-
1Academic Journal
المؤلفون: M. V. Epifanova, А. А. Kostin, А. А. Epifanov, K. A. Kirillova, М. В. Епифанова, А. А. Костин, А. А. Епифанов, К. А. Кириллова
المصدر: Andrology and Genital Surgery; Том 25, № 2 (2024); 17-30 ; Андрология и генитальная хирургия; Том 25, № 2 (2024); 17-30 ; 2412-8902 ; 2070-9781
مصطلحات موضوعية: индуцированные плюрипотентные стволовые клетки, stem cells, platelet rich plasma, exosomes, spermatogonial stem cells, induced pluripotent stem cells, стволовые клетки, аутоплазма, обогащенная тромбоцитарными факторами роста, экзосомы, сперматогониальные стволовые клетки
وصف الملف: application/pdf
Relation: https://agx.abvpress.ru/jour/article/view/755/578; EAU Guidelines. Edn. presented at the EAU Annual Congress Milan 2023. ISBN 978-94-92671-19-6.; Hajiesmailpoor A., Emami P., Kondori B.J. et al. Stem cell therapy as a recent advanced approach in male infertility. Tissue Cell 2021;73:101634. DOI:10.1016/j.tice.2021.101634.; Agarwal A., Baskaran S., Parekh N. et al. Male infertility. Lancet 2021;397(10271):319-333. DOI:10.1016/S0140-6736(20)32667-2.; Mao A.S., Mooney D.J. Regenerative medicine: Current therapies and future directions. Proc Natl Acad Sci USA 2015;112(47):14452-9. DOI:10.1073/pnas.1508520112. PMID: 26598661; PMCID: PMC4664309.; Galipeau J., Sensebe L. Mesenchymal stromal cells: clinical challenges and therapeutic opportunities. Cell Stem Cell 2018;22(6):824–833. DOI:10.1016/j.stem.2018.05.004.; Squillaro T., Peluso G., Galderisi U. Clinical trials with mesenchymal stem cells: an update. Cell Transplant. 2016;25(5):829–848. DOI:10.3727/096368915X689622.; Wang J., Liu C., Fujino M. et al. Stem cells as a resource for treatment of infertility-related diseases. Curr. Mol. Med 2019;19:539–546. DOI:10.2174/1566524019666190709172636.; Dunlop C.E., Telfer E.E., Anderson R.A. Ovarian stem cells— Potential roles in infertility treatment and fertility preservation. Maturitas. 2013;76:279–283. DOI:10.1016/j.maturitas.2013.04.017.; Pourmoghadam Z., Aghebati-Maleki L., Motalebnezhad M. et al. Current approaches for the treatment of male infertility with stem cell therapy. J Cell Physiol 2018;233(10):6455–6469.; Lorzadeh N., Kazemirad N. Embryonic Stem Cells and Infertility. Am J Perinatol 2018;35(10):925-930. DOI:10.1055/s-0038-1632367.; Saha S., Roy P., Corbitt C. et al. Application of Stem Cell Therapy for Infertility. Cells 2021;10(7):1613. DOI:10.3390/cells10071613.; Geijsen N., Horoschak M., Kim K. et al. Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature 2004;427(6970):148–154.; Zhao X.Y., Li W., Lv Z. et al. Viable fertile mice generated from fully pluripotent iPS cells derived from adult somatic cells. Stem Cell Rev 2010;6(03):390–397.; Nayernia K., Nolte J., Michelmann H.W. et al. In vitro-differentiated embryonic stem cells give rise to male gametes that can generate offspring mice. Dev Cell 2006;11(01):125–132.; Takahashi K., Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006;126:663–676. DOI:10.1016/j.cell.2006.07.024.; Fang F., Li Z., Zhao Q. et al. Human induced pluripotent stem cells and male infertility: An overview of current progress and perspectives. Hum. Reprod 2018;33:188–195. DOI:10.1093/humrep/dex369.; Eguizabal C., Montserrat N., Vassena R. et al. Complete meiosis from human induced pluripotent stem cells. Stem Cells 2011;29:1186–1195. DOI:10.1002/stem.672.; Ramathal C., Durruthy-Durruthy J., Sukhwani M. et al. Fate of iPSCs derived from azoospermic and fertile men following xenotransplantation to murine seminiferous tubules. Cell Rep 2014;7:1284–1297. DOI:10.1016/j.celrep.2014.03.067.; Irie N., Weinberger L., Tang W.W. et al. SOX17 is a critical specifier of human primordial germ cell fate. Cell 2015;160:253–268. DOI:10.1016/j.cell.2014.12.013.; Sasaki K., Yokobayashi S., Nakamura T. et al. Robust In Vitro induction of human germ cell fate from pluripotent stem cells. Cell Stem Cell 2015;17:178–194. DOI:10.1016/j.stem.2015.06.014.; Volarevic V., Bojic S., Nurkovic J. et al. Stem cells as new agents for the treatment of infertility: Current and future perspectives and challenges. Biomed Res Int 2014;2014:507234. DOI:10.1155/2014/507234.; Zhu Y., Hu H.-L., Li P. et al. Generation of male germ cells from induced pluripotent stem cells (iPS cells): An in vitro and in vivo study. Asian J Androl 2012;14(4):574-9. DOI:10.1038/aja.2012.3.; Cai H., Xia X., Wang L. et al. In vitro and in vivo differentiation of induced pluripotent stem cells into male germ cells. Biochem Biophys Res Commun 2013;433(3):286-291. DOI:10.1016/j.bbrc.2013.02.107.; Yamashiro C., Sasaki K., Yabuta Y. et al. Generation of human oogonia from induced pluripotent stem cells In Vitro. Science 2018;362:356-360. DOI:10.1126/science.aat1674.; Lee A.S., Tang C., Rao M.S. et al. Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat Med 2013;19(8):998-1004. DOI:10.1038/nm.3267.; Amidi F., Ataie Nejad N., Agha Hoseini M. et al. In vitro differentiation process of human Wharton’s jelly mesenchymal stem cells to male germ cells in the presence of gonadal and non-gonadal conditioned media with retinoic acid. In Vitro Cell Dev Biol Anim 2015;51(10): 1093–1101. DOI:10.1007/s11626-015-9929-4.; Abd Allah S.H., Pasha H.F., Abdelrahman A.A. et al. Molecular effect of human umbilical cord blood CD34-positive and CD34-negative stem cells and their conjugate in azoospermic mice. Mol Cell Biochem 2017;428(1-2):179-191. DOI:10.1007/s11010-016-2928-2.; Chen H., Tang Q.L., Wu X.Y. et al. Differentiation of human umbilical cord mesenchymal stem cells into germ-like cells in mouse seminiferous tubules. Mol Med Rep 2015;12(1):819-828. DOI:10.3892/mmr.2015.3528.; Tsekouras A., Mantas D., Tsilimigras D.I. et al. Comparison of the Viability and Yield of Adipose-Derived Stem Cells (ASCs) from Different Donor Areas. In Vivo 2017;31(6):1229-1234. DOI:10.21873/invivo.11196.; Bruder S.P., Jaiswal N., Haynesworth S.E. Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 1997;64(2):278-94. DOI:10.1002/(sici)1097-4644(199702)64:23.0.co;2-f.; Pittenger M.F., Mackay A.M., Beck S.C. et a. Multilineage potential of adult human mesenchymal stem cells. Science 1999;284(5411):143-7. DOI:10.1126/science.284.5411.143.; Vangsness C.T. Jr., Sternberg H., Harris L. Umbilical Cord Tissue Offers the Greatest Number of Harvestable Mesenchymal Stem Cells for Research and Clinical Application: A Literature Review of Different Harvest Sites. Arthroscopy 2015;31(9):1836-43. DOI:10.1016/j.arthro.2015.03.014.; Hernigou P., Homma Y., Flouzat Lachaniette C.H. et al. Benefits of small volume and small syringe for bone marrow aspirations of mesenchymal stem cells. Int Orthop 2013;37(11):2279-87. DOI:10.1007/s00264-013-2017-z.; Li C.Y., Wu X.Y. Tong J.B. et al. Comparative analysis of human mesenchymal stem cells from bone marrow and adipose tissue under xeno-free conditions for cell therapy. Stem Cell Res Ther 2015;6(1):55. DOI:10.1186/s13287-015-0066-5.; Tamadon A., Zhan-Byrbekuly U., Kairgaliyev I. et al. Mesenchymal stem cell therapy of male infertility. Male Reproductive Health, IntechOpen. 2019;105–112. DOI:10.5772/intechopen.88343; Monsef M., Fereydouni B., Rohani L. et al. Mesenchymal stem cells repair germinal cells of seminiferous tubules of sterile rats. Iran J Reprod Med 2013;11:537–44.; Vahdati A., Fathi A., Hajihoseini M. et al. The regenerative efect of bone marrow-derived stem cells in spermatogenesis of infertile hamster. World journal of plastic surgery 2017;6(1):18–25.; Cakici C., Buyrukcu B., Duruksu G. et al. Recovery of fertility in azoospermia rats after injection of adipose-tissue-derived mesenchymal stem cells: the sperm generation. Biomed Res Int 2013;2013:1–18.; Ghasemzadeh-Hasankolaei M., Batavani R., Eslaminejad M.B. et al. Transplantation of autologous bone marrow mesenchymalstem cells into the testes of infertile male rats and new germ cell formation. Int J Stem Cells 2016;9:250–63. DOI:10.15283/ijsc16010.; Zhang D., Liu X., Peng J. et al. Potential spermatogenesis recovery with bone marrow mesenchymal stem cells in an azoospermic rat model. Int J Mol Sci 2014;15:13151–65. DOI:10.3390/ijms150813151.; Hassan A.I., Alam S.S. Evaluation of mesenchymal stem cells in treatment of infertility in male rats. Stem Cell Res Ther 2014;5:131. DOI:10.1186/scrt521.; Karimaghai N., Tamadon A., Rahmanifar F. et al. Spermatogenesis after transplantation of adipose tissue-derived mesenchymal stem cells in busulfan-induced azoospermic hamster. Iran J Basic Med Sci 2018;21:660.; Mehrabani D., Hassanshahi M.A., Tamadon A. et al. Adipose tissue-derived mesenchymal stem cells repair germinal cells of seminiferous tubules of busulfan-induced azoospermic rats. J Hum Reprod Sci 2015;8(2):103-110. DOI:10.4103/0974-1208.158618.; Hsiao C.H., Ji A.T., Chang C.C. et al. Local injection of mesenchymal stem cells protects testicular torsion-induced germ cell injury. Stem Cell Res Ther 2015;6(1):113. DOI:10.1186/s13287-015-0079-0.; Sherif I.O., Sabry D., Abdel-Aziz A. et al. The role of mesenchymal stem cells in chemotherapy-induced gonadotoxicity. Stem Cell Res Ther 2018;9(1):196. DOI:10.1186/s13287-018-0946-6.; Ganjibakhsh M., Mehraein F., Koruji M. et al. The therapeutic potential of adipose tissue-derived mesenchymal stromal cells in the treatment of busulfan-induced azoospermic mice. J Assist Reprod Genet 2022;39(1):153-163. DOI:10.1007/s10815-021-02309-8.; Zhankina R., Afshar A., Farrar Z. et al. Restoration of spermatogenesis in azoospermic mice by bone marrow mesenchymal stromal/stem cells conditioned medium, 04 February 2022, PREPRINT (Version 2) available at Research Square DOI:10.21203/rs.3.rs-169243/v2.; Tamadon A., Mehrabani D., Rahmanifar F. et al. Induction of Spermatogenesis by Bone Marrow-derived Mesenchymal Stem Cells in Busulfan-induced Azoospermia in Hamster. Int J Stem Cells 2015;8(2):134-145. DOI:10.15283/ijsc.2015.8.2.134.; Hajihoseini M., Vahdati A., Ebrahim Hosseini S. et al. Induction of spermatogenesis after stem cell therapy of azoospermic guinea pigs. Vet Arh 2017;87(3): 333–350.; Aghamir S.M., Salavati A., Yousefie R. et al. Does bone marrow-derived mesenchymal stem cell transfusion prevent antisperm antibody production after traumatic testis rupture? Urology 2014;84(1): 82–86.; Xu L., Liu Y., Sun Y. et al. Tissue source determines the differentiation potentials of mesenchymal stem cells: a comparative study of human mesenchymal stem cells from bone marrow and adipose tissue. Stem Cell Res Ther 2017;8(1):275.; Bakry S. MSCs For Treatment of Azoospermic Patients. Доступно по: https://clinicaltrials.gov/study/NCT02025270.; AlZoubi A. Intra-Testicular Transplantation of Autologous Stem Cells for Treatment of Non-Obstructive Azoospermia Male Infertility. Доступно по: https://clinicaltrials.gov/study/NCT02641769.; Gadalla K.A. Intra Testicular Artery Injection of Bone Marrow Stem Cell in Management of Azoospermia. Доступно по: https://classic.clinicaltrials.gov/ct2/show/NCT02008799.; Elshaer H.S. Testicular Injection of Autologous Stem Cells for Treatment of Patients With Azoospermia. Доступно по: https://classic.clinicaltrials.gov/ct2/show/NCT02041910; Volchkov S. Autologous Adipose-Derived Adult Stromal Vascular Cell Administration for Male Patients With Infertility. Доступно по: https://classic.clinicaltrials.gov/ct2/show/NCT03762967.; Gadalla K.A. Sperm Production in Kleinfelter Syndrome Patients After Mesenchymal Stem Cell Injection. Доступно по: https://clinicaltrials.gov/study/NCT02414295.; Ryu B.Y., Orwig K.E., Oatley J.M. et al. Effects of aging and niche microenvironment on spermatogonial stem cell self-renewal. Stem Cells 2006;24(6):1505-1511. DOI:10.1634/stemcells.2005-0580.; Vlajković S., Cukuranović R., Bjelaković M.D. et al. Possible therapeutic use of spermatogonial stem cells in the treatment of male infertility: a brief overview. Scientific World Journal 2012;2012:374151. DOI:10.1100/2012/374151.; Melo-Narváez M.C., Stegmayr J., Wagner D.E. et al. Lung regeneration: implications of the diseased niche and ageing. Eur Respir Rev 2020;29:200222. DOI:10.1183/16000617.0222-2020.; Shao H., Im H. New technologies for analysis of extracellular vesicles. Chem Rev 2018;118(4):1917–1950. DOI:10.1021/acs.chemrev.7b00534.; Heldring N., Mager I., Wood M.J.A. et al. Therapeutic potential of multipotent mesenchymal stromal cells and their extracellular vesicles. Hum Gene Ther 