يعرض 1 - 6 نتائج من 6 نتيجة بحث عن '"М. Ю. Иванова"', وقت الاستعلام: 0.35s تنقيح النتائج
  1. 1
    Academic Journal

    المصدر: Transplantologiya. The Russian Journal of Transplantation; Том 16, № 4 (2024); 491-499 ; Трансплантология; Том 16, № 4 (2024); 491-499 ; 2542-0909 ; 2074-0506

    وصف الملف: application/pdf

    Relation: https://www.jtransplantologiya.ru/jour/article/view/942/909; Хубутия М.Ш., Чучалин А.Г., Абакумов М.М., Авдеев С.Н., Тимербаев В.Х., Поплавский И.В., и др. Первая трансплантация легких в НИИ скорой помощи им. Н.В. Склифосовского. Трансплантология. 2011;(2–3):5–9. https://doi.org/10.23873/2074-0506-2011-0-2-3-5-9; Chambers DC, Perch M, Zucker mann A, Cherikh WS, Harhay MO, Hayes D Jr, et al. International Society for Heart and Lung Transplantation. The International Thoracic Organ Transplant Registry of the International Society for Heart and Lung Transplantation: Thirty-eighth adult lung transplantation report – 2021; Focus on recipient characteristics. J Heart Lung Transplant. 2021;40(10):1060–1072. PMID: 34446355 https://doi.org/10.1016/j.healun.2021.07.021; Biswas Roy S, Panchanathan R, Walia R, Varsch KE, Kang P, Huang J, et al. Lung retransplantation for chronic rejection: a single-center experience. Ann Thorac Surg. 2018;105(1):221–227. PMID: 29100649 https://doi.org/10.1016/j.athoracsur.2017.07.025; Kawut SM. Lung retransplanta tion. Clin Chest Med. 2011;32(2):367– 377. PMID: 21511096 https://doi.org/10.1016/j.ccm.2011.02.013; Crotti S, Iotti GA, Lissoni A, Belliato M, Zanierato M, Chierichetti M, et al. Organ allocation waiting time during extracorporeal bridge to lung transplant affects outcomes. Chest. 2013;144(3):1018–1025. PMID: 23599162 https://doi.org/10.1378/chest.12-1141; Inci I, Ehrsam JP, Van Raemdonck D, Ceulemans LJ, Krüger T, Koutsokera A, et al. Extracorporeal life support as a bridge to pulmonary retransplantation: prognostic factors for survival in a multicentre cohort analysis. Eur J Cardiothorac Surg. 2022;61(2):405–412. PMID: 34935039 https://doi.org/10.1093/ejcts/ezab514; Collaud S, Benden C, Ganter C, Hillin ger S, Opitz I, Schneiter D, et al. Extracorporeal life support as bridge to lung retransplantation: a multicenter pooled data analysis. Ann Thorac Surg. 2016;102(5):1680–1686. PMID: 27424471 https://doi.org/10.1016/j.athoracsur.2016.05.014; Grimm JC, Valero V 3rd, Kilic A, Magruder JT, Merlo CA, Shah PD, et al. Association Between Prolonged Graft Ischemia and Primary Graft Failure or Survival Following Lung Transplantation. JAMA Surg. 2015;150(6):547–553. PMID: 25874575 https://doi.org/10.1001/jamasurg.2015.12; https://www.jtransplantologiya.ru/jour/article/view/942

  2. 2
    Academic Journal

    المصدر: Andrology and Genital Surgery; Том 25, № 1 (2024); 31-39 ; Андрология и генитальная хирургия; Том 25, № 1 (2024); 31-39 ; 2412-8902 ; 2070-9781

