-
1Academic Journal
المؤلفون: E. V. Shutko, O. E. Bryzgunova, I. A. Ostal’cev, S. V. Pak, S. E. Krasi’nikov, P. P. Laktionov, M. Yu. Konoshenko, Е. В. Шутко, О. Е. Брызгунова, И. А. Остальцев, С. В. Пак, С. Э. Красильников, П. П. Лактионов, М. Ю. Коношенко
المساهمون: The research was carried out at the expense of a grant from the Russian Science Foundation (grant No. 23-25-10026, https://rscf.ru/project/23-25-10026) within the framework of the project 0000005406995998235120582 supported by the Government of the Novosibirsk Region No. r-45, Исследование выполнено за счет гранта Российского научного фонда (грант № 23-25-10026, https://rscf.ru/project/23-25-10026) в рамках поддержанного Правительством Новосибирской области проекта 0000005406995998235120582 № р-45
المصدر: Advances in Molecular Oncology; Том 11, № 1 (2024); 55-78 ; Успехи молекулярной онкологии; Том 11, № 1 (2024); 55-78 ; 2413-3787 ; 2313-805X
مصطلحات موضوعية: динамика микроРНК после лечения рака, miRNA, extracellular vesicles of urine, radical prostatectomy, reverse transcription polymerase chain reaction, miRNA dynamics after cancer treatment, микроРНК, внеклеточные везикулы мочи, радикальная простатэктомия, полимеразная цепная реакция с обратной транскрипцией
وصف الملف: application/pdf
Relation: https://umo.abvpress.ru/jour/article/view/649/338; Ferlay J., Colombet M., Soerjomataram I. et al. Cancer statistics for the year 2020: an overview. Int J Cancer 2021. DOI:10.1002/ijc.33588; Costello A.J. Considering the role of radical prostatectomy in 21st century prostate cancer care. Nat Rev Urol 2020;17(3):177–88. DOI:10.1038/s41585-020-0287-y; D’Amico A.V., Chen M.H., Roehl K.A. et al. Preoperative PSA velocity and the risk of death from prostate cancer after radical prostatectomy. N Engl J Med 2004;351(2):125–35. DOI:10.1056/NEJMoa032975; Porcaro A.B., Corsi P., Inverardi D. et al. Prostate-specific antigen associates with extensive lymph node invasion in high-risk prostate cancer. Tumori 2018;104(4):307–11. DOI:10.1177/0300891618765567; Karakiewicz P.I., Benayoun S., Kattan M.W. et al. Development and validation of a nomogram predicting the outcome of prostate biopsy based on patient age, digital rectal examination and serum prostate specific antigen. J Urol 2005;173(6):1930–4. DOI:10.1097/01.ju.0000158039.94467.5d; Bai X., Jiang Y., Zhang X. et al. The value of prostate-specific antigen-related indexes and imaging screening in the diagnosis of prostate cancer. Cancer Manag Res 2020;12:6821–6. DOI:10.2147/CMAR.S257769; Pashaei E., Pashaei E., Ahmady M. et al. Meta-analysis of miRNA expression profiles for prostate cancer recurrence following radical prostatectomy. PLoS One 2017;12(6):e0179543. DOI:10.1371/journal.pone.0179543; Zhao Z., Stephan C., Weickmann S. et al. Tissue-based microRNAs as predictors of biochemical recurrence after radical prostatectomy: what can we learn from past studies? Int J Mol Sci 2017;18(10):2023. DOI:10.3390/ijms18102023; Szilágyi M., Pös O., Márton É. et al. Circulating cell-free nucleic acids: main characteristics and clinical application. Int J Mol Sci 2020;21(18):6827. DOI:10.3390/ijms21186827; Chen M., Zhao H. Next-generation sequencing in liquid biopsy: cancer screening and early detection. Hum Genomics 2019;13(1):34. DOI:10.1186/s40246-019-0220-8; Wang J., Ni J., Beretov J. et al. Exosomal microRNAs as liquid biopsy biomarkers in prostate cancer. Crit Rev Oncol Hematol 2020;145:102860. DOI:10.1016/j.critrevonc.2019.102860; Zedan A.H., Hansen T.F., Assenholt J. et al. Circulating miRNAs in localized/locally advanced prostate cancer patients after radical prostatectomy and radiotherapy. Prostate 2019;79(4):425–32. DOI:10.1002/pros.23748; Konoshenko M.Y., Bryzgunova O.E., Lekchnov E.A. et al. The influence of radical prostatectomy on the expression of cell-free MiRNA. Diagnostics (Basel) 2020;10(8):600. DOI:10.3390/diagnostics10080600; Bryzgunova O.E., Zaripov M.M., Skvortsova T.E. et al. Comparative study of extracellular vesicles from the urine of healthy individuals and prostate cancer patients. PLoS One 2016;11(6):e0157566. DOI:10.1371/journal.pone.0157566; Koppers-Lalic D., Hackenberg M., de Menezes R. et al. Non-invasive prostate cancer detection by measuring miRNA variants (isomiRs) in urine extracellular vesicles. Oncotarget 2016;7(16):22566–78. DOI:10.18632/oncotarget.8124; Konoshenko M.Y., Laktionov P.P. MiRNAs and radical prostatectomy: Current data, bioinformatic analysis and utility as predictors of tumour relapse. Andrology 2021;9(4):1092–107. DOI:10.1111/andr.12994; Abramovic I., Ulamec M., Katusic Bojanac A. et al. miRNA in prostate cancer: challenges toward translation. Epigenomics 2020;12(6):543–58. DOI:10.2217/epi-2019-0275; Casanova-Salas I., Rubio-Briones J., Fernández-Serra A. et al. miRNAs as biomarkers in prostate cancer. Clin Transl Oncol 2012;14(11):803–11. DOI:10.1007/s12094-012-0877-0; Filella X., Foj L. miRNAs as novel biomarkers in the management of prostate cancer. Clin Chem Lab Med 2017;55(5):715–36. DOI:10.1515/cclm-2015-1073; Konoshenko M.Y., Lekchnov E.A., Bryzgunova O.E. et al. Isolation of extracellular vesicles from biological fluids via the aggregationprecipitation approach