يعرض 1 - 20 نتائج من 567 نتيجة بحث عن '"Метформин"', وقت الاستعلام: 0.76s تنقيح النتائج
  1. 1
    Academic Journal

    المصدر: Meditsinskiy sovet = Medical Council; № 16 (2024); 184-192 ; Медицинский Совет; № 16 (2024); 184-192 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/8626/7575; Wong VW, Ekstedt M, Wong GL, Hagström H. Changing epidemiology, global trends and implications for outcomes of NAFLD. J Hepatol. 2023;79(3):842–852. https://doi.org/10.1016/j.jhep.2023.04.036.; Маев ИВ, Андреев ДН, Кучерявый ЮА. Распространенность неалкогольной жировой болезни печени в России: метаанализ. Consilium Medicum. 2023;25(5):313–319. https://doi.org/10.26442/20751753.2023.5.202155.; Le MH, Yeo YH, Li X, Li J, Zou B, Wu Y et al. 2019 Global NAFLD Prevalence: A Systematic Review and Meta-analysis. Clin Gastroenterol Hepatol. 2022;20(12):2809–2817.e28. https://doi.org/10.1016/j.cgh.2021.12.002.; Younossi ZM, Golabi P, Paik JM, Henry A, Van Dongen C, Henry L. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): a systematic review. Hepatology. 2023;77(4):1335–1347. https://doi.org/10.1097/HEP.0000000000000004.; Евстифеева СЕ, Шальнова СА, Куценко ВА, Яровая ЕБ, Баланова ЮА, Имаева АЭ и др. Распространенность неалкогольной жировой болезни печени среди населения трудоспособного возраста: ассоциации с социально-демографическими показателями и поведенческими факторами риска (данные ЭССЕ-РФ-2). Кардиоваскулярная терапия и профилактика. 2022;21(9):3356. https://doi.org/10.15829/1728-8800-2022-3356.; Duell PB, Welty FK, Miller M, Chait A, Hammond G, Ahmad Z et al. Nonalcoholic Fatty Liver Disease and Cardiovascular Risk: A Scientific Statement From the American Heart Association. Arterioscler Thromb Vasc Biol. 2022;42(6):e168–e185. https://doi.org/10.1161/atv.0000000000000153.; Byrne CD, Targher G. Non-alcoholic fatty liver disease-related risk of cardiovascular disease and other cardiac complications. Diabetes Obes Metab. 2022;24(2 Suppl.):28–43. https://doi.org/10.1111/dom.14484.; Powell EE, Wong VW, Rinella M. Non-alcoholic fatty liver disease. Lancet. 2021;397(10290):2212–2224. https://doi.org/10.1016/S0140-6736(20)32511-3.; Kanwal F, Kramer JR, Mapakshi S, Natarajan Y, Chayanupatkul M, Richardson PA et al. Risk of Hepatocellular Cancer in Patients With Non-Alcoholic Fatty Liver Disease. Gastroenterology. 2018;155(6):1828–1837.e2. https://doi.org/10.1053/j.gastro.2018.08.024.; Thomas JA, Kendall BJ, El-Serag HB, Thrift AP, Macdonald GA. Hepatocellular and extrahepatic cancer risk in people with non-alcoholic fatty liver disease. Lancet Gastroenterol Hepatol. 2024;9(2):159–169. https://doi.org/10.1016/S2468-1253(23)00275-3.; Hazlehurst JM, Woods C, Marjot T, Cobbold JF, Tomlinson JW. Non-alcoholic fatty liver disease and diabetes. Metabolism. 2016;65(8):1096–1108. https://doi.org/10.1016/j.metabol.2016.01.001.; Tilg H, Moschen AR, Roden M. NAFLD and diabetes mellitus. Nat Rev Gastroenterol Hepatol. 2017;14(1):32–42. https://doi.org/10.1038/nrgastro.2016.147.; Targher G, Corey KE, Byrne CD, Roden M. The complex link between NAFLD and type 2 diabetes mellitus – mechanisms and treatments. Nat Rev Gastroenterol Hepatol. 2021;18(9):599–612. https://doi.org/10.1038/s41575-021-00448-y.; En Li Cho E, Ang CZ, Quek J, Fu CE, Lim LKE, Heng ZEQ et al. Global prevalence of non-alcoholic fatty liver disease in type 2 diabetes mellitus: an updated systematic review and meta-analysis. Gut. 2023;72(11):2138–2148. https://doi.org/10.1136/gutjnl-2023-330110.; Буеверов АО, Рощина КМ, Богомолов ПО. Неалкогольная жировая болезнь печени: новый взгляд на аспекты коморбидности. Эффективная фармакотерапия. 