    وصف الملف: application/pdf

    Relation: https://agx.abvpress.ru/jour/article/view/733/564; Jovic D., Yu Y., Wang D. et al. A brief overview of global trends in MSC-based cell therapy. Stem Cell Rev Rep 2022;18(5):1525–45. PMID: 35344199. DOI:10.1007/s12015-022-10369-1.; Thanaskody K., Jusop A.S., Tye G.J. et al. MSCs vs. iPSCs: Potential in therapeutic applications. Front Cell Dev Biol 2022;10:1005926. PMID: 36407112. DOI:10.3389/fcell.2022.1005926.; Maldonado V.V., Patel N.H., Smith E.E. et al. Clinical utility of mesenchymal stem/stromal cells in regenerative medicine and cellular therapy. J Biol Eng 2023;17(1):44. PMID: 37434264. DOI:10.1186/s13036-023-00361-9.; Han Y., Li X., Zhang Y. et al. Mesenchymal stem cells for regenerative medicine. Cells 2019;8(8):886. PMID: 31412678. DOI:10.3390/cells8080886.; Ghasemzadeh-Hasankolaei M., Eslaminejad M.B., Sedighi-Gilani M. Derivation of male germ cells from ram bone marrow mesenchymal stem cells by three different methods and evaluation of their fate after transplantation into the testis. In Vitro Cell Dev Biol Anim 2016;52(1):49–61. PMID: 26395124. DOI:10.1007/s11626-015-9945-4.; Salem M., Mirzapour T., Bayrami A., Sagha M. Germ cell differentiation of bone marrow mesenchymal stem cells. Andrologia 2019;51(4):e13229. PMID: 30746735. DOI:10.1111/and.13229.; Malekmohamadi N., Abdanipour A., Ghorbanlou M. et al. Differentiation of bone marrow derived mesenchymal stem cells into male germ-like cells in co-culture with testicular cells. Endocr Regul 2019;53(2):93–9. PMID: 31517623. DOI:10.2478/enr-2019-0011.; Ghaem Maghami R., Mirzapour T., Bayrami A. Differentiation of mesenchymal stem cells to germ-like cells under induction of Sertoli cell-conditioned medium and retinoic acid. Andrologia 2018;50(3). PMID: 28944567. DOI:10.1111/and.12887.; Luo Y., Xie L., Mohsin A. et al. Efficient generation of male germ-like cells derived during co-culturing of adipose-derived mesenchymal stem cells with Sertoli cells under retinoic acid and testosterone induction. Stem Cell Res Ther 2019;10(1):91. PMID: 30867048. DOI:10.1186/s13287-019-1181-5.; Cakici C., Buyrukcu B., Duruksu G. et al. Recovery of fertility in azoospermia rats after injection of adipose-tissue-derived mesenchymal stem cells: the sperm generation. Biomed Res Int 2013;2013:529589. PMID: 23509736. DOI:10.1155/2013/529589.; Ghasemzadeh-Hasankolaei M., Batavani R., Eslaminejad M.B., Sayahpour F. Transplantation of autologous bone marrow mesenchymal stem cells into the testes of infertile male rats and new germ cell formation. Int J Stem Cells 2016;9(2):250–63. PMID: 27430978. DOI:10.15283/ijsc16010.; Monsefi M., Fereydouni B., Rohani L., Talaei T. Mesenchymal stem cells repair germinal cells of seminiferous tubules of sterile rats. Iran J Reprod Med 2013;11(7):537–44. PMID: 24639788; Lu J., Liu Z., Shu M. et al. Human placental mesenchymal stem cells ameliorate chemotherapy-induced damage in the testis by reducing apoptosis/oxidative stress and promoting autophagy. Stem Cell Res Ther 2021;12(1):199. PMID: 33743823. DOI:10.1186/s13287-021-02275-z.; Zickri M.B., Moustafa M.H., Fasseh A.E., Kamar S.S. Antioxidant and antiapoptotic paracrine effects of mesenchymal stem cells on spermatogenic arrest in oligospermia rat model. Ann Anat 2021;237:151750. PMID: 33940119. DOI:10.1016/j.aanat.2021.151750.; Abdelaziz M.H., Salah El-Din E.Y., El-Dakdoky M.H., Ahmed T.A. The impact of mesenchymal stem cells on doxorubicininduced testicular toxicity and progeny outcome of male prepubertal rats. Birth Defects Res 2019;111(13):906–19. PMID: 31210400. DOI:10.1002/bdr2.1535.; AbdRabou M.A., Mehany A.B.M., Farrag I.M. et al. Therapeutic effect of murine bone marrow-derived mesenchymal stromal/stem cells and human placental extract on testicular toxicity resulting from doxorubicin in rats. Biomed Res Int 2021;2021:9979670. PMID: 34409109. DOI:10.1155/2021/9979670.; Sherif I.O., Sabry D., Abdel-Aziz A., Sarhan O.M. The role of mesenchymal stem cells in chemotherapy-induced gonadotoxicity. Stem Cell Res Ther 2018;9(1):196. PMID: 30021657. DOI:10.1186/s13287-018-0946-6.; Meligy F.Y., Abo Elgheed A.T., Alghareeb S.M. Therapeutic effect of adipose-derived mesenchymal stem cells on Cisplatin induced testicular damage in adult male albino rat. Ultrastruct Pathol 2019;43(1):28–55. PMID: 30741078. DOI:10.1080/01913123.2019.1572256.; Hassen M.T., Mohamed H.K., Montaser M.M. et al. Molecular, immunomodulatory, and histopathological role of mesenchymal