for downstream mirnas detection. Diagnostics (Basel) 2021;11(3):384. DOI:10.3390/diagnostics11030384; Lekchnov E.A., Zaporozhchenko I.A., Morozkin E.S. et al. Protocol for miRNA isolation from biofluids. Anal Biochem 2016;499:78–84. DOI:10.1016/j.ab.2016.01.025; Boeri M., Verri C., Conte D. et al. MicroRNA signatures in tissues and plasma predict development and prognosis of computed tomography detected lung cancer. Proc Natl Acad Sci USA 2011;108(9):3713–8. DOI:10.1073/pnas.1100048108; Landoni E., Miceli R., Callari M. et al. Proposal of supervised data analysis strategy of plasma miRNAs from hybridisation array data with an application to assess hemolysis-related deregulation. BMC Bioinformatics 2015;16:388. DOI:10.1186/s12859-015-0820-9; Zheng H., Guo Z., Zheng X. et al. MicroRNA-144-3p inhibits cell proliferation and induces cell apoptosis in prostate cancer by targeting CEP55. Am J Transl Res 2018;10(8):2457–68.; Rana S., Valbuena G.N., Curry E. et al. MicroRNAs as biomarkers for prostate cancer prognosis: a systematic review and a systematic reanalysis of public data. Br J Cancer 2022;126(3):502–13. DOI:10.1038/s41416-021-01677-3; Katz B., Reis S.T., Viana N.I. et al. Comprehensive study of gene and microRNA expression related to epithelial-mesenchymal transition in prostate cancer. PLoS One 2014;9(11):e113700. DOI:10.1371/journal.pone.0113700; Konoshenko M.Y., Lekchnov E.A., Bryzgunova O.E. et al. The panel of 12 cell-free microRNAs as potential biomarkers in prostate neoplasms. Diagnostics (Basel) 2020;10(1):38. DOI:10.3390/diagnostics10010038; Lieb V., Weigelt K., Scheinost L. et al. Serum levels of miR-320 family members are associated with clinical parameters and diagnosis in prostate cancer patients. Oncotarget 2017;9(12):10402–16. DOI:10.18632/oncotarget.23781; Guo Z., Lu X., Yang F. et al. The Expression of miR-205 in prostate carcinoma and the relationship with prognosis in patients. Comput Math Methods Med 2022;2022:1784791. DOI:10.1155/2022/1784791; Ottman R., Levy J., Grizzle W.E. et al. The other face of miR-17-92a cluster, exhibiting tumor suppressor effects in prostate cancer. Oncotarget 2016;7(45):73739–53. DOI:10.18632/oncotarget.12061; Zheng X.M., Zhang P., Liu M.H. et al. MicroRNA-30e inhibits adhesion, migration, invasion and cell cycle progression of prostate cancer cells via inhibition of the activation of the MAPK signaling pathway by downregulating CHRM3. Int J Oncol 2019;54(2):443–54. DOI:10.3892/ijo.2018.4647; Nitusca D., Marcu A., Seclaman E. et al. Diagnostic value of microRNA-375 as future biomarker for prostate cancer detection: a meta-analysis. Medicina (Kaunas) 2022;58(4):529. DOI:10.3390/medicina58040529; Sun X.B., Chen Y.W., Yao Q.S. et al. MicroRNA-144 suppresses prostate cancer growth and metastasis by targeting EZH2. Technol Cancer Res Treat 2021;20:1533033821989817. DOI:10.1177/1533033821989817; Rode M.P., Silva A.H., Cisilotto J. et al. miR-425-5p as an exosomal biomarker for metastatic prostate cancer. Cell Signal 2021;87:110113. DOI:10.1016/j.cellsig.2021.110113; Chen Q.G., Zhou W., Han T. et al. MiR-378 suppresses prostate cancer cell growth through downregulation of MAPK1 in vitro and in vivo. Tumour Biol 2016;37(2):2095–103. DOI:10.1007/s13277-015-3996-8; Sun D., Lee Y.S., Malhotra A. et al. miR-99 family of microRNAs suppresses the expression of prostate-specific antigen and prostate cancer cell proliferation. Cancer Res 2011;71(4):1313–24. DOI:10.1158/0008-5472.CAN-10-1031; Samami E., Pourali G., Arabpour M. et al. The potential diagnostic and prognostic value of circulating microRNAs in the assessment of patients with prostate cancer: rational and progress. Front Oncol 2022;11:716831. DOI:10.3389/fonc.2021.716831; Shi X.B., Xue L., Ma A.H. et al. miR-125b promotes growth of prostate cancer xenograft tumor through targeting pro-apoptotic genes. Prostate 2011;71(5):538–49. DOI:10.1002/pros.21270; Gorur A., Bayraktar R., Ivan C. et al. ncRNA therapy with miRNA-22-3p suppresses the growth of triple-negative breast cancer. Mol Ther Nucleic Acids 2021;23:930–43. DOI:10.1016/j.omtn.2021.01.016; Abbas M.A., El Sayed I.E.T., Kamel Abdu-Allah A.M. et al. Expression of MiRNA-29b and MiRNA-31 and their diagnostic and prognostic values in Egyptian females with breast cancer. Noncoding RNA Res 2022;7(4):248–57. DOI:10.1016/j.ncrna.2022.09.003; Ai C., Ma G., Deng Y. et al. Nm23-H1 inhibits lung cancer bonespecific metastasis by upregulating miR-660-5p targeted SMARCA5. Thorac Cancer 2020;11(3):640–50. DOI:10.1111/1759–7714.13308; https://umo.abvpress.ru/jour/article/view/649
-
2Academic Journal
المؤلفون: M. Yu. Konoshenko, P. P. Laktionov, Yu. A. Lancuhaj, S. V. Pak, S. E. Krasilnikov, O. E. Bryzgunova, М. Ю. Коношенко, П. П. Лактионов, Ю. А. Ланцухай, С. В. Пак, С. Э. Красильников, О. Е. Брызгунова
المساهمون: The study was carried out within the framework of the basic budget financing projects of the Ministry of Education and Science of Russia (No. 121030200173-6) and the Ministry of Health of Russia (No. 121031300227-2)., Исследование выполнено в рамках проектов базового бюджетного финансирования Минобрнауки России (№ 121030200173-6) и Минздрава России (№ 121031300227-2).