2022;18(6):32–38. Режим доступа: https://umedp.ru/articles/nealkogolnaya_zhirovaya_bolezn_pecheni_novyy_vzglyad_na_aspekty_komorbidnosti.html.; Chen X, Xiao J, Pang J, Chen S, Wang Q, Ling W. Pancreatic beta-cell dysfunction is associated with nonalcoholic fatty liver disease. Nutrients. 2021;13(9):3139. https://doi.org/10.3390/nu13093139.; Mitsuhashi K, Hashimoto Y, Hamaguchi M, Obora A, Kojima T et al. Impact of fatty liver disease and metabolic syndrome on incident type 2 diabetes; a population based cohort study. Endocr J. 2017;64(11):1105–1114. https://doi.org/10.1507/endocrj.ej17-0245.; Targher G. Is it time for non-alcoholic fatty liver disease screening in patients with type 2 diabetes mellitus? Hepatobiliary Surg Nutr. 2020;9(2):239–241. https://doi.org/10.21037/hbsn.2019.10.21.; Musso G, Gambino R, Cassader M. Non-alcoholic fatty liver disease from pathogenesis to management: an update. Obes Rev. 2010;11(6):430–445. https://doi.org/10.1111/j.1467-789x.2009.00657.x.; Петунина НА, Тельнова МЭ. Неалкогольная жировая болезнь печени при сахарном диабете 2-го типа. Медицинский совет. 2016;(4):92–95. https://doi.org/10.21518/2079-701X-2016-4-84-89.; Kim KS, Hong S, Han K, Park CY. Association of non-alcoholic fatty liver disease with cardiovascular disease and all cause death in patients with type 2 diabetes mellitus: nationwide population based study. BMJ. 2024;384:e076388. https://doi.org/10.1136/bmj-2023-076388.; Sinha A, Rajan M, Hoerger T, Pogach L. Costs and consequences associated with newer medications for glycemic control in type 2 diabetes. Diabetes Care. 2010;33(4):695–700. https://doi.org/10.2337/dc09-1488.; Montazeri Z, Hashemi-Madani N, Iraji H, Sohrabi M, Alaei-Shahmiri F, Emami Z et al. Non-alcoholic fatty liver disease and compromised endothelial function in people with type 2 diabetes. BMC Endocr Disord. 2023;23(1):202. https://doi.org/10.1186/s12902-023-01460-w.; Jarvis H, Craig D, Barker R, Spiers G, Stow D, Anstee QM, Hanratty B. Metabolic risk factors and incident advanced liver disease in non-alcoholic fatty liver disease (NAFLD): a systematic review and meta-analysis of population-based observational studies. PLoS Med. 2020;17(4):e1003100. https://doi.org/10.1371/journal.pmed.1003100.; Вian H, Zhu X, Xia M, Yan H, Chang X, Hu X et al. Impact of type 2 diabetes on nonalcoholic steatohepatitis and advanced fibrosis in patients with nonalcoholic fatty liver disease. Endocr Pract. 2020;26(4):444–453. https://doi.org/10.4158/EP-2019-0342.; Павлов ЧС, Глушенков ДВ, Коновалова ОН, Ивашкин ВТ. Сфера клинического применения неинвазивных методов оценки фиброза печени: результаты собственных исследований в многопрофильном стационаре. Клиническая медицина. 2009;87(11):40–45. Режим доступа: https://elibrary.ru/lajkvx.; Голованова ЕВ, Туркина СВ, Райхельсон КЛ, Оковитый СВ, Драпкина ОМ, Маев ИВ и др. Неалкогольная жировая болезнь печени у взрослых: клинические рекомендации. М.; 2022. 65 с. Режим доступа: http://disuria.ru/_ld/12/1229_kr22K76p0K74p6M.pdf.; Лазебник ЛБ, Радченко ВГ, Голованова ЕВ, Звенигородская ЛА, Конев ЮВ, Селиверстов ПВ и др. Неалкогольная жировая болезнь печени: клиника, диагностика, лечение (рекомендации для терапевтов, 2-я версия). Терапия. 2017;(3):6–23. Режим доступа: https://elibrary.ru/yqzfez.; Лазебник ЛБ, Голованова ЕВ, Туркина СВ, Райхельсон КЛ, Оковитый СВ, Драпкина ОМ и др. Неалкогольная жировая болезнь печени у взрослых: клиника, диагностика, лечение. Рекомендации для терапевтов, третья версия. Экспериментальная и клиническая гастроэнтерология. 