2015;26(8):506–517. DOI:10.1089/hum.2015.072.; Mendt M., Rezvani K., Shpall E. Mesenchymal stem cell-derived exosomes for clinical use. Bone Marrow Transplant 2019;54:789–792. DOI:10.1038/s41409-019-0616-z.; Shao L.B., Zhang Y., Lan B.B. et al. MiRNA-sequence indicates that mesenchymal stem cells and exosomes have similar mechanism to enhance cardiac repair. Biomed Res Int 2017 DOI:10.1155/2017/4150705.; Pelizzo G., Avanzini M.A., Cornaglia A.I. et al. Extracellular vesicles derived from mesenchymal cells: perspective treatment for cutaneous wound healing in pediatrics. Regen Med 2018;13(4):385–94. DOI:10.2217/rme-2018-0001.; Clark K., Zhang S., Barthe S. et al. Placental mesenchymal stem cell-derived extracellular vesicles promote myelin regeneration in an animal model of multiple sclerosis. Cells 2019;8(12):1497. DOI:10.3390/cells8121497.; Kharazi U., Badalzadeh R. A review on the stem cell therapy and an introduction to exosomes as a new tool in reproductive medicine. Reprod Biol 2020;20(4):447-459. DOI:10.1016/j.repbio.2020.07.002.; Mobarak H., Heidarpour M., Rahbarghazi R. et al. Amniotic fluid-derived exosomes improved spermatogenesis in a rat model of azoospermia. Life Sci 2021;274:119336. DOI:10.1016/j.lfs.2021.119336.; McLean D.J. Spermatogonial stem cell transplantation, testicular function, and restoration of male fertility in mice. Methods Mol Biol 2008;450:149-162. DOI:10.1007/978-1-60327-214-8_11.; Ibtisham F., Honaramooz A. Spermatogonial Stem Cells for In Vitro Spermatogenesis and In Vivo Restoration of Fertility. Cells 2020;9(3):745. DOI:10.3390/cells9030745.; Kubota H., Brinster R.L. Spermatogonial stem cells. Biol Reprod 2018;99(1):52-74. DOI:10.1093/biolre/ioy077.; Forbes C.M., Flannigan R., Schlegel P.N. Spermatogonial Stem Cell Transplantation and Male Infertility: Current Status and Future Directions. Arab J Urol 2018;16:171–80.; Gul M., Hildorf S., Dong L. et al. Review of Injection Techniques for Spermatogonial Stem Cell Transplantation. Hum Reprod Update 2020; 26:368–91.; Honaramooz A., Behboodi E., Megee S.O. et al. Fertility and germline transmission of donor haplotype following germ cell transplantation in immunocompetent goats. Biol Reprod 2003;69(4):1260-1264. DOI:10.1095/biolreprod.103.018788.; Herrid M., Olejnik J., Jackson M. et al. Irradiation enhances the efficiency of testicular germ cell transplantation in sheep. Biol Reprod 2009;81(5):898-905. DOI:10.1095/biolreprod.109.078279.; Kanatsu-Shinohara M., Morimoto H., Shinohara T. Fertility of Male Germline Stem Cells Following Spermatogonial Transplantation in Infertile Mouse Models. Biol Reprod 2016;94(5):112. DOI:10.1095/biolreprod.115.137869.; Hermann B.P., Sukhwani M., Winkler F. et al. Spermatogonial stem cell transplantation into rhesus testes regenerates spermatogenesis producing functional sperm. Cell Stem Cell 2012;11(5):715-726. DOI:10.1016/j.stem.2012.07.017.; Azizollahi S., Aflatoonian R., Sadighi Gilani M.A. et al. Alteration of spermatogenesis following spermatogonial stem cells transplantation in testicular torsion-detorsion mice. J Assist Reprod Genet 2016;33(6):771-781. DOI:10.1007/s10815-016-0708-2.; Skaletsky N.N., Skaletskaya G.N., Sevastianov V. I. Possible use of spermatogonial stem cells in the treatment of male infertility. Russian Journal of Transplantology and Artificial Organs 2020;21(4):134 DOI:10.15825/1995-1191-2019-4-134-142.; Liu H.C., Xie Y., Deng C.H. et al. Stem cell-based therapies for fertility preservation in males: Current status and future prospects. World J Stem Cells 2020;12(10):1097-1112. DOI:10.4252/wjsc.v12.i10.1097.; Sagaradze G.D., Basalova N.A., Efimenko A.Y. et al. Mesenchymal Stromal Cells as Critical Contributors to Tissue Regeneration. Front Cell Dev Biol 2020;8:576176. DOI:10.3389/fcell.2020.576176.; Teymur H., Tiftikcioglu Y.O., Cavusoglu T. et al. Effect of platelet-rich plasma on reconstruction with nerve autografts. Kaohsiung J Med Sci 2017;33(2):69-77. DOI:10.1016/j.kjms.2016.11.005.; Cecerska-Heryć E., Goszka M., Serwin N. et al. Applications of the regenerative capacity of platelets in modern medicine. Cytokine Growth Factor Rev 2022;64:84-94. DOI:10.1016/j.cytogfr.2021.11.003.; Hesseler M.J., Shyam N. Platelet-rich plasma and its utility in medical dermatology: A systematic review. J Am Acad Dermatol 2019;81(3):834-846. DOI:10.1016/j.jaad.2019.04.037.; Zaporozhan V., Kholodkova O., Kuleshova O. Platelet-rich plasma induces morphofunctional restoration of mice testes following doxorubomycine hydrochloride exposure. J Exp Clin Med 2014;31:183-187.; Dehghani F., Sotoude N., Bordbar H. et al. The use of platelet-rich plasma (PRP) to improve structural impairment of rat testis induced by busulfan. Platelets 2019;30(4):513-520. DOI:10.1080/09537104.2018.1478400.; Sekerci C.A., Tanidir Y., Sener T.E. et al. Effects of platelet-rich plasma against experimental ischemia/reperfusion injury in rat testis. J Pediatr Urol 2017;13(3):317.e1-317.e9. DOI:10.1016/j.jpurol.2016.12.016.; Bader R., Ibrahim J.N., Moussa M. et al. In vitro effect of autologous platelet-rich plasma on H2O2 -induced oxidative stress in human spermatozoa. Andrology 2020;8(1):191-200. DOI:10.1111/andr.12648.; Al-Nasser R., Khrait Z., Jamali S. The Effectiveness of Autologous Platelet-Rich Plasma (PRP) in the Therapy of Infertile Men with Non-Abstractive Azoospermia. J Reprod Med Gynecol Obstet 2018;3: 011.; Gudelci T., Cakiroglu Y., Yuceturk A. et al. The effect of intratesticular injection of autologous platelet rich plasma (PRP) on sperm retrieval rates and ivf outcomes in men with non-obstructive azoospermia and history of failed testicular sperm extraction. Fertility and Sterility 2021; 116 (3) Supplement:E331. DOI:10.1016/j.fertnstert.2021.07.893.; Angellee J., Novalinda Ginting C., Chiuman L. et al. Role of Platelet-Rich Plasma to Sperm Quality in Male Partners Undergoing Infertility Treatment. IEEE International Conference on Health, Instrumentation & Measurement, and Natural Sciences (InHeNce) 2021;1: 1-5. DOI:10.1109/InHeNce52833.2021.9537240.; Mirzaei J., Movahedin M., Halvaei I. Plasma-Rich in Growth Factors Ameliorates Detrimental Effects of Cryopreservation on Human Sperm: A Prospective Study. Cell J 2022;24(6):330-336. DOI:10.22074/cellj.2022.8119.; Yan B., Zhang Y., Tian S. et al. Effect of autologous platelet-rich plasma on human sperm quality during cryopreservation. Cryobiology 2021;98:12-16. DOI:10.1016/j.cryobiol.2021.01.009.; Salem M., Feizollahi N., Jabari A. et al. Differentiation of human spermatogonial stem cells using a human decellularized testicular scaffold supplemented by platelet-rich plasma. Artif Organs 2023;47(5):840-853. DOI:10.1111/aor.14505.; Tiras B. The Effects of Intratesticular PRP Injection in Men With Azoospermia or Cryptozoospermia. Доступно по: https://classic.clinicaltrials.gov/ct2/show/NCT04237779; Епифанова, М.В. Применение технологий регенеративной медицины при сексуальной дисфункции и нарушении фертильности у мужчин : дис. . д-р. мед. наук : 3.1.13 / Епифанова Майя Владимировна. – М., 2021. – 400 с.; Епифанова М.В., Епифанов А.А., Артеменко С.А. Способ протекции и восстановления сперматогенеза при оперативных вмешательствах на семенном канатике, яичке, придатке яичка. – Патент на изобретение РФ №2735888. Москва. 09 ноября 2020. // Бюллетень No 31 от 09.11.2020; Епифанова М.В., Епифанов А.А., Артеменко С.А. Способ лечения мужского бесплодия. – Патент на изобретение РФ №2738543. Москва. 14 декабря 2020. // Бюллетень No 35 от 14.12.2020; https://agx.abvpress.ru/jour/article/view/755
-
2Academic Journal
المؤلفون: M. V. Epifanova, А. А. Kostin, S. A. Artemenko, А. А. Epifanov, М. В. Епифанова, А. А. Костин, С. А. Артеменко, А. А. Епифанов
المصدر: Andrology and Genital Surgery; Том 25, № 2 (2024); 69-79 ; Андрология и генитальная хирургия; Том 25, № 2 (2024); 69-79 ; 2412-8902 ; 2070-9781
مصطلحات موضوعية: регенеративная медицина, platelet-rich plasma, extracorporeal shock wave therapy, growth factors, regenerative medicine, аутоплазма, обогащенная тромбоцитарными факторами роста, экстракорпоральная ударно-волновая терапия, факторы роста
وصف الملف: application/pdf
Relation: https://agx.abvpress.ru/jour/article/view/760/583; Nehra A. Oral and non-oral combination therapy for erectile dysfunction. Rev Urol 2007;9:99–105.; Mangır N., Türkeri L. Stem cell therapies in post-prostatectomy erectile dysfunction: A critical review. Can J Urol 2017;24:8609–8619.; Pérez-Aizpurua X., Garranzo-Ibarrola M., Simón-Rodríguez C. et al. Stem Cell Therapy for Erectile Dysfunction: A Step towards a Future Treatment. Life (Basel) 2023;13(2):502. DOI:10.3390/life13020502.; Anastasiadis E., Ahmed R., Khoja A.K. et al. Erectile dysfunction: Is platelet-rich plasma the new frontier for treatment in patients with erectile dysfunction? A review of the existing evidence. Front Reprod Health 2022;4:944765. DOI:10.3389/frph.2022.944765.; Alves R., Grimalt R.A. Review of platelet-rich plasma: history, biology, mechanism of action, and classification. Skin Append Disord 2018;41:18–24. DOI:10.1159/000477353.; Epifanova M.V., Gvasalia B.R., Durashov M.A. et al. Platelet-Rich Plasma Therapy for Male Sexual Dysfunction: Myth or Reality? Sex Med Rev 2020;8(1):106-113. DOI:10.1016/j.sxmr.2019.02.002.; EAU Guidelines. Edn. presented at the EAU Annual Congress Milan 2023. ISBN 978-94-92671-19-6.; Епифанова, М.В. Применение технологий регенеративной медицины при сексуальной дисфункции и нарушении фертильности у мужчин : дис. . д-р. мед. наук : 3.1.13 / Епифанова Майя Владимировна. – М., 2021. – 400 с.; Cavallo C., Roffi A., Grigolo B. et al. Platelet-Rich Plasma: The Choice of Activation Method Affects the Release of Bioactive Molecules. Biomed Res Int 2016;2016:6591717. DOI:10.1155/2016/6591717.; Чалый М.Е., Григорян В.А., Епифанова М.В. и соавт. Эффективность интракавернозного введения аутоплазмы, обогащенной тромбоцитами, в лечении эректильной дисфункции. Урология. 2015;4:76–9; Zaghloul A., Elnashaar A., Said S. et al. Assessment of the intracavernosal injection platelet‐rich plasma in addition to daily oral tadalafil intake in diabetic patients with erectile dysfunction non-responding to on-demand oral pde5 inhibitors. Andrologia 2022;54(6). e14421. DOI:10.1111/and.14421.; Taş T., Çakıroğlu B., Arda E. et al. Early Clinical Results of the Tolerability, Safety, and Efficacy of Autologous Platelet-Rich Plasma Administration in Erectile Dysfunction. Sex Med 2021;9(2):100313. DOI:10.1016/j.esxm.2020.100313.; Shaher H., Fathi A., Elbashir S. et al. Is Platelet Rich Plasma Safe and Effective in Treatment of Erectile Dysfunction? Randomized Controlled Study. Urology 2023;175:114-119. DOI:10.1016/j.urology.2023.01.028.; Poulios E., Mykoniatis I., Pyrgidis N. et al. Platelet-Rich Plasma (PRP) Improves Erectile Function: A Double-Blind, Randomized, Placebo-Controlled Clinical Trial. J Sex Med 2021;18(5):926-935. DOI:10.1016/j.jsxm.2021.03.008.; Masterson T.A., Molina M., Ledesma B. et al. Platelet-rich Plasma for the Treatment of Erectile Dysfunction: A Prospective, Randomized, Double-blind, Placebo-controlled Clinical Trial. J Urol 2023;210(1):154-161. DOI:10.1097/JU.0000000000003481.; Alkhayal S., Lourdes M. PO-01-091 Platelet Rich Plasma Penile Rejuvenation as a Treatment for Erectile Dysfunction: An Update, The Journal of Sexual Medicine 2019; 16 Issue Supplement 2: S71. DOI:10.1016/j.jsxm.2019.03.228.; Ruffo A., Franco M., Illiano E. et al. Effectiveness And Safety Of Platelet-rich Plasma (PrP) cavernosal injections plus external shockwave treatment for penile erectile dysfunction: first results from a prospective, randomized, controlled, interventional study. Eur Urol Suppl 2019;18:e1622–e1623. DOI:10.1016/S1569-9056(19)31175-3.; Ruffo A., Stanojevic N., Romeo G. et al. Management Of Erectile dysfunction using combination treatment of low-intensity shockwaves (LISW) and platelet rich plasma (PRP) intracavernosal injections. J Sex Med 2020;17:S133–S134. DOI:10.1016/j.jsxm.2020.04.048.; https://agx.abvpress.ru/jour/article/view/760
-
3Academic Journal
المؤلفون: M. V. Epifanova, A. A. Kostin, O. Yu. Malinina, S. A. Artemenko, A. A. Epifanov, М. В. Епифанова, А. А. Костин, О. Ю. Малинина, С. А. Артеменко, А. А. Епифанов
المساهمون: The study was not sponsored, Исследование не имело спонсорской поддержки