المصدر: Advances in Molecular Oncology; Том 10, № 2 (2023); 78-89 ; Успехи молекулярной онкологии; Том 10, № 2 (2023); 78-89 ; 2413-3787 ; 2313-805X ; 10.17650/2313-805X-2023-10-2
مصطلحات موضوعية: плазма крови, non-small cell lung cancer, miRNA, diagnostic markers, liquid biopsy, microvesicles, blood plasma, немелкоклеточный рак легкого, микроРНК, диагностические маркеры, жидкостная биопсия, микровезикулы
وصف الملف: application/pdf
Relation: https://umo.abvpress.ru/jour/article/view/543/302; Sung H., Ferlay J., Siegel R.L. et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021;71(3):209–49. DOI:10.3322/caac.21660; Eberhardt W.E., Pöttgen C., Gauler T.C. et al. Phase III study of surgery versus definitive concurrent chemoradiotherapy boost in patients with resectable stage IIIA(N2) and selected IIIB non-small-cell lung cancer after induction chemotherapy and concurrent chemoradiotherapy (ESPATUE). J Clin Oncol 2015;33(35):4194–201. DOI:10.1200/JCO.2015.62.6812; Chang K., Wang H. The cancer genome atlas pan-cancer analysis project. Nat Genet 2013;45(10):1113–20. DOI:10.3779/j.issn.1009-3419.2015.04.02; Sempere L.F., Azmi A.S., Moore A. microRNA-based diagnostic and therapeutic applications in cancer medicine. Wiley Interdiscip Rev RNA 2021;12(6):e1662. DOI:10.1002/wrna.1662; Dhawan A., Scott J.G., Harris A.L., Buffa F.M. Pan-cancer characterisation of microRNA across cancer hallmarks reveals microRNA-mediated downregulation of tumour suppressors. Nat Commun 2018;9(1):5228. DOI:10.1038/s41467-018-07657-1; He B., Zhao Z., Cai Q. et al. miRNA-based biomarkers, therapies, and resistance in cancer. Int J Biol Sci 2020;16(14):2628–47. DOI:10.7150/ijbs.4720; Fredsøe J., Rasmussen A.K.I., Thomsen A.R. et al. Diagnostic and prognostic microRNA biomarkers for prostate cancer in cell-free urine. Eur Urol Focus 2018;4(6):825–33. DOI:10.1016/j.euf.2017.02.018; Hu C., Meiners S., Lukas C. et al. Role of exosomal microRNAs in lung cancer biology and clinical applications. Cell Prolif 2020;53(6):e12828. DOI:10.1111/cpr.12828; Yi M., Liao Z., Deng L. et al. High diagnostic value of miRNAs for NSCLC: quantitative analysis for both single and combined miRNAs in lung cancer. Ann Med 2021;53(1):2178–93. DOI:10.1080/07853890.2021.2000634; Gao S., Guo W., Liu T. et al. Plasma extracellular vesicle microRNA profiling and the identification of a diagnostic signature for stage I lung adenocarcinoma. Cancer Sci 2022;113(2):648–59. DOI:10.1111/cas.15222; Osipov I.D., Zaporozhchenko I.A., Bondar A.A. et al. Cell-free miRNA-141 and miRNA-205 as prostate cancer biomarkers. Adv Exp Med Biol 2016;924:9–12. DOI:10.1007/978-3-319-42044-8_2; Zaporozhchenko I.A., Morozkin E.S., Ponomaryova A.A. et al. Profiling of 179 miRNA expression in blood plasma of lung cancer patients and cancer-free individuals. Sci Rep 2018;8(1):6348. DOI:10.1038/s41598-018-24769-2; Li C., Yin Y., Liu X. et al. Non-small cell lung cancer associated microRNA expression signature: integrated bioinformatics analysis, validation and clinical significance. Oncotarget 2017;8(15):24564–78. DOI:10.18632/oncotarget.15596; Huang W., Huang W., Hu J. et al. Two microRNA panels to discriminate three subtypes of lung carcinoma in bronchial brushing specimens. Am J Respir Crit Care Med 2012;186(11):1160–7. DOI:10.1164/rccm.201203-0534OC; Wu C., Cao Y., He Z. et al. Serum levels of miR-19b and miR-146a as prognostic biomarkers for non-small cell lung cancer. Tohoku J Exp Med 2014;232(2):85–95. DOI:10.1620/tjem.232.85; Boeri M., Verri C., Conte D. et al. MicroRNA signatures in tissues and plasma predict development and prognosis of computed tomography detected lung cancer. Proc Natl Acad Sci USA 2011;108(9):3713–8. DOI:10.1073/pnas.1100048108; Zhou X., Wen W., Shan X. et al. A six-microRNA panel in plasma was identified as a potential biomarker for lung adenocarcinoma diagnosis. Oncotarget 2016;8(4):6513–25. DOI:10.18632/oncotarget.14311; Liu M., Gao J., Huang Q. et al. Downregulating microRNA-144 mediates a metabolic shift in lung cancer cells by regulating GLUT1 expression. Oncol Lett 2016;11(6):3772–6. DOI:10.3892/ol.2016.4468; Pan H.L., Wen Z.S., Huang Y.C. et al. Down-regulation of microRNA-144 in air pollution-related lung cancer. Sci Rep 2015;5:14331. DOI:10.1038/srep14331; Zhang G., An H., Fang X. MicroRNA-144 regulates proliferation, invasion, and apoptosis of cells in malignant solitary pulmonary nodule via zinc finger E-box-binding homeobox 1. Int J Clin Exp Pathol 2015;8(5):5960–7.; Ling B., Wang