2021;1(1):4–52. https://doi.org/10.31146/1682-8658-ecg-185-1-4-52.; Leoni S, Tovoli F, Napoli L, Serio I, Ferri S, Bolondi L. Current guidelines for the management of non-alcoholic fatty liver disease: A systematic review with comparative analysis. World J Gastroenterol. 2018;24(30):3361–3373. https://doi.org/10.3748/wjg.v24.i30.3361.; Алдашева ЖА. Неалкогольная жировая болезнь печени: роль ультразвукового метода исследования в ее диагностике. Вестник КРСУ. 2013;13(11):28–31. Режим доступа: https://elibrary.ru/sngugv.; Bjornsson ES. Epidemiology and risk factors for idiosyncratic drug-induced liver injury. Semin Liver Dis. 2014;34(2):115–122. https://doi.org/10.1055/s-0034-1375953.; Chalasani N, Younossi Z, Lavine JE, Charlton M, Cusi K, Rinella M et al. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology. 2018;67(1):328–357. https://doi.org/10.1002/hep.29367.; EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J Hepatol. 2016;64(6):1388–1402. https://doi.org/10.1016/j.jhep.2015.11.004.; Levy JR, Clore JN, Stevens W. Dietary n-3 polyunsaturated fatty acids decrease hepatic triglycerides in Fischer 344 rats. Hepatology. 2004;39(3):608–616. https://doi.org/10.1002/hep.20093.; Watanabe M, Tozzi R, Risi R, Tuccinardi D, Mariani S, Basciani S et al. et al. Beneficial effects of the ketogenic diet on nonalcoholic fatty liver disease: A comprehensive review of the literature. Obes Rev. 2020;21(8):e13024. https://doi.org/10.1111/obr.13024.; Mirabelli M, Chiefari E, Arcidiacono B, Corigliano DM, Brunetti FS, Maggisano V et al. Mediterranean Diet Nutrients to Turn the Tide against Insulin Resistance and Related Diseases. Nutrients. 2020;12:1066. https://doi.org/10.3390/nu12041066.; Van der Windt DJ, Sud V, Zhang H, Tsung A, Huang H. The Effects of Physical Exercise on Fatty Liver Disease. Gene Expr. 2018;18(2):89–101. https://doi.org/10.3727/105221617X15124844266408.; Hashida R, Kawaguchi T, Bekki M, Omoto M, Matsuse H, Nago T et al. Aerobic vs. resistance exercise in non-alcoholic fatty liver disease: A systematic review. J Hepatol. 2017;66(1):142–152. https://doi.org/10.1016/j.jhep.2016.08.023.; Oh YS, Kim HJ, Ryu SJ, Cho KA, Park YS, Park H et al. Exercise type and muscle fiber specific induction of caveolin-1 expression for insulin sensitivity of skeletal muscle. Exp Mol Med. 2007;39(3):395–401. https://doi.org/10.1038/emm.2007.44.; Fleming R, Hopkinson ZE, Wallace AM, Greer IA, Sattar N. Ovarian function and metabolic factors in women with oligomenorrhea treated with metformin in a randomized double blind placebo-controlled trial. J Clin Endocrinol Metab. 2002;87(2):569–574. https://doi.org/10.1210/jcem.87.2.8261.; Ng EH, Wat NM, Ho PC. Effects of metformin on ovulation rate, hormonal and metabolic profiles in women with clomiphene-resistant polycystic ovaries: a randomized, double-blinded placebo-controlled trial. Hum Reprod. 2001;16(8):1625–1631. https://doi.org/10.1093/humrep/16.8.1625; Sin HY, Kim JY, Jung KH. Total cholesterol, high density lipoprotein and triglyceride for cardiovascular disease in elderly patients treated with metformin. Arch Pharm Res. 2011;34(1):99–107. https://doi.org/10.1007/s12272-011-0112-5.; Zhang H, Gao C, Fang L, Zhao HC, Yao SK. Metformin and reduced risk of hepatocellular carcinoma in diabetic patients: a meta-analysis. Scand J Gastroenterol. 