المصدر: Urology Herald; Том 11, № 2 (2023); 28-36 ; Вестник урологии; Том 11, № 2 (2023); 28-36 ; 2308-6424 ; 10.21886/2308-6424-2023-11-2
مصطلحات موضوعية: крысы, sperm disorders, azoospermia, cisplatin, rats, патоспермия, азооспермия, цисплатин
وصف الملف: application/pdf
Relation: https://www.urovest.ru/jour/article/view/717/463; EAU Guidelines. Edn. presented at the EAU Annual Congress Amsterdam 2022. ISBN 978-94-92671-16-5.; Stephen EH, Chandra A. Declining estimates of infertility in the United States: 1982-2002. Fertil Steril. 2006;86(3):516-23. DOI:10.1016/j.fertnstert.2006.02.129; World Health Organization, Department of Reproductive Health and Research. WHO Laboratory Manual for the Examination and Processing of Human Semen. 5fh edition.; Durairajanayagam D, Agarwal A, Ong C. Causes, effects and molecular mechanisms of testicular heat stress. Reprod Biomed Online. 2015;30(1):14-27. DOI:10.1016/j.rbmo.2014.09.018; Ziaeipour S, Piryaei A, Aliaghaei A, Nazarian H, Naserzadeh P, Ebrahimi V, Abdi S, Shahi F, Ahmadi H, Fadaei Fathabadi F, Abdollahifar MA. Chronic scrotal hyperthermia induces azoospermia and severe damage to testicular tissue in mice. Acta Histochem. 2021;123(4):151712. DOI:10.1016/j.acthis.2021.151712; Rockett JC, Mapp FL, Garges JB, Luft JC, Mori C, Dix DJ. Effects of hyperthermia on spermatogenesis, apoptosis, gene expression, and fertility in adult male mice. Biol Reprod. 2001;65(1):229-39. DOI:10.1095/biolreprod65.1.229; Eliyasi Dashtaki M, Hemadi M, Saki G, Mohammadiasl J, Khodadadi A. Spermatogenesis Recovery Potentials after Transplantation of Adipose Tissue-Derived Mesenchymal Stem Cells Cultured with Growth Factors in Experimental Azoospermic Mouse Models. Cell J. 2020;21(4):401-409. DOI:10.22074/cellj.2020.6055; Azizollahi S, Aflatoonian R, Sedigi-Gilani MA, Jafarabadi MA, Behnam B, Azizollahi G, Koruji M. Recruiting testicular torsion introduces an azoospermic mouse model for spermatogonial stem cell transplantation. Urol J. 2014;11(3):1648-55. PMID: 25015612.; Wiemer P. Ervaringen met de bloedige zaadstrengligatie als castratiemethode bij de hengst. De chirurgische castratie waarbij de testikel in situ blijft [Experiences with spermatic cord ligation as a method of castration in the stallion. The surgical castration of the testicle in situ appears to be of value]. Tijdschr Diergeneeskd. 1998;123(14-15):432-4. (In Dutch). PMID: 9700860.; Badawy A. Percutaneous Ligation of Spermatic Cord as an Alternative to Opened Castration in Donkeys. Benha Vet Med J. 2009;20(2): 24-41; Abdel-Latif R, Fathy M, Anwar HA, Naseem M, Dandekar T, Othman EM. Cisplatin-Induced Reproductive Toxicity and Oxidative Stress: Ameliorative Effect of Kinetin. Antioxidants (Basel). 2022;11(5):863. DOI:10.3390/antiox11050863; Mohammadnejad D, Abedelahi A, Soleimani-Rad J, Mohammadi-Roshandeh A, Rashtbar M, Azami A. Degenerative effect of Cisplatin on testicular germinal epithelium. Adv Pharm Bull. 2012;2(2):173-7. DOI:10.5681/apb.2012.026; Harman JG, Richburg JH. Cisplatin-induced alterations in the functional spermatogonial stem cell pool and niche in C57/BL/6J mice following a clinically relevant multi-cycle exposure. Toxicol Lett. 2014;227(2):99-112. DOI:10.1016/j.toxlet.2014.03.019; Huang HF, Pogach LM, Nathan E, Giglio W. Acute and chronic effects of cisplatinum upon testicular function in the rat. J Androl. 1990;11(5):436-45. PMID: 2254177; Vasiliausha SR, Beltrame FL, de Santi F, Cerri PS, Caneguim BH, Sasso-Cerri E. Seminiferous epithelium damage after short period of busulphan treatment in adult rats and vitamin B12 efficacy in the recovery of spermatogonial germ cells. Int J Exp Pathol. 2016;97(4):317-328. DOI:10.1111/iep.12195; Khanlarkhani N, Pasbakhsh P, Mortezaee K, Naji M, Amidi F, Najafi A, Sobhani A, Zendedel A. Effect of human recombinant granulocyte colony-stimulating factor on rat busulfan-induced testis injury. J Mol Histol. 2016;47(1):59-67. DOI:10.1007/s10735-015-9647-y; Kopecky M, Semecky V, Nachtigal P. Vimentin expression during altered spermatogenesis in rats. Acta Histochem. 2005;107(4):279-89. DOI:10.1016/j.acthis.2005.06.007; Jafarian A, Sadeghi MR, Pejhan N, Salehkhou S, Lakpour N, Akhondi MM. Regeneration of spermatogenesis in a mouse model of azoospermia by follicle-stimulating hormone and oestradiol. Andrologia. 2014;46(10):1098-106. DOI:10.1111/and.12198; Hsiao CH, Ji AT, Chang CC, Chien MH, Lee LM, Ho JH. Mesenchymal stem cells restore the sperm motility from testicular torsion-detorsion injury by regulation of glucose metabolism in sperm. Stem Cell Res Ther. 2019;10(1):270. DOI:10.1186/s13287-019-1351-5; Sabbaghi MA, Bahrami AR, Feizzade B, Kalantar SM, Matin MM, Kalantari M, Aflatoonian A, Saeinasab M. Trial evaluation of bone marrow derived mesenchymal stem cells (MSCs) transplantation in revival of spermatogenesis in testicular torsion. Middle East Fertil Soc J. 2012;17(4):243-9. DOI:10.1016/j.mefs.2012.06.001; Sekerci CA, Tanidir Y, Sener TE, Sener G, Cevik O, Yarat A, Alev-Tuzuner B, Cetinel S, Kervancioglu E, Sahan A, Akbal C. Effects of platelet-rich plasma against experimental ischemia/reperfusion injury in rat testis. J Pediatr Urol. 2017;13(3):317.e1-317.e9. DOI:10.1016/j.jpurol.2016.12.016; https://www.urovest.ru/jour/article/view/717
-
4Academic Journal
المؤلفون: M. V. Epifanova, S. A. Artemenko, A. A. Kostin, A. A. Epifanov, K. A. Kirillova, М. В. Епифанова, С. А. Артеменко, А. А. Костин, А. А. Епифанов, К. А. Кириллова
المساهمون: The work has been supported by project No. 033032-0-000., Работа выполнена в рамках проекта № 033032-0-000.
المصدر: Andrology and Genital Surgery; Том 24, № 4 (2023); 91-99 ; Андрология и генитальная хирургия; Том 24, № 4 (2023); 91-99 ; 2412-8902 ; 2070-9781
مصطلحات موضوعية: экстракорпоральная ударно-волновая терапия, erectile dysfunction, rehabilitation, radical prostatectomy, platelet rich plasma, extracorporeal shock wave therapy, эректильная дисфункция, реабилитация, радикальная простатэктомия, аутоплазма, обогащенная тромбоцитарными факторами роста
وصف الملف: application/pdf
Relation: https://agx.abvpress.ru/jour/article/view/709/554; Siegel R.L., Miller K.D., Fuchs H., Jemal A. Cancer statistics, 2021. CA Cancer J Clin 2021;71(1):7–33. DOI:10.3322/caac.21654; EAU Guidelines. Edn. presented at the EAU Annual Congress Milan 2023.; Avulova S., Zhao Z., Lee D. et al. The effect of nerve sparing status on sexual and urinary function: 3-year results from the CEASAR study. J Urol 2018;199(5):1202–9. DOI:10.1016/j.juro.2017.12.037; Ko Y.H., Coelho R.F., Sivaraman A. et al. Retrograde versus antegrade nerve sparing during robot-assisted radical prostatectomy: which is better for achieving early functional recovery? Eur Urol 2013;63(1):169–77. DOI:10.1016/j.eururo.2012.09.051; Alemozaffar M., Duclos A., Hevelone N.D. et al. Technical refinement and learning curve for attenuating neurapraxia during robotic-assisted radical prostatectomy to improve sexual function. Eur Urol 2012;61(6):1222–8. DOI:10.1016/j.eururo.2012.02.053; Шпоть Е.В., Чиненов Д.В., Чернов Я.Н. и др. Сравнительные результаты нервосберегающей робот-ассистированной простатэктомии. Андрология и генитальная хирургия 2021;22(3):44–8. DOI:10.17650/1726-9784-2021-22-3-44-48; Emanu J.C., Avildsen I.K., Nelson C.J. Erectile dysfunction after radical prostatectomy: prevalence, medical treatments, and psychosocial interventions. Curr Opin Support Palliat Care 2016;10(1):102–7. DOI:10.1097/SPC.0000000000000195; Епифанова М.В., Каприн А.Д., Костин А.А. и др. Способ лечения эректильной дисфункции у пациентов, перенесших радикальную простатэктомию или брахитерапию. Патент на изобретение № RU 2741204 C2 от 22.01.2021; Gentile P., Di Pasquali C., Bocchini I. et al. Breast reconstruction with autologous fat graft mixed with platelet-rich plasma. Surg Innovat 2013;20(4):370–6. DOI:10.1177/1553350612458544; Spartalis E.D., Tomos P., Dimitroulis D., Kouraklis G. Platelet-rich plasma in surgical oncology. Surg Innov 2014;21(4):441. DOI:10.1177/1553350613520516; Spartalis E.D., Tomos P., Konofaos P. et al. Breast reconstruction with autologous fat graft; does plateletrich plasma affect patient’s survival? Int J Clin Exp Med 2014;7(1):329–30. PMID: 24482728.; Guo X., Wu Y., Hathaway H.J., Hartley R.S. Microenvironmental control of the breast cancer cell cycle. Anat Rec (Hoboken) 2012;295(4):553–62. DOI:10.1002/ar.22417; Levva S., Kotoula V., Kostopoulos I. et al. Prognostic evaluation of epidermal growth factor receptor (EGFR) genotype and phenotype parameters in triple-negative breast cancers. Cancer Genom Proteom 2017;14(3):181–95. DOI:10.21873/cgp.20030; Spartalis E., Tsilimigras D.I., Charalampoudis P. et al. The “Yin and Yang” of platelet-rich plasma in breast reconstruction after mastectomy or lumpectomy for breast cancer. Anticancer Res 2017;37(12):6557–62. DOI:10.1016/j.gene.2019.04.025; Luzo A.C.M., Fávaro W.J., Seabra A.B., Durán N. What is the potential use of platelet-rich-plasma (PRP) in cancer treatment? A mini review. Heliyon 2020;6(3):e03660. DOI:10.1016/j.heliyon.2020.e03660; Eichler C., Baucks C., Üner J. et al. Platelet-rich plasma (PRP) in breast cancer patients: an application analysis of 163 sentinel lymph node biopsies. Biomed Res Int 2020;2020:3432987. DOI:10.1155/2020/3432987; Ding X.G., Li S.W., Zheng X.M. et al. The effect of platelet-rich plasma on cavernous nerve regeneration in a rat model. Asian J Androl 2009;11(2):215–21. DOI:10.1038/aja.2008.37; Wu C.C., Wu Y.N., Ho H.O. et al. The neuroprotective effect of platelet-rich plasma on erectile function in bilateral cavernous nerve injury rat model. J Sex Med 2012;9(11):2838–48. DOI:10.1111/j.1743-6109.2012.02881.x; Wu Y.N., Wu C.C., Sheu M.T. et al. Optimization of platelet-rich plasma and its effects on the recovery of erectile function after bilateral cavernous nerve injury in a rat model. J Tissue Eng Regen Med 2016;10(10):E294–E304. DOI:10.1002/term.1806; Wu Y.N., Liao C.H., Chen K.C., Chiang H.S. Dual effect of chitosan activated platelet rich plasma (cPRP) improved erectile function after cavernous nerve injury. J Formos Med Assoc 2022;121(1Pt1):14–24. DOI:10.1016/j.jfma.2021.01.019; Епифанова М.В., Чалый М.Е., Краснов А.О. Исследование механизмов действия факторов роста в аутоплазме, обогащенной тромбоцитами, применяемой для лечения эректильной дисфункции. Урология 2017;4:46–8. DOI:10.18565/urol.2017.4.46-48; Чалый М.Е., Григорян В.А., Епифанова М.В., Краснов А.О. Эффективность интракавернозного введения аутоплазмы, обогащенной тромбоцитарными факторами роста, в лечении эректильной дисфункции. Урология 2015;4:76–9.; Alkhayal S., Lourdes M. PO-01-091 platelet rich plasma penile rejuvenation as a treatment for erectile dysfunction: an update. J Sex Med 2019;16:S71. DOI:10.1016/j.jsxm.2019.03.228; Banno J.J., Kinnick T.R., Roy L. et al. 146 the efficacy of platelet-rich plasma (PRP) as a supplemental therapy for the treatment of erectile dysfunction (ED): initial outcomes. J Sex Med 2017;14:e59–60. DOI:10.1016/j.jsxm.2016.12.134; Matz E.L., Pearlman A.M., Terlecki R.P. Safety and feasibility of platelet rich fibrin matrix injections for treatment of common urologic conditions. Investig Clin Urol 2018;59(1):61–5. DOI:10.4111/icu.2018.59.1.61; Shin-Mei W., Bing-Juin C., Hui-Chun C. et al. Short term follow up for intracavernosal injection of platelet rich plasma for the treatment of erectile dysfunction. Urol Sci 2021;32(4):171–6. DOI:10.4103/UROS.UROS_22_21; Zaghloul A.S., Mahmoud ElNashar A.E.R, GamalEl Din S.F. et al. Smoking status and the baseline international index of erectile function score can predict satisfactory response to platelet-rich plasma in patients with erectile dysfunction: a prospective pilot study. Andrologia 2021;53(9):e14162. DOI:10.1111/and.14162; Taş T., Çakıroğlu B., Arda E. et al. Early clinical results of the tolerability, safety, and efficacy of autologous platelet-rich plasma administration in erectile dysfunction. Sex Med 2021;9(2):100313. DOI:10.1016/j.esxm.2020.100313; Poulios E., Mykoniatis I., Pyrgidis N. et al. Platelet-rich plasma (PRP) improves erectile function: a double-blind, randomized, placebo-controlled clinical trial. J Sex Med 2021;18(5):926–35. DOI:10.1016/j.jsxm.2021.03.008; Masterson T.A., Molina M., Ledesma B. et al. Platelet-rich plasma for the treatment of erectile dysfunction: a prospective, randomized, double-blind, placebo-controlled clinical trial. J Urol 2023;210(1):154–61. DOI:10.1097/JU.0000000000003481; Geyik S. Comparison of the efficacy of low-intensity shock wave therapy and its combination with platelet-rich plasma in patients with erectile dysfunction. Andrologia 2021;53(10):e14197. DOI:10.1111/and.14197; Ruffo A., Stanojevic N., Romeo G. et al. PS-5-3 Management of erectile dysfunction using a combination treatment of low-intensity shock waves (LISW) and platelet rich plasma (PRP) intracavernosal injections. J Sex Med 2020;17:S133–4. DOI:10.1016/j.jsxm.2020.04.048; Ruffo A., Franco M., Illiano E., Stanojević N. Effectiveness and safety of Platelet rich Plasma (PrP) cavernosal injections plus external shock wave treatment for penile erectile dysfunction: first results from a prospective, randomized, controlled, interventional study. Eur Urol Suppl 2019;18(1):e1622–3. DOI:10.1016/S1569-9056(19) 31175-3; Gettman M. A study evaluating intraoperative application of platelet-rich plasma to the neurovascular bundles during nerve-sparing radical prostatectomy: initial technical description and prospective early postoperative outcomes analysis. Available at: https://clinicaltrials.gov/ct2/show/NCT02957149; Rho B.Y., Kim S.H., Ryu J.K. et al. Efficacy of low-intensity extra-corporeal shock wave treatment in erectile dysfunction following radical prostatectomy: a systematic review and meta-analysis. J Clin Med 2022;11(10):2775. DOI:10.3390/jcm11102775; https://agx.abvpress.ru/jour/article/view/709
