يعرض 1 - 20 نتائج من 21 نتيجة بحث عن '"М. Цыганов М"', وقت الاستعلام: 0.82s تنقيح النتائج
  1. 1
    Academic Journal

    المساهمون: The work was carried out within the framework of the 2021–2023 competition for the scholarship of the President of the Russian Federation for young scientists and graduate students., Работа выполнена в рамках конкурса 2021–2023 гг. на получение стипендии Президента РФ молодым ученым и аспирантам.

    المصدر: Advances in Molecular Oncology; Том 9, № 1 (2022); 33-41 ; Успехи молекулярной онкологии; Том 9, № 1 (2022); 33-41 ; 2413-3787 ; 2313-805X ; 10.17650/2313-805X-2022-9-1

    وصف الملف: application/pdf

    Relation: https://umo.abvpress.ru/jour/article/view/414/251; Sung H., Ferlay J., Siegel R.L. et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021;71:209–49. DOI:10.3322/caac.21660.; Стенина М.Б., Жукова Л.Г., Королева И.А. и др. Практические рекомендации по лекарственному лечению рака молочной железы. Злокачественные опухоли: Практические рекомендации RUSSCO #3s2 2020;10. [Stenina M.B., Zhukova L.G., Koroleva I.A. at al. Practical recommendations for the drug treatment of breast cancer. Malignant tumors: Practical Recommendations of RUSSCO #3s2 2020;10. (In Russ.)]. DOI:10.18027/2224-5057-2020-10-3s2-09. Доступно по: https://www.rosoncoweb.ru/standarts/RUSSCO/2020/2020-09.pdf.; Haque W., Verma V., Hatch S. et al. Response rates and pathologic complete response by breast cancer molecular subtype following neoadjuvant chemotherapy. Breast Cancer Res Treat 2018;170(3):559–67. DOI:10.1007/s10549-018-4801-3.; Spring L.M., Fell G., Arfe A. et al. Pathologic complete response after neoadjuvant chemotherapy and impact on breast cancer recurrence and survival: a comprehensive meta-analysis. Clin Cancer Res 2020;26(12):2838–48. DOI:10.1158/1078-0432.CCR-19-3492.; Ibragimova M., Tsyganov M., Litviakov N. Natural and chemotherapy-induced clonal evolution of tumors. Biochemistry (Mosc) 2017;82(4):413–25. DOI:10.1134/S0006297917040022.; Razis E., Kalogeras K.T., Kotsantis I. et al. The role of CXCL13 and CXCL9 in early breast cancer. Clin Breast Cancer 2020(1);20:e36–53. DOI:10.1016/j.clbc.2019.08.008.; Owyong M., Chou J., van den Bijgaart R.J.E. et al. MMP9 modulates the metastatic cascade and immune landscape for breast cancer anti-metastatic therapy. Life Sci Alliance 2019;2(6): e201800226. DOI:10.26508/lsa.201800226.; Zhao C.-C., Chen J., Zhang L.-Y. et al. Lamin B2 promotes the progression of triple negative breast cancer via mediating cell proliferation and apoptosis. Biosci Rep 2021;41(1):BSR20203874. DOI:10.1042/BSR20203874.; Yan Y., Xu H., Wang J. et al. Inhibition of breast cancer cells by targeting E2F-1 gene and expressing IL15 oncolytic adenovirus. Biosci Rep 2019;39(7):BSR20190384. DOI:10.1042/BSR20190384.; Liu B., Wang T., Wang H. et al. Oncoprotein HBXIP enhances HOXB13 acetylation and co-activates HOXB13 to confer tamoxifen resistance in breast cancer. J Hematol Oncol 2018;11(1):26. DOI:10.1186/s13045-018-0577-5.; Liu J., Prager-van der Smissen W.J.C., Collée J.M. et al. Germline HOXB13 mutations p.G84E and p.R217C do not confer an increased breast cancer risk. Sci Rep 2020;10(1):9688. DOI:10.1038/s41598-020-65665-y.; Shyanti R.K., Sehrawat A., Singh S.V. et al. Zerumbone modulates CD1d expression and lipid antigen presentation pathway in breast cancer cells. Toxicol in Vitro 2017;44:74–84. DOI:10.1016/j.tiv.2017.06.016.; Katsuta E., Maawy A.A., Yan L. et al. High expression of bone morphogenetic protein (BMP) 6 and BMP7 are associated with higher immune cell infiltration and better survival in estrogen receptor-positive breast cancer. Oncol Rep 2019;2(4): 1413–21. DOI:10.3892/or.2019.7275.; Yang S.-J., Wang D.-D., Li J. et al. Predictive role of GSTP1-containing exosomes in chemotherapy-resistant breast cancer. Gene 2017;623:5–14. DOI:10.1016/j.gene.2017.04.031.; Yang M., Li Y., Shen X. et al. CLDN6 promotes chemoresistance through GSTP1 in human breast cancer. J Exp Clin Cancer Res 2017;36:157. DOI:10.1186/s13046-017-0627-9.; Louie S.M., Grossman E.A., Crawford L.A. et al. GSTP1 Is a driver of triple-negative breast cancer cell metabolism and pathogenicity. Cell Chem Biol 2016;23(5):567–78. DOI:10.1016/j.chembiol.2016.03.017.; https://umo.abvpress.ru/jour/article/view/414

  2. 2
    Academic Journal
  3. 3
    Academic Journal

    المصدر: Siberian journal of oncology; Том 20, № 6 (2021); 104-113 ; Сибирский онкологический журнал; Том 20, № 6 (2021); 104-113 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2021-20-6

    وصف الملف: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/1992/936; Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018 Nov; 68(6): 394–424. doi:10.3322/caac.21492.; Worldwide cancer data. [Internet]. URL: https://www.wcrf.org/dietandcancer/worldwide-cancer-data/ (cited 01.2019).; Злокачественные новообразования в России в 2019 году (заболеваемость и смертность). М., 2020. 252 с.; El-Sedfy A., Brar S.S., Coburn N.G. Current role of minimally invasive approaches in the treatment of early gastric cancer. World J Gastroenterol. 2014 Apr 14; 20(14): 3880–8. doi:10.3748/wjg.v20.i14.3880.; Ellebaek S.B., Graversen M., Detlefsen S., Lundell L., Fristrup C.W., Pfeiffer P., Mortensen M.B. Pressurized intraperitoneal aerosol chemotherapy (PIPAC) of peritoneal metastasis from gastric cancer: a descriptive cohort study. Clin Exp Metastasis. 2020; 37: 325–32. doi:10.1007/s10585-020-10023-5.; Хомяков В.М., Рябов А.Б., Болотина Л.В., Соболев Д.Д., Уткина А.Б., Кузнецова О.С. Лечение больных раком желудка с канцероматозом брюшины. Современный взгляд и перспективы. Онкология. Журнал им. П.А. Герцена. 2017. 6(6): 4–13.; Fujitani K., Yang H.-K., Mizusawa J., Kim Y.-W., Terashima M., Han S.-U., Iwasaki Y., Hyung W.J., Takagane A., Park D.J., Yoshikawa T., Hahn S., Nakamura K., Park C.H., Kurokawa Y., Bang Y.-J., Park B.J., Sasako M., Tsujinaka T., REGATTA study investigators. Gastrectomy plus chemotherapy versus chemotherapy alone for advanced gastric cancer with a single non-curable factor (REGATTA): a phase 3, randomized controlled trial. Lancet Oncol. 2016 Mar; 17(3): 309–18. doi:10.1016/S1470-2045(15)00553-7.; Калинин А.Е., Гущин В.В. Принятие хирургических решений при лечении больных метастатическими злокачественными опухолями. Хирургическое лечение перитонеального канцероматоза. Практическая онкология. 2016. 17(3): 119–28.; Amin M.B., Greene F.L., Edge S.B., Compton C.C., Gershenwald J.E., Brookland R.K., Meyer L., Gress D.M., Byrd D.R., Winchester D.P. The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more «personalized» approach to cancer staging. CA Cancer J Clin. 2017 Mar; 67(2): 93–9. doi:10.3322/caac.21388.; Gamboa A.C., Winer J.H. Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy for Gastric Cancer. Cancers. 2019; 11: 1662. doi:10.3390/cancers11111662.; Glehen O., Passot G., Villeneuve L., Vaudoyer D., Bin-Dorel S., Boschetti G., Piaton E., Garofalo A. GASTRICHIP: D2 resection and hyperthermic intraperitoneal chemotherapy in locally advanced gastric carcinoma: a randomized and multicenter phase III study. BMC Cancer. 2014; 14: 183.; Yonemura Y., Canbay E., Ishibashi H., Hirano M., Mizumoto A., Takao N., Ichinose M., Noguchi K., Motoi S., Liu Y., Wakama S., Coccolini F., Taniguchi K. Role of Hyperthermic Intraperitoneal Chemotherapy (HIPEC) in the Treatment of Peritoneal Metastasis of Gastric Cancer. Cancer Regional Therapy. 2020. doi:10.1007/978-3-030-28891-4_10.; Brücher B.L., Piso P., Verwaal V., Esquivel J., Derraco M., Yonemura Y., Gonzalez-Moreno S., Pelz J., Königsrainer A., Ströhlein M., Levine E.A., Morris D., Bartlett D., Glehen O., Garofalo A., Nissan A. Peritoneal carcinomatosis: cytoreductive surgery and HIPEC-overview and basics. Cancer Invest. 2012 Mar; 30(3): 209–24. doi:10.3109/07357907.2012.654871.; Maeda H., Kobayashi M., Sakamoto J. Evaluation and treatment of malignant ascites secondary to gastric cancer. World J Gastroenterol. 2015 Oct 21; 21(39): 10936–47. doi:10.3748/wjg.v21.i39.10936.; National Comprehensive Cancer Network (NCCN). [Internet]. URL: https://www.nccn.org/professionals/physician_gls/default.aspx (cited 18.10.2019).; Yonemura Y., Prabhu A., Sako S., Ishibashi H., Mizumoto A., Takao N., Ichinose M., Motoi S., Liu Y., Nishihara K., Brandl A., Fushida S. Long Term Survival after Cytoreductive Surgery Combined with Perioperative Chemotherapy in Gastric Cancer Patients with Peritoneal Metastasis. Cancers. 2020; 12 (1): 116. doi:10.3390/cancers12010116.; Афанасьев С.Г., Добродеев А.Ю. Циторедуктивные операции (Нужно ли удалять первичную опухоль? Где предел разумной циторедукции? Практическая онкология. 2014; 15(2): 93–100.; Sugarbaker P.H., Van der Smitten K. Surgical technology and pharmacology of hyperthermic perioperative chemotherapy. J Gastrointest Oncol. 