2013;48(1):78–87. https://doi.org/10.3109/00365521.2012.719926.; Мисникова ИВ, Древаль АВ, Лакеева ТС. Влияние метформина и пиоглитазона на факторы риска развития сердечно-сосудистой патологии у пациентов с сахарным диабетом 2-го типа, установленным во время скрининга. Альманах клинической медицины. 2013;(29):23–28. Режим доступа: https://almclinmed.ru/jour/article/view/26.; Belfort R, Harrison SA, Brown K, Darland C, Finch J, Hardies J et al. A placebo-controlled trial of pioglitazone in subjects with nonalcoholic steatohepatitis. N Engl J Med. 2006;355(22):2297–2307. https://doi.org/10.1056/NEJMoa060326.; Armstrong MJ, Gaunt P, Aithal GP, Barton D, Hull D, Parker R et al. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebo-controlled phase 2 study. Lancet. 2016;387(10019):679–690. https://doi.org/10.1016/S0140-6736(15)00803-X.; Грищенко ЕБ. Место фосфолипидных препаратов в современной терапевтической практике. Медицинский совет. 2013;(3):52–57. https://doi.org/10.21518/2079-701X-2013-3-52-57.; Dajani AI, Abu Hammour AM, Zakaria MA, Al Jaberi MR, Nounou MA, Semrin AI. Essential phospholipids as a supportive adjunct in the management of patients with NAFLD. Arab J Gastroenterol. 2015;16(3–4):99–104. https://doi.org/10.1016/j.ajg.2015.09.001.; Sas Е, Grinevich V, Efimov O, Shcherbina N. Beneficial influence of polyunsaturated phosphatidylcholine enhances functional liver condition and liver structure in patients with nonalcoholic steatohepatitis. Results of prolonged randomized blinded prospective clinical study. J Hepatol. 2013;58(Suppl 1):S549. https://doi.org/10.1016/S0168-8278(13)61365-3; Maev IV, Samsonov AA, Palgova LK, Pavlov CS, Vovk EI, Shirokova EN et al. Effectiveness of phosphatidylcholine in alleviating steatosis in patients with non-alcoholic fatty liver disease and cardiometabolic comorbidities (MANPOWER study). BMJ Open Gastroenterol. 2020;7(1):e000341. https://doi.org/10.1136/bmjgast-2019-000341.; Maev I, Pavlov Ch, Starostin KM, Popovic B. Практические данные о положительных эффектах эссенциальных фосфолипидов у пациентов с неалкогольной жировой болезнью печени. Evidence for Self-Medication. 2022;2. https://doi.org/10.52778/efsm.22.0104; Maev IV, Samsonov AA, Palgova LK, Pavlov CS, Shirokova EN, Vovk EI et al. Effectiveness of phosphatidylcholine as adjunctive therapy in improving liver function tests in patients with non-alcoholic fatty liver disease and metabolic comorbidities: real-life observational study from Russia. BMJ Open Gastroenterol. 2020;7(1):e000368. https://doi.org/10.1136/bmjgast-2019-000368.; Maev IV, Samsonov AA, Palgova LK, Pavlov CS, Shirokova E, Starostin KM. Real-world comorbidities and treatment patterns among patients with non-alcoholic fatty liver disease receiving phosphatidylcholine as adjunctive therapy in Russia. BMJ Open Gastroenterol. 2019;6(1):e000307. https://doi.org/10.1136/bmjgast-2019-000307.; Ivashkin VT, Maevskaya MV, Shirokova EN, Maev IV, Samsonov AA, Sas EI et al. Correlation of Objective Endpoints and Subjective Patient-Reported Outcomes in NAFLD Treatment with Essential Phospholipids: Real-World Data Based on Pooled Analysis of Observational Studies. Drugs Real World Outcomes. 2021;8(3):369–382. https://doi.org/10.1007/s40801-021-00250-x.; Küllenberg D, Taylor LA, Schneider M, Massing U. Health effects of dietary phospholipids. Lipids Health Dis. 2012;11:3. https://doi.org/10.1186/1476-511X-11-3.; Dajani AI, Popovic B. Essential phospholipids for nonalcoholic fatty liver disease associated with metabolic syndrome: A systematic review and network meta-analysis. World J Clin Cases. 2020;8(21):5235–5249. https://doi.org/10.12998/wjcc.v8.i21.5235.