-
5Academic Journal
المؤلفون: A. A. Gritskevich, D. M. Monakov, M. V. Epifanova, A. A. Kostin, T. P. Baytman, S. V. Khromova, M. A. A. Al-Vadzhikh, А. А. Грицкевич, Д. М. Монаков, М. В. Епифанова, А. А. Костин, Т. П. Байтман, С. В. Хромова, М. А. А. Аль-Ваджих
المصدر: Andrology and Genital Surgery; Том 24, № 4 (2023); 155-160 ; Андрология и генитальная хирургия; Том 24, № 4 (2023); 155-160 ; 2412-8902 ; 2070-9781
مصطلحات موضوعية: эндоскопия, external genitalia, urethra, foreign body, endoscopy, наружные половые органы, уретра, инородное тело
وصف الملف: application/pdf
Relation: https://agx.abvpress.ru/jour/article/view/716/561; Williams M., Jezior J. Management of combat-related urological trauma in the modern era. Nat Rev Urol 2013;10(9):504–12. DOI:10.1038/nrurol.2013.148; Serkin F.B., Soderdahl D.W., Hernandez J. et al. Combat urologic trauma in US military overseas contingency operations. J Trauma 2010;69(Suppl 1):S175–8. DOI:10.1097/TA.0b013e3181e45cd1; Goldman C., Shaw N., du Plessis D. et al. Gunshot wounds to the penis and scrotum: a narrative review of management in civilian and military settings. Transl Androl Urol 2021;10(6):2596–608. DOI:10.21037/tau-20-1175; Hudak S.J., Morey A.F., Rozanski T.A., Fox CW Jr. Battlefield urogenital injuries: changing patterns during the past century. Urology 2005;65(6):1041–6. DOI:10.1016/j.urology.2004.11.031; Vucković I., Tucak A., Gotovac J. et al. Croatian experience in the treatment of 629 urogenital war injuries. J Trauma 1995;39(4):733–6. DOI:10.1097/00005373-199510000-00023; Tucak A., Lukacević T., Kuvezdić H. et al. Urogenital wounds during the war in Croatia in 1991/1992. J Urol 1995;153(1):121–2. DOI:10.1097/00005392-199501000-00043; Al-Azzawi I.S., Koraitim M.M. Lower genitourinary trauma in modern warfare: the experience from civil violence in Iraq. Injury 2014;45(5):885–9. DOI:10.1016/j.injury.2014.01.005; Al-Azzawi I.S., Koraitim M.M. Urethral and penile war injuries: the experience from civil violence in Iraq. Arab J Urol 2014;12(2):149–54. DOI:10.1016/j.aju.2013.11.002; Phonsombat S., Master V.A., McAninch J.W. Penetrating external genital trauma: a 30-year single institution experience. J Urol 2008;180(1):192–5; discussion 195–6. DOI:10.1016/j.juro.2008.03.041; Golovko S., Gybalo R., Lurin I. et al. Penetrating gunshot wounds to the penis: a case report of combat patient injured in the war in Ukraine. Int J Emerg Med 2023;16(1):5. DOI:10.1186/s12245-023-00481-5; Cerwinka W.H., Block N.L. Civilian gunshot injuries of the penis: the Miami experience. Urology 2009;73(4):877–80. DOI:10.1016/j.urology.2008.10.057; Kunkle D.A., Lebed B.D., Mydlo J.H., Pontari M.A. Evaluation and management of gunshot wounds of the penis: 20-year experience at an urban trauma center. J Trauma 2008;64(4):1038–42. DOI:10.1097/TA.0b013e3180342036; Balzano F.L., Hudak S.J. Military genitourinary injuries: past, present, and future. Transl Androl Urol 2018;7(4):646–52. DOI:10.21037/tau.2018.04.05; Шанава Г.Ш., Мосоян М.С., Грабский А.М., Арзуманян К.Г. Особенности извлечения инородных тел из нижних мочевыводящих путей. Урологические ведомости 2021;11(3):213–8. DOI:10.17816/uroved72148; https://agx.abvpress.ru/jour/article/view/716
-
6Academic Journal
المؤلفون: M. V. Epifanova, A. A. Kostin, E. V. Gameeva, K. R. Ikonova, S. A. Artemenko, A. A. Epifanov, V. B. Chernykh, М. В. Епифанова, А. А. Костин, Е. В. Гамеева, К. Р. Иконова, С. А. Артеменко, А. А. Епифанов, В. Б. Черных
المساهمون: This publication has been supported by project № 033032-0-000., Публикация выполнена в рамках проекта № 033032-0-000.
المصدر: Andrology and Genital Surgery; Том 24, № 3 (2023); 23-32 ; Андрология и генитальная хирургия; Том 24, № 3 (2023); 23-32 ; 2412-8902 ; 2070-9781
مصطلحات موضوعية: главный комплекс гистосовместимости, Dupuytren’s contracture, genetic predictors, molecular markers, transforming growth factor β1, myostatin, matrix metalloproteinases, Wnt signaling pathway, microRNA, major histocompatibility complex, контрактура Дюпюитрена, генетические факторы предрасположенности, молекулярные маркеры, трансформирующий фактор роста β1, миостатин, матриксные металлопротеиназы, сигнальный путь Wnt, микроРНК
وصف الملف: application/pdf
Relation: https://agx.abvpress.ru/jour/article/view/691/541; Hellstrom W.J., Feldman R., Rosen R.C. et al. Bother and distress associated with Peyronie’s disease: validation of the Peyronie’s disease questionnaire. J Urol 2013;190(2):627–34. DOI:10.1016/j.juro.2013.01.090; Tal R., Hall M.S., Alex B. et al. Peyronie’s disease in teenagers. J Sex Med 2012;9(1):302–8. DOI:10.1111/j.1743-6109.2011.02502.x; Stuntz M., Perlaky A., des Vignes F. et al. The prevalence of Peyronie’s disease in the United States: a population-based study. PloS One 2016;11(2):e0150157. DOI:10.1371/journal.pone.0150157; Moreno S.A., Morgentaler A. Testosterone deficiency and Peyronie’s disease: pilot data suggesting a significant relationship. J Sex Med 2009;6(6):1729–35. DOI:10.1111/j.1743-6109.2009.01250.x; Al-Thakafi S., Al-Hathal N. Peyronie’s disease: a literature review on epidemiology, genetics, pathophysiology, diagnosis and work-up. Transl Androl Urol 2016;5(3):280–9. DOI:10.21037/tau.2016.04.05; Habous M., Malkawi I., Han E. et al. Peyronie’s disease is common in poorly controlled diabetics but is not associated with the metabolic syndrome. Urol Ann 2019;11(3):252–6. DOI:10.4103/UA.UA_164_18; Schneider D., Afyouni A.S., Yafi F.A. Peyronie’s disease and testosterone: a narrative review. Androg Clin Res Ther 2022;3(1):105–12. DOI:10.1089/andro.2021.0027; Can O., Özbir S., Atalay H.A. et al. The relationship between testosterone levels and Peyronie’s disease. Andrologia 2020;52(9):e13727. DOI:10.1111/and.13727; Ширин Г.В., Федорова Н.А. Болезнь Пейрони и первый опыт использования Пейрофлекса®. Вестник урологии 2021;9(2):150–6. DOI:10.21886/2308-6424-2021-9-2-150-156; Shindel A.W., Sweet G., Thieu W. et al. Prevalence of Peyronie’s disease-like symptoms in men presenting with Dupuytren contractures. Sex Med 2017;5(3):e135–e41. DOI:10.1016/j.esxm.2017.06.001; Akbal C., Tanidir Y., Ozgen M.B., Simşek F. Erectile dysfunction and Peyronie’s disease in patient with retroperitoenal fibrosis. Int Urol Nephrol 2008;40(4):971–5. DOI:10.1007/s11255-008-9381-4; Tal R., Heck M., Teloken P. et al. Peyronie’s disease following radical prostatectomy: incidence and predictors. J Sex Med 2010;7(3):1254–61. DOI:10.1111/j.1743-6109.2009.01655.x; EAU Guidelines. Edn. presented at the EAU Annual Congress, Milan, 2023.; Krakhotkin D.V., Chernylovskyi V.A., Mottrie A. et al. New insights into the pathogenesis of Peyronie’s disease: a narrative review. Chronic Dis Transl Med 2020;6(3):165–81. DOI:10.1016/j.cdtm.2020.06.001; Herati A.S., Pastuszak A.W. The genetic basis of Peyronie disease: a review. Sex Med Rev 2016;4(1):85–94. DOI:10.1016/j.sxmr.2015.10.002; Gabrielsen J.S. Peyronie’s disease: is it genetic or not? Transl Androl Urol 2020;9(Suppl2):S262–S8. DOI:10.21037/tau.2019.10.21; Sharma K.L., Alom M., Trost L. The etiology of Peyronie’s disease: pathogenesis and genetic contributions. Sex Med Rev 2020;8(2): 314–23. DOI:10.1016/j.sxmr.2019.06.004; Dolmans G.H., Werker P.M., de Jong I.J. et al. WNT2 locus is involved in genetic susceptibility of Peyronie’s disease. J Sex Med 2012;9(5):1430–4. DOI:10.1111/j.1743-6109.2012.02704.x; Sergovich F.R., Botz J.S., McFarlane R.M. Nonrandom cytogenetic abnormalities in Dupuytren’s disease. N Engl J Med 1983;308(3):162–3. PMID: 6848917.; Dal Cin P., De Smet L., Sciot R. et al. Trisomy 7 and trisomy 8 in dividing and non-dividing tumor cells in Dupuytren’s disease. Cancer Genet Cytogenet 1999;108(2):137–40. DOI:10.1016/s0165-4608(98)00126-5; Casalone R., Mazzola D., Meroni E. et al. Cytogenetic and interphase cytogenetic analyses reveal chromosome instability but no clonal trisomy 8 in Dupuytren contracture. Cancer Genet Cytogenet 1997;99(1):73–6. DOI:10.1016/s0165-4608(96)00430-x; Nyberg L.M. Jr., Bias W.B., Hochberg M.C. et al. Identification of an inherited form of Peyronie’s disease with autosomal dominant inheritance and association with Dupuytren’s contracture and histocompatibility B7 cross-reacting antigens. J Urol 1982;128(1):48–51. DOI:10.1016/s0022-5347(17)52751-2; Nugteren H.M., Nijman J.M., de Jong I.J., van Driel M.F. The association between Peyronie’s and Dupuytren’s disease. Int J Impot Res 2011;23(4):142–5. DOI:10.1038/ijir.2011.18; Allen-Brady K.L., Christensen M.B., Sandberg A.D., Pastuszak A.W. Significant familial clustering of Peyronie’s disease in close and distant relatives. Andrology 2022;10(7):1361–7. DOI:10.1111/andr.13223; Perinchery G., El-Sakka A.I., Angan A. et al. Microsatellite alterations and loss of heterozygosity in Peyronie’s disease. J Urol 2000;164(3 Pt 1):842–6. DOI:10.1097/00005392-200009010-00059; Qian A., Meals R.A., Rajfer J. et al. Comparison of gene expression profiles between Peyronie’s disease and Dupuytren’s contracture. Urology 2004;64(2):399–404. DOI:10.1016/j.urology.2004.04.006; Gonzalez-Cadavid N.F., Magee T.R., Ferrini M. et al. Gene expression in Peyronie’s disease. Int J Impot Res 2002;14(5):361–74. DOI:10.1038/sj.ijir.3900873; Dullea A., Efimenko I., Firdaus F. et al. Whole-genome sequencing identifies novel heterozygous mutation in ALMS1 in three men with both Peyronie’s and Dupuytren’s Disease. Urology 2022;166:76–8. DOI:10.1016/j.urology.2022.02.023; Moses H.L., Roberts A.B., Derynck R. The discovery and early days of TGF-β: a historical perspective. Cold Spring Harbor Perspect Biol 2016;8(7):a021865. DOI:10.1101/cshperspect.a021865; Baba A.B., Rah B., Bhat G.R. et al. Transforming growth factor-beta (TGF-β) signaling in cancer – a betrayal within. Front Pharmacol 2022;13:791272. DOI:10.3389/fphar.2022.791272; Papageorgis P. TGFβ signaling in tumor initiation, epithelial-to-mesenchymal transition, and metastasis. J Oncol 2015;2015:587193. DOI:10.1155/2015/587193; Hassoba H., El-Sakka A., Lue T. Role of increased transforming growth factor beta protein expression in the pathogenesis of Peyronie’s disease. Egypt J Immunol 2005;12(1):1–8. PMID: 16734133.; Piao S., Choi M.J., Tumurbaatar M. et al. Transforming growth factor (TGF)-β type I receptor kinase (ALK5) inhibitor alleviates profibrotic TGF-β1 responses in fibroblasts derived from Peyronie’s plaque. J Sex Med 2010;7(10):3385–95. DOI:10.1111/j.1743-6109.2010.01753.x; Wang J., Xiang H., Lu Y., Wu T. Role and clinical significance of TGF-β1 and TGF-βR1 in malignant tumors (Review). Int J Mol Med 2021;47(4):55. DOI:10.3892/ijmm.2021.4888; Biernacka A., Dobaczewski M., Frangogiannis N.G. TGF-β signaling in fibrosis. Growth Factors (Chur, Switzerland) 2011;29(5):196–202. DOI:10.3109/08977194.2011.595714; Frangogiannis N. Transforming growth factor-β in tissue fibrosis. J Exp Med 2020;217(3):e20190103. DOI:10.1084/jem.20190103; Eftimie R., Brenner H.R., Buonanno A. Myogenin and MyoD