapeutic Response of Hepatocellular Carcinoma to Transcatheter Arterial Chemoembolization Based on Pretherapeutic Dynamic CT and Textural Findings. AJR Am J Roentgenol. 2017 Oct;209(4):W211–W220. https://doi.org/10.2214/AJR.16.17398; Rogers W, Thulasi Seetha S, Refaee TAG, Lieverse RIY, Granzier RWY, Ibrahim A, et al. Radiomics: from qualitative to quantitative imaging. Br J Radiol. 2020 Apr;93(1108):20190948. https://doi.org/10.1259/bjr.20190948; Zwanenburg A, Vallières M, Abdalah MA, Aerts HJWL, Andrearczyk V, Apte A, et al. The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping. Radiology. 2020 May;295(2):328–338. https://doi.org/10.1148/radiol.2020191145; https://www.rpmj.ru/rpmj/article/view/783

  3. 3
    Academic Journal

    المصدر: Medical Visualization; Том 24, № 2 (2020); 11-36 ; Медицинская визуализация; Том 24, № 2 (2020); 11-36 ; 2408-9516 ; 1607-0763

    وصف الملف: application/pdf

    Relation: https://medvis.vidar.ru/jour/article/view/911/622; https://medvis.vidar.ru/jour/article/view/911/623; Guan W.J., Ni Z.Y., Hu Y., Liang W.H., Ou C.Q., He J.X., Liu L., Shan H., Lei C.L., Hui D.S.C., Du B., Li L.J., Zeng G., Yuen K.Y., Chen R.C., Tang C.L., Wang T., Chen P.Y., Xiang J., Li S.Y., Wang J.L., Liang Z.J., Peng Y.X., Wei L., Liu Y., Hu Y.H., Peng P., Wang J.M., Liu J.Y., Chen Z., Li G., Zheng Z.J., Qiu S.Q., Luo J., Ye C.J., Zhu S.Y., Zhong N.S.; China Medical Treatment Expert Group for Covid-19. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020; 382 (18): 1708–1720. http://doi.org/10.1056/NEJMoa2002032. Epub 2020 Feb 28. PMID: 32109013; PMCID: PMC7092819.; WHO Director-General’s opening remarks at the media briefing on COVID-19 – 11 March 2020. https://www.who.int/dg/speeches/detail/who-director-general-s-openingremarks-at-the-media-briefing-on-covid-19---11-march-2020; World Health Organization.Pneumonia of unknown cause – China. Accessed January 5, 2020. https://www.who.int/csr/don/05-january-2020-pneumonia-of-unkown-causechina/en/; Gorbalenya A.E., Baker S.C., Baric R.S., de Groot R.J., Drosten C., Gulyaeva A.A., Haagmans B.L., Lauber C., Leontovich A.M., Neuman B.W., Penzar D., Perlman S., Poon L.L.M., Samborskiy D.V., Sidorov I.A., Sola I., Ziebuhr J. The species severe acute respiratory syndromerelated coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 2020; 5 (4): 536–544. https://doi.org/10.1038/s41564-020-0695-z; Singhal T. A review of coronavirus disease-2019 (COVID-19). Indian J. Pediatr. 2020; 87 (4): 281–286. https://doi.org/10.1007/s12098-020-03263-6. Epub 2020 Mar 13. PMID: 32166607; PMCID: PMC7090728.; Coronavirus disease (COVID-19) Situation dashboard. World Health Organization, 24 May 2020. https://covid19.who.int; Infantino M., Damiani A., Gobbi F.L., Grossi V., Lari B., Macchia D., Casprini P., Veneziani F., Villalta D., Bizzaro N., Cappelletti P., Fabris M., Quartuccio L., Benucci M., Manfredi M. Serological Assays for SARS-CoV-2 Infectious Disease: Benefits, Limitations and Perspectives. Isr. Med. Assoc. J. 2020; 22 (4): 203–210. PMID: 32286019.; Zhai P., Ding Y., Wu X., Long J., Zhong Y., Li Y. The epidemiology, diagnosis and treatment of COVID-19. Int. J. Antimicrob. Agents. 2020; 55 (5): 105955. https://doi.org/10.1016/j.ijantimicag.2020.105955. Epub 2020 Mar 28. PMID: 32234468. PMCID: PMC7138178.; Guo Y.R., Cao Q.D., Hong Z.S., Tan Y.Y., Chen S.D., Jin H.J., Tan K.S., Wang D.Y., Yan Y. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak – an update on the status. Mil. Med. Res. 2020; 7 (1): 11. https://doi.org/10.1186/s40779-020-00240-0. PMID: 32169119; PMCID: PMC7068984.; Xie X., Zhong Z., Zhao W., Zheng C., Wang F., Liu J. Chest CT for Typical 2019-nCoV Pneumonia: Relationship to Negative RT-PCR Testing. Radiology. 2020 Feb 12:200343. https://doi.org/10.1148/radiol.2020200343. Epub ahead of print. PMID: 32049601.; Fang Y., Zhang H., Xie J., Lin M., Ying L., Pang P., Ji W. Sensitivity of Chest CT for COVID-19: Comparison to RTPCR. Radiology. 