stem cells and beetroot extract on cisplatin induced testicular damage in albino rats. Animals (Basel) 2021;11(4):1142. PMID: 33923635. DOI:10.3390/ani11041142.; G., Basalova N., Kirpatovsky V. et al. A magic kick for regeneration: role of mesenchymal stromal cell secretome in spermatogonial stem cell niche recovery. Stem Cell Res Ther 2019;10(1):342. PMID: 31753023. DOI:10.1186/s13287-019-1479-3.; Safitri E., Purnobasuki H. Effectiveness of mesenchymal stem cells cultured under hypoxia to increase the fertility rate in rats (Rattus norvegicus). Vet World 2021;14(11):3056–64. PMID: 35017856. DOI:10.14202/vetworld.2021.3056-3064.; Abdollahifar M.A., Azad N., Faraji Sani M. et al. Impaired spermatogenesis caused by busulfan is partially ameliorated by treatment with conditioned medium of adipose tissue derived mesenchymal stem cells. Biotech Histochem 2022;97(2):107–17. PMID: 33843374. DOI:10.1080/10520295.2021.1905182.; Önen S., Köse S., Yersal N., Korkusuz P. Mesenchymal stem cells promote spermatogonial stem/progenitor cell pool and spermatogenesis in neonatal mice in vitro. Sci Rep 2022;12(1):11494. PMID: 35798781. DOI:10.1038/s41598-022-15358-5.; Cai Y.T., Xiong C.L., Liu T.S. et al. Secretions released from mesenchymal stem cells improve spermatogenesis restoration of cytotoxic treatment with busulfan in azoospermia mice. Andrologia 2021;53(8):e14144. PMID: 34143903. DOI:10.1111/and.14144.; Gong D., Zhang C., Li T. et al. Are Sertoli cells a kind of mesenchymal stem cells? Am J Transl Res 2017;9(3):1067–74. PMID: 28386334.; Hou L., Dong Q., Wu Y.J. et al. Gonadotropins facilitate potential differentiation of human bone marrow mesenchymal stem cells into Leydig cells in vitro. Kaohsiung J Med Sci 2016;32(1):1–9. PMID: 26853168. DOI:10.1016/j.kjms.2015.10.008.; Ji W., Chen Y., Wang L. et al. Differentiation of human umbilical cord mesenchymal stem cells into Leydig-like cells with defined molecular compounds. Hum Cell 2020;33(2):318–29. PMID: 32034722. DOI:10.1007/s13577-020-00324-y.; Zhang Z.Y., Xing X.Y., Ju G.Q. et al. Mesenchymal stem cells from human umbilical cord ameliorate testicular dysfunction in a male rat hypogonadism model. Asian J Androl 2017;19(5):543–7. PMID: 27586027. DOI:10.4103/1008-682X.186186.; Safitri E., Hariadi M. Comparison of biotechnological culture of hypoxia-conditioned rat mesenchymal stem cells with conventional in vitro culture of normoxia-conditioned rat mesenchymal stem cells for testicular failure therapy with low libido in rats. Vet World 2019;12(6):916–24. PMID: 31440014. DOI:10.14202/vetworld.2019.916-924.; Peak T.C., Haney N.M., Wang W. et al. Stem cell therapy for the treatment of Leydig cell dysfunction in primary hypogonadism. World J Stem Cells 2016;8(10):306–15. PMID: 27822338. DOI:10.4252/wjsc.v8.i10.306.; Hsiao C.H., Ji A.T., Chang C.C. et al. Local injection of mesenchymal stem cells protects testicular torsion-induced germ cell injury. Stem Cell Res Ther 2015;6(1):113. PMID: 26025454. DOI:10.1186/s13287-015-0079-0.; Hsiao C.H., Ji A.T., Chang C.C. et al. Mesenchymal stem cells restore the sperm motility from testicular torsion-detorsion injury by regulation of glucose metabolism in sperm. Stem Cell Res Ther 2019;10(1):270. PMID: 31445515. DOI:10.1186/s13287-019-1351-5.; Zhong L., Yang M., Zou X. et al. Human umbilical cord multipotent mesenchymal stromal cells alleviate acute ischemiareperfusion injury of spermatogenic cells via reducing inflammatory response and oxidative stress. Stem Cell Res Ther 2020;11(1):294. PMID: 32680554. DOI:10.1186/s13287-020-01813-5.; Chen Y.T., Chuang F.C., Yang C.C. et al. Combined melatoninadipose derived mesenchymal stem cells therapy effectively protected the testis from testicular torsion-induced ischemiareperfusion injury. Stem Cell Res Ther 2021;12(1):370. PMID: 34187560. DOI:10.1186/s13287-021-02439-x.; Sharifian P., Yari S., Hasanein P., Manteghi Nezhad Y. Conditioned medium of bone marrow mesenchymal stem cells improves sperm parameters and reduces histological alteration in rat testicular ischaemia/reperfusion model. Andrologia 2022;54(11):e14624. PMID: 36270637. DOI:10.1111/and.14624.; Aghamir S.M., Salavati A., Yousefie R. et al. Does bone marrow-derived mesenchymal stem cell transfusion prevent antisperm antibody production after traumatic testis rupture? Urology 2014;84(1):82–6. PMID: 24797037. DOI:10.1016/j.urology.2014.03.009.; ClinicalTrials.gov. NCT02414295. Sperm production in Kleinfelter syndrome patients after mesenchymal