G.X., Long G. et al. Tumor suppressor miR-22 suppresses lung cancer cell progression through post-transcriptional regulation of ErbB3. J Cancer Res Clin Oncol 2012;138(8):1355–61. DOI:10.1007/s00432-012-1194-2; Xin M., Qiao Z., Li J. et al. miR-22 inhibits tumor growth and metastasis by targeting ATP citrate lyase: evidence in osteosarcoma, prostate cancer, cervical cancer and lung cancer. Oncotarget 2014;7(28):44252–65. DOI:10.18632/oncotarget.10020; Hosseini S.A., Seidi M., Yaghoobi H. Designed miR-19a/b sponge induces apoptosis in lung cancer cells through the PI3K-PTEN-Akt pathway regulation. Mol Biol Rep 2022;49(9):8485–93. DOI:10.1007/s11033-022-07670-0; Zhang X., Wang X., Chai B. et al. Downregulated miR-18a and miR-92a synergistically suppress non-small cell lung cancer via targeting Sprouty 4. Bioengineered 2022;13(4):11281–95. DOI:10.1080/21655979.2022.2066755; Reis P.P., Drigo S.A., Carvalho R.F. et al. Circulating miR-16-5p, miR-92a-3p, and miR-451a in plasma from lung cancer patients: potential application in early detection and a regulatory role in tumorigenesis pathways. Cancers 2020;12(8):2071. DOI:10.3390/cancers12082071; Wang Z., Pan L., Yang L. et al. Long non-coding RNA GATA6-AS1 sponges miR-324-5p to inhibit lung cancer cell proliferation and invasion. Onco Targets Ther 2020;13:9741–51. DOI:10.2147/OTT.S256336; Zhang Y., Xu H. Serum exosomal miR-378 upregulation is associated with poor prognosis in non-small-cell lung cancer patients. J Clin Lab Anal 2020;34(6):e23237. DOI:10.1002/jcla.23237; Ji K.X., Cui F., Qu D. et al. MiR-378 promotes the cell proliferation of non-small cell lung cancer by inhibiting FOXG1. Eur Rev Med Pharmacol Sci 2018;22(4):1011–9. DOI:10.26355/eurrev_201802_14383; Cao X., Zhong W., Guo S. et al. Low expression of miR-27b in serum exosomes of non-small cell lung cancer facilitates its progression by affecting EGFR. Open Med (Wars) 2022;17(1):816–25. DOI:10.1515/med-2022-0472; Zhong S., Golpon H., Zardo P. et al. miRNAs in lung cancer. A systematic review identifies predictive and prognostic miRNA candidates for precision medicine in lung cancer. Transl Res 2021;230:164–96. DOI:10.1016/j.trsl.2020.11.012; Konoshenko M.Y., Lekchnov E.A., Bryzgunova O.E. et al. Isolation of extracellular vesicles from biological fluids via the aggregation-precipitation approach for downstream miRNAs detection. Diagnostics 2012;11(3):384. DOI:10.3390/diagnostics11030384; Lekchnov E.A., Zaporozhchenko I.A., Morozkin E.S. et al. Protocol for miRNA isolation from biofluids. Anal Biochem 2016;499:78–84. DOI:10.1016/j.ab.2016.01.025; Konoshenko M.Y., Lekchnov E.A., Bryzgunova O.E. et al. The panel of 12 cell-Free microRNAs as potential biomarkers in prostate neoplasms. Diagnostics 2020;10(1):38. DOI:10.3390/diagnostics10010038; Landoni E., Miceli R., Callari M. et al. Proposal of supervised data analysis strategy of plasma miRNAs from hybridisation array data with an application to assess hemolysis-related deregulation. BMC Bioinformatics 2015;16:388. DOI:10.1186/s12859-015-0820-9; Bryzgunova O.E., Zaporozhchenko I.A., Lekchnov E.A. et al. Data analysis algorithm for the development of extracellular miRNA-based diagnostic systems for prostate cancer. PLoS One 2019;14(4):e0215003. DOI:10.1371/journal.pone.0215003; Bryzgunova O.E., Konoshenko M.Y., Zaporozhchenko I.A. et al. Isolation of cell-free miRNA from biological fluids: influencing factors and methods. Diagnostics (Basel) 2021;11(5):865. DOI:10.3390/diagnostics11050865; Dejima H., Iinuma H., Kanaoka R. et al. Exosomal microRNA in plasma as a non-invasive biomarker for the recurrence of non-small cell lung cancer. Oncol Lett 2017;13(3):1256–63. DOI:10.3892/ol.2017.5569; Kanaoka R., Iinuma H., Dejima H. et al. Usefulness of plasma exosomal microRNA-451a as a noninvasive biomarker for early prediction of recurrence and prognosis of non-small cell lung cancer. Oncology 2018;94(5):311–23. DOI:10.1159/000487006; Liu Q., Yu Z., Yuan S. et al. Circulating exosomal microRNAs as prognostic biomarkers for non-small-cell lung cancer. Oncotarget 2017;8(8):13048–58. DOI:10.18632/oncotarget.14369; Munagala R., Aqil F., Gupta R.C. Exosomal miRNAs as biomarkers of recurrent lung cancer. Tumor Biol 2016;37(8):10703–14. DOI:10.1007/s13277-016-4939-8; Silva J., García V., Zaballos Á. et al. Vesicle-related microRNAs in plasma of nonsmall cell lung cancer patients and correlation with survival. Eur Respir J 2011;37(3):617–23. DOI:10.1183/09031936.00029610; Zhuang L., Shou T., Li