2020 Feb 19:200432. https://doi.org/10.1148/radiol.2020200432. Epub ahead of print. PMID: 32073353.; Ye Z., Zhang Y., Wang Y., Wang Y., Huang Z., Song B. Chest CT manifestations of new coronavirus disease 2019 (COVID-19): a pictorial review. Eur. Radiol. 2020. https://doi.org/10.1007/s00330-020-06801-0. Published: 19 March 2020; Морозов С.П., Проценко Д.Н., Сметанина С.В., Андрейченко А.Е., Амброси О.Е., Баланюк Э.А., Владзимирский А.В., Ветшева Н.Н., Гомболевский В.А., Епифанова С.В., Ледихова Н.В., Лобанов М.Н., Павлов Н.А., Панина Е.В., Полищук Н.С., Ридэн Т.В., Соколина И.А., Туравилова Е.В., Федоров С.С., Чернина В.Ю., Шулькин И.М. Лучевая диагностика коронавирусной болезни (COVID-19): организация, методология, интерпретация результатов. М.: ДЗ г. Москвы, 2020. 81 с. http://medradiology.moscow/f/luchevaya_diagnostika_koronavirusnoj_infekcii_covid-19_v2.pdf; Временные методические рекомендации. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Версия 6 (28.04.2020). 165 c. https://www.rosminzdrav.ru/ministry/med_covid19; Wadman M., Couzin-Frankel J., Kaiser J., Matacic C. How does coronavirus kill? Clinicians trace a ferocious rampage through the body, from brain to toes. 2020; 6: 45 P.; Ackermann M., Verleden S.E., Kuehnel M., Haverich A., Welte T., Laenger F., Vanstapel A., Werlein C., Stark H., Tzankov A., Li W.W., Li V.W., Mentzer S.J., Jonigk D. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N. Engl. J. Med. 2020 May 21. https://doi.org/10.1056/NEJMoa2015432. Epub ahead of print. PMID: 32437596.; Lan J., Ge J., Yu J., Shan S., Zhou H., Fan S., Zhang Q., Shi X., Wang Q., Zhang L., Wang X. Crystal structure of the 2019-nCoV spike receptor-binding domain bound with the ACE2 receptor. https://doi.org/10.1101/2020.02.19.956235. https://www.biorxiv.org/content/10.1101/2020.02.19.956235v1.article-info; Lax S.F., Skok K., Zechner P., Kessler H.H., Kaufmann N., Koelblinger C., Vander K., Bargfrieder U., Trauner M. Pulmonary Arterial Thrombosis in COVID-19 With Fatal Outcome: Results From a Prospective, Single-Center, Clinicopathologic Case Series. Ann. Intern. Med. 2020 May 14. https://doi.org/10.7326/M20-2566. Epub ahead of print. PMID: 32422076.; Kuba K., Imai Y., Rao Sh., Jiang Ch., Penninger J.M. Lessons from SARS: control of acute lung failure by the SARS receptor ACE2. J. Mol. Med. (Berl). 2006; 84 (10): 814–820. https://doi.org/10.1007/s00109-006-0094-9. PMID: 16988814 PMCID: PMC7079827; Yu M., Liu Y., Xu D., Zhang R., Lan L., Xu H. Prediction of the Development of Pulmonary Fibrosis Using Serial Thin-Section CT and Clinical Features in Patients Discharged after Treatment for COVID-19 Pneumonia. Korean J. Radiol. 2020; 21 (6): 746–755. https://doi.org/10.3348/kjr.2020.0215. PMID: 32410413. PMCID: PMC7231610.; Xu Y.H., Dong J.H., An W.M., Lv X.Y., Yin X.P., Zhang J.Z., Dong L., Ma X., Zhang H.J., Gao B.L. Clinical and computed tomographic imaging features of novel coronavirus pneumonia caused by SARS-CoV-2. J. Infect. 2020 Apr; 80 (4): 394–400. https://orcid.org/10.1016/j.jinf.2020.02.017. Epub 2020 Feb 25. PMID: 32109443. PMCID: PMC7102535.; Tian S., Xiong Y., Liu H., Niu .L, Guo J., Liao M., Xiao S.Y. Pathological study of the 2019 novel coronavirus disease (COVID-19) through postmortem core biopsies. Mod. Pathol. 2020: 1–8. https://orcid.org/10.1038/s41379-020-0536-x. Epub ahead of print. PMID: 32291399. PMCID: PMC7156231.; Albarello F., Pianura E., Di Stefano F., Cristofaro M., Petrone A., Marchioni L., Palazzolo C., Schininà V., Nicastri E., Petrosillo N., Campioni P., Eskild P., Zumla A., Ippolito G. COVID 19 INMI Study Group. 2019-novel Coronavirus severe adult respiratory distress syndrome in two cases in Italy: An uncommon radiological presentation. Int. J. Infect. Dis. 2020; 93: 192–197. https://orcid.org/10.1016/j.ijid.2020.02.043. Epub 2020 Feb 26. PMID: 32112966. PMCID: PMC7110436.; https://medvis.vidar.ru/jour/article/view/911