  2. 2
    Academic Journal

    المصدر: Meditsinskiy sovet = Medical Council; № 6 (2024); 140-147 ; Медицинский Совет; № 6 (2024); 140-147 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/8278/7299; Адамян ЛВ, Андреева ЕН, Абсатарова ЮС, Григорян ОР, Дедов ИИ, Мельниченко ГА и др. Клинические рекомендации «Синдром поликистозных яичников». Проблемы эндокринологии. 2022;68(2):112–127. https://doi.org/10.14341/probl12874.; Neven ACH, Laven J, Teede HJ, Boyle JA. A Summary on Polycystic Ovary Syndrome: Diagnostic Criteria, Prevalence, Clinical Manifestations, and Management According to the Latest International Guidelines. Semin Reprod Med. 2018;36(1):5–12. https://doi.org/10.1055/s-0038-1668085.; Helena JT, Marie LM, Michael FC, Anuja D, Joop L, Lisa M. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Fertil Steril. 2018;110(3):364–379. https://doi.org/10.1016/j.fertnstert.2018.05.004.; Teede HJ, Tay CT, Laven JJE, Dokras A, Moran LJ, Piltonen TT et al. Recommendations From the 2023 International Evidence-based Guideline for the Assessment and Management of Polycystic Ovary Syndrome. J Clin Endocrinol Metab. 2023;108(10):2447–2469. https://doi.org/10.1210/clinem/dgad463.; Можейко ЛФ, Потоцкая АА. Синдром поликистозных яичников: современный взгляд на проблему (обзор литературы). Репродуктивное здоровье. Восточная Европа. 2022;12(3):390–403. https://doi.org/10.34883/PI.2022.12.3.010.; John EN. Role of Hyperinsulinemia in the Pathogenesis of the Polycystic Ovary Syndrome, and Its Clinical Implications. Semin Reprod Med. 1997;15(2):111–122. https://doi.org/10.1055/s-2007-1016294.; Сутурина ЛВ. Синдром поликистозных яичников в XXI веке. Акушерство и гинекология: новости, мнения, обучения. 2017;(3):86–91. https://doi.org/10.24411/2303-9698-2017-00040.; Lizneva D, Suturina L, Walker W, Brakta S, Gavrilova-Jordan L, Azziz R. Criteria, prevalence, and phenotypes of polycystic ovary syndrome. Fertil Steril. 2016;106(1):6–15. https://doi.org/10.1016/j.fertnstert.2016.05.003.; Lo JC, Feigenbaum SL, Yang J, Pressman AR, Selby JV, Go AS. Epidemiology and adverse cardiovascular risk profile of diagnosed polycystic ovary syndrome. J Clin Endocrinol Metab. 2006;91(4):1357–1363. https://doi.org/10.1210/jc.2005-2430.; Berni TR, Morgan CL, Berni ER, Rees DA. Polycystic Ovary Syndrome Is Associated With Adverse Mental Health and Neurodevelopmental Outcomes. J Clin Endocrinol Metab. 2018;103(6):2116–2125. https://doi.org/10.1210/jc.2017-02667.; Hung JH, Hu LY, Tsai SJ, Yang AC, Huang MW, Chen PM. Risk of psychiatric disorders following polycystic ovary syndrome: a nationwide populationbased cohort study. PLoS ONE. 2014;9(5):e97041. https://doi.org/10.1371/journal.pone.0097041.; Cooney LG, Dokras A. Depression and Anxiety in Polycystic Ovary Syndrome: Etiology and Treatment. Curr Psychiatry Rep. 2017;19(11):83. https://doi.org/10.1007/s11920-017-0834-2.; Cooney LG, Lee I, Sammel MD, Dokras A. High prevalence of moderate and severe depressive and anxiety symptoms in polycystic ovary syndrome: a systematic review and meta-analysis. Hum Reprod. 