K. et al. MicroRNA-30e-5p promotes cell growth by targeting PTPN13 and indicates poor survival and recurrence in lung adenocarcinoma. J Cell Mol Med 2017;21(11):2852–62. DOI:10.1111/jcmm.13198; Li W., Yang P., Zhong C. et al. The circ-PITX1 promotes non-small cell lung cancer development via the miR-30e-5p/ITGA6 axis. Cell Cycle 2022;21(3):304–21. DOI:10.1080/15384101.2021.2020041; Dong W., Zhang H., Dai Y. et al. circRNA circFAT1(e2) Elevates the development of non-small-cell lung cancer by regulating miR-30e-5p and USP22. BioMed Res Int 2021;2021:6653387. DOI:10.1155/2021/6653387; Gao W., Shen H., Liu L. et al. MiR-21 overexpression in human primary squamous cell lung carcinoma is associated with poor patient prognosis. J Cancer Res Clin Oncol 2011;137(4):557–66. DOI:10.1007/s00432-010-0918-4; Ning Z.Q., Lu H.L., Chen C. et al. MicroRNA-30e reduces cell growth and enhances drug sensitivity to gefitinib in lung carcinoma. Oncotarget 2017;8(3):4572–81. DOI:10.18632/oncotarget.13944; Turchinovich A., Burwinkel B. Distinct AGO1 and AGO2 associated miRNA profiles in human cells and blood plasma. RNA Biol 2012;9(8):1066–75. DOI:10.4161/rna.21083; Lunavat T.R., Lesley C., Dae-Kyum K. et al. Small RNA deep sequencing discriminates subsets of extracellular vesicles released by melanoma cells – evidence of unique microRNA cargos. RNA Biol 2015;12(8):810–23. DOI:10.1080/15476286.2015.1056975; Huang X., Tiezheng Y., Tschannen M. et al. Characterization of human plasma-derived exosomal RNAs by deep sequencing. BMC Genomics 2013;14:319. DOI:10.1186/1471-2164-14-319; Markou A., Sourvinou I., Vorkas P.A. et al. Clinical evaluation of microRNA expression profiling in non small cell lung cancer. Lung Cancer 2013;81(3):388–96. DOI:10.1016/j.lungcan.2013.05.007; Cui Y., Zhao L., Zhao S. et al. MicroRNA-30e inhibits proliferation and invasion of non-small cell lung cancer via targeting SOX9. Human Cell 2019;32(3):326–33. DOI:10.1007/s13577-018-0223-0; Xu G., Cai J., Wang L. et al. MicroRNA-30e-5p suppresses non-small cell lung cancer tumorigenesis by regulating USP22-mediated Sirt1/JAK/STAT3 signaling. Exp Cell Res 2018;362(2):268–78. DOI:10.1016/j.yexcr.2017.11.027; He J., Jin S., Zhang W. et al. Long non-coding RNA LOC554202 promotes acquired gefitinib resistance in non-small cell lung cancer through upregulating miR-31 expression. J Cancer 2019;10(24):6003–13. DOI:10.7150/jca.35097; Liu X., Sempere L.F., Ouyang H. et al. MicroRNA-31 functions as an oncogenic microRNA in mouse and human lung cancer cells by repressing specific tumor suppressors. J Clin Invest 2010;120(4):1298–309. DOI:10.1172/JCI39566; Zhu C., Wang S., Zheng M. et al. miR-31-5p modulates cell progression in lung adenocarcinoma through TNS1/p53 axis. Strahlenther Onkol 2022;198(3):304–14. DOI:10.1007/s00066-021-01895-x; Hou C., Sun B., Jiang Y. et al. MicroRNA-31 inhibits lung adenocarcinoma stem-like cells via down-regulation of MET-PI3K-Akt signaling pathway. Anticancer Agents Med Chem 2016;16(4):501–18. DOI:10.2174/1871520615666150824152353; Zhang J., Li D., Zhang Y. et al. Integrative analysis of mRNA and miRNA expression profiles reveals seven potential diagnostic biomarkers for non-small cell lung cancer. Oncol Rep 2020;43(1):99–112. DOI:10.3892/or.2019.7407; Cheng X., Sha M., Jiang W. et al. LINC00174 suppresses non-small cell lung cancer progression by up-regulating LATS2 via sponging miR-31-5p. Cell J 2022;24(3):140–7. DOI:10.22074/cellj.2022.7991; Wang Y., Shang S., Yu K. et al. miR-224, miR-147b and miR-31 associated with lymph node metastasis and prognosis for lung adenocarcinoma by regulating PRPF4B, WDR82 or NR3C2. Peer J 2020;8:e9704. DOI:10.7717/peerj.9704; Meng W., Ye Z., Cui R. et al. MicroRNA-31 predicts the presence of lymph node metastases and survival in patients with lung adenocarcinoma. Clin Cancer Res 2013;19(19):5423–33. DOI:10.1158/1078-0432.CCR-13-0320; Zeng X., Liu D., Peng G. et al. MiroRNA-31-3p promotes the invasion and metastasis of non-small-cell lung cancer cells by targeting forkhead Box 1 (FOXO1). Comput Math Methods Med 2022;2022:4597087. DOI:10.1155/2022/4597087; Sun X., Zhang S., Ma X. Prognostic value of microRNA-125 in various human malignant neoplasms: a meta-analysis Clin Lab 2015;61(11):1667–74. DOI:10.7754/clin.lab.2015.150408; Kazempour Dizaji M., Farzanegan B., Bahrami N. et al. Expression of miRNA1, miRNA133, miRNA191, and miRNA24, as good biomarkers, in non-small cell lung cancer using real-time PCR method. Asian Pac J Cancer Prev 