join a family of skeletal muscle genes regulated by electrical activity. Proc Natl Acad Sci U S A 1991;88(4):1349–53. DOI:10.1073/pnas.88.4.1349; Cantini L.P., Ferrini M.G., Vernet D. et al. Profibrotic role of myostatin in Peyronie’s disease. J Sex Med 2008;5(7):1607–22. DOI:10.1111/j.1743-6109.2008.00847.x; Chen M.M., Zhao Y.P., Zhao Y. et al. Regulation of myostatin on the growth and development of skeletal muscle. Front Cell Dev Biol 2021;9:785712. DOI:10.3389/fcell.2021.785712; Beutel B., Song J., Konken C.P. et al. New in vivo compatible matrix metalloproteinase (MMP)-2 and MMP-9 inhibitors. Bioconjug Chem 2018;29(11):3715–25. DOI:10.1021/acs.bioconjchem.8b00618; Bormann T., Maus R., Stolper J. et al. Role of matrix metalloprotease-2 and MMP-9 in experimental lung fibrosis in mice. Respir Res 2022;23(1):180. DOI:10.1186/s12931-022-02105-7; Cohen D.J., Reynaldo W.V., Borba V.B. et al. New in vivo model to assess macroscopic, histological, and molecular changes in Peyronie’s disease. Andrology 2022;10(1):154–65. DOI:10.1111/andr.13092; Rompel R., Mueller-Eckhardt G., Schroeder-Printzen I. et al. HLA antigens in Peyronie’s disease. Urol Int 1994;52(1):34–7. DOI:10.1159/000282566; Cushing L., Kuang P.P., Qian J. et al. miR-29 is a major regulator of genes associated with pulmonary fibrosis. Am J Respir Cell Mol Biol 2011;45(2):287–94. DOI:10.1165/rcmb.2010-0323OC; Dos Santos V.G., Dos Santos G.A., Neto C.B. et al. Downregulation of miR-29b is associated with Peyronie’s disease. Urologia 2022;89(3):451–5. DOI:10.1177/03915603211036628; Ten Dam E.P.M., van Driel M.F., de Jong I.J. et al. Glimpses into the molecular pathogenesis of Peyronie’s disease. Aging Male 2020;23(5):962–70. DOI:10.1080/13685538.2019.1643311; De Young L.X., Bella A.J., O’Gorman D.B. et al. Protein biomarker analysis of primary Peyronie’s disease cells. J Sex Med 2010;7(1 Pt 1):99–106. DOI:10.1111/j.1743-6109.2009.01556.x; Weis M.A., Hudson D.M., Kim L. et al. Location of 3-hydroxyproline residues in collagen types I, II, III, and V/XI implies a role in fibril supramolecular assembly. J Biol Chem 2010;285(4):2580–90. DOI:10.1074/jbc.M109.068726; Stone R.C., Pastar I., Ojeh N. et al. Epithelial-mesenchymal transition in tissue repair and fibrosis. Cell Tissue Res 2016;365(3):495–506. DOI:10.1007/s00441-016-2464-0; Сабирзянова А.А., Галявич А.С., Балеева Л.В. и др. Прогностическое значение фактора дифференцировки роста-15 у пациентов с инфарктом миокарда. Российский кардиологический журнал 2021;26(2):4288. DOI:10.18087/cardio.2023.2.n2152; Кукес В.Г., Газданова А.А., Фуралев В.А. и др. Современное представление о биологической роли и клиническом значении миостатина – главного регулятора роста и дифференцировки мышц. Медицинский вестник Северного Кавказа 2021;16(3):327–32.; Гервальд В.Я., Привалихина А.В., Спицын П.С. и др. Болезнь Пейрони как фактор эректильной дисфункции. Механизмы фиброза. Современные проблемы науки и образования 2017;4. URL: https://science-education.ru/ru/article/view?id=26654; Willscher M.K., Cwazka W.F., Novicki D.E. The association of histocompatibility antigens of the B7 cross-reacting group with Peyronie’s disease. J Urol 1979;122(1):34–5. DOI:10.1016/s0022-5347(17)56238-2; Ralph D.J., Schwartz G., Moore W. et al. The genetic and bacteriological aspects of Peyronie’s disease. J Urol 1997;157(1):291–4. DOI:10.1016/S0022-5347(01)65362-X; https://agx.abvpress.ru/jour/article/view/691
-
7Academic Journal
المؤلفون: M. V. Epifanova, A. A. Kostin, E. V. Gameeva, A. A. Gritskevich, S. A. Artemenko, A. A. Epifanov, М. В. Епифанова, А. А. Костин, Е. В. Гамеева, А. А. Грицкевич, C. А. Артеменко, А. А. Епифанов
المصدر: Andrology and Genital Surgery; Том 24, № 2 (2023); 41-48 ; Андрология и генитальная хирургия; Том 24, № 2 (2023); 41-48 ; 2412-8902 ; 2070-9781
مصطلحات موضوعية: экстракорпоральная ударно-волновая терапия, erectile dysfunction, rehabilitation, radical prostatectomy, platelet rich plasma, extracorporeal shock wave therapy, эректильная дисфункция, реабилитация, радикальная простатэктомия, аутоплазма, обогащенная тромбоцитарными факторами роста
وصف الملف: application/pdf
Relation: https://agx.abvpress.ru/jour/article/view/659/519; Sung H., Ferlay J., Siegel R.L. et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021;71(3):209– 49. DOI:10.3322/caac.21660; Siegel R.L., Miller K.D., Fuchs H.E., Jemal A. Cancer statistics, 2021. CA Cancer J Clin 2021:71(1):7–33. DOI:10.3322/caac.21654; Simone G. The epidemiology of prostate cancer. In: Prostate Cancer. Ed. by S.R.J. Bott, K.L. Ng. Australia, Brisbane: Exon Publications, 2021. 158 p.; Злокачественные новообразования в России в 2020 году (заболеваемость и смертность). Под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой. М.: МНИОИ им. П.А. Герцена – филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2021. 252 с.; EAU Guidelines. Edn. presented at the EAU Annual Congress Amsterdam 2022.; Haahr M.K., Jensen C.H., Toyserkani N.M. et al. Safety and potential effect of a single intracavernous injection of autologous adipose-derived regenerative cells in patients with erectile dysfunction following radical prostatectomy: an open-label phase I clinical trial. EBioMedicine 2016;5:204–10. DOI:10.1016/j.ebiom.2016.01.024; Huri M., Akel B.S., Sahin S. Rehabilitation of patients with prostate cancer. In: Prostate cancer – leading-edge diagnostic procedures and treatments. Ed. by R. Mohan. London: IntechOpen, 2016. Pp. 227–248. DOI:10.5772/63989; Ladegaard P.B.J., Mortensen J., Skov-Jeppesen S.M., Lund L. Erectile dysfunction a prospective randomized placebo-controlled study evaluating the effect of low-intensity extracorporeal shockwave therapy (LI-ESWT) in men with erectile dysfunction following radical prostatectomy. Sex Med 2021;9(3):100338. DOI:10.1016/j.esxm.2021.100338; Avulova S., Zhao Z., Lee D. et al. The effect of nerve sparing status on sexual and urinary function: 3-year results from the CEASAR study. J Urol 2018;199(5):1202–9. DOI:10.1016/j.juro.2017.12.037; Ko Y.H., Coelho R.F., Sivaraman A. et al. Retrograde versus antegrade nerve sparing during robot-assisted radical prostatectomy: which is better for achieving early functional recovery? Eur Urol 2013;63(1):169–77. DOI:10.1016/j.eururo.2012.09.051; Alemozaffar M., Duclos A., Hevelone N.D. et al. Technical refinement and learning curve for attenuating neurapraxia during robotic-assisted radical prostatectomy to improve sexual function. Eur Urol 2012;61(6):1222–8. DOI:10.1016/j.eururo.2012.02.053; Шпоть Е.В., Чиненов Д.В., Чернов Я.Н. и др. Сравнительные результаты нервосберегающей робот-ассистированной простатэктомии. Андрология и генитальная хирургия 2021;22(3):44–8. DOI:10.17650/1726-9784-2021-22-3-44-48.; Emanu J.C., Avildsen I.K., Nelson C.J. Erectile dysfunction after radical prostatectomy: prevalence, medical treatments, and psychosocial interventions. Curr Opin Support Palliat Care 2016;10(1):102–7. DOI:10.1097/SPC.0000000000000195; Coleman M. Axon degeneration mechanisms: commonality amid diversity. Nat Rev Neurosci 2005;6(11):889–98. DOI:10.1038/nrn1788; Whalen M. Preventing erectile dysfunction after radical prostatectomy: nerve-sparing techniques, penile rehabilitation, and novel regenerative therapies. In: Prostatectomy. Ed. by T. Genadiev. London: IntechOpen, 2019. Pp. 129–174.; Bratu O., Oprea I., Marcu D. et al. Erectile dysfunction postradical prostatectomy – a challenge for both patient and physician. J Med Life 2017;10(1):13–18. PMID: 28255370.; Wang L., Sanford M.T., Xin Z. et al. Role of Schwann cells in the regeneration of penile and peripheral nerves. Asian J Androl 2015;17(5):776–82. DOI:10.4103/1008-682X.154306; Lagoda G., Sezen S.F., Burnett A.L. FK506 and rapamycin neuroprotect erection and involve different immunophilins in a rat model of cavernous nerve injury. J Sex Med 2009;6(7):1914–23. DOI:10.1111/j.1743-6109.2009.01293.x; Leungwattanakij S., Bivalacqua T.J., Usta M.F. et al. Cavernous neurotomy causes hypoxia and fibrosis in rat corpus cavernosum. J Androl 2003;24(2):239–45. DOI:10.1002/j.1939-4640.2003.tb02668.x; Cui Y., Liu X., Shi L., Gao Z. Efficacy and safety of phosphodiesterase type 5 (PDE5) inhibitors in treating erectile dysfunction after bilateral nerve-sparing radical prostatectomy. Andrologia 2016;48(1):20–8. DOI:10.1111/and.12405; Hamilton Z., Mirza M. Post-prostatectomy erectile dysfunction: contemporary approaches from a US perspective. Res Rep Urol 2014;6:35–41. DOI:10.2147/RRU.S39560; Hebert K.J., Kohler T.S. Glans ischemia following inflatable penile prosthesis surgery. Transl Androl Urol 2020;9(2):824–7. DOI:10.21037/tau.2020.01.04; Lokeshwar S.D., Patel P., Shah S.M., Ramasamy R. A systematic review of human trials using stem cell therapy for erectile dysfunction. Sex Med Rev 2020;8(1):122–30. DOI:10.1016/j.sxmr.2019.08.003; Epifanova M.V., Gvasalia B.R., Durashov M.A., Artemenko S.A. Platelet-rich plasma therapy for male sexual dysfunction: myth or reality? Sex Med Rev 2020;8(1):106–13. DOI:10.1016/j.sxmr.2019.02.002; EAU Guidelines. Edn. presented at the EAU Annual Congress Milan, 2021.; Yao H., Wang X., Liu H. et al. Systematic review and meta-analysis of 16 randomized controlled trials of clinical outcomes of lowintensity extracorporeal shock wave therapy in treating erectile dysfunction. Am J Mens Health 2022;16(2):15579883221087532. DOI:10.1177/15579883221087532; Епифанова М.В. Применение аутоплазмы, обогащенной тромбоцитарными факторами роста, в лечении эректильной дисфункции. Дис. … канд. мед. наук. М., 2016. 167 с.; Епифанова М.В. Применение технологий регенеративной медицины при сексуальной дисфункции и нарушении фертильности у мужчин. Дис. … д-ра. мед. наук. М., 2022. 400 с.; Lee J.W., Kwon O.H., Kim T.K. et al. Platelet-rich plasma: quantitative assessment of growth factor levels and comparative analysis of activated and inactivated groups. Arch Plast Surg 2013;40(5):530–5. DOI:10.5999/aps.2013.40.5.530; Nishio H., Saita Y., Kobayashi Y. et al. Platelet-rich plasma promotes recruitment of macrophages in the process of tendon healing. Regen Ther 2020;14:262–70. DOI:10.1016/j.reth.2020.03.009; Wang Z., Mudalal M., Sun Y. et al. The effects of leukocyte-platelet rich fibrin (L-PRF) on suppression of the expressions of the proinflammatory cytokines, and proliferation of Schwann cell, and neurotrophic factors. Sci Rep 2020;10(1):2421. DOI:10.1038/s41598-020-59319-2; Pereira C.T., Paxton Z.J., Li A.I. Involvement of PDGF-BB and IGF-1 in activation of human Schwann cells by platelet-rich plasma. Plast Reconstr Surg 2020;146(6):825e–7e. DOI:10.1097/PRS.0000000000007406; Zheng C., Zhu Q., Liu X. et al. Effect of platelet-rich plasma (PRP) concentration on proliferation, neurotrophic function and migration of Schwann cells in vitro. J Tissue Eng Regen Med 2016;10(5):428–36. DOI:10.1002/term.1756; Pelletier J., Roudier E., Abraham P. et al. VEGF-A promotes both pro-angiogenic and neurotrophic capacities for nerve recovery after compressive neuropathy in rats. Mol Neurobiol 2015;51(1):240–51. DOI:10.1007/s12035-014-8754-1; Hatanaka K., Ito K., Shindo T. et al. Molecular mechanisms of the angiogenic effects of low-energy shock wave therapy: roles of mechanotransduction. Am J Physiol Cell Physiol 2016;311(3):C378–85. DOI:10.1152/ajpcell.00152.2016; Pan M.M., Raees A., Kovac J.R. Low-intensity extracorporeal shock wave as a novel treatment for erectile dysfunction. Am J Mens Health 2016;10(2):146–8. DOI:10.1177/1557988315574511; Yahata K., Kanno H., Ozawa H. et al. Low-energy extracorporeal shock wave therapy for promotion of vascular endothelial growth factor expression and angiogenesis and improvement of locomotor and sensory functions after spinal cord injury. J Neurosurg Spine 2016;25(6):745–5. DOI:10.3171/2016.4.SPINE15923; Jeong H.C., Bae W.J., Zhu G.Q. et al. Synergistic effects of extracorporeal shockwave therapy and modified Ojayeonjonghwan on erectile dysfunction in an animal model of diabetes. Investig Clin Urol 2019;60(4):285–94. DOI:10.4111/icu.2019.60.4.285; Jeon S.H., Shrestha K.R., Kim R.Y. et al. Combination therapy using human adipose-derived stem cells on the cavernous nerve and low-energy shockwaves on the corpus cavernosum in a rat model of post-prostatectomy erectile dysfunction. Urology 2016;88:226.e1–9. DOI:10.1016/j.urology.2015.10.021; Lin G., Reed-Maldonado A.B., Wang B. et al. In