2016; 7: 29–44. doi:10.3978/j.issn.2078-6891.2015.105.; Kono K., Yong W.P., Okayama H., Shabbir A., Momma T., Ohki S., Takenoshita S., So J. Intraperitoneal chemotherapy for stomach cancer with peritoneal disease: the experience of Singapore and Japan. Gastric Cancer. 2017; 20: 122–7. doi:10.1007/s10120-016-0660-y.; Walker J.L., Brady M.F., Wenzel L., Fleming G.F., Huang H.Q., DiSilvestro P.A., Fujiwara K., Alberts D.S., Zheng W., Tewari K.S., Cohn D.E., Powell M.A., Van Le L., Davidson S.A., Gray H.J., Rose P.G., Aghajanian C., Myers T., Alvarez Secord A., Rubin S.C., Mannel R.S. Randomized Trial of Intravenous Versus Intraperitoneal Chemotherapy Plus Bevacizumab in Advanced Ovarian Carcinoma: An NRG Oncology/Gynecologic Oncology Group Study. J Clin Oncol. 2019 Jun 1; 37(16): 1380–90. doi:10.1200/JCO.18.01568.; Cascales-Campos P.A., López-López V., Torres-Melero J., Arjona A., Muñoz-Casares F.C., Barrios P., Morales R., Pereira F., Bretcha-Boix P., González-Bayón L., González-Moreno S., Gil J. Survival outcomes in patients aged 75 years and over with peritoneal colorectal carcinomatosis after cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (HIPEC): multicenter study of the Spanish Group of Peritoneal Cancer Surgery (GECOP). Clin Transl Oncol. 2020; 22: 130–6. doi:10.1007/s12094-019-02124-9.; Quenet F., Elias D., Roca L., Goere D., Ghouti L., Pocard M., Facy O., Arvieux C., Lorimier G., Pezet D., Marchal F., Loi V., Meeus P., Forges H.D., Stanbury T., Paineau J., Glehen O.A UNICANCER phase III trial of hyperthermic intra-peritoneal chemotherapy (HIPEC) for colorectal peritoneal carcinomatosis (PC): PRODIGE 7. J Clin Oncol. 2018; 39:1.; Armstrong D.K., Walker J.L. Role of Intraperitoneal Therapy in the Initial Management of Ovarian Cancer. J Clin Oncol. 2019; 37(27): 2416–9.; Yoshida K., Yamaguchi K., Okumura N., Tanahashi T., Kodera Y. Is conversion therapy possible in stage IV gastric cancer: the proposal of new biological categories of classification. Gastric Cancer. 2016 Apr; 19(2): 329–38. doi:10.1007/s10120-015-0575-z.; Ansari N., Chandrakumaran K., Dayal S., Mohamed F., Cecil T.D., Moran B.J. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy in 1000 patients with perforated appendiceal epithelial tumours. Eur J Surg Oncol. 2016 Jul; 42(7): 1035–41. doi:10.1016/j.ejso.2016.03.017.; Sugarbaker P.H. Prevention and Treatment of Peritoneal Metastases from Gastric Cancer. J Clin Med. 2021; 10(9): 1899. doi:10.3390/jcm10091899.; The Chicago Consensus on peritoneal surface malignancies: Management of gastric metastases. Cancer. 2020; 126(11): 2541–6. doi:10.1002/cncr.32868.; Al-Batran S.E., Homann N., Pauligk C., Illerhaus G., Martens U.M., Stoehlmacher J., Schmalenberg H., Luley K.B., Prasnikar N., Egger M., Probst S., Messmann H., Moehler M., Fischbach W., Hartmann J.T., Mayer F., Höffkes H.-G., Koenigsmann M., Arnold D., Kraus T.W., Grimm K., Berkhoff S., Post S., Jäger E., Bechstein W., Ronellenfitsch U., Mönig S., Hofheinz R.D. Effect of Neoadjuvant Chemotherapy Followed by Surgical Resection on Survival in Patients With Limited Metastatic Gastric or Gastroesophageal Junction Cancer: The AIO-FLOT3 Trial. JAMA Oncol. 2017 Sep 1; 3(9):1237–44. doi:10.1001/jamaoncol.2017.0515.; Хомяков В.М., Соболев Д.Д., Колобаев И.В., Чайка А.В., Уткина А.Б., Корниецкая А.Л., Виндиза Ф.Р., Рябов А.Б. Конверсионная хирургия при раке желудка IV cтадии. Обзор литературы и опыт МНИОИ Им. П.А. Герцена. Вопросы онкологии. 2020; 66(1). С. 50–7.; Sun F., Feng M., Guan W. Mechanisms of peritoneal dissemination in gastric cancer. Oncol Lett. 2017 Dec; 14(6):6991–8. doi:10.3892/ol.2017.7149.; Yonemura Y., Iahibashi H., Sako S., Mizumoto A., Takao N., Ichinose M., Motoi S., Liu Y., Wakama S., Kamada Y., Nishihara K. Advances with pharmacotherapy for peritoneal metastasis. Exp Opin Pharmacother. 2020; 21(16): 2057–66. doi:10.1080/14656566.2020.1793957.; Chia C.S., You B., Decullier E., Vaudoyer D., Lorimier G., Abboud K., Bereder J.-M., Arvieux C., Boschetti G., Glehen O., BIG RENAPE Group. Patients with Peritoneal Carcinomatosis from Gastric Cancer Treated with Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy: Is Cure a Possibility? Ann Surg Oncol. 2016 Jun; 23(6): 1971–9. doi:10.1245/s10434-015-5081-3.; Intraperitoneal Aerosol Chemotherapy in Gastric Cancer (PIPACGA01). [Internet]. URL: https://clinicaltrials.gov/ct2/show/NCT01854255 (cited 04.01.2018).; Bonnot P.E., Piessen G., Pocard M., Meunier B., Bereder J.M., Abboud K., Marchal F., Quenet F., Goere D., Msika S., Arvieux C., Pirro N., Wernert R., RAT P., Pezet D., Lefevre J., Courvoisier T., Kianmanesh R., Meeus P., Glehen O.; FREGAT and BIG-RENAPE Networks. Cytoreductive Surgery With or Without Hyperthermic Intraperitoneal Chemotherapy for Gastric Cancer With Peritoneal Metastases (CYTO-CHIP study): A Propensity Score Analysis. J Clin Oncol. 2019 Aug 10; 37(23): 2028–40. doi:10.1200/JCO.18.01688.; Newhook T.E., Agnes A., Blum M., Estrella J.S., Das P., Ho L., Ajani J.A., Minsky B.D., Mansfield P., Badgwell B.D. Laparoscopic Hyperthermic Intraperitoneal Chemotherapy is Safe for Patients with Peritoneal Metastases from Gastric Cancer and May Lead to Gastrectomy. Ann Surg Oncol. 2019 May; 26(5): 1394–1400. doi:10.1245/s10434-018-07140-7.; Badgwell B., Blum M., Das P., Estrella J., Wang X., Ho L., Fournier K., Royal R., Mansfield P., Ajani J. Phase II Trial of Laparoscopic Hyperthermic Intraperitoneal Chemoperfusion for Peritoneal Carcinomatosis or Positive Peritoneal Cytology in Patients with Gastric Adenocarcinoma. Ann Surg Oncol. 2017 Oct; 24(11): 3338–44. doi:10.1245/s10434-017-6047-4.; Solass W., Kerb R., Mürdter T., Giger-Pabst U., Strumberg D., Tempfer C., Zieren J., Schwab M., Reymond M.A. Intraperitoneal chemotherapy of peritoneal carcinomatosis using pressurized aerosol as an alternative to liquid solution: first evidence for efficacy. Ann Surg Oncol. 2014 Feb; 21(2): 553–9. doi:10.1245/s10434-013-3213-1.; Каприн А.Д., Хомяков В.М., Рябов А.Б., Болотина Л.В., Иванов А.В., Черемисов В.В., Колобаев И.В., Чайка А.В., Соболев Д.Д., Крамская Л.В., Уткина А.Б. Внутрибрюшная аэрозольная химиотерапия под давлением у больных диссеминированным раком желудка. Онкология. Журнал им. П.А. Герцена. 2016; 5(2): 12–8. doi:10.17116/onkolog20165212-18.; Dakwar G.R., Shariati M., Willaert W., Ceelen W., de Smedt S.C., Remaut K. Nanomedicine – based intraperitoneal therapy for the treatment of peritoneal carcinomatosis – Mission possible? Adv Drug Deliv Rev. 2017 Jan 1; 108: 13–24. doi:10.1016/j.addr.2016.07.001.; Хомяков В.М., Рябов А.Б., Колобаев И.В., Болотина Л.В., Уткина А.Б., Соболев Д.Д., Кузнецова О.С., Каприн А.Д. Внутрибрюшная аэрозольная химиотерапия под давлением в сочетании с системной химиотерапией – новый подход в лечении больных раком желудка с перитонеальным карциноматозом. Сибирский онкологический журнал. 2020; 19(4): 49–58. doi:10.21294/1814-4861-2020-19-4-49-58; Graversen M., Detlefsen S., Bjerregaard J.K., Fristrup C.W., Pfeiffer P., Mortensen M.B. Prospective, single–center implementation and evaluation of intraperitoneal aerosol pressure chemotherapy (PIPAC) response for peritoneal metastases. Adv Med Oncol. 2018. doi:10.1177/1758835918777036.; Solass W., Sempoux C., Carr N.J., Bibeau F., Neureiter D., Jäger T., Caterino T.D., Brunel C., Klieser E., Fristrup C.W., Mortensen M.B., Detlefsen S. Reproducibility of the peritoneal regression grading score for assessment of response to therapy in peritoneal metastasis. Histopathology. 2019 Jun; 74(7): 1014–24. doi:10.1111/his.13829.; Thomassen I., van Gestel Y.R., van Ramshorst B., Luyer M.D., Bosscha K., Nienhuijs S.W., Lemmens V.E., de Hingh I.H. Peritoneal carcinomatosis of gastric origin: a population-based study on incidence, survival and risk factors. Int J Cancer. 2014 Feb 1; 134(3): 622–8. doi:10.1002/ijc.28373.; Ji Z.-H., Peng K.-W., Yu Y., Li X.-B., Yonemura Y., Liu Y., Sugarbaker P.H., Li Y. Current status and future prospects of clinical trials on CRS+HIPEC for gastric cancer peritoneal metastases. Int J Hyperthermia. 2017 Aug; 33(5): 562–70. doi:10.1080/02656736.2017.1283065.; Seshadri R.A., Glehen O. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy for stomach cancer. World J Gastroenterol 2016, 22: 1114–30.; Levine E.A., Stewart J.H., Shen P., Russell G.B., Loggie B.L., Votanopoulos K.I. Intraperitoneal chemotherapy for peritoneal surface malignancy: experience with 1,000 patients. J Am Coll Surg. 2014 Apr; 218(4): 573–85. doi:10.1016/j.jamcollsurg.2013.12.013.; Coccolini F., Campanati L., Catena F., Ceni V., Ceresoli M., Jimenez Cruz J., Lotti M., Magnone S., Napoli J., Rossetti D., De Iaco P., Frigerio L., Pinna A., Runnebaum I., Ansaloni L. Hyperthermic intraperitoneal chemotherapy with cisplatin and paclitaxel in advanced ovarian cancer: a multicenter prospective observational study. J Gynecol Oncol. 2015 Jan; 26(1): 54–61. doi:10.3802/jgo.2015.26.1.54.; https://www.siboncoj.ru/jour/article/view/1992