stem cell injection. Available from: https://clinicaltrials.gov/study/NCT02414295.; ClinicalTrials.gov. NCT02025270. MSCs for treatment of azoospermic patients. Available from: https://clinicaltrials.gov/study/NCT02025270.; ClinicalTrials.gov. NCT02008799. Intra testicular artery injection of bone marrow stem cell in management of azoospermia. Available from: https://clinicaltrials.gov/study/NCT02008799.; ClinicalTrials.gov. NCT02041910. Testicular injection of autologous stem cells for treatment of patients with azoospermia. Available from: https://clinicaltrials.gov/study/NCT02041910.; ClinicalTrials.gov. NCT02641769. Intra-testicular transplantation of autologous stem cells for treatment of non-obstructive azoospermia male infertility. Available from: https://clinicaltrials.gov/study/NCT02641769.; ClinicalTrials.gov. NCT03762967. Autologous adipose-derived adult stromal vascular cell administration for male patients with infertility. Available from: https://clinicaltrials.gov/study/NCT03762967.; Han G.W., Liu C.C., Gao W.H. et al. [Bone marrow mesenchymal stem cells suppress E coli-induced bacterial prostatitis in rats]. Zhonghua Nan Ke Xue 2015;21(4):294–9. (In Chinese). PMID: 26027094.; Liu H., Zhu X., Cao X. et al. IL-1β-primed mesenchymal stromal cells exert enhanced therapeutic effects to alleviate Chronic Prostatitis/Chronic Pelvic Pain Syndrome through systemic immunity. Stem Cell Res Ther 2021;12(1):514. PMID: 34563249. DOI:10.1186/s13287-021-02579-0.; Goudarzi F., Kiani A., Moradi M. et al. Intraprostatic injection of exosomes isolated from adipose-derived mesenchymal stem cells for the treatment of chronic non-bacterial prostatitis. J Tissue Eng Regen Med 2021;15(12):1144–54. PMID: 34559469. DOI:10.1002/term.3251.; Wang L., Xie L., Tintani F. et al. Aberrant transforming growth factor-β activation recruits mesenchymal stem cells during prostatic hyperplasia. Stem Cells Transl Med 2017;6(2):394–404. PMID: 28191756. DOI:10.5966/sctm.2015-0411.; Brennen W.N., Isaacs J.T. Mesenchymal stem cells and the embryonic reawakening theory of BPH. Nat Rev Urol 2018;15(11):703–15. PMID: 30214054. DOI:10.1038/s41585-018-0087-9.; Rahimi Tesiye M., Abrishami Kia Z., Rajabi-Maham H. Mesenchymal stem cells and prostate cancer: A concise review of therapeutic potentials and biological aspects. Stem Cell Res 2022;63:102864. PMID: 35878578. DOI:10.1016/j.scr.2022.102864.; Takahara K., Ii M., Inamoto T. et al. Adipose-derived stromal cells inhibit prostate cancer cell proliferation inducing apoptosis. Biochem Biophys Res Commun 2014;446(4):1102–7. PMID: 24680678. DOI:10.1016/j.bbrc.2014.03.080.; Safari F., Shakery T., Sayadamin N. Evaluating the effect of secretome of human amniotic mesenchymal stromal cells on apoptosis induction and epithelial-mesenchymal transition inhibition in LNCaP prostate cancer cells based on 2D and 3D cell culture models. Cell Biochem Funct 2021;39(6):813–20. PMID: 34128234. DOI:10.1002/cbf.3654.; Schweizer M.T., Wang H., Bivalacqua T.J. et al. A phase I study to assess the safety and cancer-homing ability of allogeneic bone marrow-derived mesenchymal stem cells in men with localized prostate cancer. Stem Cells Transl Med 2019;8(5):441–9. PMID: 30735000. DOI:10.1002/sctm.18-0230.; Bivalacqua T.J., Deng W., Kendirci M. et al Mesenchymal stem cells alone or ex vivo gene modified with endothelial nitric oxide synthase reverse age-associated erectile dysfunction. Am J Physiol Heart Circ Physiol 2007;292(3):H1278–90. PMID: 17071732. DOI:10.1152/ajpheart.00685.2006.; Qiu X., Lin H., Wang Y. et al. Intracavernous transplantation of bone marrow-derived mesenchymal stem cells restores erectile function of streptozocin-induced diabetic rats. J Sex Med 2011;8(2):427–36. PMID: 21091881. DOI:10.1111/j.1743-6109.2010.02118.x.; Sun C., Lin H., Yu W. et al. Neurotrophic effect of bone marrow mesenchymal stem cells for erectile dysfunction in diabetic rats. Int J Androl 2012;35(4):601–7. PMID: 22428616. DOI:10.1111/j.1365-2605.2012.01250.x.; Zhu J.Q., Lu H.K., Cui Z.Q. et al. Therapeutic potential of human umbilical cord blood mesenchymal stem cells on erectile function in rats with cavernous nerve injury. Biotechnol Lett 2015;37(7):1515– 25. PMID: 25801670. DOI:10.1007/s10529-015-1816-2.; Ouyang X., Han X., Chen Z. et al. MSC-derived exosomes ameliorate erectile dysfunction by alleviation of corpus cavernosum smooth muscle apoptosis in a rat model of cavernous nerve injury. Stem Cell Res Ther 2018;9(1):246. PMID: 