2022;23(5):1565–70. DOI:10.31557/APJCP.2022.23.5.1565; Liu S., Chen J., Zhang T. et al. MicroRNA-133 inhibits the growth and metastasis of the human lung cancer cells by targeting epidermal growth factor receptor. J BUON 2012;24(3):929–35.; Liu G., Li Y.I., Gao X. Overexpression of microRNA-133b sensitizes non-small cell lung cancer cells to irradiation through the inhibition of glycolysis. Oncol Lett 2016;11(4):2903–8. DOI:10.3892/ol.2016.4316; Wei G., Xu Y., Peng T. et al. miR-133 involves in lung adenocarcinoma cell metastasis by targeting FLOT2. Artif Cells Nanomed Biotechnol 2018;46(2):224–30. DOI:10.1080/21691401.2017.1324467; Xiao B., Liu H., Gu Z. et al. Expression of microRNA-133 inhibits epithelial-mesenchymal transition in lung cancer cells by directly targeting FOXQ1. Arch Bronconeumol 2016;52(10):505–11. DOI:10.1016/j.arbres.2015.10.016; Xu M., Wang Y.Z. miR-133a suppresses cell proliferation, migration and invasion in human lung cancer by targeting MMP-14. Oncol Rep 2013;30(3):1398–404. DOI:10.3892/or.2013.2548; Peinado P., Andrades A., Martorell-Marugán J. et al. The SWI/SNF complex regulates the expression of miR-222, a tumor suppressor microRNA in lung adenocarcinoma. Human Mol Gen 2021;30(23):2263–71. DOI:10.1093/hmg/ddab187; Wu Q., Yu L., Lin X. et al. Combination of serum miRNAs with serum exosomal miRNAs in early diagnosis for non-small-cell lung cancer. Cancer Manag Res 2020;12:485–95. DOI:10.2147/CMAR.S232383; Chen W., Li X. MiR-222-3p promotes cell proliferation and inhibits apoptosis by targeting PUMA (BBC3) in non-small cell lung cancer. Technol Cancer Res Treat 2020;19:1533033820922558. DOI:10.1177/1533033820922558; Garofalo M., Romano G., Di Leva G. et al. EGFR and MET receptor tyrosine kinase-altered microRNA expression induces tumorigenesis and gefitinib resistance in lung cancers. Nat Med 2011;18:74–82. DOI:10.1038/nm.2577; Mao K.P., Zhang W.N., Liang X.M. et al. MicroRNA-222 expression and its prognostic potential in non-small cell lung cancer. Sci World J 2014;908326. DOI:10.1155/2014/908326; Zhong C., Ding S., Xu Y. et al. MicroRNA-222 promotes human non-small cell lung cancer H460 growth by targeting p27. Int J Clin Exp Med 2015;8(4):5534–40.; Sun Q., Jiang C.W., Tan Z.H. et al. MiR-222 promotes proliferation, migration and invasion of lung adenocarcinoma cells by targeting ETS1. Eur Rev Med Pharmacol Sci 2017;21(10):2385–91.; Hetta H.F., Zahran A.M., El-Mahdy R.I. et al. Assessment of circulating miRNA-17 and miRNA-222 expression profiles as non-invasive biomarkers in egyptian patients with non-small-cell lung cancer. Asian Pac J Cancer Prev 2019;20(6):1927–33. DOI:10.31557/APJCP.2019.20.6.1927; Kim Y., Sim J., Kim H. et al. MicroRNA-374a expression as a prognostic biomarker in lung adenocarcinoma. J Pathol Transl Med 2019;53(6):354–60. DOI:10.4132/jptm.2019.10.01; Wang G., Ji X., Li P. et al. Human bone marrow mesenchymal stem cell-derived exosomes containing microRNA-425 promote migration, invasion and lung metastasis by down-regulating CPEB1. Regen Ther 2022;20:107–16. DOI:10.1016/j.reth.2022.03.007; Guo Z., Ye H., Zheng X. et al. Extracellular vesicle-encapsulated microRNA-425-derived from drug-resistant cells promotes non-small-cell lung cancer progression through DAPK1-medicated PI3K/AKT pathway. J Cell Physiol 2021;236(5):3808–20. DOI:10.1002/jcp.30126; Zhou J.S., Yang Z.S., Cheng S.Y. et al. miRNA-425-5p enhances lung cancer growth via the PTEN/PI3K/AKT signaling axis. BMC Pulm Med 2020;20(1):223. DOI:10.1186/s12890-020-01261-0; Jiang L., Ge W., Geng J. miR-425 regulates cell proliferation, migration and apoptosis by targeting AMPH-1 in non-small-cell lung cancer. Pathol Res Pract 2019;215(12):152705. DOI:10.1016/j.prp.2019.152705.; Fu Y., Li Y., Wang X. et al. Overexpression of miR-425-5p is associated with poor prognosis and tumor progression in non-small cell lung cancer. Cancer Biomark 2020;27(2):147–56. DOI:10.3233/cbm-190782; Yuwen D., Ma Y., Wang D. et al. Prognostic role of circulating exosomal miR-425-3p for the response of NSCLC to platinum-based chemotherapy. Cancer Epidemiol Biomark Prevent 2019;28(1):163–73. DOI:10.1158/1055-9965.epi-18-0569; Fortunato O., Boeri M., Moro M. et al. Mir-660 is downregulated in lung cancer patients and its replacement inhibits lung tumorigenesis by targeting MDM2-p53 interaction. Cell Death Dis 2014;5(12):e1564. DOI:10.1038/cddis.2014.507; Qi Y., Zha W., Zhang W. Exosomal miR-660-5p promotes tumor growth and metastasis in non-small cell lung cancer. J BUON 2019;24(2):599–607.; Moro M., Di Paolo D., Milione M. et al. Coated cationic lipid-nanoparticles entrapping miR-660 inhibit tumor growth in patient-derived xenografts lung cancer models. J Control Release 2019;308:44–56. DOI:10.1016/j.jconrel.2019.07.006; https://umo.abvpress.ru/jour/article/view/543