  4. 4
    Academic Journal

    المصدر: Advances in Molecular Oncology; Том 8, № 4 (2021); 8-20 ; Успехи молекулярной онкологии; Том 8, № 4 (2021); 8-20 ; 2413-3787 ; 2313-805X ; 10.17650/2313-805X-2021-8-4

    وصف الملف: application/pdf

    Relation: https://umo.abvpress.ru/jour/article/view/385/239; Oiseth S.J., Aziz M.S. Cancer immunotherapy: a brief review of the history, possibilities, and challenges ahead. J Cancer Metastasis Treat 2017;3(10):250–61. DOI:10.20517/23944722.2017.41.; Busch W. Aus der Sitzung der medicinischen Section vom 13 November 1867. Berl Klin Wochenschr 1868;5:137.; Fehleisen F. Ueber die Züchtung der Erysipelkokken auf künstlichem Nährboden und ihre Übertragbarkeit auf den Menschen. Dtsch Med Wochenschr. 1882;8(31):553–4.; Coley W.B. II. Contribution to the knowledge of sarcoma. Annals of surgery 1891;14(3):199.; Пронько Д. Прицел на раковые мишени. Наука и инновации 2017;3(169):29–31.; Old L.J., Clarke D.A.,Benacerraf B. Effect of Bacillus Calmette-Guerin infection on transplanted tumours in the mouse. Nature 1959;184(4682):291–2. DOI:10.1038/184291a0.; Morales A., Eidinger D., Bruce A. Intracavitary Bacillus Calmette-Guerin in the treatment of superficial bladder tumors. J Urol 1976;116(2):180–2. DOI:10.1016/S0022-5347(17)58737-6.; Dock G. The influence of complicating diseases upon leukaemia. The American J Med Sci (1827–1924) 1904;127(4):563.; Kelly E., Russell S.J. History of oncolytic viruses: genesis to genetic engineering. Mol Ther 2007;15(4):651–9. DOI:10.1038/sj.mt.6300108.; Ring C.J. Cytolytic viruses as potential anticancer agents. J Gen Virol 2002;83(3):491–502. DOI: https://doi.org/10.1099/00221317-83-3-491.; Yang Y. Cancer immunotherapy: harnessing the immune system to battle cancer. J Clin Invest 2015;125(9):3335–7. DOI:10.1172/JCI83871.; Korneev K.V., Atretkhany K.-S.N., Drutskaya M.S. et al. TLR-signaling and proinflammatory cytokines as drivers of tumorigenesis. Cytokine 2017;89(1):127–35. DOI:10.1016/j.cyto.2016.01.021.; Kranz L.M., Diken M., Haas H., et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 2016;534(7607):396–401. DOI:10.1038/nature18300.; Riddell S.R. Progress in cancer vaccines by enhanced self-presentation. Procof Natl Acad Sci USA 2001;98(16):8933–5. DOI:10.1073/pnas.171326398.; Kroemer G., Galluzzi L., Kepp O., Zitvogel L. Immunogenic cell death in cancer therapy. Annu Rev Immunol 2013;31(1):51–72. DOI:10.1146/annurev-immunol-032712-100008.; Apetoh L., Ghiringhelli F., Tesniere A. et al. The interaction between HMGB1 and TLR4 dictates the outcome of anticancer chemotherapy and radiotherapy. Immunol Rev2007;220(1):47–59. DOI:10.1111/j.1600-065X.2007.00573.x.; Tabi Z., Spary L.K., Coleman S. et al. Resistance of CD45RA− T cells to apoptosis and functional impairment, and activation of tumor-antigen specific T Cells during radiation therapy of prostate cancer. J Immunol 2010;185(2):1330–9. DOI:10.4049/jimmunol.1000488.; Hirayama M., Nishimura Y. The present status and future prospects of peptide-based cancer vaccines. International immunology 2016;28(7):319–28. DOI:10.1093/intimm/dxw027.; Dastmalchi F., Karachi A., Mitchell D., Rahman M. Dendritic Cell therapy eLS 2018;1(1):1–27. DOI:10.1002/9780470015902.a0024243.; Jensen T.I., Axelgaard E., Bak R.O. Therapeutic gene editing in haematological disorders with CRISPR/Cas9. British J Haematol 2019;185(5):821–35. DOI:10.1111/bjh.15851.; Киселевский М.В., Чикилева И.О., Ситдикова С.М. и др. Перспективы применения генетически модифицированных лимфоцитов с химерным Т-клеточным рецептором (CAR-T-клеток) для терапии солидных опухолей. Иммунология 2019;40(4):48–55. DOI:10.24411/0206-4952-2019-14006.; Schultz L., Mackall C. Driving CAR T cell translation forward. Sci Transl Med 2019;11(481):eaaw2127. DOI:10.1126/scitranslmed.aaw2127.; Maus M.V., Haas A.R., Beatty G.L. et al. T cells expressing chimeric antigen receptors can cause anaphylaxis in humans. Cancer Immunol Res 2013;1(1):26–31. DOI:10.1158/2326-6066.CIR-13-0006.; Ryman J.T., Meibohm B. Pharmacokinetics of monoclonal antibodies. CPT Pharmacometrics Syst Pharmacol 2017;6(9):576–88. DOI:10.1002/psp4.12224.; Scott A.M., Wolchok J.D., Old L.J. Antibody therapy of cancer. Nat Rev Cancer 2012;12(4):278–87. DOI:10.1038/nrc3236.; Weiner L.M., Surana R., Wang S. Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nat Rev Immunol 2010;10(5):317–27. DOI:10.1038/nri2744.; Seidel U.J.E., Schlegel P., Lang P. Natural killer cell mediated antibody-dependent cellular cytotoxicity in tumor immunotherapy with therapeutic antibodies. Frontiers in immunology 2013;4(76):1–8. DOI:10.3389/fimmu.2013.00076.; Lee S., Margolin K., Cytokines in cancer immunotherapy. Cancers 2011;3(4):3856–93. DOI:10.3390/cancers3043856.; Goldstein D., Laszlo J. The role of interferon in cancer therapy: a current perspective. CA Cancer J Clin 1988;38(5):258–77. DOI:10.3322/canjclin.38.5.258.; Nicholas C., Lesinski G.B. Immunomodulatory cytokines as therapeutic agents for melanoma. Immunotherapy 2011;3(5):673–90. DOI:10.2217/imt.11.45.; Ardolino M., Hsu J., Raulet D.H. Cytokine treatment in cancer immunotherapy. Oncotarget 2015;6(23):19346–7. DOI:10.18632/oncotarget.5095.; Dranoff G. Cytokines in cancer pathogenesis and cancer therapy. Nat Rev Cancer 2004;4(1):11–22. DOI:10.1038/nrc1252.; Dunn G.P., Koebel C.M., Schreiber R.D. Interferons, immunity and cancer immunoediting. Nat Rev Immunol 2006;6(11):836–48. DOI:10.1038/nri1961.; Coventry B.J., Ashdown M.L. The 20th anniversary of interleukin-2 therapy: bimodal role explaining longstanding random induction of complete clinical responses. Cancer Manag Res 2012;4(1):215–21. DOI:10.2147/CMAR.S33979.; Constantinescu S.N., Croze E., Wang C. et al. Role of interferon alpha/beta receptor chain 1 in the structure and transmembrane signaling of the interferon alpha/beta receptor complex. Proceedings of the Nat Acad Sci 1994;91(20):9602–6. DOI:10.1073/pnas.91.20.9602.; Katze M., He Y., Gale M. Viruses and interferon: a fight for supremacy. Nat Rev Immunol 2002;2(1):675–87. DOI:10.1038/nri888.; Müller L., Aigner P., Stoiber D. Type I interferons and natural killer cell regulation in cancer. Front Immunol 2017;8(304):1– 11. DOI:10.3389/fimmu.2017.00304. eCollection 2017.; Trepiakas R., Pedersen A.E., Met Ö., Svane I.M. Addition of interferon-alpha to a standard maturation cocktail induces CD38 up-regulation and increases dendritic cell function. Vaccine 2009;27(16):2213–9. DOI:10.1016/j.vaccine.2009.02.015.; Siegal F.P., Kadowaki N., Shodell M. et al. The nature of the principal type 1 interferon-producing cells in human blood. Science 1999;284(5421):1835–7. DOI:10.1126/science.284.5421.1835.; Tarhini A.A., Cherian J., Moschos S.J. et al. Safety and efficacy of combination immunotherapy with interferon alfa-2b and tremelimumab in patients with stage IV melanoma. J Clin Oncol 2012;30(3):322–8. DOI:10.1200/JCO.2011.37.5394.; Zeestraten E.C., Speetjens F.M., Welters M.J. et al. Addition of interferon α to the p53 SLP vaccine results in increased production of interferon γ in vaccinated colorectal cancer patients: a phase I/II clinical trial. Int J Cancer 2013;132(7):1581–91. DOI:10.1002/ijc.27819.; Wang X., Rickert M., Garcia K.C. Structure of the quaternary complex of Interleukin-2 with Its α, β, and γ receptors. Science 2005;310(5751):1159–63. DOI:10.1126/science.1117893.; Boyman O., Sprent J. The role of interleukin-2 during homeostasis and activation of the immune system. Nat Rev Immunol 2012;12(3):180–90. DOI:10.1038/nri3156.; Waldmann T.A. Cytokines in cancer immunotherapy. Cold Spring Harb Perspect Biol 2018;10(12):a028472. DOI:10.1101/cshperspect.a028472.; Lazer D., Pentland A.S., Adamic L. et al. Life in the network: the coming age of computational social science. Science 2009;323(5915):721–3. DOI:10.1126/science.1167742.; Chen D.S., Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity 2013;39(1):1–10. DOI:10.1016/j.immuni.2013.07.012.; Ott P.A., Hodi F.S., Kaufman H.L. et al. Combination immunotherapy: a road map. J Immunother Cancer 2017;5(1):1–15. DOI:10.1186/s40425-017-0218-5.; Krummel M.F., Allison J.P. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med 1995;182(2):459–65. DOI:10.1084/jem.182.2.459.; Wilky B.A., Immune checkpoint inhibitors: the linchpins of modern immunotherapy. Immunol Rev 2019;290(1):6–23. DOI:10.1111/imr.12766.; Schneider H., Smith X., Liu H. et al. CTLA-4 disrupts ZAP70 microcluster formation with reduced T cell/APC dwell times and calcium mobilization. Eur J Immunol 2008;38(1):40–7. DOI:10.1002/eji.200737423.; Kubsch S., Graulich E., Knop J., Steinbrink K. Suppressor activity of anergic T cells induced by IL-10-treated human dendritic cells: association with IL-2and CTLA-4-dependent G1 arrest of the cell cycle regulated by p27Kip1. Eur J Immunol 2003;33(7):198897. DOI:10.1002/eji.200323600.; Olsson C., Riebeck K., Dohlsten M., Michaëlsson E. CTLA-4 ligation suppresses CD28-induced NF-κB and AP-1 activity in mouse T cell blasts. J Biol Chem 1999;274(20):14400–5. DOI:10.1074/jbc.274.20.14400.; Ishida Y., Agata Y., Shibahara K., Honjo T., Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J 1992;11(11):3887–95. DOI:10.1002/j.1460-2075.1992.tb05481.x.; Okazaki T., Honjo T. PD-1 and PD-1 ligands: from discovery to clinical application. Int Immunol 2007;19(7):813–24. DOI:10.1093/intimm/dxm057.; Riella L.V., Paterson A.M., Sharpe A.H., Chandraker A. Role of the PD-1 Pathway in the Immune Response. Am J Transplant 2012;12(10):2575–87. DOI:10.1111/j.1600-6143.2012.04224.x.; Park J.J., Omiya R., Matsumura Y. et al. B7-H1/CD80 interaction is required for the induction and maintenance of peripheral T-cell tolerance. Blood 2010;116(8):1291–8. DOI:10.1182/blood-2010-01-265975.; Topalian S.L., Hodi F.S., Brahmer J.R. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. New Engl J Med 2012;366(26):2443–54. DOI:10.1056/NEJMoa1200690.; Sharma P., Retz M., Siefker-Radtke A. et al. Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): a multicentre, singlearm, phase 2 trial. Lancet Oncol 2017;18(3):312–22. DOI:10.1016/S14702045(17)30065-7.; Motzer R.J., Tannir N.M., McDermott D.F. et al. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N Engl J Med2018;378(14):1277–90. DOI:10.1056/NEJMoa1712126.; Patnaik A., Kang S.P., Rasco D. et al. Phase I study of pembrolizumab (MK3475; anti-PD-1 monoclonal antibody) in patients with advanced solid tumors. Clin Cancer Res 2015;21(19):4286–93. DOI:10.1158/1078-0432.CCR-14-2607.; Motzer R.J., Penkov K., Haanen J. et al. Avelumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med 2019;380(12):1103–15. DOI:10.1056/NEJMoa1816047.; Brahmer J.R., Tykodi S.S., Chow L.Q. et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 2012;366(26):2455–65. DOI:10.1056/NEJMoa1200694.; Powles T., O’Donnell P.H., Massard C. et al. Efficacy and safety of durvalumab in locally advanced or metastatic urothelial carcinoma: updated results from a phase 1/2 open-label study. JAMA Oncol 2017;3(9):1–10. DOI:10.1001/jamaoncol.2017.2411.; Schmid P., Cruz C., Braiteh F.S. et al. Atezolizumab in metastatic TNBC (mTNBC): long-term clinical outcomes and biomarker analyses. AACR 2017;77(13):1. DOI:10.1158/1538-7445.AM2017-2986.; Postow M.A., Chesney J., Pavlick A.C. et al. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med 2015;372(21):2006–17. DOI:10.1056/NEJMoa1414428.; Pfirschke C., Engblom C., Rickelt S., Cortez-Retamozo V. et al., Immunogenic chemotherapy sensitizes tumors to checkpoint blockade therapy. Immunity 2016;44(2):343–54. DOI:10.1016/j.immuni.2015.11.024.; Fyfe G., Fisher R.I., Rosenberg S.A. et al. Results of treatment of 255 patients with metastatic renal cell carcinoma who received high-dose recombinant interleukin-2 therapy. J Clin Oncol 1995;13(3):688–96. DOI:10.1200/JCO.1995.13.3.688.; Rosenberg S.A., Yang J.C., White D.E., Steinberg S.M. Durability of complete responses in patients with metastatic cancer treated with high-dose interleukin-2: identification of the antigens mediating response. Ann Surg 1998;228(3):307–19. DOI:10.1097/00000658-199809000-00004.; Merchant R.E., Grant A.J., Merchant L.H., Young H.F. Adoptive immunotherapy for recurrent glioblastoma multiforme using lymphokine activated killer cells and recombinant interleukin-2. Cancer 1988;62(4):665–71. DOI:10.1002/1097-0142(19880815)62:43.0.CO;2-O.; Atkins M.B., Lotze M.T., Dutcher J.P. et al. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol 1999;17(7):2105. DOI:10.1200/JCO.1999.17.7.2105.; Toh U., Yamana H., Sueyoshi S. et al. Locoregional cellular immunotherapy for patients with advanced esophageal cancer. Clin Cancer Res 2000;6(12):4663–73.; Nishiyama T., Tachibana M., Horiguchi Y. et al. Immunotherapy of bladder cancer using autologous dendritic cells pulsed with human lymphocyte antigen-A24specific MAGE-3 peptide. Clin Cancer Res 2001;7(1):23–31.; Kabbinavar F., Hurwitz H.I., Fehrenbacher L. et al. Phase II, randomized trial comparing bevacizumab plus fluorouracil (FU)/leucovorin (LV) with FU/LV alone in patients with metastatic colorectal cancer. J Clin Oncol 2003;21(1):60–5. DOI:10.1200/JCO.2003.10.066.; Hurwitz H., Fehrenbacher L., Novotny W. et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 2004;350(23):2335–42. DOI:10.1056/NEJMoa032691.; Davis I.D., Skrumsager B.K., Cebon J. et al. An open-label, two-arm, phase I trial of recombinant human interleukin-21 in patients with metastatic melanoma. Clin Cancer Res 2007;13(12):3630–6. DOI:10.1158/1078-0432.CCR-07-0410.; Giantonio B.J., Catalano P.J., Meropol N.J. et al. Bevacizumab in combination with oxaliplatin, fluorouracil, and leucovorin (FOLFOX4) for previously treated metastatic colorectal cancer: results from the Eastern Cooperative Oncology Group Study E3200. J Clin Oncol 2007;25(12):1539–44. DOI:10.1200/JCO.2006.09.6305.; Iqbal S., Goldman B., Lenz H. et al. S0413: a phase II SWOG study of GW572016 (lapatinib) as first line therapy in patients (pts) with advanced or metastatic gastric cancer. J Clin Oncol 2007;25(18_suppl):4621. DOI:10.1200/jco.2007.25.18_suppl.4621.; Hecht J.R., Mitchell E., Chidiac T. et al. A randomized phase IIIB trial of chemotherapy, bevacizumab, and panitumumab compared with chemotherapy and bevacizumab alone for metastatic colorectal cancer. J Clin Oncol 2009;27(5):672–80. DOI:10.1200/JCO.2008.19.8135.; Petrella T.M., Tozer R., Belanger K. et al. Interleukin-21 has activity in patients with metastatic melanoma: a phase II study. J Clin Oncol 2012;30(27):3396–401. DOI:10.1200/JCO.2011.40.0655.; Gettinger S., Rizvi N.A., Chow L.Q. et al. Nivolumab monotherapy for first-line treatment of advanced non small-cell lung cancer. J Clin Oncol 2016;34(25):2980–7. DOI:10.1200/JCO.2016.66.9929.; Eggermont A.M., Chiarion-Sileni V., Grob J.J. et al. Prolonged survival in stage III melanoma with ipilimumab adjuvant therapy. N Engl J Med 2016;375(19):1845–55. DOI:10.1056/NEJMoa1611299.; Davar D., Ding F., Saul M. et al. Highdose interleukin-2 (HD IL-2) for advanced melanoma: a single center experience from the University of Pittsburgh Cancer Institute. J Immunother Cancer 2017;5(74):1–10. DOI:10.1186/s40425017-0279-5.; Kok M., Horlings H., van de Vijver K. et al. LBA14Adaptive phase II randomized non-comparative trial of nivolumab after induction treatment in triple negative breast cancer: TONIC-trial. Ann Oncol 2017;28(suppl_5):1.; Hammers H.J., Plimack E.R., Infante J.R. et al. Safety and efficacy of nivolumab in combination with ipilimumab in metastatic renal cell carcinoma: the CheckMate 016 study. J Clin Oncol 2017;35(34):3851–8. DOI:10.1200/JCO.2016.72.1985.; Абакушина Е.В., Пасова И.А., Почуев Т.П. и др. Адоптивная иммунотерапия активированными лимфоцитами в комплексной терапии пациентов с раком желудочно-кишечного тракта. Российский биотерапевтический журнал 2017;16(S1):3.; Escudier B., Motzer R.J., Sharma P. et al. Treatment beyond progression in patients with advanced renal cell carcinoma treated with nivolumab in CheckMate 025. Eur Urol 2017;72(3):368–76. DOI:10.1016/j.eururo.2017.03.037.; Weber J., Mandala M., Del Vecchio M. et al. Adjuvant nivolumab versus ipilimumab in resected stage III or IV melanoma. N Engl J Med 2017;77(19):1824–35. DOI:10.1056/NEJMoa1709030.; Adams S., Loi S., Toppmeyer D.L. et al. KEYNOTE-086 cohort B: Pembrolizumab monotherapy for PD-L1–positive, previously untreated, metastatic triplenegative breast cancer (mTNBC). AACR 2018;78(4):1. DOI:10.1158/1538-7445.SABCS17-PD6-10.; Buchbinder E.I., Dutcher J.P., Daniels G.A. et al. Therapy with high-dose Interleukin-2 (HD IL-2) in metastatic melanoma and renal cell carcinoma following PD1 or PDL1 inhibition. J Immunother Cancer 2019;7(1):1–7. DOI:10.1186/s40425-019-0522-3.; Koster B.D., Santegoets S.J., Harting J. et al. Correction to: Autologous tumor cell vaccination combined with systemic CpG-B and IFN-α promotes immune activation and induces clinical responses in patients with metastatic renal cell carcinoma: a phase II trial. Cancer Immunol Immunotherap 2019;68(6):1037. DOI:10.1007/s00262-019-02328-6.; Topalian S.L., Hodi F.S., Brahmer J.R. et al. Five-year survival and correlates among patients with advanced melanoma, renal cell carcinoma, or non-small cell lung cancer treated with nivolumab. JAMA Oncol 2019;5(10):1411–20. DOI:10.1001/jamaoncol.2019.2187.; Боробова Е.А., Жеравин А.А. Натуральные киллеры в иммунотерапии онкологических заболеваний. Сибирский онкологический журнал 2018;17(6):97–103. DOI:10.21294/1814-48612018-17-6-97-104.; Davila M.L., Riviere I., Wang X. et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Medi 2014;6(224):224–5. DOI:10.1126/scitranslmed.3008226.; Xu Y., Zhang M., Ramos C.A. et al. Closely related T-memory stem cells correlate with in vivo expansion of CAR. CD19-T cells and are preserved by IL-7 and IL-15. Blood 2014;123(24):3750–9. DOI:10.1182/blood-2014-01-552174.; https://umo.abvpress.ru/jour/article/view/385

  5. 5
    Academic Journal

    المساهمون: The study was funded by RFBR, project number 20-015-00023., Работа поддержана грантом РФФИ № 20-015-00023 «Исследование роли вируса папилломы человека (ВПЧ) в канцерогенезе немелкоклеточного рака легкого».