30257719. DOI:10.1186/s13287-018-1003-1.; Yang J., Zhang Y., Zang G. et al. Adipose-derived stem cells improve erectile function partially through the secretion of IGF-1, bFGF, and VEGF in aged rats. Andrology 2018;6(3):498–509. PMID: 29603682. DOI:10.1111/andr.12483.; Chen Z., Han X., Ouyang X. et al. Transplantation of induced pluripotent stem cell-derived mesenchymal stem cells improved erectile dysfunction induced by cavernous nerve injury. Theranostics 2019;9(22):6354–68. PMID: 31588222. DOI:10.7150/thno.34008.; Liu Y., Zhao S., Luo L. et al. Mesenchymal stem cell-derived exosomes ameliorate erection by reducing oxidative stress damage of corpus cavernosum in a rat model of artery injury. J Cell Mol Med 2019;23(11):7462–73. PMID: 31512385. DOI:10.1111/jcmm.14615.; Qiu X., Villalta J., Ferretti L. et al. Effects of intravenous injection of adipose-derived stem cells in a rat model of radiation therapyinduced erectile dysfunction. J Sex Med 2012;9(7):1834–41. PMID: 22548750. DOI:10.1111/j.1743-6109.2012.02753.x.; Kim J.H., Yun J.H., Song E.S. et al. Improvement of damaged cavernosa followed by neuron-like differentiation at injured cavernous nerve after transplantation of stem cells seeded on the PLA nanofiber in rats with cavernous nerve injury. Mol Biol Rep 2021;48(4):3549–59. PMID: 33866496. DOI:10.1007/s11033-021-06332-x.; Bahk J.Y., Jung J.H., Han H. et al. Treatment of diabetic impotence with umbilical cord blood stem cell intracavernosal transplant: Preliminary report of 7 cases. Exp Clin Transplant 2010;8:150–60. PMID: 20565373.; Al Demour S., Jafar H., Adwan S. et al. Safety and potential therapeutic effect of two intracavernous autologous bone marrow derived mesenchymal stem cells injections in diabetic patients with erectile dysfunction: an open label phase I clinical trial. Urol Int 2018;101(3):358–65. PMID: 30173210. DOI:10.1159/000492120.; Al Demour S., Adwan S., Jafar H. et al. Safety and efficacy of 2 intracavernous injections of allogeneic Wharton’s jellyderived mesenchymal stem cells in diabetic patients with erectile dysfunction: Phase 1/2 clinical trial. Urol Int 2021;105(11–12):935– 43. PMID: 34384079. DOI:10.1159/000517364.; Mirzaei M., Bagherinasabsarab M., Pakmanesh H. et al. The effect of intracavernosal injection of stem cell in the treatment of erectile dysfunction in diabetic patients: A randomized single-blinded clinical trial. Urol J 2021;18(6):675–81. 6503. PMID: 34655071. DOI:10.22037/uj.v18i.; You D., Jang M.J., Song G. et al. Safety of autologous bone marrow-derived mesenchymal stem cells in erectile dysfunction: an open-label phase 1 clinical trial. Cytotherapy 2021;23(10):931–38. PMID: 34326007.DOI:10.1016/j.jcyt.2021.06.001.; Haahr M.K., Harken Jensen C., Toyserkani N.M. et al. A 12-month follow-up after a single intracavernous injection of autologous adipose-derived regenerative cells in patients with erectile dysfunction following radical prostatectomy: An open-label phase I clinical trial. Urology 2018; 121:203.e6–13. PMID: 29958973. DOI:10.1016/j.urology.2018.06.018.63.; Levy J.A., Marchand M., Iorio L. et al. Effects of stem cell treatment in human patients with Peyronie disease. J Am Osteopath Assoc 2015;115(10):e8–13. PMID: 26414724. DOI:10.7556/jaoa.2015.124.; Castiglione F., Hedlund P., Van der Aa F. et al. Intratunical injection of human adipose tissue-derived stem cells prevents fibrosis and is associated with improved erectile function in a rat model of Peyronie’s disease. Eur Urol 2013;63(3):551–60. PMID: 23040209. DOI:10.1016/j.eururo.2012.09.034.; ClinicalTrials.gov. NCT02414308. Management of Peyronie’s disease with adipose tissue stem cell. Available from: https://clinicaltrials.gov/study/NCT02414308.; ClinicalTrials.gov. NCT05147779. Safety of cultured allogeneic adult umbilical cord stem cells for Peyronie’s disease, ED, and interstitial cystitis. Available from: https://clinicaltrials.gov/study/NCT05147779.; ClinicalTrials.gov. NCT04771442. Stem cell treatment of Peyronie´s disease. Available from: https://clinicaltrials.gov/study/NCT04771442.; Xie X., Du X., Li K. et al. Construction of engineered corpus cavernosum with primary mesenchymal stem cells in vitro. Sci Rep 2017;7(1):18053. PMID: 29273785. DOI:10.1038/s41598-017-18129-9.; Laks M., Freitas-Filho L.G., Sayeg K. et al. Penile reconstruction using mesenchymal stem cells. Acta Cir Bras 2015;30(8):529–36. PMID: 26352332. DOI:10.1590/S0102-865020150080000003.; https://agx.abvpress.ru/jour/article/view/733