-
3Academic Journal
المؤلفون: Yu. E. Herbeck, O. A. Amelkina, M. Yu. Konoshenko, S. G. Shikhevich, R. G. Gulevich, R. V. Kozhemyakina, I. Z. Plyusnina, I. N. Oskina, Ю. Э. Гербек, О. А. Амелькина, М. Ю. Коношенко, С. Г. Шихевич, Р. Г. Гулевич, Р. В. Кожемякина, И. З. Плюснина, И. Н. Оськина
المصدر: Vavilov Journal of Genetics and Breeding; Том 20, № 2 (2016); 145-154 ; Вавиловский журнал генетики и селекции; Том 20, № 2 (2016); 145-154 ; 2500-3259 ; 2500-0462
مصطلحات موضوعية: отбор по поведению, aggression, maternal behavior, aggressive rats, tame rats, selection for behavior, агрессия, агрессивные крысы, ручные крысы, материнское поведение
وصف الملف: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/579/760; Беляев Д.К., Бородин П.М. Влияние стресса на наследственную изменчивость и его роль в эволюции. Эволюционная генетика. Л.: ЛГУ, 1982:35-59.; Гербек Ю.Э., Оськина И.Н., Гулевич Р.Г., Плюснина И.З. Влияние материнской метилобогащенной диеты на экспрессию гена рецептора глюкокортикоидов в гиппокампе у крыс, селектируемых по поведению. Цитол. генет. 2010;44(2):45-52.; Дыгало Н.Н., Шишкина Г.Т., Бородин П.М., Науменко Е.В. Роль нейрохимических систем головного мозга в изменении реактивности гипофизарно-надпочечникового комплекса серой крысы при селекции на поведение. Журн. эвол. биохим. и физиол. 1985;21(4):342-347.; Оськина И.Н., Гербек Ю.Э., Шихевич С.Г., Плюснина И.З., Гулевич Р.Г. Изменения в гипоталамо-гипофизарно-надпочечниковой системе при отборе животных на доместикационное поведение. Информационный вестник ВОГиС. 2008;12(1/2):39-48.; Оськина И.Н., Плюснина И.З. Гипофизарно-надпочечниковая система диких серых крыс при отборе на доместикационное поведение и неонатальном хэндлинге. Материалы науч. конф. «Эндокринные механизмы регуляции функций в норме и патологии». Новосибирск, 1997:114-115.; Плюснина И.З., Таранцев И.Г., Булушев Е.Д., Коношенко М.Ю., Кожемякина Р.В., Гербек Ю.Э., Оськина И.Н. Анализ материнского поведения ручных и агрессивных серых крыс. ЖВНД. 2013;63(3):375-383.; Прасолова Л.А., Гербек Ю.Э., Гулевич Р.Г., Шихевич С.Г., Коношенко М.Ю., Кожемякина Р.В., Оськина И.Н., Плюснина И.З. Эффекты длительного отбора по поведению на стресс-ответ и активность половой системы самцов серых крыс (Rattus norvegicus). Генетика. 2014;50(8):959-966.; Тинников А.А., Бажан Н.М. Определение глюкокортикоидов в плазме крови и инкубатах надпочечников методом конкурентного связывания гормонов белками без предварительной экстракции. Лаб. дело. 1984;12:709-713.; Bagot R.C., Meaney M.J. Epigenetics and the biological basis of gene × environment interactions. J. Am. Acad. Child Adolesc. Psychiatry. 2010;49(8):752-771. DOI 10.1016/j.jaac.2010.06.001; Bale T.L. Epigenetic and transgenerational reprogramming of brain development. Nat. Rev. Neurosci. 2015;16:332-344. DOI 10.1038/nrn3818; Blank T., Spiess J. Corticotropin-releasing factor (CRF) and CRF-related peptides – a linkage between stress and anxiety. Stress- From Molecules to Behavior: A Comprehensive Analysis of the Neurobiology of Stress Responses. 2009. Weinheim: Wiley-VCH, 2010: 151-165.; Francis D.D., Diorio J., Plotsky P.M., Meaney M.J. Environmental enrichment reverses the effects of maternal separation on stress reactivity. J. Neurosci. 2002;22(18):7840-7843.; Gariépy J.-L., Rodriguiz R.M., Jones B.C. Handling, genetic and housing effects on the mouse stress system, dopamine function, and behavior. Pharmacol. Biochem. Behav. 2002;73(1):7-17. DOI 10.1016/S0091-3057(02)00789-X; Herbeck Y.E., Os’kina I.N., Gulevich R.G., Plyusnina I.Z. Effects of maternal methyl-supplement diet on hippocampal glucocorticoid receptor mRNA expression in rats selected for behavior. Cytol. Genet. 2010;44(2):108-113. DOI 10.3103/S0095452710020064; Gonzalez-Liencres C., Shamay-Tsoory S.G., Brüne M. Towards a neuroscience of empathy: ontogeny, phylogeny, brain mechanisms, context and psychopathology. Neurosci. Biobehav. Rev. 2013;37(8):1537-1548. DOI 10.1016/j.neubiorev.2013.05.001; Konoshenko M.Y., Plyusnina I.Z. Behavioral effects of bidirectional selection for behavior towards human in virgin and lactate Norway rats. Behav. Processes. 