    المصدر: Siberian journal of oncology; Том 20, № 2 (2021); 53-60 ; Сибирский онкологический журнал; Том 20, № 2 (2021); 53-60 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2021-20-2

    وصف الملف: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/1755/847; Мукерия А.Ф., Заридзе Д.Г. Эпидемиология и профилактика рака легкого. Вестник РОНЦ им. Н.Н. Блохина РАМН. 2010; 21(3): 3–12.; Hung R.J., McKay J.D., Gaborieau V., Boffetta P., Hashibe M., Zaridze D., Mukeria A., Szeszenia-Dabrowska N., Lissowska J., Rudnai P., Fabianova E., Mates D., Bencko V., Foretova L., Janout V., Chen C., Goodman G., Field J.K., Liloglou T., Xinarianos G., Cassidy A., McLaughlin J., Liu G., Narod S., Krokan H.E., Skorpen F., Elvestad M.B., Hveem K., Vatten L., Linseisen J., Clavel-Chapelon F., Vineis P., Bueno-de-Mesquita H.B., Lund E., Martinez C., Bingham S., Rasmuson T., Hainaut P., Riboli E., Ahrens W., Benhamou S., Lagiou P., Trichopoulos D., Holcátová I., Merletti F., Kjaerheim K., Agudo A., Macfarlane G., Talamini R., Simonato L., Lowry R., Conway D.I., Znaor A., Healy C., Zelenika D., Boland A., Delepine M., Foglio M., Lechner D., Matsuda F., Blanche H., Gut I., Heath S., Lathrop M., Brennan P. A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25. Nature. 2008 Apr 3; 452(7187): 633–7. doi:10.1038/nature06885.; Herceg Z., Vaissière T. Epigenetic mechanisms and cancer: an interface between the environment and the genome. Epigenetics. 2011 Jul; 6(7): 804–19. doi:10.4161/epi.6.7.16262.; Langevin S.M., Kratzke R.A., Kelsey K.T. Epigenetics of lung cancer. Transl Res. 2015 Jan; 165(1): 74–90. doi:10.1016/j.trsl.2014.03.001.; Ибрагимова М.К., Цыганов М.М., Карабут И.В., Чуруксаева О.Н., Шпилева О.Н., Бычков В.А., Коломиец Л.А., Литвяков Н.В. Интегративная и эписомальная формы генотипа 16 вируса папилломы человека при цервикальных интраэпителиальных неоплазиях и раке шейки матки. Вопросы вирусологии. 2016; 61(6): 270–74. doi:10.18821/0507-4088-2016-61-6-270-274.; Klein F., Kotb W.F.A., Petersen I. Incidence of human papilloma virus in lung cancer. Lung Cancer. 2009; 65(1): 13–8. doi:10.1016/j.lungcan.2008.10.003.; Go C., Schwartz M.R., Donovan D.T. Molecular transformation of recurrent respiratory papillomatosis: viral typing and p53 overexpression. Ann Otol Rhinol Laryngol. 2003; 112(4): 298–302. doi:10.1177/000348940311200402.; Tsyganov M.M., Pevzner A.M., Ibragimova M.K., Deryusheva I.V., Litviakov N.V. Human papillomavirus and lung cancer: an overview and a meta-analysis. J Cancer Res Clin Oncol. 2019 Aug; 145(8): 1919–37. doi:10.1007/s00432-019-02960-w.; Galvan A., Noci S., Taverna F., Lombardo C., Franceschi S., Pastorino U., Dragani T.A. Testing of human papillomavirus in lung cancer and non-tumor lung tissue. BMC Cancer. 2012 Nov; 12: 512. doi:10.1186/1471-2407-12-512.; Ibragimova M., Tsyganov M., Shpileva O., Churuksaeva O., Bychkov V., Kolomiets L., Litviakov N. HPV status and its genomic integration affect survival of patients with cervical cancer. Neoplasma. 2018; 65(3): 441–448. doi:10.4149/neo_2018_170414N277.; Zhai K., Ding J., Shi H.Z. HPV and lung cancer risk: a meta-analysis. J Clin Virol. 2015 Feb; 63: 8490. doi:10.1016/j.jcv.2014.09.014.; Певзнер А.М., Цыганов М.М., Ибрагимова М.К., Литвяков Н.В. Вирус папилломы человека и злокачественные новообразования головы и шеи (обзор литературы). Опухоли головы и шеи. 2019; 9(2): 43–51. doi:10.17650/2222-1468-2019-9-2-43-52.; Ibragimova M.K., Tsyganov M.M., Litviakov N.V. Human papillomavirus and colorectal cancer. Medical Oncology. 2018; 35(11): 1–6. doi:10.1007/s12032-018-1201-9.; Sarchianaki E., Derdas S.P., Ntaoukakis M., Vakonaki E., Lagoudaki E.D., Lasithiotaki I., Sarchianaki A., Koutsopoulos A., Symvoulakis E.K., Spandidos D.A., Antoniou K.M., Sourvinos G. Detection and genotype analysis of human papillomavirus in non-small cell lung cancer patients. Tumour Biol. 2014 Apr; 35(4): 3203–9. doi:10.1007/s13277-013-1419-2.; Koshiol J., Rotunno M., Gillison M.L., Van Doorn L.J., Chaturvedi A.K., Tarantini L., Song H., Quint W.G., Struijk L., Goldstein A.M., Hildesheim A., Taylor P.R., Wacholder S., Bertazzi P.A., Landi M.T., Caporaso N.E. Assessment of human papillomavirus in lung tumor tissue. J Natl Cancer Inst. 2011 Mar 16; 103(6): 501–7. doi:10.1093/jnci/djr003.; Baba M., Castillo A., Koriyama C., Yanagi M., Matsumoto H., Natsugoe S., Shuyama K.Y., Khan N., Higashi M., Itoh T., Eizuru Y., Aikou T., Akiba S. Human papillomavirus is frequently detected in gefitinibresponsive lung adenocarcinomas. Oncol Rep. 2010; 23(4): 1085–92. doi:10.3892/or_00000736.; Kato T., Koriyama C., Khan N., Samukawa T., Yanagi M., Hamada T., Yokomakura N., Otsuka T., Inoue H., Sato M., Natsugoe S., Akiba S. EGFR mutations and human papillomavirus in lung cancer. Lung Cancer. 2012 Nov; 78(2): 144–7. doi:10.1016/j.lungcan.2012.08.011.; Aguayo F., Castillo A., Koriyama C., Higashi M., Itoh T., Capetillo M., Shuyama K., Corvalan A., Eizuru Y., Akiba S. Human papillomavirus-16 is integrated in lung carcinomas: a study in Chile. Br J Cancer. 2007 Jul 2; 97(1): 85–91. doi:10.1038/sj.bjc.6603848.; Wang J.L., Fang C.L., Wang M., Yu M.C., Bai K.J., Lu P.C., Liu H.E. Human papillomavirus infections as a marker to predict overall survival in lung adenocarcinoma. Int J Cancer. 2014; 134(1): 65–71. doi:10.1002/ijc.28349.; Ragin C., Obikoya-Malomo M., Kim S., Chen Z., Flores-Obando R., Gibbs D., Koriyama C., Aguayo F., Koshiol J., Caporaso N.E., Carpagnano G.E., Ciotti M., Dosaka-Akita H., Fukayama M., Goto A., Spandidos D.A., Gorgoulis V., Heideman D.A., van Boerdonk R.A., Hiroshima K., Iwakawa R., Kastrinakis N.G., Kinoshita I., Akiba S., Landi M.T., Eugene Liu H., Wang J.L., Mehra R., Khuri F.R., Lim W.T., Owonikoko T.K., Ramalingam S., Sarchianaki E., Syrjanen K., Tsao M.S., Sykes J., Hee S.W., Yokota J., Zaravinos A., Taioli E. HPV-associated lung cancers: an international pooled analysis. Carcinogenesis. 2014 Jun; 35(6): 1267–75. doi:10.1093/carcin/bgu038.; Bychkov V.A., Nikitina E.G., Ibragimova M.K., Kaigorodova E.V., Choinzonov E.L., Litviakov N.V. Comprehensive meta-analytical summary on human papillomavirus association with head and neck cancer. Exp Oncol. 2016 Jun; 38(2): 68–72.; https://www.siboncoj.ru/jour/article/view/1755

  6. 6
    Academic Journal

    المساهمون: This work was supported by grant number 18-29-09131 Russian Foundation for Basic Research “The phenomenon of tumor “fading” during chemotherapy”., Работа поддержана грантом Российского фонда фундаментальных исследований № 18-29-09131 «Феномен «замирания» опухоли в процессе химиотерапии».

    المصدر: Advances in Molecular Oncology; Том 7, № 2 (2020); 29-38 ; Успехи молекулярной онкологии; Том 7, № 2 (2020); 29-38 ; 2413-3787 ; 2313-805X ; 10.17650/2313-805X-2020-7-2

    وصف الملف: application/pdf

    Relation: https://umo.abvpress.ru/jour/article/view/272/203; Семиглазов В.Ф., Горбунова В.А., Тюляндин С.А. Химиотерапия рака молочной железы: современный взгляд на проблему. Медицинский совет 2017;1(6):56–60. DOI:10.21518/2079-701X-2017-6-56-60 [Semiglazov V.F., Gorbunova V.A., Tjuljandin S.A. Chemotherapy for breast cancer: a modern view of the problem. Meditsinskiy sovet = Medical Advice 2017;1(6):56–60. (In Russ.)].; Parkinson A., Ogilvie B.W. Biotransformation of xenobiotics. Casarett and Doull’s toxicology: Basic Sci Poisons 2008;7(1):161–304.; Fletcher J.I., Haber M., Henderson M.J. et al. ABC transporters in cancer: more than just drug efflux pumps. Nat Rev Cancer 2010;10(2):147–56. DOI:10.1038/nrc278.9.; Litviakov N.V., Cherdyntseva N.V., Tsyganov M.M. et al. Changing the expression vector of multidrug resistance genes is related to neoadjuvant chemotherapy response. Cancer Chemother Pharmacol 2013;71(1):153–63. DOI:10.1007/s00280-012-1992-x.; Hlavata I., Mohelnikova-Duchonova B., Vaclavikova R. et al. The role of ABC transporters in progression and clinical outcome of colorectal cancer. Mutagenesis 2012;27(2):187–96. DOI:10.1093/mutage/ger075.; Patel A., Li T.W., Anreddy N. et al. Suppression of ABCG2 mediated MDR in vitro and in vivo by a novel inhibitor of ABCG2 drug transport. Pharmacol Res 2017;121:184–93. DOI:10.1016/j.phrs.2017.04.025.; Литвяков Н.В., Гарбуков Е.Ю., Слонимская Е.М. и др. Связь безметастатической выживаемости больных раком молочной железы и вектора изменения экспрессии генов множественной лекарственной устойчивости в опухоли при проведении НХТ. Вопросы онкологии 2013;59(3):334–40. DOI: https://doi.org/10.18722/VO2013593334-340. [Litviakov N.V., Garbukov E.Yu., Slonimskaya E.M. et al. Connection of metastasis-free survival in breast cancer patients and an expression vector of multidrug resistance genes in tumor during neoadjuvant chemotherapy. Voprosy onkologii = Oncology Issues 2013;59(3):334–40. (In Russ.)].; Schwartz G.F., Hortobagyi G.N. Proceedings of the consensus conference on neoadjuvant chemotherapy in carcinoma of the breast, April 26–28, 2003, Philadelphia, Pennsylvania. Breast J 2004;10(4):273–94.; Irizarry R.A., Hobbs B., Collin F. et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003;4(2): 249–64. DOI:10.1093/biostatistics/4.2.249.; Wind N., Holen I. Multidrug resistance in breast cancer – from in vitro models to clinical studies. Int J Breast Cancer 2011;2011:1–12. DOI:10.4061/2011/967419.; Kim B., Fatayer H., Hanby A.M. et al. Neoadjuvant chemotherapy induces expression levels of breast cancer resistance protein that predict disease-free survival in breast cancer. PLoS One 2013;8(5):1–8. DOI:10.1371/journal.pone.0062766.; Gillet J.P., Efferth T., Remacle J. Chemotherapy-induced resistance by ATP-binding cassette transporter genes. Biochim Biophys Acta 2007;1775(2):237–62. DOI:10.1016/j.bbcan.2007.05.002.; Velaei K., Samadi N., Soltani S. et al. NFκBP65 transcription factor modulates resistance to doxorubicin through ABC transporters in breast cancer. Breast Cancer 2017;24(4):552–61. DOI:10.1007/s12282-016-0738-8.; Patch A.M., Christie E.L., Etemadmoghadam D. et al. Wholegenome characterization of chemoresistant ovarian cancer. Nature 2015;521(7553): 489–94. DOI:10.1038/nature14410.; Wilson C.S., Davidson G.S., Martin S.B. et al. Gene expression profiling of adult acute myeloid leukemia identifies novel biologic clusters for risk classification and outcome prediction. Blood 2006;108(2):685–96. DOI:10.1182/blood-2004-12-4633.; Steinbach D., Gillet J.P., Sauerbrey A. et al. ABCA3 as a possible cause of drug resistance in childhood acute myeloid leukemia. Clin Cancer Res 2006;12(14):4357–63. DOI:10.1158/1078-0432.CCR-05-2587.; Chen Z., Shi T., Zhang L. et al. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family in multidrug resistance: a review of the past decade. Cancer Lett 2016;370(1):153–64. DOI:10.1016/j.canlet.2015.10.010.; Fung S.W., Cheung P.F.Y., Yip C.W. et al. The ATP-binding cassette transporter ABCF1 is a hepatic oncofetal protein that promotes chemoresistance, EMT and cancer stemness in hepatocellular carcinoma. Cancer Lett 2019;457:98–109. DOI:10.1016/j.canlet.2019.05.010.; Elsnerova K., MohelnikovaDuchonova B., Cerovska E. et al. Gene expression of membrane transporters: importance for prognosis and progression of ovarian carcinoma. Oncol Rep 2016;35(4):2159–70. DOI:10.3892/or.2016.4599.; Huang J.F., Wen C.J., Zhao G.Z. et al. Overexpression of ABCB4 contributes to acquired doxorubicin resistance in breast cancer cells in vitro. Cancer Chemother Pharmacol 2018;82(2):199–210. DOI:10.1007/s00280-018-3603-y.; Hu H., Wang M., Guan X. et al. Loss of ABCB4 attenuates the caspasedependent apoptosis regulating resistance to 5-Fu in colorectal cancer. Biosci Rep 2018;38(1):BSR20171428. DOI:10.1042/BSR20171428.; Hontecillas-Prieto L., GarciaDominguez D.J., Vaca D.P. et al. Multidrug resistance transporter profile reveals MDR3 as a marker for stratification of blastemal Wilms tumour patients. Oncotarget 2017;8(7):11173–86. DOI:10.18632/oncotarget.14491.; Tulsyan S., Mittal R.D., Mittal B. The effect of ABCB1 polymorphisms on the outcome of breast cancer treatment. Pharmacogen Personal Med 2016;9(1):47–58. DOI:10.2147/PGPM.S86672.; Kim H.J., Im S.A., Keam B. et al. ABCB1 polymorphism as prognostic factor in breast cancer patients treated with docetaxel and doxorubicin neoadjuvant chemotherapy. Cancer Sci 2015;106(1): 86–93. DOI:10.1111/cas.12560.; https://umo.abvpress.ru/jour/article/view/272