  3. 3
    Academic Journal

    المصدر: Russian Journal of Transplantology and Artificial Organs; Том 22, № 2 (2020); 63-71 ; Вестник трансплантологии и искусственных органов; Том 22, № 2 (2020); 63-71 ; 2412-6160 ; 1995-1191 ; 10.15825/1995-1191-2020-2

    وصف الملف: application/pdf

    Relation: https://journal.transpl.ru/vtio/article/view/1185/931; https://journal.transpl.ru/vtio/article/view/1185/977; Готье СВ, Хомяков СМ. Донорство и трансплантация органов в Российской Федерации в 2018 году. ХI сообщение регистра Российского трансплантологического общества. Вестник трансплантологии и искусственных органов. 2019; 21 (3): 7–32.; Бикбов БТ, Томилина НА. Состав больных и показатели качества лечения на заместительной терапии терминальной хронической почечной недостаточности в Российской Федерации в 1998–2013 гг. Отчет по данным Регистра заместительной почечной терапии Российского диализного общества. Часть вторая. Нефрология и диализ. 2016; 18 (2): 98–164.; Wang JH, Skeans MA, Israni AK. Current status of kidney transplant outcomes: dying to survive. Adv Chronic Kidney Dis. 2016; 23 (5): 281–286. doi.org/10.1053/j.ackd.2016.07.001.; Cunningham J, Locatelli F, Rodriguez M. Secondary hyperparathyroidism: pathogenesis, disease progression and therapeutic options. Clin J Am Soc Nephrol. 2011; 6: 913–921. doi:10.2215/CJN.06040710.; Jamal SA, Miller PD. Secondary and tertiary hyperparathyroidism. J Clin Densitometry: Assessment of Skeletal Health. 2013; 16 (1): 64–68. doi.org/101016/j. jocd.2012.11.012.; Evenepoel P. Recovery versus persistence of disordered mineral metabolism in kidney transplant recipients. Semin Nephrol. 2013; 33: 191–203. doi:10.1016/j.semnephrol.2012.12.019.; Lou I, Foley D, Odorico SK. How well does renal transplantation cure hyperparathyroidism? Ann Surg. 2015; 262 (4): 653–659.; Perrin P, Caillard S, Javier RM, Braun L, Heibel F, Borni-Duval C et al. Persistent hyperparathyroidism is a major risk factor for fractures in the five years after kidney transplantation. Am J Transplant. 2013; 13: 2653–2663. doi:10.1111/ajt.12425.; Hiemstra TF, Brown AJ, Chaudhry AN, Walsh M. Association of calcium, phosphate and parathyroid hormone with renal allograft function: A retrospective cohort study. Am J Nephrol. 2013; 37: 339–345.; Bleskestad IH, Bergrem H, Leivestad T, Hartmann A, Gøransson LG. Parathyroid hormone and clinical outcome in kidney transplant patients with optimal transplant function. Clin Transplant. 2014; 28: 479–486. doi:10.1111/ctr12341.; Pihlstrom H, Dahle DO, Mjoen G, Pilz S, Marz W, Abedini S et al. Increased risk of all-cause mortality and renal graft loss in stable renal transplant recipients with hyperparathyroidism. Transplantation. 2015; 99 (2): 351–359. doi.org/10.1097/tp.00000 00000000583.; Moiz A, Javed T, Garces J, Dornelles A, Staffeld-Coit C. Posttransplant nephrocalcinosis is associated with poor renal allograft function: a single-center experience. Ochsner J. 2015 Spring; 15 (1): 25–29.; Evenepoel P, Claes K, Kuypers D, Maes B, Bammens B, Vanrenterghem Y. Natural history of parathyroid function and calcium metabolism after kidney transplantation: A single-centre study. Nephrol Dial Transplant. 2004; 19: 1281–1287. doi:10.1093/ndt/gfh128.; Muirhead N, Zaltman JS, Gill JS, Churchill DN, PoulinCostello M, Mann V et al. Hypercalcemia in renal transplant patients: prevalence and management in Canadian transplant practice. Clin Transplant. 2014; 28 (2): 161– 165. doi.org/10.1111/ctr.12291.; Wolf M, Weir MR, Kopyt N, Mannon RB, Visger JV, Deng H et al. А рrospective Cohort Study of mineral metabolism after kidney transplantation. Transplantation. 