  4. 4
    Academic Journal

    المصدر: Medical Visualization; Том 24, № 2 (2020); 96-104 ; Медицинская визуализация; Том 24, № 2 (2020); 96-104 ; 2408-9516 ; 1607-0763

    مصطلحات موضوعية: ИЛ-6, CT, tocilizumab, IL-6, тоцилизумаб, КТ

    وصف الملف: application/pdf

    Relation: https://medvis.vidar.ru/jour/article/view/916/602; Fu L., Wang B., Yuan T., Chen X., Ao Y., Fitzpatrick T., Li P., Zhou Y., Lin Y.F., Duan Q., Luo G., Fan S., Lu Y., Feng A., Zhan Y., Liang B., Cai W., Zhang L., Du X., Li L., Shu Y., Zou H. Clinical characteristics of coronavirus disease 2019 (COVID-19) in China: A systematic review and metaanalysis. J. Infect. 2020; 80 (6): 656–665. https://doi.org/10.1016/j.jinf.2020.03.041.; WHO main website. http://www.euro.who.int/ru/healthtopics/health-emergencies/coronavirus-covid-19 (accessed March 12, 2020); Лучевая диагностика коронавирусной болезни (COVID-19): организация, методология, интерпретация результатов. Препринт № ЦДТ – 2020 – II Версия 2 (17.04.2020). Текст: электронный.; Zhai P., Ding Y., Wu X., Long J., Zhong Y., Li Y. The epidemiology, diagnosis and treatment of COVID-19 [published online ahead of print, 2020 Mar 28]. Int. J. Antimicrob. Agents. 2020. https://doi.org/10.1016/j.ijantimicag.2020.105955; Временные методические рекомендации профилактики, диагностики и лечения новой коронавирусной инфекции (COVID-19) Минздрава РФ. Версия 6 от 28.04.2020.; Li Y., Xia L. Coronavirus Disease 2019 (COVID-19): role of chest CT in diagnosis and management. Am. J. Roentgenol. 2020; 214 (6): 1280–1286. https://doi.org/10.2214/AJR.20.22954; https://www.rosminzdrav.ru/ministry/med_covid19 Recommendations for doctors on Covid-19 of the Ministry of Health of the Russian Federation.; Chen J. A pilot study of hydroxychloroquine in treatment of patients with common coronavirus disease-19 (COVID-19. 2020; 10 (Google Scholar); Li Y., Xie Z., Lin W., Cai W., Wen C. et al. An exploratory randomized controlled study on the efficacy and safety of lopinavir/ritonavir or arbidol treating adult patients hospitalized with mild/moderate COVID-19 (ELACOI). [online]. Website https://www.medrxiv.org/content/10.1101/2020.03.19.20038984v2 [accessed 12 April 2020].; Young B.E., Ong S.W.X., Kalimuddin S., Low J.G., Tan S.Y. Epidemiologic Features and Clinical Course of Patients Infected With SARS-CoV-2 in Singapore. JAMA. 2020; 10 [PMC free article] [PubMed] [Google Scholar]; Chen C.Y., Wang F.L., Lin C.C. Chronic hydroxychloroquine use associated with QT prolongation and refractory ventricular arrhythmia. Clin. Toxicology. 