  7. 7
    Academic Journal

    المصدر: Siberian journal of oncology; Том 19, № 3 (2020); 97-101 ; Сибирский онкологический журнал; Том 19, № 3 (2020); 97-101 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2020-19-3

    وصف الملف: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/1492/751; Ryland G.L., Doyle M.A., Goode D., Boyle S.E., Choong D.Y., Rowley S.M., Li J., Bowtell D.D., Tothill R.W., Campbell I.G. Loss of heterozygosity: what is it good for? BMC Med Genomics. 2015; 8: 45. doi:10.1186/s12920-015-0123-z.; Knudson A.G. Mutation and cancer: statistical study of retinoblastoma. Proceedings of the National Academy of Sciences. 1971; 68(4): 820–823.; Chen Y., Chen C. DNA copy number variation and loss of heterozygosity in relation to recurrence of and survival from head and neck squamous cell carcinoma: a review. Head Neck. 2008; 30(10): 1361–83. doi:10.1002/hed.20861.; Silva J.M., Silva J., Sanchez A., Garcia J.M., Dominguez G., Provencio M., Sanfrutos L., Jareño E., Colas A., España P., Bonilla F. Tumor DNA in plasma at diagnosis of breast cancer patients is a valuable predictor of disease-free survival. Clinical Cancer Research, 2002; 8(12): 3761–3766.; Okudela K., Tateishi Y., Umeda S., Mitsui H., Suzuki T., Saito Y., Woo T., Tajiri M., Masuda M., Miyagi Y., Ohashi K. Allelic Imbalance in the miR-31 Host Gene Locus in Lung Cancer-Its Potential Role in Carcinogenesis. PLoS One. 2014 Jun 30; 9(6): e100581. doi:10.1371/ journal.pone.0100581.; Fleming J.L., Dworkin A.M., Allain D.C., Fernandez S., Wei L., Peters S.B., Iwenofu O.H., Ridd K., Bastian B.C., Toland A.E. Allele – specific imbalance mapping identifies HDAC9 as a candidate gene for cutaneous squamous cell carcinoma. Int J Cancer. 2014 Jan 1; 134(1): 244–8. doi:10.1002/ijc.28339.; Shikeeva A., Kekeeva T., Zavalishina L., Andreeva I., Frank G. Allelic imbalance in patients with non-small cell lung cancer. Arkh Patol. 2013; 75(2): 3–8.; Saito M., Okamoto A., Kohno T., Takakura S., Shinozaki H., Isonishi S., Yasuhara T., Yoshimura T., Ohtake Y., Ochiai K., Yokota J., Tanaka T. Allelic imbalance and mutations of the PTEN gene in ovarian cancer. Int J Cancer. 2000; 85(2): 160–165.; Beckmann M.W., Picard F., An H.X., van Roeyen C.R., Dominik S.I., Mosny D.S., Schnürch H.G., Bender H.G., Niederacher D. Clinical impact of detection of loss of heterozygosity of BRCA1 and BRCA2 markers in sporadic breast cancer. Br J Cancer. 1996 May; 73(10): 1220–6.; Maxwell K.N., Wubbenhorst B., Wenz B.M., De Sloover D., Pluta J., Emery L., Barrett A., Kraya A.A., Anastopoulos I.N., Yu S., Jiang Y., Chen H., Zhang N.R., Hackman N., D'Andrea K., Daber R., Morrissette J.J.D., Mitra N., Feldman M., Domchek S.M., Nathanson K.L. BRCA locus-specific loss of heterozygosity in germline BRCA1 and BRCA2 carriers. Nat Commun. 2017 Aug 22; 8(1): 319. doi:10.1038/s41467-017-00388-9.; Sokolenko A., Savanevich A., Stepuro T., Shulga A., Berlev I., Imyanitov E., Petrov N. Loss of heterozygosity at the BRCA1 locus as a marker of sen-sitivity for adjuvant chemotherapy in hereditary ovarian cancer. Biological Markers in Fundamental and Clinical Medicine. 2017; 1(3): 29–31.; Telli M.L., Hellyer J., Audeh W., Jensen K.C., Bose S., Timms K.M., Gutin A., Abkevich V., Peterson R.N., Neff C., Hughes E., Sangale Z., Jones J., Hartman A.R., Chang P.J., Vinayak S., Wenstrup R., Ford J.M. Homologous recombination deficiency (HRD) status predicts response to standard neoadjuvant chemotherapy in patients with triple-negative or BRCA1/2 mutation-associated breast cancer. Breast Cancer Res Treat. 2018 Apr; 168(3): 625–630. doi:10.1007/s10549-017-4624-7.; Pennington K.P., Walsh T., Harrell M.I., Lee M.K., Pennil C.C., Rendi M.H., Thornton A., Norquist B.M., Casadei S., Nord A.S., Agnew K.J., Pritchard C.C., Scroggins S., Garcia R.L., King M.C., Swisher E.M. Germline and somatic mutations in homologous recombination genes predict platinum response and survival in ovarian, fallopian tube, and peritoneal carcinomas. Clin Cancer Res. 2014 Feb 1; 20(3): 764–75. doi:10.1158/1078-0432.CCR-13-2287.; Литвяков Н.В., Чердынцева Н.В., Цыганов М.М., Денисов Е.В., Мерзлякова М.К., Гарбуков Е.Ю., Вторушин С.В., Завьялова М.В., Слонимская Е.М. Ассоциация генетического полиморфизма с изменением экспрессии генов множественной лекарственной устойчивости в опухоли молочной железы в процессе неоадъювантной химиотерапии. Медицинская генетика. 2011; 10(10): 37–43.; Sakr S., Abdulfatah E., Loehr A., Simmons A., Morris R., AliFehmi R. Prognostic impact of loss of heterozygosity in uterine serous carcinoma. Gynecol Oncol. 2018; 149(1): 72.; https://www.siboncoj.ru/jour/article/view/1492

  8. 8
    Academic Journal
  9. 9
    Academic Journal
  10. 10
    Academic Journal
  11. 11
    Academic Journal

    المساهمون: Исследование выполнено при финансовой поддержке Российского научного фонда, проект № 17-15-01203

    المصدر: Bulletin of Siberian Medicine; Том 19, № 3 (2020); 22-28 ; Бюллетень сибирской медицины; Том 19, № 3 (2020); 22-28 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2020-19-3

    وصف الملف: application/pdf

    Relation: https://bulletin.tomsk.ru/jour/article/view/2973/1785; https://bulletin.tomsk.ru/jour/article/view/2973/2223; Garraway L.A., Lander E.S. Lessons from the cancer genome. Cell. 2013; 153 (1): 17–37. DOI:10.1016/j.cell.2013.03.002.; Abbas T., Keaton M.A., Dutta A. Genomic instability in cancer. Cold Spring Harb. Perspect. Biol. 2013; 5 (3): a012914. DOI:10.1101/cshperspect.a012914.; Xu Y., Duan Mu H., Chang Z., Zhang S., Li Z., Li Z., Liu Y., Li K., Qiu F., Li X. The application of gene co-expression network reconstruction based on CNVs and gene expression microarray data in breast cancer. Molecular Biology Reports. 2012; 39 (2): 1627–1637. DOI:10.1007/s11033-011-0902-3.; Kaveh F., Baumbusch L.O., Nebdal D., Borresen-Dale A.-L., Lingjærde O.C., Edvardsen H., Kristensen V.N., Solvang H.K. A systematic comparison of copy number alterations in four types of female cancer. BMC Cancer. 2016; 16 (1): 913. DOI:10.1186/s12885-016-2899-4.; Iddawela M., Rueda O., Eremin J., Eremin O., Cowley J., Earl H.M., Caldas C. Integrative analysis of copy number and gene expression in breast cancer using formalin-fixed paraffin-embedded core biopsy tissue: a feasibility study. BMC Genomics. 2017; 18 (1): 526. DOI:10.1186/s12864-017-3867-3.; Grade M., Difilippantonio M.J., Camps J. Patterns of chromosomal aberrations in solid tumors. Chromosomal Instability in Cancer Cells. 2015; 200: 115–142. DOI:10.1007/978-3-319-20291-4_6.; Goh J.Y., Feng M., Wang W., Oguz G., Yatim S.M.J.M., Lee P.L.,Bao Y., Lim T.H., Wang P., Tam W.L., Kodahl A.R., Lyng M.B., Sarma S., Lin S.Y., Lezhava A., Yap Y.S., Lim A.S.T., Hoon D.S.B., Ditzel H.J., Lee S.C., Tan E.Y., Yu Q. Chromosome 1q21.3 amplification is a trackable biomarker and actionable target for breast cancer recurrence. Nature Medicine. 2017; 23: 1319–1330. DOI:10.1038/nm.4405.; Gao R., Davis A., McDonald T.O., Sei E., Shi X., Wang Y., Tsai P.-C., Casasent A., Waters J., Zhang H., Meric-Bernstam F., Michor F., Navin N.E. Punctuated copy number evolution and clonal stasis in triple-negative breast cancer. Nature Genetics. 2016; 48: 1119–1130. DOI:10.1038/ng.3641.; Burstein M.D., Tsimelzon A., Poage G.M., Covington K.R., Contreras A., Fuqua S.A.W., Savage M.I., Osborne C.K., Hilsenbeck S.G., Chang J.C., Mills G.B., Lau C.C., Brown P.H. Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clinical Cancer Research. 2015; 21 (7): 1688–1699. DOI:10.1158/1078-0432.CCR-14-0432.; Казанцева П.В., Цыганов М.М., Слонимская Е.М., Литвяков Н.В., Чердынцева Н.В., Ибрагимова М.К., Дорошенко А.В., Тарабановская Н.А., Паталяк С.В. Молекулярно-генетические маркеры эффективности неоадъювантной химиотерапии с применением антрациклинов у больных раком молочной железы. Сибирский онкологический журнал. 2016; 15 (2): 29–35. DOI:10.21294/1814-4861-2016-15-2-29-35.; https://bulletin.tomsk.ru/jour/article/view/2973

  12. 12
    Academic Journal

    المساهمون: Работа поддержана грантом Российского фонда фундаментальных исследований 18-29-09131 мк «Феномен «замирания» опухоли в процессе химиотерапии».

    المصدر: Advances in Molecular Oncology; Том 6, № 2 (2019); 55-60 ; Успехи молекулярной онкологии; Том 6, № 2 (2019); 55-60 ; 2413-3787 ; 2313-805X ; 10.17650/2313-805X-2019-6-2

    وصف الملف: application/pdf

    Relation: https://umo.abvpress.ru/jour/article/view/219/182; Имянитов Е.Н. Молекулярная диагностика в онкологии. Вопросы онкологии 2012;58:153–63.; Zhong Q., Peng H.L., Zhao X. et al. Effects of BRCA1- and BRCA2-related mutations on ovarian and breast cancer survival: a meta-analysis. Clin Cancer Res 2015;21:211–20. DOI:10.1158/1078-0432.CCR-14-1816.; Afghahi A., Timms K.M., Vinayak S. et al. Tumor BRCA1 reversion mutation arising during neoadjuvant platinum-based chemotherapy in triple-negative breast cancer is associated with therapy resistance. Clin Cancer Res 2017;1:1–26. DOI:10.1158/1078-0432.CCR-16-2174.; Gerratana L., Fanotto V., Pelizzari G. et al. Do platinum salts fit all triple negative breast cancers? Cancer Treat Rev 2016;48:34–41. DOI:10.1016/j.ctrv.2016.06.004.; Mccabe N., Turner N.C., Lord C.J. et al. Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly (ADP-ribose) polymerase inhibition. Cancer Res 2006;66(16):8109–15. DOI:10.1158/0008-5472. CAN-06-0140.; Schwartz G.F., Hortobagyi G.N. Proceedings of the consensus conference on neoadjuvant chemotherapy in carcinoma of the breast, April 26–28, 2003, Philadelphia, Pennsylvania. Breast J 2004;10:273–94. DOI:10.1111/j.1075-122X.2004.21594.x.; Pfaffl M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucl Acids Res 2001;29:45. DOI: 1093/nar/29.9.e45.; Гафтон И.Г., Имянитов Е.Н., Семиглазов В.В. и др. Экспрессия гена BRCA1 при нейроэндокринных опухолях желудочно-кишечного тракта. Сибирский онкологический журнал 2014;16:11–5.; Imyanitov E.N., Moiseyenko V.M. Drug therapy for hereditary cancers. Hereditary Cancer Clin Pract 2011;9:1–16. DOI:10.1186/1897-4287-9-5.; Kurebayashi J., Yamamoto Y., Kurosumi M. et al. Loss of BRCA1 expression may predict shorter time-to-progression in metastatic breast cancer patients treated with taxanes. Anticancer Res 2006;26(1B):695–701.; Tsibulak I., Shivalingaiah G., Wenzel S. et al. Clinical impact of BRCA1 and BRCA2 mRNA expression in ovarian cancer. Am Society Clin Oncol 2018;36:e17533. DOI:10.1200/JCO.2018.36.15_suppl. e17533.; Nomura H., Kataoka F., Aoki D. et al. Expression of potential biomarkers associated with homologous recombination repair in patients with ovarian or triple-negative breast cancer. Cancer Biomark 2016;16(1):145–52. DOI:10.3233/CBM-150550.; https://umo.abvpress.ru/jour/article/view/219

  13. 13
    Academic Journal

    المساهمون: The study was supported by the program «Participants of the Youth Science and Innovation Competition» of the Foundation for Assistance to the Development of Small Enterprises in the Scientific and Technical Field. Agreement No. 11783 of GU / 2017 dated July 3, 2017, Исследования выполнены при поддержке программы «Участники молодежного научно-инновационного конкурса (УМНИК)» Фонда содействия развитию малых форм предприятий в научно-технической сфере. Договор (Соглашение) №11783 ГУ/2017 от 3 июля 2017 г.