situ activation of penile progenitor cells with low-intensity extracorporeal shockwave therapy. J Sex Med 2017;14(4):493–501. DOI:10.1016/j.jsxm.2017.02.004; Patel A.N., Selzman C.H., Kumpati G.S. et al. Evaluation of autologous platelet rich plasma for cardiac surgery: outcome analysis of 2000 patients. J Cardiothorac Surg 2016;11(1):62. DOI:10.1186/s13019-016-0452-9; Gentile P., Di Pasquali C., Bocchini I. et al. Breast reconstruction with autologous fat graft mixed with platelet-rich plasma. Surg Innov 2013;20(4):370–6. DOI:10.1177/1553350612458544; Spartalis E.D., Tomos P., Dimitroulis D., Kouraklis G. Platelet-rich plasma in surgical oncology. Surg Innov 2014;21(4):441. DOI:10.1177/1553350613520516; Spartalis E.D., Tomos P., Konofaos P. et al. Breast reconstruction with autologous fat graft; does platelet-rich plasma affect patient’s survival? Int J Clin Exp Med 2014;7(1):329–30. PMID: 24482728.; Guo X., Wu Y., Hathaway H.J., Hartley R.S. Microenvironmental control of the breast cancer cell cycle. Anat Rec (Hoboken) 2012;295(4):553–62. DOI:10.1002/ar.22417; Levva S., Kotoula V., Kostopoulos I. et al. Prognostic evaluation of epidermal growth factor receptor (EGFR) genotype and phenotype parameters in triple-negative breast cancers. Cancer Genomics Proteomics 2017;14(3):181–95. DOI:10.21873/cgp.20030; Spartalis E., Tsilimigras D.I., Charalampoudis P. et al. The “Yin and Yang” of platelet-rich plasma in breast reconstruction after mastectomy or lumpectomy for breast cancer. Anticancer Res 2017;37(12):6557–62. DOI:10.1016/j.gene.2019.04.025; Luzo A.C.M., Fávaro WJ, Seabra AB, Durán N. What is the potential use of platelet-rich-plasma (PRP) in cancer treatment? A mini review. Heliyon 2020;6(3):e03660. DOI:10.1016/j.heliyon.2020.e03660; Eichler C., Baucks C., Üner J. et al. Platelet-rich plasma (PRP) in breast cancer patients: an application analysis of 163 sentinel lymph node biopsies. Biomed Res Int 2020;2020:3432987. DOI:10.1155/2020/3432987; Haahr M.K., Harken C., Toyserkani N.M. et al. A 12-month follow-up after a single intracavernous injection of autologous adipose-derived regenerative cells in patients with erectile dysfunction following radical prostatectomy: an open-label phase I clinical trial. Urology 2018;121:203.e6–203.e13. DOI:10.1016/j.urology.2018.06.018; Ding X.G., Li S.W., Zheng X.M. et al. The effect of platelet-rich plasma on cavernous nerve regeneration in a rat model. Asian J Androl 2009;11(2):215–21. DOI:10.1038/aja.2008.37; Wu C.C., Wu Y.N., Ho H.O. et al. The neuroprotective effect of platelet-rich plasma on erectile function in bilateral cavernous nerve injury rat model. J Sex Med 2012;9(11):2838–48. DOI:10.1111/j.1743-6109.2012.02881.x; Wu Y.N., Wu C.C., Sheu M.T. et al. Optimization of platelet-rich plasma and its effects on the recovery of erectile function after bilateral cavernous nerve injury in a rat model. J Tissue Eng Regen Med 2016;10(10):E294–E304. DOI:10.1002/term.1806; Wu Y.N., Liao C.H., Chen K.C., Chiang H.S. Dual effect of chitosan activated platelet rich plasma (cPRP) improved erectile function after cavernous nerve injury. J Formos Med Assoc 2022;121(1 Pt 1):14–24. DOI:10.1016/j.jfma.2021.01.019; Gettman M. A Study evaluating intraoperative application of platelet-rich plasma to the neurovascular bundles during nervesparing radical prostatectomy: initial technical description and prospective early postoperative outcomes analysis. Available at: https://clinicaltrials.gov/ct2/show/NCT02957149; Porst H. Review of the current status of low intensity extracorporeal shockwave therapy (Li-ESWT) in erectile dysfunction (ED), Peyronie’s disease (PD), and sexual rehabilitation after radical prostatectomy with special focus on technical aspects of the different marketed ESWT devices including personal experiences in 350 patients. Sex Med Rev 2021;9(1):93–122. DOI:10.1016/j.sxmr.2020.01.006; Frey A., Sønksen J., Fode M. Low-intensity extracorporeal shockwave therapy in the treatment of postprostatectomy erectile dysfunction: a pilot study. Scand J Urol 2016;50(2):123–7. DOI:10.3109/21681805.2015.1100675; Zewin T.S., El-Assmy A., Harraz A.M. et al. Efficacy and safety of low-intensity shock wave therapy in penile rehabilitation post nerve-sparing radical cystoprostatectomy: a randomized controlled trial. Int Urol Nephrol 2018;50(11):2007–14. DOI:10.1007/s11255-018-1987-6; Baccaglini W., Pazeto C.L., Corrêa Barros E.A. et al. The role of the low-intensity extracorporeal shockwave therapy on penile rehabilitation after radical prostatectomy: a randomized clinical trial. J Sex Med 2020;17(4):688–94. DOI:10.1016/j.jsxm.2019.12.024; Епифанова М.В., Каприн А.Д., Костин А.А. и др. Способ лечения эректильной дисфункции у пациентов, перенесших радикальную простатэктомию или брахитерапию. Патент на изобретение RU 2 741 204 C2, 22.01.2021. Бюлл. № 16 от 04.06.2020.; https://agx.abvpress.ru/jour/article/view/659
-
8Academic Journal
المؤلفون: M. V. Epifanova, A. A. Kostin, E. V. Gameeva, E. V. Slavkina, S. A. Artemenko, A. A. Epifanov, М. В. Епифанова, А. А. Костин, Е. В. Гамеева, Е. В. Славкина, С. А. Артеменко, А. А. Епифанов
المصدر: Andrology and Genital Surgery; Том 23, № 4 (2022); 46-54 ; Андрология и генитальная хирургия; Том 23, № 4 (2022); 46-54 ; 2412-8902 ; 2070-9781
مصطلحات موضوعية: бовгиалуронидаза азоксимер, chronic pelvic pain syndrome, extracorporeal shock wave therapy, “Longidaza®”, bovhyaluronidase azoximer, синдром хронической тазовой боли, экстракорпоральная ударно-волновая терапия, «Лонгидаза®»
وصف الملف: application/pdf
Relation: https://agx.abvpress.ru/jour/article/view/615/487; Rayegani S.M., Razzaghi M.R., Raeissadat S.A. et al. Drug therapy in chronic pelvis pain syndrom: a randomized clinical trial. Urol J 2020;17(2):185–191. DOI:10.22037/uj.v0i0.4673; Дарий Е.В., Тирси К.А., Григорьев Н.А. Оценка эффективности методики ударно-волновой терапии в прогнозе синдрома хронической тазовой боли. Урология 2020;1:46–50. DOI:10.18565/urology.2020.1.46-50; Reynard J., Brewster S., Biers S. Oxford handbook of urology. 4th edn. Oxford: Oxford University Press, 2019. 896 p.; Guu S.J., Liu C.C., Juan Y.S. et al. The 12-month follow-up of the low-intensity extracorporeal shockwave therapy in the treatment of patients with chronic pelvic pain syndrome refractory to 3-As medications. Aging Male 2020;23(5):793–800. DOI:10.1080/13685538.2019.1597341; Тюзиков И.А., Греков Е.А. Хронический простатит/синдром хронической тазовой боли: современные тренды и перспективы лечения с позиций доказательной медицины. Экспериментальная и клиническая урология 2022;15(1):90–100. DOI:10.29188/2222-8543-2022-15-1-90-100.; Крянга А.А. Современные физические методы лечения больных хроническим абактериальным простатитом. Современные проблемы науки и образования 2019;1:63–5.; Гарилевич Б.А., Кузнецова Н.Н., Титаренко И.Н. и др. Опыт применения низкоинтенсивной ударно-волновой терапии в амбулаторной урологической практике у пациентов с хроническим простатитом. Экспериментальная и клиническая урология 2019;2:122–7. DOI:10.29188/2222-8543-2019-11-2-122-126; Pena V.N., Engel N., Gabrielson A.T. et al. Diagnostic and management strategies for patients with chronic prostatitis and chronic pelvic pain syndrome. Drugs Aging 2021;38(10):845–86. DOI:10.1007/s40266-021-00890-2; Кульчавеня Е.В., Швецова О.П., Бреусов А.А. Обоснование применения и эффективности Лонгидазы у пациентов с хроническим простатитом. Урология 2018;4:64–71. DOI:10.18565/urology.2018.4:64-71; Плотникова А.Ю., Архипов Д.О. Современные методы лечения хронического простатита (обзор литературы). Молодой ученый 2018;3(189):97–9.; Божедомов В.А. Современные возможности лечения хронического простатита. Андрология и генитальная хирургия 2016;17(3):10–22. DOI:10.17650/2070-9781; Кульчинская Д.Б., Кончугова Т.В., Кияткин В.А. Обоснование применения ударно-волновой терапии в клинической практике. Физиотерапевт 2018;1:83–8.; Chen P.-Y., Cheng J.-H., Wu Z.-S. New frontiers of extracorporeal shock wave medicine in urology from bench to clinical studies. Biomedicines 2022;10(3):675. DOI:10.3390/biomedicines10030675; Гарилевич Б.А., Семенов А.А., Гуревич К.Г. и др. Ударно-волновая терапия: состояние проблемы применения в клинической практике. Курский научно-практический вестник «Человек и его здоровье» 2017;3:11–8. DOI:10.21626.vestnik/2017-3/02; Liu T., Shindel A.W, Lin G. et al. Cellular signaling pathways modulated by low-intensity extracorporeal shock wave therapy. Int J Impot Res 2019;31(3):170–6. DOI:10.1038/s41443-019-0113-3; Song Z., Jin С., Bian Z. et al. Extracorporeal shock wave therapy reduces the number of common and degranulated mast cells and relieves pelvic pain in a rat model of prostatitis. Mol Cell Biochem 2021;476(4):1905–13. DOI:10.3390/ijms20194777; Feng B., Dong Z., Wang Y. et al. Li-ESWT treatment reduces inflammation, oxidative stress, and pain via the PI3K/AKT/FOXO1 pathway in rat models of autoimmune prostatitis. Andrology 2021;9(5):1593–602. DOI:10.1111/andr.13027; Епифанова М.В., Костин А.А., Гамеева Е.В. и др. Коррекция хронического простатита с помощью экстракорпоральной ударно-волновой терапии. Андрология и генитальная хирургия 2022;23(1):53–9. DOI:10.17650/1726-9784-2022-23-1-53-59; Guu S.J., Geng J.H., Chao I.T. et al. Efficacy of low intensity extracorporeal shock wave therapy on men with chronic pelvic pain cyndrome refractory to 3-As therapy. Am J Mens Health 2018;12(2):441–52. DOI:10.1177/1557988317736585; Salama A.B., Abouelnaga W.A. Effect of radial shock wave on chronic pelvic pain syndrome / chronic prostatitis. J. Physter Sci 2018;30(9):1145–9. DOI:10.1589/jpts.30.1145; Wu W.L., Bamodu O.A., Wang Y.H. et al. Extracorporeal shockwave therapy (ESWT) alleviates pain, enhances erectile function and improves quality of life in patients with chronic prostatitis/chronic pelvic pain syndrome. J Clin Med 2021;10(16):3602. DOI:10.3390/jcm10163602; Кульчавеня Е.В., Шевченко С.Ю., Баранчукова А.А. Возможности экстракорпоральной ударно-волновой терапии при хроническом простатите/синдроме хронической тазовой боли. Журнал сибирских медицинских наук 2018;4:13–25. DOI:10.31549/2542-1174; Li G., Man L. Low-intensity extracorporeal shock wave therapy for male chronic pelvic pain syndrome: a systematic review and meta-analysis. Transl Androl Urol 2021;10(3):1202–11. DOI:10.21037/tau-20-1423; Liao B., Mou Х.-Х., Liu J.-B. et al. Extracorporeal shock wave therapy for chronic prostatitis/chronic pelvic pain syndrome: a meta-analysis (In Chinese). Zhonghua Nan Ke Xue 2019;25(10):914–22.; Yuan P., Ma D., Zhang Y. et al. Efficacy of low-intensity extracorporeal shock wave therapy for the treatment of chronic prostatitis/ chronic pelvic pain syndrome: a systematic review and metaanalysis. Neurourol Urodyn 2019;38(6):1457–66. DOI:10.1002/nau.2401; Mykoniatis I., Kalyvianakis D., Zilotis F. et al. Evaluation of a low-intensity shockwave therapy for chronic prostatitis type IIIb/ chronic pelvic pain syndrome: a double-blind randomized sham-controlled clinical trial. Prostate Cancer Prostatic Dis 2021;24(2):370–9. DOI:10.1016/S2666-1683(20)33969027.; Mykoniatis I., Pyrgidis N., Kalyvianakis D. et al. Comparing two different low-intensity shockwave therapy frequency protocols for nonbacterial chronic prostatitis/chronic pelvic pain syndrome: a two-arm, parallel-group randomized controlled trial. Prostate 2021;81(9):499–507. DOI:10.1002/pros.24119; Kang Y., Song P., Cao D. et al. The efficacy and safety of extracorporeal shockwave therapy versus acupuncture in the management of chronic prostatitis/chronic pelvic pain syndrome: evidence based on a network meta-analysis. Am J Mens Health 2021;15(6):15579883211057998. DOI:10.1177/15579883211057998; Daneshwar D., Nordin А. Low intensity extracorporeal shockwave therapy for chronic pelvic pain syndrome patients with erectile dysfunction. Medicine (Baltimore) 2022;101(2):1–5. DOI:10.1097/MD.0000000000028546; Kong Х., Hu W., Dong Z. et al. The efficacy and safety of low-intensity extracorporeal shock wave treatment combined with or without medications in chronic prostatitis/chronic pelvic pain syndrome: a systematic review and meta-analysis. Prostate Cancer Prostatic Dis 2022;7. Ahead of print. DOI:10.1038/s41391-022-00571-0; Епифанова М.В., Костин А.А., Гамеева Е.В. и др. Методика экстракорпоральной ударно-волновой терапии в лечении хронического простатита. Урология 2021;5:461.; https://agx.abvpress.ru/jour/article/view/615