2016; 100 (1): 184–193. doi:10.1097/TP.0000000000000823.; Tillmann F-P, Wächtler C, Hansen A, Rump LC, Quack I. Vitamin D and cinacalcet administration pre-transplantation predict hypercalcaemic hyperparathyroidism post-transplantation: a case-control study of 355 deceased-donor renal transplant recipients over 3 years. Transplantation Research. 2014; 3: 21–26. doi:10.1186/s13737-014-0021-5.; Nakai K, Fujii H, Ishimura T, Fujisawa M, Nishi S. Incidence and risk factors of persistent hyperparathyroidism after kidney transplantation. Transplantation Proceedings. 2017; 49, Issue 1: 53–56. doi.org/10.1016/j.transproceed.2016.10.011.; Timalsina S, Sigdel MR, Baniya S, Subedee S. Status of vitamin D and parameters of calcium homeostasis in renal transplant recipients in Nepal: a cross sectional study. BMC Nephrol. 2018; 22; 19 (1): 290–295. doi:10.1186/s12882-018-1088-x.; Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Supp. 2013; 3 (1): 1–150. doi:10.1038/ki.2009.188.; National kidney foundation. K/DOQI Clinical Practice Guidelines for Bone Metabolism and Disease in Chronic Kidney Disease. Am J Kidney Dis. 2003; 42 (Suppl. 3): S1–S202.; Kawarazaki H, Shibagaki Y, Fukumoto S, Kido R, Ando K, Nakajima I et al. Natural history of mineral and bone disorders after living-donor kidney transplantation: A one-year prospective observational study. Ther Apher Dial. 2011; 15 (5): 481–487. doi:10.1111/j.1744-9987.2011.00932.х.; Torregrosa JV, Barros X. Management of hypercalcemia after renal transplantation. Nefrologia. 2013; 33 (6): 751–757.; Amin T, Coates TP, Barbara J, Hakendorf P, Karin N. Prevalence of hypercalcaemia in a renal transplant population: A single centre study. Int J Nephrology. 2016: 7126290. doi.org/10.1155/2016/7126290.; Nanmoku K, Shinzato T, Kubo T, Shimizu T, Yagisawa T. Prevalence and predictors of early hypercalcemia after kidney transplantation: a nested case-control study within a cohort of 100 patients. Clin Exp Nephrol. 2019; 23 (2): 268–274. doi:10.1007/s10157-018-1627-6.; García V, Sánchez-Agesta V, Agüera LM, Calle O, Navarro MD, Rodríguez A, Aljama P. Influence of pre-kidney transplant secondary hyperparathyroidism on later evolution after renal transplantation. Transplantation. 2018; 102: S535.; Al-Moasseb Z, Aitken E. Natural history of serum calcium and parathyroid hormone following renal transplantation. Transplant Proc. 2016; 48 (10): 3285–3291. doi:10.1016/j.transproceed.2016.09.050.; Erem S, Atfi A, Razzaque MS. Anabolic effects of vitamin D and magnesium in aging bone. Journal of Steroid Biochemistry and Molecular Biology. 2019; 193: 8p.105400. doi.org/10.1016/j.jsbmb.2019.105400.; Kalantar-Zadeh K, Molnar MZ, Kovesdy CP, Mucsi I, Bunnapradist S. Management mineral and bone disorder after kidney transplantation. Curr Opin Nephrol Hypertens. 2012; 21 (4): 389–403. doi:10.1097/MNH.0b013e3283546ee0.; Holick MF, Binkley NC, Bischoff-Ferrari HA et al. Endocrine Society. Evolution, treatment and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2011; 96: 1911–1930.; Grethen E, Hill KM, Jones R, Cacucci BM, Gupta CE, Acton A et al. Serum leptin, parathyroid hormone, 1,25-dihydroxy vitamin D, fibroblast growth factor 23, bone alkaline phosphatase, and sclerostin relationships in obesity. J Clin Endocrinol Metab. 2012; 97: 1655– 1662. doi:10.1210/jc.2011-2280.; Perrin P, Kiener C, Javier RM, Braun L, Cognard N, Gautier-Vargas G et al. Changes in chronic kidney diseasemineral and bone disorders and associated fractures after kidney transplantation. Transplantation. 2017; 101 (8): 1897–1905. doi:10.1097/TP.0000000000001449.; https://journal.transpl.ru/vtio/article/view/1185