    المصدر: Siberian journal of oncology; Том 18, № 5 (2019); 108-112 ; Сибирский онкологический журнал; Том 18, № 5 (2019); 108-112 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2019-18-5

    وصف الملف: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/1196/674; Чойнзонов Е.Л., Жуйкова Л.Д., Ананина О.А., Полищук Т.В., Пикалова Л.В. Выживаемость больных раком легкого на территории Томской области (2004–2013 гг.). Сибирский онкологический журнал. 2017; 16(4): 5–10. doi:10.21294/1814-4861-2017-16-4-5-10.; Ferlay J., Soerjomataram I., Dikshit R., Eser S., Mathers C., Rebelo M., Parkin D.M., Forman D., Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015 Mar 1; 136(5): E359–E386. doi:10.1002/ijc.29210.; Попова Н.О., Шаталова В.А., Симолина Е.И., Кравчук Т.Л., Дудникова Е.А., Подоплекин Д.М., Гольдберг В.Е. Клинический случай длительного лечения и наблюдения пациента с метахронным раком легкого. Сибирский онкологический журнал. 2011; 4: 75–77.; Postmus P.E., Kerr K.M., Oudkerk M., Senan S., Waller D.A., Vansteenkiste J., Escriu C., Peters S.; ESMO Guidelines Committee. Early and locally advanced non-small-cell lung cancer (NSCLC): ESMO Clinical Practice Guidelines for diagnosis, treatment and followup. Ann Oncol. 2017 Jul 1; 28(SUPPL_4): iv1–iv21. doi:10.1093/annonc/mdx222.; Zhang Q., Zhu X., Zhang L., Sun S., Huang J., Lin Y. A prospective study of biomarker-guided chemotherapy in patients with nonsmall cell lung cancer. Cancer Chemother Pharmacol. 2014; 74(4): 839–846. doi:10.1007/s00280-014-2513-x.; Olaussen K.A., Postel-Vinay S. Predictors of chemotherapy efficacy in non-small-cell lung cancer: a challenging landscape. Ann Oncol. 2016 Nov 1; 27(11): 2004–2016. doi:10.1093/annonc/mdw321.; https://www.siboncoj.ru/jour/article/view/1196

  14. 14
    Academic Journal

    المساهمون: Работа выполнена в рамках конкурса 2018–2020 гг. на получение стипендии Президента РФ молодым ученым и аспирантам.

    المصدر: Advances in Molecular Oncology; Том 5, № 1 (2018); 53-59 ; Успехи молекулярной онкологии; Том 5, № 1 (2018); 53-59 ; 2413-3787 ; 2313-805X ; 10.17650/2313-805X-2018-5-1

    وصف الملف: application/pdf

    Relation: https://umo.abvpress.ru/jour/article/view/136/133; Johnson N., Fletcher O., Palles C. et al. Counting potentially functional variants in BRCA1, BRCA2 and ATM predicts breast cancer susceptibility. Hum Mol Genet 2007;16(9):1051–7. DOI:10.1093/hmg/ddm050. PMID: 17341484.; Kadouri L., Hubert A., Rotenberg Y. et al. Cancer risks in carriers of the BRCA1/2 Ashkenazi founder mutations. J Med Genet 2007;44(7):467–71. DOI:10.1136/jmg.2006.048173. PMID: 17307836.; Simard J., Tonin P., Durocher F. et al. Common origins of BRCA1 mutations in Canadian breast and ovarian cancer families. Nat Genet 1994;8(4):392–8. DOI:10.1038/ng1294-392. PMID: 7894492.; Palmero E.I., Alemar B., Schüler-Faccini L. et al. Screening for germline BRCA1, BRCA2, TP53 and CHEK2 mutations in families at-risk for hereditary breast cancer identified in a population-based study from Southern Brazil. Genet Mol Biol 2016;39(2):210–22. DOI:10.1590/ 1678-4685-GMB-2014-0363. PMID: 27223485.; Byrski T., Huzarski T., Dent R. et al. Pathologic complete response to neoadjuvant cisplatin in BRCA1-positive breast cancer patients. Breast Cancer Res Treat 2014;147(2):401–5. DOI:10.1007/s10549-014-3100-x. PMID: 25129345.; Byrski T., Gronwald J., Huzarski T. et al. Pathologic complete response rates in young women with BRCA1-positive breast cancers after neoadjuvant chemotherapy. J Clin Oncol 2010;28(3):375–9. DOI:10.1200/JCO.2008.20.7019. PMID: 20008645.; Гафтон И.Г., Имянитов Е.Н., Семиглазов В.В. и др. Экспрессия гена BRCA1 при нейроэндокринных опухолях желудочно-кишечного тракта. Сибирский онкологический журнал 2014;16(4):11–5. [Gafton I.G., Imyanitov E.N., Semiglazov V.V. et al. BRCA1 gene expression in endocrine tumors of the gastrointestinal tract. Sibirskiy onkologicheskiy zhurnal = Siberian Journal of Oncology 2014;16(4):11–5. (In Russ.)].; Imyanitov E.N., Moiseyenko V.M. Drug therapy for hereditary cancers. Hered Cancer Clin Pract 2011;9(1):5. DOI:10.1186/1897-4287-9-5. PMID: 21819606.; Schwartz G.F., Hortobagyi G.N. Proceedings of the consensus conference on neoadjuvant chemotherapy in carcinoma of the breast, April 26–28, 2003, Philadelphia, Pennsylvania. Breast J 2004;10(4):273–94.; Pfaffl M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001;29(9):e45. PMID: 11328886.; Kurebayashi J., Yamamoto Y., Kurosumi M. et al. Loss of BRCA1 expression may predict shorter time-toprogression in metastatic breast cancer patients treated with taxanes. Anticancer Res 2006;26(1):695–701. PMID: 16739340.; Mahmoud A.M., Macias V., Al-Alem U. et al. BRCA1 protein expression and subcellular localization in primary breast cancer: automated digital microscopy analysis of tissue microarrays. PLoS One 2017;12(9):e0184385. DOI:10.1371/journal.pone.0184385. PMID: 28863181.; Egawa C., Motomura K., Miyoshi Y. et al. Increased expression of BRCA1 mRNA predicts favorable response to anthracycline-containing chemotherapy in breast cancers. Breast Cancer Res Treat 2003;78(1):45–50. PMID: 12611456.; Lafarge S., Sylvain V., Ferrara M., Bignon Y.J. Inhibition of BRCA1 leads to increased chemoresistance to microtubule-interfering agents, an effect that involves the JNK pathway. Oncogene 2001;20(45):6597–606. DOI:10.1038/sj.onc.1204812. PMID: 11641785.; Mullan P.B., Quinn J.E., Gilmore P.M. et al. BRCA1 and GADD45 mediated G2/M cell cycle arrest in response to antimicrotubule agents. Oncogene 2001;20(43):6123–31. DOI:10.1038/sj.onc.1204712. PMID: 11593420.; Quinn J.E., Kennedy R.D., Mullan P.B. et al. BRCA1 functions as a differential modulator of chemotherapy-induced apoptosis. Cancer Res 2003;63(19):6221–8. PMID: 14559807.; Harte M.T., Gorski J.J., Savage K.I. et al. NF-κB is a critical mediator of BRCA1- induced chemoresistance. Oncogene 2014;33(1):713–23. DOI:10.1038/ onc.2013.10. PMID: 23435429.; Sau A., Lau R., Cabrita M.A. et al. Persistent activation of NF-κB in BRCA1-deficient mammary progenitors drives aberrant proliferation and accumulation of DNA damage. Cell Stem Cell 2016;19(1):52–65. DOI:10.1016/j.stem.2016.05.003. PMID: 27292187.; https://umo.abvpress.ru/jour/article/view/136

  15. 15
    Academic Journal

    المساهمون: RFFR, grant18-44-703004, РФФИ и администрации Томской области в рамках научного проекта № 18-44-703004 « Физический статус вируса папилломы человека и прогрессия цервикальной интраэпителиальной неоплазии»

    المصدر: Siberian journal of oncology; Том 17, № 6 (2018); 70-77 ; Сибирский онкологический журнал; Том 17, № 6 (2018); 70-77 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2018-17-6

    وصف الملف: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/905/589; Bosch F.X. Human papillomavirus: science and technologies for the elimination of cervical cancer. Expert Opin Pharmacother. 2011 Oct; 12 (14): 2189-204. doi:10.1517/14656566.2011.596527.; Apgar B.S., Zoschnick L., Wright T.C.Jr. The 2001 Bethesda System terminology. Am Fam Physician. 2003 Nov 15; 68 (10): 1992-8.; Bruni L., Diaz M., Castellsague M., Ferrer E., Bosch F.X., de Sanjose S. Cervical human papillomavirus prevalence in 5 continents: meta-analysis of 1 million women with normal cytological findings. J Infect Dis. 2010 Dec 15; 202 (12): 1789-99. doi:10.1086/657321.; IbragimovaM., Tsyganov M, ShpilevaO., ChuruksaevaO.,Bychkov V, Kolomiets L., Litviakov N. HPV status and its genomic integration affect survival of patients with cervical cancer. Neoplasma. 2018 Mar 14; 65 (3): 441-448. doi:10.4149/neo_2018_170414N277.; JiangM., Baseman J.G., KoutskyL.A., Feng Q.,Mao C., KiviatN.B., Xi L.F. Sequence variation of human papillomavirus type 16 and measurement of viral integration by quantitative PCR. J Clin Microbiol. 2009 Mar; 47 (3): 521-6. doi:10.1128/JCM.02115-08.; Коломиец Л.А., Чуруксаева О.Н., Шпилева О.В., Уразова Л.Н., РодичеваН.С. Особенности распространения различных типов вирусов папилломы человека (ВПЧ) у пациенток с цервикальными неоплазиями и раком шейки матки в г. Томске. Сибирский онкологический журнал. 2012; 3: 41-45.; Muhoz N., Bosch F.X., de Sanjose S., Herrero R., Castellsague X., Shah K.V., Snijders P.J., Meijer C.J.; International Agency for Research on Cancer Multicenter Cervical Cancer Study Group. Epidemiologic classification of human papillomavirus types associated with cervical cancer. New Eng J Med. 2003; 348 (6): 518-527.; Белокриницкая Т.Е., Фролова Н.И., Туранова О.В., Шемякина К.Н., ПлетневаВ.А., СамбуеваН.Б., МальцеваЕ.Е. Результативность и приемлемость обследования на вирус папилломы человека при самостоятельном и врачебном заборе вагинального отделяемого. Акушерство и гинекология. 2017; 2: 97-105. doi:10.18565/aig.2017.2.97-105.; Sasieni P., Castanon A., Cuzick J. Effectiveness of cervical screening with age: population based case-control study of prospectively recorded data. BMJ. 2009 Jul 28; 339: b2968. doi:10.1136/bmj.b2968.; Новик В.И. Скрининг рака шейки матки. Практическая онкология. 2010; 11 (2): 66-73.; Peirson L., Fitzpatrick-Lewis D., Ciliska D., Warren R. Screening for cervical cancer: a systematic review and meta-analysis. Syst Rev. 2013 May 24; 2: 35. doi:10.1186/2046-4053-2-35.; Clavel C., Masure M., Bory J.-P., Putaud I., Mangeonjean C., LorenzatoM., NazeyrollasP., GabrielR., Quereux C., BirembautP. Human papillomavirus testing in primary screening for the detection of high-grade cervical lesions: a study of 7932 women. Br J Cancer. 2001 Jun 15; 84 (12): 1616-23. doi:10.1054/bjoc.2001.1845.; StanleyM. Pathology and epidemiology of HPV infection in females. Gynecol Oncol. 2010 May; 117 (2 Suppl): S5-10. doi:10.1016/j.ygyno.2010.01.024.; Андосова Л.Д., Конторщикова К.Н., Качалина О.В. Современные представления о роли вируса папилломы человека в генезе цервикального рака (обзор). Медицинский альманах. 2011; 18 (5): 116-120.; Vink M.A., Bogaards J.A., van Kemenade F.J., de Melker H.E., Meijer C.J.L.M., Berkhof J. Clinical progression of high-grade cervical intraepithelial neoplasia: estimating the time to preclinical cervical cancer from doubly censored national registry data. Am J Epidemiol. 2013 Oct 1; 178 (7): 1161-9. doi:10.1093/aje/kwt077.; Hu Z., Zhu D., Wang W., Li W., Jia W., Zeng X., Ding W., Yu L., Wang X., Wang L., Shen H., Zhang C., Liu H., Liu X., Zhao Y., Fang X., Li S., Chen W., Tang T., Fu A., Wang Z., Chen G., Gao Q., Li S., Xi L., Wang C., Liao S., Ma X., Wu P., Li K., Wang S., Zhou J., Wang J., Xu X., Wang H., Ma D. Genome-wide profiling of HPV integration in cervical cancer identifies clustered genomic hot spots and a potential microhomology-mediated integration mechanism. Nat Genet. 2015 Feb; 47 (2): 158-63. doi:10.1038/ng.3178.; https://www.siboncoj.ru/jour/article/view/905

  16. 16
    Academic Journal

    المساهمون: Грант Президента РФ, РФФИ

    المصدر: Siberian journal of oncology; Том 16, № 2 (2017); 27-35 ; Сибирский онкологический журнал; Том 16, № 2 (2017); 27-35 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2017-16-2