-
9Academic Journal
المؤلفون: M. V. Epifanova, G. A. Demyashkin, A. A. Kostin, E. V. Gameeva, S. A. Artemenko, A. A. Epifanov, М. В. Епифанова, Г. А. Демяшкин, А. А. Костин, Е. В. Гамеева, С. А. Артеменко, А. А. Епифанов
المصدر: Andrology and Genital Surgery; Том 23, № 2 (2022); 27-33 ; Андрология и генитальная хирургия; Том 23, № 2 (2022); 27-33 ; 2412-8902 ; 2070-9781
مصطلحات موضوعية: гематотестикулярный барьер, extracorporeal shock wave therapy, male infertility, azoospermia, growth factors, collagen, blood-testicular barrier, обогащенная тромбоцитарными факторами роста, экстракорпоральная ударно-волновая терапия, факторы роста, мужское бесплодие, азооспермия, коллаген
وصف الملف: application/pdf
Relation: https://agx.abvpress.ru/jour/article/view/562/460; WHO Laboratory manual for the examination and processing of human semen, 5th edn. Geneva, 2010.; Lee J.W., Kwon O.H., Kim T.K. et al. Platelet-rich plasma: quantitative assessment of growth factor levels and comparative analysis of activated and inactivated groups. Arch Plast Surg 2013;40(5):530–5. DOI:10.5999/aps.2013.40.5.530.; Pavlovic V., Ciric M., Jovanovic V. et al. Platelet Rich Plasma: a short overview of certain bioactive components. Open Med (Wars) 2016;11(1):242–7. DOI:10.1515/med-2016-0048.; Virag R., Sussman H., Lambion S. et al. Evaluation of the benefit of using a combination of autologous platelet rich-plasma and hyaluronic acid for the treatment of Peyronie’s disease. Sex Health Issues 2017;1(1):1–8. DOI:10.15761/SHI.1000102.; Epifanova M.V., Gvasalia B.R., Durashov M.A. et al. Platelet-rich plasma therapy for male sexual dysfunction: myth or reality? Sex Med Rev 2020;8(1):106–13. DOI:10.1016/j.sxmr.2019.02.002.; Hatanaka K., Ito K., Shindo T. et al. Molecular mechanisms of the angiogenic effects of low-energy shock wave therapy: roles of mechanotransduction. Am J Physiol Cell Physiol 2016;311(3):378–85. DOI:10.1152/ajpcell.00152.2016.; Pan M.M., Raees A., Kovac J.R. Low-intensity extracorporeal shock wave as a novel treatment for erectile dysfunction. Am J Mens Health 2016;10(2):146–8. DOI:10.1177/1557988315574511.; Liu T., Shindel A.W., Lin G. et al. Cellular signaling pathways modulated by low-intensity extracorporeal shock wave therapy. Int J Impot Res 2019;31(3):170–6. DOI:10.1038/s41443-019-0113-3.; Mariotto S., Cavalieri E., Amelio E. et al. Extracorporeal shock waves: from lithotripsy to anti-inflammatory action by NO production. Nitric Oxide 2005;12(2):89–96. DOI:10.1016/j.niox.2004.12.005.; Lin G., Reed-Maldonado A.B., Wang B. et al. In situ activation of penile progenitor cells with low-intensity extracorporeal shockwave therapy. J Sex Med 2017;14(4):493–501. DOI:10.1016/j.jsxm.2017.02.004.; Bos-Mikich A., de Oliveira R., Frantz N. Platelet-rich plasma therapy and reproductive medicine. J Assist Reprod Genet 2018;35(5):753–6. DOI:10.1007/s10815-018-1159-8.; Rassweiler J. Re: Extracorporeal shock wave therapy (ESWT) in urology: a systematic review of outcome in peyronie’s disease, erectile dysfunction, and chronic pelvic pain. Eur Urol 2018;74(1):115–7. DOI:10.1016/j.eururo.2018.01.037.; Simplicio C.L., Purita J., Murrell W. et al. Extracorporeal shock wave therapy mechanisms in musculoskeletal regenerative medicine. J Clin Orthop Trauma 2020;11(Suppl 3):S309–18. DOI:10.1016/j.jcot.2020.02.004.; Zaporozhan V., Kholodkova O., Kuleshova O. Platelet-rich plasma induces morphofunctional restoration of mice testes following doxorubomycine hydrochloride exposure. J Exp Clin Med 2014;31(3):183–7.; Dehghani F., Sotoude N., Bordbar H. et al. The use of platelet-rich plasma (PRP) to improve structural impairment of rat testis induced by busulfan. Platelets 2019;30(4):513–20. DOI:10.1080/09537104.2018.1478400.; Епифанова М.В., Епифанов А.А., Артеменко С.А. Способ лечения мужского бесплодия. Патент на изобретение РФ № RU2738543 от 14.12.2020. Бюлл. № 35 от 14.12.2020.; Юшков Б.Г. Клетки иммунной системы и регуляция регенерации. Бюллетень сибирской медицины 2017;16(4):94–105.; He Z., Feng L., Zhang X. et al. Expression of Col1a1, Col1a2 and procollagen I in germ cells of immature and adult mouse testis. Reproduction 2005;130(3):333–41. DOI:10.1530/rep.1.00694.; Siu M.K., Cheng C.Y. Extracellular matrix and its role in spermatogenesis. Adv Exp Med Biol 2008;636:74-91. DOI:10.1007/978-0-387-09597-4_5.; Rah D.K., Min H.J., Kim Y.W. et al. Effect of platelet-rich plasma on ischemia-reperfusion injury in a skin flap mouse model. Int J Med Sci 2017;14(9):829–39. DOI:10.7150/ijms.19573.; Josh F., Soekamto T.H., Adriani J.R. et al. The combination of stromal vascular fraction cells and platelet-rich plasma reduces malondialdehyde and nitric oxide levels in deep dermal burn injury. J Inflamm Res 2021;14: 3049–61. DOI:10.2147/JIR.S318055.; Rizal D.M., Puspitasari I., Yuliandari A. Protective effect of PRP against testicular oxidative stress on D-galactose induced male rats. AIP Conference Proceedings 2020;2260:040005. DOI:10.1063/5.0015830.; https://agx.abvpress.ru/jour/article/view/562
-
10Academic Journal
المؤلفون: M. V. Epifanova, А. А. Kostin, E. V. Gameeva, S. A. Artemenko, А. А. Epifanov, М. В. Епифанова, А. А. Костин, Е. В. Гамеева, С. А. Артеменко, А. А. Епифанов
المصدر: Andrology and Genital Surgery; Том 23, № 1 (2022); 53-59 ; Андрология и генитальная хирургия; Том 23, № 1 (2022); 53-59 ; 2412-8902 ; 2070-9781
مصطلحات موضوعية: воспаление, extracorporeal shock wave therapy, chronic pelvic pain syndrome, prostate, inflammation, экстракорпоральная ударно-волновая терапия, синдром хронической тазовой боли, предстательная железа
وصف الملف: application/pdf
Relation: https://agx.abvpress.ru/jour/article/view/545/452; Reynard J., Brewster S., Biers S. Oxford Handbook of Urology. 4th edn. Oxford: Oxford University Press, 2019. 896 p.; Урология. Российские клинические рекомендации. Под ред. Ю.Г. Аляева, П.В. Глыбочко, Д.Ю. Пушкаря. М.: ГЭОТАР-Медиа, 2016. 496 с. [Urology. Russian clinical guidelines. Ed. by Yu.G. Alyaev, P.V. Glybochko, D.Yu. Pushkar’. Moscow: GEOTARMedia, 2016. 496 p. (In Russ.)].; Urological Infections. EAU Guidelines. Edn. presented at the EAU Annual Congress, Milan, 2021. ISBN 978–94–92671–13–4. Available at: https://uroweb.org/guideline/urological-infections/.; Zhang J., Liang C., Shang X., Li H. Chronic Prostatitis/Chronic Pelvic Pain Syndrome: A Disease or Symptom? Current Perspectives on Diagnosis, Treatment, and Prognosis. Am J Mens Health 2020;14(1):1557988320903200. DOI:10.1177/1557988320903200.; Shoskes D.A., Nickel J.C., Kattan M.W. Phenotypically directed multimodal therapy for chronic prostatitis/chronic pelvic pain syndrome: A prospective study using UPOINT. Urology 2010;75(6):1249–53. DOI:10.1016/j.urology.2010.01.021.; Hao Z.Y., Li H.J., Wang Z.P. et al. The prevalence of erectile dysfunction and its relation to chronic prostatitis in Chinese men. J Androl 2011;32(5):496– 501. DOI:10.2164/jandrol.110.012138.; Li H.J., Kang D.Y. Prevalence of sexual dysfunction in men with chronic prostatitis/chronic pelvic pain syndrome: A meta-analysis. World J Urol 2016;34(7):1009–17. DOI:10.1007/s00345-015-1720-3.; Agarwal M.M., Elsi Sy M. Gabapentenoids in pain management in urological chronic pelvic pain syndrome: Gabapentin or pregabalin? Neurourol Urodyn 2017;36(8):2028–33. DOI:10.1002/nau.23225.; Al Edwan G.M., Muheilan M.M., Atta O.N. Long term efficacy of extracorporeal shock wave therapy [ESWT] for treatment of refractory chronic abacterial prostatitis. Ann Med Surg (Lond) 2017;14:12–7. DOI:10.1016/j.amsu.2016.12.051.; Chang S.C., Hsu C.H., Hsu C.K. et al. The efficacy of acupuncture in managing patients with chronic prostatitis/chronic pelvic pain syndrome: A systemic review and meta-analysis. Neurourol Urodyn 2017;36(2):474–81. DOI:10.1002/nau.22958.; Franco J.V.A., Turk T., Jung J.H. et al. Non-pharmacological interventions for treating chronic prostatitis/chronic pelvic pain syndrome: a Cochrane systematic review. BJU Int 2019;124(2):197–208. DOI:10.1111/bju.14492.; Lin G., Reed-Maldonado A.B., Wang B. et al. In Situ Activation of Penile Progenitor Cells With Low-Intensity Extracorporeal Shockwave Therapy. J Sex Med 2017;14(4):493–501. DOI:10.1016/j.jsxm.2017.02.004.; Liu J., Zhou F., Li G.Y. et al. Evaluation of the effect of different doses of low energy shock wave therapy on the erectile function of streptozotocin (STZ)-induced diabetic rats. Int J Mol Sci 2013;14(5):10661–73. DOI:10.3390/ijms140510661.; Liu T., Shindel A.W., Lin G., Lue T.F. Cellular signaling pathways modulated by low-intensity extracorporeal shock wave therapy. Int J Impot Res 2019;31(3):170–6. DOI:10.1038/s41443-019-0113-3.; Mariotto S., Cavalieri E., Amelio E. et al. Extracorporeal shock waves: from lithotripsy to anti-inflammatory action by NO production. Nitric Oxide 2005;12(2):89–96. DOI:10.1016/j.niox.2004.12.005.; Oudega M., Perez M.A. Corticospinal reorganization after spinal cord injury. J Physiol 2012;590(16):3647–63. DOI:10.1113/jphysiol.2012.233189.; Qiu X., Lin G., Xin Z. et al. Effects of low-energy shockwave therapy on the erectile function and tissue of a diabetic rat model. J Sex Med 2013;10(3):738–46. DOI:10.1111/jsm.12024.; Chen Y.T., Yang C.C., Sun C.K. et al. Extracorporeal shock wave therapy ameliorates cyclophosphamide-induced rat acute interstitial cystitis though inhibiting inflammation and oxidative stress – in vitro and in vivo experiment studies. Am J Transl Res 2014;6(6): 631–48. PMID: 25628776.; Wang H.J., Cheng J.H., Chuang Y.C. Potential applications of low-energy shock waves in functional urology. Int J Urol 2017;24(8):573–81. DOI:10.1111/iju.13403.; Wang H.J., Lee W.C., Tyagi P. et al. Effects of low energy shock wave therapy on inflammatory moleculars, bladder pain, and bladder function in a rat cystitis model. Neurourol Urodyn 2017;36(6):1440–7. DOI:10.1002/nau.23141.; Rees J., Abrahams M., Doble A., Cooper A. Diagnosis and treatment of chronic bacterial prostatitis and chronic prostatitis/chronic pelvic pain syndrome: a consensus guideline. BJU Int 2015;116(4):509–25. DOI:10.1111/bju.13101.; Guo P., Gao F., Zhao T. et al. Positive Effects of Extracorporeal Shock Wave Therapy on Spasticity in Poststroke Patients: A Meta-Analysis. J Stroke Cerebrovasc Dis 2017;26(11):2470–6. DOI:10.1016/j.jstrokecerebrovasdis.2017.08.019.; Li G., Man L. Low-intensity extracorporeal shock wave therapy for male chronic pelvic pain syndrome: a systematic review and meta-analysis. Transl Androl Urol 2021;10(3):1202–11. DOI:10.21037/tau-20-1423.; Pajovic B., Radojevic N., Dimitrovski A., Vukovich M. Comparison of the efficiency of combined extracorporeal shock-wave therapy and triple therapy versus triple therapy itself in Category III B chronic pelvic pain syndrome (CPPS). Aging Male 2016;19(3):202–7. DOI:10.1080/13685538.2016.1197899.; Vahdatpour B., Alizadeh F., Moayednia A. et al. Efficacy of extracorporeal shock wave therapy for the treatment of chronic pelvic pain syndrome: a randomized, controlled trial. ISRN Urol 2013;2013:972601. DOI:10.1155/2013/972601.; Zeng X.Y., Liang C., Ye Z.Q. Extracorporeal shock wave treatment for non-inflammatory chronic pelvic pain syndrome: a prospective, randomized and sham-controlled study. Chin Med J 2012;125(1):114–8. PMID: 22340476.; Zimmermann R., Cumpanas A., Hoeltl L. et al. Extracorporeal shock-wave therapy for treating chronic pelvic pain syndrome: a feasibility study and the first clinical results. BJU Int 2008;102(8):976–80. DOI:10.1111/j.1464-410X.2008.07742.x.; Moayednia A., Haghdani S., Khosrawi S. et al. Long-term effect of extracorporeal shock wave therapy on the treatment of chronic pelvic pain syndrome due to non bacterial prostatitis. J Res Med Sci 2014;19(4):293–6. PMID: 25097599.; Guu S.J., Geng J.H., Chao I.T. et al. Efficacy of Low-Intensity Extracorporeal Shock Wave Therapy on Men With Chronic Pelvic Pain Syndrome Refractory to 3-As Therapy. Am J Mens Health 2018;12(2):441–52. DOI:10.1177/1557988317736585.; https://agx.abvpress.ru/jour/article/view/545
-
11Academic Journal
المؤلفون: A. D. Kaprin, A. A. Kostin, M. V. Epifanova, M. E. Chalyy, E. V. Gameeva, S. A. Artemenko, А. Д. Каприн, А. А. Костин, М. В. Епифанова, М. Е. Чалый, Е. В. Гамеева, С. А. Артеменко
المساهمون: No funding of this work has been held., Финансирование данной работы не проводилось.