2006; 44: 173– 175. https://doi.org/10.1080/15563650500514558; Borba M.G.S., De Almeida Val F., Sampaio V.S., Araújo Alexandre M.A., Melo G.C. et al. Chloroquine diphosphate in two different dosages as adjunctive therapy ofhospitalized patients with severe respiratory syndrome in the context of coronavirus (SARS-CoV-2) infection: preliminary safety results of a randomized, doubleblinded, phase IIb clinical trial (CloroCovid-19 Study) [online]. (2020). https://www.medrxiv.org/content/10.1101/2020.04.07.20056424v2 [accessed 12 April 2020]; Chorin E., Dai M., Shulman E., Wadhwani L., Cohen R.B. et al. The QT interval in patients with SARS-CoV-2 infection treated with hydroxychloroquine/azithromycin [online]. 2020. https://www.medrxiv.org/content/10.1101/2020.04.02.20047050v1 [accessed 12 April 2020].; Mehra M.R., Desai S.S., Ruschitzka F., Patel A.N. RETRACTED: Hydroxychloroquine or chloroquine with or without a macrolide for treatment of COVID-19: a multinational registry analysis. Lancet. 2020 May 22: S0140-6736(20)31180-6. https://doi.org/10.1016/S0140-6736(20)31180-6. Epub ahead of print. Erratum in: Lancet. 2020 May 30: PMID: 32450107; PMCID: PMC7255293.; Ministry of Health of the Russian Federation “On the use of the drug Hydroxychloroquine for the treatment of patients with coronavirus infection” dated May 28, 2020. https://www.rosminzdrav.ru/news/2020/05/28/14067-oprimenenii-preparata-gidroksihlorohin-dlya-lecheniyapatsientov-s-koronavirusnoy-infektsiey; Chu C.M., Cheng V.C., Hung I.F.N., Wong M.M., Chan K.H. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax. 2004; 59: 252–256. https://doi.org/10.1136/thorax.2003.012658; Ye X.T., Luo Y.L., Xia S.C., Sun Q.F., Ding J.G., Zhou Y., Chen W., Wang X.F., Zhang W.W., Du W.J., Ruan Z.W., Hong L. Clinical efficacy of lopinavir/ritonavir in the treatment of Coronavirus disease 2019. Eur. Rev. Med. Pharmacol. Sci. 2020; 24 (6): 3390–3396. https://doi.org/10.26355/eurrev_202003_20706. PMID: 32271456.; Assessment Report For RoActemra [Internet] 1st ed. London: European Medicines Agency; 2009. [accessed 2017January3]. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Public_assessment_ report/human/000955/WC500054888.pdf; https://www.roche.ru/content/dam/rochexx/roche-ru/roche_russia/ru_RU/Instructions/actemra-iv-2019-12-30.pdf Версия 10 МИНЗДРАВ РОССИИ ЛСР-003012/09-301219; Higuchi T., Nakanishi T., Takada K., Matsumoto M., Okada M., Horikoshi H., Suzuki K. A case of multicentric castleman's disease having lung lesion successfully treated with humanized anti-interleukin-6 receptor antibody, Tocilizumab. J. Korean Med. Sci. 2010; 25 (9): 1364–1367. https://doi.org/10.3346/jkms.2010.25.9.1364. PMID:20808682.; FDA approves tisagenlecleucel for B-cell ALL and tocilizumab for cytokine release syndrome. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-tisagenlecleucel-b-cell-all-andtocilizumab-cytokine-release-syndrome; Moore J.B., June C.H. Cytokine release syndrome in severe COVID-19. Science. 