  4. 4
    Academic Journal

    المصدر: CHILDREN INFECTIONS; Том 18, № 1 (2019); 11-16 ; ДЕТСКИЕ ИНФЕКЦИИ; Том 18, № 1 (2019); 11-16 ; 2618-8139 ; 2072-8107 ; 10.22627/2072-8107-2019-18-1

    مصطلحات موضوعية: типирование, HHV-6A, HHV-6B, typing, ВГЧ-6А, ВГЧ-6В

    وصف الملف: application/pdf

    Relation: https://detinf.elpub.ru/jour/article/view/401/378; Pantry S.N., Medveczky P.G. Latency, Integration, and Reactivation of Human Herpesvirus-6. Viruses. 2017 Jul; 9(7): 1 94.; Morissette G., Flamand L. Herpesviruses and chromosomal integration. J. Virol., 2010. 84(23):12100—12109.; Arbuckle J.H., Medveczky P.G. The molecular biology of human herpesvirus-6 latency and telomere integration. Microbes Infect., 2011. 13(9): 731—741.; Мелехина Е.В., Домонова Э.А.,Сильвейстрова О.Ю., Гоптарь И.А., Кулешов К.В., Никифорова А.В., Музыка А.Д., Шипули-на О.Ю., Горелов А.В. Первый российский опыт выявления наследственной передачи хромосомно-интегрированного вируса герпеса человека 6В от отца сыну и дочери (Москва, 2017). Материалы XVII Конгресса детских инфекционистов России «Актуальные вопросы инфекционной патологии и вакцинопрофилактики». Москва, 2018, 12—14 декабря. Детские инфекции. 2018;17(1S):72.; Rizzo R., Bortolotti D., Gentili V, Rotola A., Bolzani S., Caselli E., Tola M.R., Di Luca D. KIR2DS2/KIR2DL2/HLA-C1 Haplotype Is Associated with Alzheimer's Disease: Implication for the Role of Herpesvirus Infections. Journal of Alzheimer’s Disease, 2019. 67(4):1 379—1 389. DOI:10.3233/JAD-180777.; Onda M., Niimi Y, Ozawa K., Shiraki I., Mochizuki K., Yamamoto T., Sugita S., Ishida K. Human Herpesvirus-6 corneal Endotheliitis after intravitreal injection of Ranibizumab. BMC Ophthalmology, 2019, 19:19.; Ptaszynska-Sarosiek I., Dunaj J., Zajkowska A., Niemcunowicz-Janica A., Krol M., Pancewicz S., Zajkowska J. Post-mortem detection of six human herpesviruses (HSV-1, HSV-2, VZV, EBV, CMV, HHV-6) in trigeminal and facial nerve ganglia by PCR. Journal of Life and Environmental Sciences, 2019 Jan 9; 6:e6095.; https://detinf.elpub.ru/jour/article/view/401

  5. 5
  6. 6