2017;32(5):1075–1091. https://doi.org/10.1093/humrep/dex044.; Johnson JE, Daley D, Tarta C, Stanciu PI. Risk of endometrial cancer in patients with polycystic ovarian syndrome: A meta-analysis. Oncol Lett. 2023;25(4):168. https://doi.org/10.3892/ol.2023.13754.; Harris HR, Terry KL. Polycystic ovary syndrome and risk of endometrial, ovarian, and breast cancer: a systematic review. Fertil Res Pract. 2016;2:14. https://doi.org/10.1186/s40738-016-0029-2.; Risch HA. Hormonal etiology of epithelial ovarian cancer, with a hypothesis concerning the role of androgens and progesterone. J Natl Cancer Inst. 1998;90(23):1774–1786. https://doi.org/10.1093/jnci/90.23.1774.; Althuis MD, Moghissi KS, Westhoff CL, Scoccia B, Lamb EJ, Lubin JH, Brinton LA. Uterine cancer after use of clomiphene citrate to induce ovulation. Am J Epidemiol. 2005;161(7):607–615. https://doi.org/10.1093/aje/kwi084.; Goldstein SR, Siddhanti S, Ciaccia AV, Plouffe LJr. A pharmacological review of selective oestrogen receptor modulators. Hum Reprod Update. 2000;6(3):212–224. https://doi.org/10.1093/humupd/6.3.212.; Endometrial cancer and oral contraceptives: an individual participant meta-analysis of 27 276 women with endometrial cancer from 36 epidemiological studies. Lancet Oncol. 2015;16(9):1061–1070. https://doi.org/10.1016/S1470-2045(15)00212-0.; Colditz GA. Oral contraceptive use and mortality during 12 years of follow-up: the Nurses’ Health Study. Ann Intern Med. 1994;120(10):821–826. https://doi.org/10.7326/0003-4819-120-10-199405150-00002.; Wernli KJ, Ray RM, Gao DL, De Roos AJ, Checkoway H, Thomas DB. Menstrual and reproductive factors in relation to risk of endometrial cancer in Chinese women. Cancer Causes Control. 2006;17(7):949–955. https://doi.org/10.1007/s10552-006-0034-6.; Ramezani Tehrani F, Amiri M, Behboudi-Gandevani S, Bidhendi-Yarandi R, Carmina E. Cardiovascular events among reproductive and menopausal age women with polycystic ovary syndrome: a systematic review and meta-analysis. Gynecol Endocrinol. 2020;36(1):12–23. https://doi.org/10.1080/09513590.2019.1650337.; Gallo MF, Nanda K, Grimes DA, Lopez LM, Schulz KF. 20 µg versus >20 µg estrogen combined oral contraceptives for contraception. Cochrane Database Syst Rev. 2013;2013(8):CD003989. https://doi.org/10.1002/14651858.CD003989.pub5.; Basdevant A, Conard J, Pelissier C, Guyene TT, Lapousterle C, Mayer M et al. Hemostatic and metabolic effects of lowering the ethinyl-estradiol dose from 30 mcg to 20 mcg in oral contraceptives containing desogestrel. Contraception. 1993;48(3):193–204. https://doi.org/10.1016/0010-7824(93)90141-s.; Kaunitz AM, Burkman RT, Fisher AC, LaGuardia KD. Cycle control with a 21-day compared with a 24-day oral contraceptive pill: a randomized controlled trial. Obstet Gynecol. 2009;114(6):1205–1212. https://doi.org/10.1097/AOG.0b013e3181beab47.; Notaro ALG, Neto FTL. The use of metformin in women with polycystic ovary syndrome: an updated review. J Assist Reprod Genet. 