    وصف الملف: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/516/423; Стенина М.Б., Фролова М.А. Рак молочной железы: наиболее важные научные события и выводы последних лет. Практическая онкология. 2011; 12 (1): 6–11.; Семиглазов В.Ф., Палтуев Р.М., Семиглазов В.В., Дашян Г.А., Семиглазова Т.Ю., Криворотько П.В., Николаев К.С. Общие рекомендации по лечению раннего рака молочной железы St. Gallen-2015, адаптированные экспертами Российского общества онкомаммологов. Опухоли женской репродуктивной системы. 2015; 3: 43–60. doi: http://dx.doi.org/10.17650/1994-4098-2015-11-3-43-60.; Band A.M., Laiho M. Crosstalk of TGF-β and estrogen receptor signaling in breast cancer. J Mammary Gland Biol Neoplasia. 2011; 16 (2): 109–15. doi:10.1007/s10911-011-9203-7.; Derynck R., Zhang Y.E. Smad-dependent and Smad-independent pathways in TGF-beta family signaling. Nature. 2003 Oct 9; 425 (6958): 577–84.; Kleuser B., Malek D., Gust R., Pertz H.H., Potteck H., Kleuser B., Malek D., Gust R., Pertz H.H., Potteck H. 17-Beta-estradiol inhibits transforming growth factor-beta signaling and function in breast cancer cells via activation of extracellular signal-regulated kinase through the G protein-coupled receptor 30. Mol Pharmacol. 2008 Dec; 74: 1533–43. doi:10.1124/mol.108.046854.; Ito I., Hanyu A., Wayama M., Goto N., Katsuno Y., Kawasaki S., Nakajima Y., Kajiro M., Komatsu Y., Fujimura A., Hirota R., Murayama A., Kimura K., Imamura T., Yanagisawa J. Estrogen inhibits transforming growth factor beta signaling by promoting Smad2/3 degradation. J Biol Chem. 2010 May 7; 285 (19): 14747–55. doi:10.1074/jbc. M109.093039.; Matsuda T., Yamamoto T., Muraguchi A., Saatcioglu F. Cross-talk between transforming growth factor-beta and estrogen receptor signaling through Smad3. J Biol Chem. 2001 Nov16; 276: 42908–1.; Wu L., Wu Y., Gathings B., Wan M., Li X., Grizzle W., Liu Z., Lu C., Mao Z., Cao X. Smad4 as a transcription corepressor for estrogen receptor alpha. J Biol Chem. 2003 Apr 25; 278 (17): 15192–200.; Gao N., Zhai Q., Li Y., Huang K., Bian D., Wang X., Liu C., Xu H., Zhang T. Clinical Implications of TβRII Expression in Breast Cancer. PLoS One. 2015 Nov 9; 10 (11): e0141412. doi:10.1371/journal.pone.0141412.; Paiva C.E., Drigo S.A., Rosa F.E., Moraes Neto F.A., Caldeira J.R.F., Soares F.A., Rogatto S.R. Absence of transforming growth factor-b type II receptor is associated with poorer prognosis in HER2-negative breast tumours. Annals of Oncology. 2010; 21: 734–40. doi:10.1093/annonc/mdp518.; Busch S., Sims A.H., Stål O., Fernö M., Landberg G. Loss of TGFβ receptor type 2 expression impairs estrogen response and confers tamoxifen resistance. Cancer Res. 2015 Apr 1; 75 (7): 1457–69. doi:10.1158/0008-5472.CAN-14-1583.; Gilboa L., Wells R.G., Lodish H.F., Henis Y.I. Oligomeric structure of type I and type II transforming growth factor β receptors: homodimers form in the ER and persist at the plasma membrane. J Cell Biol. 1998 Feb 23; 140 (4): 767–77.; Chen T., Jackson C.R., Link A., Markey M.P., Colligan B.M., Douglass L.E., Pemberton J.O., Deddens J.A., Graff J.R., Carter J.H. Int7G24A variant of transforming growth factor-beta receptor type I is associated with invasive breast cancer. Clin Cancer Res. 2006 Jan 15; 12 (2): 392–7.; Chen C., Zhao K.N., Masci P.P., Lakhani S.R., Antonsson A., Simpson P.T., Vitetta L. TGFβ isoforms and receptors mRNA expression in breast tumours: prognostic value and clinical implications. BMC Cancer. 2015 Dec 24; 15: 1010. doi:10.1186/s12885-015-1993-3.; de Kruijf E.M., Dekker T.J., Hawinkels L.J., Putter H., Smit V.T., Kroep J.R., Kuppen P.J., van de Velde C.J., ten Dijke P., Tollenaar R.A., Mesker W.E. The prognostic role of TGF-β signaling pathway in breast cancer patients. Ann Oncol. 2013 Feb; 24 (2): 384–90. doi:10.1093/annonc/mds333.; Song B., Margolin S., Skoglund J., Zhou X., Rantala J., Picelli S., Werelius B., Lindblom A. TGFBR1(*)6A and Int7G24A variants of transforming growth factor beta receptor 1 in Swedish familial and sporadic breast cancer. Br J Cancer. 2007 Oct 22; 97 (8): 1175–9. doi:10.1038/sj.bjc.6603961www.bjcancer.com.; https://www.siboncoj.ru/jour/article/view/516

  17. 17
    Academic Journal

    المصدر: Siberian journal of oncology; Том 16, № 6 (2017); 47-56 ; Сибирский онкологический журнал; Том 16, № 6 (2017); 47-56 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2017-16-6

    وصف الملف: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/641/490; Kaufmann M., von Minckwitz G., Mamounas E.P., Cameron D., Car-ey L.A., Cristofanilli M., Denkert C., Eiermann W., Gnant M., Harris J.R., Karn T., Liedtke C., Mauri D., Rouzier R., Ruckhaeberle E., Semiglazov V., Symmans W.F., Tutt A., Pusztai L. Recommendations from an international consensus conference on the current status and future of neoadjuvant systemic therapy in primary breast cancer. Ann Surg Oncol. 2012; 19 (5): 1508–16. doi:10.1245/s10434-011-2108-2.; Liu B., Ezeogu L., Zellmer L., Yu B., Xu N., Joshua Liao D. Protecting the normal in order to better kill the cancer. Cancer Med. 2015; 4 (9): 1394–403. doi:10.1002/cam4.488.; Kim E.S. Chemotherapy Resistance in Lung Cancer. Lung Cancer and Personalized Medicine: Springer. 2016: 189–209. doi:10.1007/978-3-319-24223-1_10.; Findlay J.M., Castro-Giner F., Makino S., Rayner E., Kartsonaki C., Cross W., Kovac M., Ulahannan D., Palles C., Gillies R.S., MacGregor T.P., Church D., Maynard N.D., Buffa F., Cazier J.B., Graham T.A., Wang L.M., Sharma R.A., Middleton M., Tomlinson I. Differential clonal evolution in oesophageal cancers in response to neo-adjuvant chemotherapy. Nat Commun. 2016 Apr 5; 7: 11111. doi:10.1038/ncomms11111.; Ibragimova M., Tsyganov M., Litviakov N. Natural and chemotherapy-induced clonal evolution of tumors. Biochemistry (Mosc). 2017 Apr; 82 (4): 413–425. doi:10.1134/S0006297917040022.; De Palma M., Lewis C.E. Cancer: Macrophages limit chemotherapy. Nature. 2011 Apr 21; 472 (7343): 303–4. doi:10.1038/472303a.; Hughes R., Qian B.Z., Rowan C., Muthana M., Keklikoglou I., Olson O.C., Tazzyman S., Danson S., Addison C., Clemons M., Gonzalez-Angulo A.M., Joyce J.A., De Palma M., Pollard J.W., Lewis C.E. Perivascular M2 macrophages stimulate tumor relapse after chemotherapy. Cancer Res. 2015 Sep 1; 75 (17): 3479–91. doi:10.1158/0008-5472. CAN-14-3587.; Yang J., Li X., Liu X., Liu Y. The role of tumor-associated macrophages in breast carcinoma invasion and metastasis. Int J Clin Exp Pathol. 2015 Jun 1; 8 (6): 6656–64.; Noy R., Pollard J.W. Tumor-associated macrophages: from mechanisms to therapy. Immunity. 2014; 41: 49–61. doi:10.1016/j. immuni.2014.06.010.; Riabov V., Gudima A., Wang N., Mickley A., Orekhov A., Kzhyshkowska J. Role of tumor associated macrophages in tumor angiogenesis and lymphangiogenesis. Front Physiol. 2014; 5: 75. doi:10.3389/ fphys.2014.00075.; Mitchem J.B., Brennan D.J., Knolhoff B.L., Belt B.A., Zhu Y., Sanford D.E., Belaygorod L., Carpenter D., Collins L., Piwnica-Worms D., Hewitt S., Udupi G.M., Gallagher W.M., Wegner C., West B.L., Wang-Gillam A., Goedegebuure P., Linehan D.C., DeNardo D.G. Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses. Cancer Res. 2013; 73: 1128–1141. doi:10.1158/0008-5472.; Zitvogel L., Galluzzi L., Smyth M.J., Kroemer G. Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance. Immunity. 2013; 39: 74–88. doi:10.1016/j. immuni.2013.06.014.; Mantovani A., Biswas S.K., Galdiero M.R., Sica A., Locati M. Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol. 2013 Jan; 229 (2): 176–85. doi:10.1002/path.4133.; Mantovani A., Locati M. Tumor-Associated Macrophages as a Paradigm of Macrophage Plasticity, Diversity, and Polarization Lessons and Open Questions. Arterioscler Thromb Vasc Biol. 2013; 33: 1478–1483. doi:10.1161/ATVBAHA.113.300168.; DeNardo D.G., Brennan D.J., Rexhepaj E., Ruffell B., Shiao S.L., Madden S.F., Gallagher W.M., Wadhwani N., Keil S.D., Junaid S.A., Rugo H.S., Hwang E.S., Jirström K., West B.L., Coussens L.M. Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Disc. 2011; 1: 54–67. doi:10.1158/2159-8274.CD-10-0028.; Dijkgraaf E.M., Heusinkveld M., Tummers B., Vogelpoel L.T., Goedemans R., Jha V., Nortier J.W., Welters M.J., Kroep J.R., van der Burg S.H. Chemotherapy alters monocyte differentiation to favor generation of cancer-supporting M2 macrophages in the tumor microenvironment. Cancer Res. 2013; 73: 2480–92. doi:10.1158/0008-5472.; Kzhyshkowska J., Gratchev A., Goerdt S. Human chitinases and chitinase-like proteins as indicators for inflammation and cancer. Biomarker Insights. 2007; 2: 128–46.; Kzhyshkowska J., Yin S., Liu T., Riabov V., Mitrofanova I. Role of chitinase-like proteins in cancer. Biol Chem. 2016; 397: 231–47. doi:10.1515/hsz-2015-0269.; Shao R., Hamel K., Petersen L., Cao J.Q., Arenas R.B., Bigelow C., Bentley B., Yan W. YKL-40, a secreted glycoprotein, promotes tumor angiogenesis. Oncogene. 2009; 28: 4456. doi:10.1038/onc.2009.292.; Gratchev A., Kzhyshkowska J., Kannookadan S., Ochsenreiter M., Popova A., Yu X., Mamidi S., Stonehouse-Usselmann E., Muller-Molinet I., Gooi L., Goerdt S. Activation of a TGF-β-specific multistep gene expression program in mature macrophages requires glucocorticoid-mediated surface expression of TGF-β receptor II. J Immunol. 2008; 180: 6553–65.; Lin L., Chen Y.S., Yao Y.D., Chen J.Q., Chen J.N., Huang S.Y., Zeng Y.J., Yao H.R., Zeng S.H., Fu Y.S., Song E.W. CCL18 from tumor-associated macrophages promotes angiogenesis in breast cancer. Oncotar-get. 2015; 6: 34758–34773. doi:10.18632/oncotarget.5325.; Chen J., Yao Y., Gong C., Yu F., Su S., Chen J., Liu B., Deng H., Wang F., Lin L., Yao H., Su F., Anderson K.S., Liu Q., Ewen M.E., Yao X., Song E. CCL18 from tumor-associated macrophages promotes breast cancer metastasis via PITPNM3. Cancer Cell. 2011; 19: 541–555. doi:10.1016/j.ccr.2011.02.006.; Nagarsheth N., Wicha M.S., Zou W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat Rev Immunol. 2017 Sep 30; 17 (9): 559–572. doi:10.1038/nri.2017.49.; Schwartz G.F., Hortobagyi G.N. Proceedings of the consensus conference on neoadjuvant chemotherapy in carcinoma of the breast, April 26–28, 2003, Philadelphia, Pennsylvania. Cancer. 2004; 100 (12): 2512–32.; Wolff A.C., Hammond M.E., Hicks D.G., Dowsett M., McShane L.M., Allison K.H., Allred D.C., Bartlett J.M., Bilous M., Fitz-gibbons P., Hanna W., Jenkins R.B., Mangu P.B., Paik S., Perez E.A., Press M.F., Spears P.A., Vance G.H., Viale G., Hayes D.F.; American Society of Clinical Oncology; College of American Pathologists. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. Arch Pathol Lab Medicine. 2007; 131: 18–43. doi:10.1043/1543-2165(2007)131[18:ASOCCO]2.0.CO;2.; Litviakov N.V., Cherdyntseva N.V., Tsyganov M.M., Denisov E.V., Garbukov E.Y., Merzliakova M.K., Volkomorov V.V., Vtorushin S.V., Zavyalova M.V., Slonimskaya E.M., Perelmuter V.M. Changing the expression vector of multidrug resistance genes is related to neoadjuvant chemotherapy response. Cancer Chemother Pharmacol. 2013; 71 (1): 153–63. doi:10.1007/s00280-012-1992-x.; Litviakov N.V., Cherdyntseva N.V., Tsyganov M.M., Slonimskaya Е.M., Ibragimova M.K., Kazantseva P.V., Kzhyshkowska J., Choinzonov E.L. Deletions of multidrug resistance gene loci in breast cancer leads to the down-regulation of its expression and predict tumor response to neoadjuvant chemotherapy. Oncotarget. 2016 Feb 16; 7 (7): 7829–41. doi:10.18632/oncotarget.6953.; Pfaffl M.W., Lange I.G., Daxenberger A., Meyer H.H. Tissue-specific expression pattern of estrogen receptors (ER): quantification of ER alpha and ER beta mRNA with real-time RT-PCR. APMIS. 2001 May; 109 (5): 345–55.; Martinez F.O., Helming L., Gordon S. Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol. 2009; 27: 451–83. doi:10.1146/annurev.immunol.021908.132532.; Schutyser E., Richmond A., Van Damme J. Involvement of CC chemokine ligand 18 (CCL18) in normal and pathological processes. J Leukoc Biol. 2005; 78: 14–26.; Kzhyshkowska J., Yin S., Liu T., Riabov V., Mitrofanova I. Role of chitinase-like proteins in cancer. Biol Chem. 2016 Mar; 397 (3): 231–47. doi:10.1515/hsz-2015-0269.; Leung S.Y., Yuen S.T., Chu K.M., Mathy J.A., Li R., Chan A.S., Law S., Wong J., Chen X., So S. Expression profiling identifies chemokine (C-C motif) ligand 18 as an independent prognostic indicator in gastric cancer. Gastroenterol. 2004; 127: 457–469.; Sainz Jr. B., Martin B., Tatari M., Heeschen C., Guerra S. ISG15 is a critical microenvironmental factor for pancreatic cancer stem cells. Cancer Res. 2014 Dec 15; 74 (24): 7309–20. doi:10.1158/0008-5472. CAN-14-1354.; https://www.siboncoj.ru/jour/article/view/641

  18. 18
    Academic Journal

    المصدر: Siberian journal of oncology; № 3 (2014); 19-27 ; Сибирский онкологический журнал; № 3 (2014); 19-27 ; 2312-3168 ; 1814-4861 ; undefined