2012;90(2):180-188. DOI 10.1016/j.beproc.2012.01.007; Kosten T.A., Lee H.J., Kim J.J. Early life stress impairs fear conditioning in adult male and female rats. Brain Res. 2006;1087:142-150. DOI 10.1016/j.brainres.2006.03.009; Levine S. Maternal and environmental influences on the adrenocortical response to stress in weanling rats. Science. 1967;156:258-260.; Liu D., Diorio J., Tannenbaum B., Caldji C., Francis D., Freedman A., Sharma S., Pearson D., Plotsky P.M., Meaney M.J. Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitaryadrenal responses to stress. Science. 1997;277(5332):1659-1662.; Macri S., Mason G.J., Wu H. Dissociation in the effects of neonatal maternal separations on maternal care and the offspring’s HPA and fear responses in rats. Eur. J. Neurosci. 2004;20(4):1017-24. DOI 10.1111/j.1460-9568.2004.03541.x; Marini F., Pozzato C., Andreetta V., Jansson B., Arban R., Domenici E., Carboni L. Single exposure to social defeat increases corticotropinreleasing factor and glucocorticoid receptor mRNA expression in rat hippocampus. Brain Res. 2006;1067:25-35. DOI 10.1016/j. brainres.2005.10.002; McEwen B.S. Allostasis and allostatic load: implications for neuropsychopharmacology. Neuropsychopharmacology. 2000;22(2):108-124.; Murphy B.E. Some studies of the protein binding of steroids and their application to the routine micro and ultramicro measurement of various steroids in body fluids by competitive protein-binding radioassay. J. Clin. Endocrinol. Metab. 1967;27:973-990.; Peinnequin A., Mouret C., Birot O., Alonso A., Mathieu J., Clarençon D., Agay D., Chancerelle Y., Multon E. Rat pro-inflammatory cytokine and cytokine related mRNA quantification by real-time polymerase chain reaction using SYBR green. BMC Immunology. 2004;5:3. DOI 10.1186/1471-2172-5-3; Plyusnina I., Oskina I. Behavioral and adrenocortical responses to open-field test in rats selected for reduced aggressiveness toward humans. Physiol. Behav. 1997;61(3):381-385.; Plyusnina I.Z., Oskina I.N., Tibeikina M.A., Popova N.K. Cross-fostering effects on weight, exploratory activity, acoustic startle reflex and corticosterone stress response in Norway gray rats selected for elimination and for enhancement of aggressiveness towards human. Behav. Genet. 2009;39(2):202-212. DOI 10.1007/s10519-008-9248-6; Plyusnina I.Z., Tarantsev I.G., Bulushev E.D., Konoshenko M.Y., Kozhemyakina R.V., Gerbek Y.E., Os’kina I.N. Analysis of maternal behavior in tame and aggressive gray rats. Neurosci. Behav. Physiol. 2014;44(8):856-862. DOI 10.1007/s11055-014-9993-3; Steimer T., Escorihuela R.M., Fernández-teruel A., Driscoll A.P. Longterm behavioural and neuroendocrine changes in Roman high-(RHA/Verh) and low-(RLA-Verh) avoidance rats following neonatal handling. Int. J. Dev. Neurosci. 1998;16(3-4):165-174. DOI 10.1016/S0736-5748(98)00032-X; Tang A.C., Akers K.G., Reeb B.C., Romeo R.D., McEwen B.S. Programming social, cognitive, and neuroendocrine development by early exposure to novelty. Proc. Natl Acad. Sci. USA. 2006;103: 15716-15721.; Tang A.C., Reeb-Sutherland B.C., Romeo R.D., McEwen B.S. On the causes of early life experience effects: evaluating the role of mom. Front. Neuroendocrinol. 2014;35(2):245-51. DOI 10.1016/j.yfrne. 2013.11.002; Todeschin A.S., Winkelmann-Duarte E.C., Jacob M.H., Aranda B.C., Jacobs S., Fernandes M.C., Ribeiro M.F., Sanvitto G.L., Lucion A.B. Effects of neonatal handling on social memory, social interaction, and number of oxytocin and vasopressin neurons in rats. Horm. Behav. 2009;56(1):93-100. DOI 10.1016/j.yhbeh.2009.03.006; Veenema A.H. Toward understanding how early-life social experiences alter oxytocin- and vasopressin-regulated social behaviors. Horm. Behav. 2012;61(3):304-312. DOI 10.1016/j.yhbeh.2011.12.002; Veenema A.H., Torner L., Blume A., Beiderbeck D.I., Neumann I.D. Low inborn anxiety correlates with high intermale aggression: link to ACTH response and neuronal activation of the hypothalamic paraventricular nucleus. Horm. Behav. 2007;51(1):11-19. DOI 10.1016/ j.yhbeh.2006.07.004; Weaver I.C., Cervoni N., Champagne F.A., D’Alessio A.C., Sharma S., Seckl J.R., Dymov S., Szyf M., Meaney M.J. Epigenetic programming by maternal behavior. Nat. Neurosci. 2004;7(8):847-854. DOI 10.1038/nn1276; Zhang T.Y., Labonté B., Wen X.L., Turecki G., Meaney M.J. Epigenetic mechanisms for the early environmental regulation of hippocampal glucocorticoid receptor gene expression in rodents and humans. Neuropsychopharmacology. 2013;38:111-123. DOI 10.1038/npp.2012.149; https://vavilov.elpub.ru/jour/article/view/579