2020; 368 (6490): 473–474. https://doi.org/10.1126/science.abb8925; Le R.Q., Li L., Yuan W., Shord S.S., Nie L., Habtemariam B.A., Przepiorka D., Farrell A.T., Pazdurb R. Tocilizumab for Treatment of Chimeric Antigen Receptor T Cell-Induced Severe or Life-Threatening Cytokine Release Syndrome. Oncologist. 2018; 23 (8): 943–947. https://doi.org/10.1634/theoncologist.2018-0028; Yuan J., Zou R., Zeng L. The correlation between viral clearance and biochemical outcomes of 94 COVID-19 infected discharged patients. Inflamm. Res. 2020 Mar 29: 1–8. https://doi.org/10.1007/s00011-020-01342-0; Zhang C., Wu Z., Li J.W., Zhao H., Wang G.Q. The cytokine release syndrome (CRS) of severe COVID-19 and Inter leukin-6 receptor (IL-6R) antagonist tocilizumab may be the key to reduce the mortality. Int. J. Antimicrob. Agents. 2020:105954. https://doi.org/10.1016/j.ijantimicag.2020.105954.; Guan W.J., Ni Z.Y., Hu Y., et al. Clinical characteristics of 2019 novel coronavirus infection in China. Med. Rxiv. 2019;2020:2020. https://doi.org/10.1101/2020.02.06.20020974; https://www.rosminzdrav.ru/ministry/med_covid19; Cellina M, Orsi M, Bombaci F, Sala M, Marino P, Oliva G. Favorable changes of CT findings in a patient with COVID-19 pneumonia after treatment with tocilizumab. Diagn. Interv. Imaging. 2020; 101 (5): 323–324. https://doi.org/10.1016/j.diii.2020.03.010.; Xu X., Han M., Li T., Sun W., Wang D., Fu B., Zhou Y., Zheng X., Yang Y., Li X., Zhang X., Pan A., Wei H. Effective Treatment of Severe COVID-19 Patients With Tocilizumab. Proc. Natl. Acad. Sci. USA. 2020; 117 (20): 10970–10975. https://doi.org/10.1073/pnas.2005615117; Michot J.-M., Albiges L., Chaput N., Saada V., Pommeret F., Griscelli F., Balleyguier C., Besse B., Marabelle A., Netzer F., Merad M., Robert C., Barlesi F., Gachot B., Stoclin A. Tocilizumab, an anti-IL-6 receptor antibody, to treat COVID-19-related respiratory failure: a case report. Ann. Oncol. 2020 Apr 2: S0923-7534(20)36387-0. https://doi.org/10.1016/j.annonc.2020.03.300; Wang L., Peng X., Wang Z.-H., Cai J., Zhou F.-C. Tocilizumab in the treatment of a critical COVID-19 patient: a case report. Eur. Rev. Med. Pharmacol. Sci. 2020; 24 (10): 5783–5787. https://doi.org/10.26355/eurrev_202005_21372; Mihai C., Dobrota R., Schröder M., Garaiman A., Jordan S., Becker M.O., Maurer B., Distler O. COVID-19 in a patient with systemic sclerosis treated with tocilizumab for SSc-ILD. Ann. Rheum. Dis. 2020; 79 (5): 668–669. https://doi.org/10.1136/annrheumdis-2020-217442; The first affiliated hospital of university of science and technology. The efficacy and safety of tocilizumab in the treatment of novel coronavirus pneumonia: a multi-center, randomized, double-blinded trial. 2020. https://www.chictr.org.cn/showproj.aspx?proj=49409. Accessed 22 Feb 2020.; https://medvis.vidar.ru/jour/article/view/916