    وصف الملف: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/39/41; Геращенко Т.С., Денисов Е.В., Литвяков Н.В., Завьялова М.В., Вторушин С.В., Цыганов М.М., Перельмутер В.М., Чердынцева Н.В. Внутриопухолевая гетерогенность: природа и биологическое значение // Биохимия. 2013. Т. 78, № 11. С. 1531–1549.; Гервас П.А., Литвяков Н.В., Стахеева М.Н., Миллер С.В., Добродеев А.Ю., Гарбуков Е.Ю., Бабышкина Н.Н., Кухарев Я.В., Васильева М.В., Слонимская Е.М., Белявская В.А., Тузиков С.А., Чердынцева Н.В. Влияние полиморфизма генов апоптоза и репарации на эффективность неоадъювантной химиотерапии злокачественных новообразований // Сибирский онкологический журнал. 2009. № 4 (34). С. 41–47.; Чердынцева Н.В., Литвяков Н.В., Денисов Е.В. Основные достижения в фундаментальной онкологии в 2012 году // Практическая онкология. 2013. Т. 14, № 1. С. 1–12.; Bergamaschi A., Kim Y.H., Wang P., Sørlie T., Hernandez-Boussard T., Lonning P.E., Tibshirani R., Børresen-Dale A.L., Pollack J.R. Distinct patterns of DNA copy number alteration are associated with different clinicopathological features and gene-expression subtypes of breast cancer.// Genes Chromosomes and Cancer. 2006. Vol. 45 (11). P.1033–1040.; Bhatia S., Frangioni J.V., Hoffman R.M. The challenges posed by cancer heterogeneity // Nat. Biotechnol. 2012. Vol. 30. P. 604–610. doi:10.1038/nbt.2294.; Byrski T., Gronwald J., Huzarski T., Grzybowska E., Budryk M., Stawicka M., Mierzwa T., Szwiec M., Wiśniowski R., Siolek M. Pathologic complete response rates in young women with BRCA1-positive breast cancers after neoadjuvant chemotherapy // J. Clin. Oncol. 2010. Vol. 28 (3). P. 375–379. doi:10.1200/JCO.2008.20.7019; Cai H., Kumar N., Baudis M. Arraymap: A reference resource for genomic copy number imbalances in human malignancies // PLoS ONE. 2012. Vol. 7 (5). E. 36944. doi:10.1371/journal.pone.0036944.; Chin S.F., Teschendorff A.E., Marioni J.C., Wang Y., Barbosa-Morais N.L., Thorne N.P., Costa J.L., Pinder S.E., van De Wiel M.A., Green A.R. Highresolution aCGH and expression profiling identifies a novel genomic subtype of ER negative breast cancer // Genome Biol. 2007. Vol. 8 (10). R. 215.; Climent J., Dimitrow P., Fridlyand J., Palacios J., Siebert R., Albertson D.G., Gray J.W., Pinkel D., Lluch A., Martinez-Climent J.A. Deletion of chromosome 11q predicts response to anthracycline-based chemotherapy in early breast cancer // Cancer Res. 2007. Vol. 67 (2). P. 818–826.; Goldhirsch A., Winer E., Coates A., Gelber R., Piccart-Gebhart M., Thürlimann B., Senn H.-J., Albain K.S., André F., Bergh J. Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013 // Ann. Oncol. 2013. Vol. 24 (9). P. 2206–2223. doi:10.1093/ annonc/mdt303.; Han S., Park K., Shin E., Kim H.-J., Kim J.Y., Kim J.Y., Gwak G. Genomic change of chromosome 8 predicts the response to taxane-based neoadjuvant chemotherapy in node-positive breast cancer // Oncol. Reports. 2010. Vol. 24 (1). P. 121–128.; Hanahan D., Weinberg R.A. Hallmarks of cancer: the next generation // Cell. 2011. Vol. 144 (5). P. 646–674. doi:10.1016/j.cell.2011.02.013.; Horlings H.M., Lai C., Nuyten D.S., Halfwerk H., Kristel P., van Beers E., Joosse S.A., Klijn C., Nederlof P.M., Reinders M.J. Integration of DNA copy number alterations and prognostic gene expression signatures in breast cancer patients // Clin. Cancer Res. 2010. Vol. 16 (2). P. 651–663. doi:10.1158/1078-0432.CCR-09-0709; Huang N., Shah P.K., Li C. Lessons from a decade of integrating cancer copy number alterations with gene expression profiles // Brief. Bioinform. 2012. Vol. 13 (3). P. 305–316. doi:10.1093/bib/bbr056.; Jönsson G., Staaf J., Vallon-Christersson J., Ringnér M., Holm K., Hegardt C., Gunnarsson H., Fagerholm R., Strand C., Agnarsson B.A. Research article Genomic subtypes of breast cancer identified by array-comparative genomic hybridization display distinct molecular and clinical characteristics // Breast Cancer Res. 2010. Vol. 12 (3). R. 42. doi:10.1186/bcr2596.; Kaufmann M., von Minckwitz G., Mamounas E.P., Cameron D., Carey L.A., Cristofanilli M., Denkert C., Eiermann W., Gnant M., Harris J.R. Recommendations from an international consensus conference on the current status and future of neoadjuvant systemic therapy in primary breast cancer // Ann. Surg. Oncol. 2012. Vol. 19. P. 1508–1516. doi:10.1245/ s10434-011-2108-2. E; McClelland S.E., Burrell R.A., Swanton C. Chromosomal instability: a composite phenotype that influences sensitivity to chemotherapy // Cell Cycle. 2009. Vol. 8 (20). P. 3262–3266.; Schwartz G.F., Hortobagyi G.N. Proceedings of the Consensus Conference on Neoadjuvant Chemotherapy in Carcinoma of the Breast, April 26–28, 2003, Philadelphia, Pennsylvania // Breast J. 2004. Vol. 10 (4). P. 273–294.; Weigman V.J., Chao H.-H., Shabalin A.A., He X., Parker J.S., Nordgard S.H., Grushko T., Huo D., Nwachukwu C., Nobel A. Basal-like Breast cancer DNA copy number losses identify genes involved in genomic instability, response to therapy, and patient survival // Breast Cancer Res. Treat. 2012. Vol. 133 (3). P. 865–880. doi:10.1007/s10549-011-1846-y.; Wikman H., Sielaff-Frimpong B., Kropidlowski J., Witzel I., MildeLangosch K., Sauter G., Westphal M., Lamszus K., Pantel K. Clinical Relevance of Loss of 11p15 in Primary and Metastatic Breast Cancer: Association with Loss of PRKCDBP Expression in Brain Metastases // PLoS ONE. 2012. Vol. 7 (10). E. 47537. doi:10.1371/journal.pone.0047537.; Xu Y., DuanMu H., Chang Z., Zhang S., Li Z., Li Z., Liu Y., Li K., Qiu F., Li X. The application of gene co-expression network reconstruction based on CNVs and gene expression microarray data in breast cancer // Mol. Biol. Reports. 2012. Vol. 39 (2). P. 1627–1637. doi:10.1007/s11033- 011-0902-3.; Zhang Y., Martens J.W., Jack X.Y., Jiang J., Sieuwerts A.M., Smid M., Klijn J.G., Wang Y., Foekens J.A. Copy number alterations that predict metastatic capability of human breast cancer // Cancer Res. 2009. Vol. 69 (9). P. 3795–3801. doi:10.1158/0008-5472.CAN-08-4596.; https://www.siboncoj.ru/jour/article/view/39; undefined

  19. 19
    Academic Journal

    المصدر: Siberian journal of oncology; Том 15, № 3 (2016); 97-101 ; Сибирский онкологический журнал; Том 15, № 3 (2016); 97-101 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2016-15-3

    وصف الملف: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/357/352; Трахтенберг А.Х., Колбанов К.И. Рак легкого. М., 2012. 176 с.; Шатохина С.Н., Захарова Н.М., Дедова М.Г., Самбулов В.И., Шабалин В.Н. Морфологический маркер прогрессии новообразования при раке гортани // Вопросы онкологи. 2013. Т. 59, № 2. С. 66–70.; Юмов Е.Л., Цыганов М.М., Литвяков Н.В., Полищук Т.В., Миллер С.В., Родионов Е.О., Тузиков С.А. Экспрессия генов множественной лекарственной устойчивости и монорезистентности при немелкоклеточном раке легкого // Сибирский онкологический журнал. 2014. № 1. С. 16–22.; Goldstraw P., Crowley J., Chansky K., Giroux D.J., Groome P.A., Rami-Porta R., Postmus P.E., Rusch V., Sobin L. The IASLC Lung Cancer Staging Project: proposals for the revision of the TNM stage groupings in the forthcoming (seventh) edition of the TNM Classification of malignant tumours // J. Thorac. Oncol. 2007. Vol. 2. P. 706–714.; Lan J., Huang H.Y., Lee S.W., Chen T.J., Tai H.C., Hsu H.P., Chang K.Y., Li C.F. TOP2A overexpression as a poor prognostic factor in patients with nasopharyngeal carcinoma // Tumor Biol. 2014. Vol. 35 (1). P. 179–187. doi:10.1007/s13277-013-1022-6.; Wei C.H., Gorgan T.R., Elashoff D.A., Hines O.J., Farrell J.J., Donahue T.R. A meta-analysis of gemcitabine biomarkers in patients with pancreatico-biliary cancers // Pancreas. 2013. 42 (8). P. 1303–1310. doi:10.1097/MPA.0b013e3182a23ae4.; https://www.siboncoj.ru/jour/article/view/357

  20. 20
    Academic Journal

    المصدر: Siberian journal of oncology; Том 15, № 2 (2016); 29-35 ; Сибирский онкологический журнал; Том 15, № 2 (2016); 29-35 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2016-15-2

    وصف الملف: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/330/325; Eechoute K., Sparreboom A., Burger H., Franke R.M., Schiavon G., Verweij J., Loos W.J., Wiemer E.A., Mathijssen R.H. Drug transporters and imatinib treatment: implications for clinical practice // Clin. Cancer Res. 2011. Vol. 17 (3). P. 406–415. doi:10.1158/1078-0432.CCR-10-2250.; Gillet J.P., Gottesman M.M. Overcoming multidrug resistance in cancer: 35 years after the discovery of ABCB1 // Drug Resist Updat. 2012. Vol. 15 (1–2). P. 2–4. doi:10.1016/j.drup.2012.03.001.; Han S., Park K., Shin E., Kim H.J., Kim J.Y., Kim J.Y., Gwak G. Genomic change of chromosome 8 predicts the response to taxane-based neoadjuvant chemotherapy in node-positive breast cancer // Oncol. Reports. 2010. Vol. 24 (1). P. 121–128.; Han W., Woo J.H., Yu J.H., Lee M.J., Moon H.G., Kang D., Noh D.Y. Common genetic variants associated with breast cancer in Korean women and differential susceptibility accoding to intrisic subtype // Cancer Epidemiol. Biomarkers Prev. 2011. Vol. 20 (5). P. 793–798. doi:10.1158/1055-9965.EPI-10-1282.; Kaufmann M., von Minckwitz G., Mamounas E.P., Cameron D., Carey L.A., Cristofanilli M., Denkert C., Eiermann W., Gnant M., Harris J.R., Karn T., Liedtke C., Mauri D., Rouzier R., Ruckhaeberle E., Semiglazov V., Symmans W.F., Tutt A., Pusztai L. Recommendations from an international consensus conference on the current status and future of neoadjuvant systemic therapy in primary breast cancer // Ann. Surg. Oncol. 2012. Vol. 19 (5). P. 1508–1516. doi:10.1245/s10434-011-2108-2.; Kawachi K., Sasaki T., Murakami A., Ishikawa T., Kito A., Ota I., Shimizu D., Nozawa A., Nagashima Y., Machinami R., Aoki I. The topoisomerase II alpha gene status in primary breast cancer is a predictive marker of the response to anthracycline-based neoadjuvant chemotherapy // Pathol. Res. Pract. 2010. Vol. 206 (3). P. 156–162. doi:10.1016/j.prp.2009.10.009.; Konecny G.E., Pauletti C., Untch M., Wang H.-J., Modus V., Kulin W., Thomssen C., Harbeck N., Wang L., Apple S., Janicke F., Slamon D.J. Association between HER2, TOP2A, and response to antracycline-based preoperative chemotherapy in high-risk primary breast cancer // Breast Cancer Res. Treat. 2010. Vol. 120. P. 481–489. doi:10.1007/s10549-010-0744-z.; Litviakov N., Cherdyntseva N., Tsyganov M., Denisov E., Garbukov E., Merzliakova M., Volkomorov V., Vtorushin S., Zavyalova M., Slonimskaya E. Changing the expression vector of multidrug resistance genes is related to neoadjuvant chemotherapy response // Cancer Chemother. Pharmacol. 2013. Vol. 71 (1). P. 153–163. doi:10.1007/s00280-012-1992-x.; Litviakov N.V., Cherdyntseva N.V., Tsyganov N.V., Slonimskaya E.M., Ibragimova M.K., Kazantseva P.V., Kzhyshkowska J., Choinzonov E.L. Deletions of multidrug resistance gene loci in breast cancer leads to the down-regulation of its expression and predict tumor response to neoadjuvant chemotherapy // Oncotarget. 2016. Vol. 7 (7). P. 7829–7841. doi:10.18632/oncotarget.6953.; Miller M., Ottesen R.A., Niland J.C., Kruper L., Chen S.L., Vito C. Tumor response ratio predicts overall survival in breast cancer patients treated with neoadjuvant chemotherapy // Ann. Surg. Oncol. 2014. Vol. 21. P. 3317–3323. doi:10.1245/s10434-014-3922-0.; Miyoshi Y., Kurosumi M., Kurebayashi J., Matsuura N., Takahashi M., Tokunaga E., Egawa C., Masuda N., Kono S., Morimoto K., Kim S.J., Okishiro M., Yanagisawa T., Ueda S., Taguchi T., Tamaki Y., Noguchi S. Predictive factors for anthracycline-based chemotherapy for human breast cancer // Breast Cancer. 2010. Vol. 17 (2). P. 103–109. doi:10.1007/s12282-009-0152-6.; O'Driscoll L., Clynes M. Molecular markers of multiple drug resistance in breast cancer // Chemotherapy. 2006. Vol. 52 (3). P. 125–129.; Schinkel A.H., Jonker J.W. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview // Adv. Drug Deliv. Rev. 2012. Vol. 64. P. 138–153.; Symmans W.F., Peintinger F., Hatzis C., Rajan R., Kuerer H., Valero V., Assad L., Poniecka A., Hennessy B., Green M., Buzdar A.U., Singletary S.E., Hortobagyi G.N., Pusztai L. Measurement of residual breast cancer burden to predict survival after neoadjuvant chemotherapy // J. Clin. Oncol. 2007. Vol. 25 (28). P. 4414–4422.; Szakacs G., Paterson J.K., Ludwig J.A., Booth-Genthe C., Gottesman M.M. Targeting multidrug resistance in cancer // Nat. Rev. Drug Discov. 2006. Vol. 5 (3). P. 219–234.; Von Minckwitz D., Untch M., Blohmer J.U., Costa S.D., Eidtmann H., Fasching P.A., Gerber B., Eiermann W., Hilfrich J., Huober J., Jackisch C., Kaufmann M., Konecny C., Denkert C., Nekljudova V., Mehta K., Loibl S. Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes // J. Clin. Oncol. 2012. Vol. 30 (15). P. 1796–1804. doi:10.1200/JCO.2011.38.8595.; Wikman H., Sielaff-Frimpong B., Kropidlowski J., Witzel I., Milde-Langosch K., Sauter G., Westphal M., Lamszus K., Pantel K. Clinical Relevance of Loss of 11p15 in Primary and Metastatic Breast Cancer: Association with Loss of PRKCDBP Expression in Brain Metastases // PLoS ONE. 2012. Vol. 7 (10): e47537. doi:10.1371/journal.pone.0047537.; https://www.siboncoj.ru/jour/article/view/330