المصدر: Research and Practical Medicine Journal; Том 6, № 3 (2019); 74-86 ; Research'n Practical Medicine Journal; Том 6, № 3 (2019); 74-86 ; 2410-1893 ; 10.17709/2409-2231-2019-6-3
مصطلحات موضوعية: клеточная терапия, erectile dysfunction (ED), sexual dysfunction, erectile function, regenerative medicine, growth factors, cell therapy, обогащенная тромбоцитарными факторами роста (АОТ), эректильная дисфункция (ЭД), сексуальная дисфункция, эректильная функция (ЭФ), факторы роста
وصف الملف: application/pdf
Relation: https://www.rpmj.ru/rpmj/article/view/423/314; Colson MH, Cuzin B, Faix A, Grellet L, Huyghes E. Erectile dysfunction : up-date data and clinical guidelines. Rev Med Suisse. 2019 Mar 13;15 (642):583–589. [Article in French].; Shaeer O, Shaeer K. The Global Online Sexuality Survey (GOSS): the United States of America in 2011. Chapter I: erectile dysfunction among English-speakers. J Sex Med. 2012 Dec;9 (12):3018–27. DOI:10.1111/j.1743–6109.2012.02976.x; Shaeer O, Shaeer K, Fode M, Serefoglu E. The Global Online Sexuality Survey (GOSS) 2015. Erectile Dysfunction Among English-Speaking Internet Users in the United States. Human Andrology. 2017;7 (4):111–9.; Пушкарь Д. Ю., Камалов А. А., Аль-Шукри С .Х., Еркович А.А., Коган М.И., Павлов В.Н., Журавлев В.Н., Берников А. Н. Анализ результатов эпидемиологического исследования распространенности эректильной дисфункции в Российской Федерации. Урология. 2012;6:5–9.; Çayan S, Kendirci M, Yaman Ö, Aşçı R, Orhan İ, Usta MF, et al. Prevalence of erectile dysfunction in men over 40 years of age in Turkey: Results from the Turkish Society of Andrology Male Sexual Health Study Group. Turk J Urol. 2017 Jun;43 (2):122–129. DOI:10.5152/tud.2017.24886; Boston University School of Medicine and Sexual Medicine. Epidemiology of ED. Available at: http://www.bumc.bu.edu/sexualmedicine/physicianinformation/epidemiology-of-ed/; Burnett AL, Nehra A, Breau RH, Culkin DJ, Faraday MM, Hakim LS, et al. Erectile Dysfunction: AUA Guideline. J Urol. 2018 Sep;200 (3):633–641. DOI:10.1016/j.juro.2018.05.004; EAU Guidelines. Edn. presented at the EAU Annual Congress Copenhagen 2018. ISBN 978–94–92671–01–1.; Pastuszak AW. Current Diagnosis and Management of Erectile Dysfunction. Curr Sex Health Rep. 2014 Sep;6 (3):164–176. DOI:10.1007/s11930–014–0023–9; Priviero FB, Toque HA, Nunes KP, Priolli DG, Teixeira CE, Webb RC. Impaired Corpus Cavernosum Relaxation Is Accompanied by Increased Oxidative Stress and Up-Regulation of the Rho-Kinase Pathway in Diabetic (Db/Db) Mice. PLoS One. 2016;11 (5): e0156030. Published 2016 May 26. DOI:10.1371/journal. pone.0156030; Nehra A, Goldstein I, Pabby A, Nugent M, Huang YH, de las Morenas A, et al. Mechanisms of venous leakage: a prospective clinicopathological correlation of corporeal function and structure. J Urol. 1996 Oct; 156 (4):1320–9.; Moreland RB. Is there a role of hypoxemia in penile ®brosis: a viewpoint presented to the Society for the Study of Impotence. Int J Impot Res. 1998 Jun;10 (2):113–20.; El-Sakka AI. Reversion of penile fibrosis: Current information and a new horizon. Arab Journal of Urology. 2011;9 (1):49–55. DOI:10.1016/j.aju.2011.03.013; Castela Â, Soares R, Rocha F, Vendeira P, Virag R, Costa C. Erectile tissue molecular alterations with aging–differential activation of the p42/44 MAP Kinase pathway. Age. 2011;33 (2):119–130. DOI:10.1007/s11357–010–9167–3; Lindau ST, Tang H, Gomero A, Vable A, Huang ES, Drum ML, et al. Sexuality among middle-aged and older adults with diagnosed and undiagnosed diabetes: a national, population-based study. Diabetes Care. 2010 Oct;33 (10):2202–10. DOI:10.2337/dc10–0524; Guo W, Liao C, Zou Y, Li F, Li T, Zhou Q, et al. Erectile dysfunction and risk of clinical cardiovascular events: a meta-analysis of seven cohort studies. J Sex Med. 2010 Aug;7 (8):2805–16. DOI:10.1111/j.1743–6109.2010.01792.x; Thompson IM, Tangen CM, Goodman PJ, Probstfield JL, Moinpour CM, Coltman CA. Erectile dysfunction and subsequent cardiovascular disease. JAMA. 2005 Dec 21;294 (23):2996–3002. DOI:10.1001/jama.294.23.2996; Loprinzi PD and Nooe A. Erectile dysfunction and mortality in a national prospective cohort study. J Sex Med. 2015 Nov;12 (11):2130–3. DOI:10.1111/jsm.13032; Чалый М.Е., Григ орян В.А., Епиф анова М.В., К рас-нов А.О. Эффективность интракавернозного введения аутоплазмы, обогащенной тромбоцитами, в лечении эректильной дисфункции. Урология. 2015;4:76–9.; Kim DH, Je YJ, Kim CD, Lee YH, Seo YJ, Lee JH, Lee Y. Can Platelet-rich Plasma Be Used for Skin Rejuvenation? Evaluation of Effects of Platelet-rich Plasma on Human Dermal Fibroblast. Ann Dermatol. 2011 Nov;23 (4):424–31. DOI:10.5021/ad.2011.23.4.424; Lee JW, Kwon OH, Kim TK, Cho YK, Choi KY, Chung HY, et al. Platelet-Rich Plasma: Quantitative Assessment of Growth Factor Levels and Comparative Analysis of Activated and Inactivated Groups. Arch Plast Surg. 2013 Sep;40 (5):530–5. DOI:10.5999/aps.2013.40.5.530.; Cameli N, Mariano M, Cordone I, Abril E, Masi S, Foddai ML. Autologous Pure Platelet-Rich Plasma Dermal Injections for Facial Skin Rejuvenation: Clinical, Instrumental, and Flow Cytometry Assessment. Dermatol Surg. 2017 Jun;43 (6):826–835. DOI:10.1097/DSS.0000000000001083; Anitua E, Muruzabal F, de la Fuente M, Merayo J, Durán J, Orive G. Plasma Rich in Growth Factors for the Treatment of Ocular Surface Diseases. Curr Eye Res. 2016 Jul;41 (7):875–82. DOI:10.3109/02713683.2015.1104362.; Foster TE, Puskas BL, Mandelbaum BR, Gerhardt MB, Rodeo SA. Platelet-Rich Plasma From Basic Science to Clinical Applications. Am J Sports Med. 2009 Nov;37 (11):2259–72. DOI:10.1177/0363546509349921; Daif ET. Effect of autologous platelet-rich plasma on bone regeneration in mandibular fractures. Dent Traumatol. 2013 Oct;29 (5):399–403. DOI:10.1111/edt.12021.; Sadeghi-Ataabadi M, Mostafavi-Pour Z, Vojdani Z, Sani M, Latifi M, Talaei-Khozani T. Fabrication and characterization of platelet-rich plasma scaffolds for tissue engineering applications. Mater Sci Eng C Mater Biol Appl. 2017 Feb 1;71:372–380. DOI:10.1016/j.msec.2016.10.001; Anjayani S, Wirohadidjojo YW, Adam AM, Suwandi D, Seweng A, Amiruddin MD. Sensory improvement of leprosy peripheral neuropathy in patients treated with perineural injection of platelet-rich plasma. Int J Dermatol. 2014 Jan;53 (1):109–13. DOI:10.1111/ijd.12162.; Teymur H, Tiſtikcioglu YO, Cavusoglu T, Tiſtikcioglu BI, Erbas O, Yigitturk G, Uyanikgil Y. Effect of platelet-rich plasma on reconstruction with nerve autograſts. Kaohsiung J Med Sci. 2017 Feb;33 (2):69–77. DOI:10.1016/j.kjms.2016.11.005; Ahmed M, Reffat SA, Hassan A, Eskander F. Platelet Rich Plasma for the Treatment of Clean Diabetic Foot Ulcers. Ann Vasc Surg. 2017 Jan;38:206–211. DOI:10.1016/j.avsg.2016.04.023; Patel AN, Selzman CH, Kumpati GS, McKellar SH, Bull DA. Evaluation of autologous platelet rich plasma for cardiac surgery: outcome analysis of 2000 patients. J Cardiothorac Surg. 2016 Apr 12;11 (1):62. DOI:10.1186/s13019–016–0452–9; Taschieri S, Lolato A, Ofer M, Testori T, Francetti L, Del Fabbro M. Immediate post-extraction implants with or without pure platelet-rich plasma: a 5-year follow-up study. Oral Maxillofac Surg. 2017 Jun;21 (2):147–157. DOI:10.1007/s10006–017–0609–2; Smith PA. Intra-articular autologous conditioned plasma injections provide safe and efficacious treatment for knee osteoarthritis An FDA-sanctioned, randomized, double-blind, placebo-controlled clinical trial. Am J Sports Med. 2016 Apr;44 (4):884–91. DOI:10.1177/0363546515624678; Kumar CS. Combined Treatment of Injecting Platelet Rich Plasma With Vacuum Pump for Penile Enlargement. The Journal of Sexual Medicine. 2017;14 (1) :S78.; Banno JJ, Kinnick TR, Roy L, Perito P, Antonini G, Banno D. The Efficacy of Platelet-Rich Plasma (PRP) as a Supplemental Therapy for the Treatment of Erectile Dysfunction (ED): Initial Outcomes. The Journal of Sexual Medicine. 2017;14 (2 ):e59-e60.; Dohan Ehrenfest DM, Rasmusson L, Albrektsson T. Classification of platelet concentrates: from pure platelet-rich plasma (P-PRP) to leucocyte- and platelet-rich fibrin (L-PRF). Trends Biotechnol. 2009 Mar;27 (3):158–67. DOI:10.1016/j. tibtech.2008.11.009; Hoeben A, Landuyt B, Highley MS, Wildiers H, Van Oosterom AT, De Bruijn EA. Vascular Endothelial Growth Factor and Angiogenesis. Pharmacol Rev. 2004;56:549–580.; Raica M, Cimpean AM. Platelet-Derived Growth Factor (PDGF)/PDGF Receptors (PDGFR) Axis as Target for Antitumor and Antiangiogenic Therapy. Pharmaceuticals (Basel). 2010 Mar 11;3 (3):572–599. DOI:10.3390/ph3030572; Murakami M, Simons M. Fibroblast growth factor regulation of neovascularization. Curr Opin Hematol. 2008 May;15 (3):215–20. DOI:10.1097/MOH.0b013e3282f97d98; van Cruijsen H, Giaccone G, Hoekman K. Epidermal growth factor receptor and angiogenesis: Opportunities for combined anticancer strategies. Int J Cancer. 2005 Dec 20;117 (6):883–8. DOI:10.1002/ijc.21479; Jacobo SM, Kazlauskas A. Insulin-like Growth Factor 1 (IGF-1) Stabilizes Nascent Blood Vessels. J Biol Chem. 2015 Mar 6;290 (10):6349–60. DOI:10.1074/jbc.M114.634154; Viñals F, Pouysségur J. Transforming Growth Factor β1 (TGF-β1) Promotes Endothelial Cell Survival during In Vitro Angiogenesis via an Autocrine Mechanism Implicating TGF-α Signaling. Mol Cell Biol. 2001 Nov;21 (21):7218–30. DOI:10.1128/MCB.21.21.7218–7230.2001; Sclafani AP. Applications of platelet-rich fibrin matrix in facial plastic surgery. Facial Plast Surg. 2009 Nov;25 (4):270–6. DOI:10.1055/s-0029–1242033; Middleton KK, Barro V, Muller B, Terada S, Fu FH. Evaluation of the effects of platelet-rich plasma (PRP) therapy involved in the healing of sports-related soſt tissue injuries. Iowa Orthop J. 2012;32:150–63.; Scarcia M, Maselli FP, Cardo G, Ludovico GM. The use of autologous platelet rich plasma gel in bulbar and penile buccal mucosa urethroplasty: Preliminary report of our first series. Arch Ital Urol Androl. 2016 Dec 30;88 (4):274–278. DOI:10.4081/aiua.2016.4.274.; French WJ, Creemers EE, Tallquist MD. Platelet-derived growth factor receptors direct vascular development independent of vascular smooth muscle cell function. Mol Cell Biol. 2008 Sep;28 (18):5646–57. DOI:10.1128/MCB.00441–08; Chen N-F, Sung C-S, Wen Z-H, Chen CH, Feng CW, Hung HC, et al. Therapeutic Effect of Platelet-Rich Plasma in Rat Spinal Cord Injuries. Front Neurosci. 2018 Apr 23;12:252. DOI:10.3389/fnins.2018.00252; Zhang J, Middleton KK, Fu FH, Im H-J, Wang JH-C. HGF Mediates the Anti-inflammatory Effects of PRP on Injured Tendons. PLoS One. 2013 Jun 28;8 ( 6):e67303. DOI:10.1371/journal. pone.0067303; Wu CC, Wu YN, Ho H.O., Chen KC, Sheu MT, Chiang HS. The neuroprotective effect of platelet-rich plasma on erectile function in bilateral cavernous nerve injury rat model. J Sex Med. 2012 Nov;9 (11):2838–48. DOI:10.1111/j.1743–6109.2012.02881.x; Xie D, Pippen AM, Odronic SI, Annex BH, Donatucci CF. Intracavernosal basic fibroblast growth factor improves vasoreactivity in the hypercholesterolemic rabbit. J Sex Med. 2006 Mar;3 (2):223–32. DOI:10.1111/j.1743–6109.2005.00174.x; Dai Q, Silverstein AD, Davies MG, Hagen PO, Donatucci CF, Annex BH. Systemic basic fibroblast growth factor induces favorable histological changes in the corpus cavernosum of hypercholesterolemic rabbits. J Urol. 2003 Aug;170 (2 Pt 1):664–8. DOI:10.1097/01.ju.0000065247.55066.ad; Suetomi T, Hisasue S, Sato Y, Tabata Y, Akaza H, Tsukamoto T. Effect of basic fibroblast growth factor incorporating gelatin microspheres on erectile function in the diabetic rat. J Urol. 2005 Apr;173 (4):1423–8. DOI:10.1097/01. ju.0000149034.49289.2b; Ding XG, Li SW, Zheng XM, Hu LQ, Hu WL, Luo Y. The effect of platelet-rich plasma on cavernous nerve regeneration in a rat model. Asian J Androl. 2009 Mar;11 (2):215–21. DOI:10.1038/aja.2008.37; Wu YN, Wu CC, Sheu MT, Chen KC, Ho HO, Chiang HS. Opti-mization of platelet-rich plasma and its effects on the recovery of erectile function aſter bilateral cavernous nerve injury in a rat model. J Tissue Eng Regen Med. 2016 Oct;10 ( 10):E294-E304. DOI:10.1002/term.1806; ChunHou Liao, YiNo Wu, HanSun Chiang. MP43–09 Effects of platelet rich plasma on improving erectile dysfunction in streptozotocin-induced diabetic rats. The Journal of Urology. 2018;199 (4S).; Reinders Y, Felthaus O, Brockhoff G, Pohl F, Ahrens N, Prantl L, Haubner F. Impact of Platelet-Rich Plasma on Viability and Proliferation in Wound Healing Processes aſter External Radiation. Int J Mol Sci. 2017 Aug 22;18 (8). pii: E1819. DOI:10.3390/ijms18081819; RF Patent No. 2514639 for invention «Method of treating erectile dysfunction» (Inventors : Chalyy M.E ., Vilkin Y.F. Epifanova M.V.). Moscow. Granted March 5, 2014.; Глыбочко П.В., Чалый М. Е., Епифанова М. В., Ахвледиан и Н.Д., Краснов А.О. Применение аутоплазмы, обогащенной тромбоцитарными факторами роста, в лечении эректильной дисфункции. Урология. 2015;1:100–3. DOI:10.18565/urol.2017.4.46– 48; Епиф анова М.В., Ч алый М.Е., Краснов А.О. Исследование механизмов действия факторов роста в аутоплазме, обогащенной тромбоцитами, применяемой для лечения эректильной дисфункции. Урология. 2017;4:46–8.; Alkhayal S, Lourdes M. Corporeal rejuvenation with platelet rich plasma as a treatment for erectile dysfunction. Proceedings of the 21st World Meeting on Sexual Medicine. July 2018. Volume 15, Issue 7, Supplement 3, Page S254; Matz EL, Pearlman AM, Terlecki RP. Safety and feasibility of platelet rich fibrin matrix injections for treatment of common urologic conditions. Investig Clin Urol. 2018 Jan;59 (1):61–65. DOI:10.4111/icu.2018.59.1.61; https://www.rpmj.ru/rpmj/article/view/423