2022;39(3):573–579. https://doi.org/10.1007/s10815-022-02429-9.; Misso ML, Costello MF, Garrubba M, Wong J, Hart R, Rombauts L. Metformin versus clomiphene citrate for infertility in non-obese women with polycystic ovary syndrome: a systematic review and meta-analysis. Hum Reprod Update. 2013;19(1):2–11. https://doi.org/10.1093/humupd/dms036.; Wang R, Li W, Bordewijk EM, Legro RS, Zhang H, Wu X. First-line ovulation induction for polycystic ovary syndrome: an individual participant data meta-analysis. Hum Reprod Update. 2019;25(6):717–732. https://doi.org/10.1093/humupd/dmz029.; DiNicolantonio JJ, H O’Keefe J. Myo-inositol for insulin resistance, metabolic syndrome, polycystic ovary syndrome and gestational diabetes. Open Heart. 2022;9(1):e001989. https://doi.org/10.1136/openhrt-2022-001989.; Croze ML, Soulage CO. Potential role and therapeutic interests of myo-inositol in metabolic diseases. Biochimie. 2013;95(10):1811–1827. https://doi.org/10.1016/j.biochi.2013.05.011.; Roy KK, Baruah J, Singla S, Sharma JB, Singh N, Jain SK, Goyal M. A prospective randomized trial comparing the efficacy of Letrozole and Clomiphene citrate in induction of ovulation in polycystic ovarian syndrome. J Hum Reprod Sci. 2012;5(1):20–25. https://doi.org/10.4103/0974-1208.97789.; Mitwally MF, Casper RF. Aromatase inhibition improves ovarian response to follicle-stimulating hormone in poor responders. Fertil Steril. 2002;77(4):776–780. https://doi.org/10.1016/s0015-0282(01)03280-0.; Begum MR, Ferdous J, Begum A, Quadir E. Comparison of efficacy of aromatase inhibitor and clomiphene citrate in induction of ovulation in polycystic ovarian syndrome. Fertil Steril. 2009;92(3):853–857. https://doi.org/10.1016/j.fertnstert.2007.08.044.; Dehbashi S, Parsanezhad ME, Alborzi S, Zarei A. Effect of clomiphene citrate on endometrium thickness and echogenic patterns. Int J Gynaecol Obstet. 2003;80(1):49–53. https://doi.org/10.1016/s0020-7292(02)00341-7.; Thompson LA, Barratt CL, Thornton SJ, Bolton AE, Cooke ID. The effects of clomiphene citrate and cyclofenil on cervical mucus volume and receptivity over the periovulatory period. Fertil Steril. 1993;59(1):125–129. https://doi.org/10.1016/s0015-0282(16)55627-1.; Gelety TJ, Buyalos RP. The effect of clomiphene citrate and menopausal gonadotropins on cervical mucus in ovulatory cycles. Fertil Steril. 1993;60(3):471–476. https://doi.org/10.1016/s0015-0282(16)56163-9.; Moll E, Bossuyt PM, Korevaar JC, Lambalk CB, van der Veen F. Effect of clomifene citrate plus metformin and clomifene citrate plus placebo on induction of ovulation in women with newly diagnosed polycystic ovary syndrome: randomised double blind clinical trial. BMJ. 2006;332(7556):1485. https://doi.org/10.1136/bmj.38867.631551.55.; Tang T, Lord JM, Norman RJ, Yasmin E, Balen AH. Insulin-sensitising drugs (metformin, rosiglitazone, pioglitazone, D-chiro-inositol) for women with polycystic ovary syndrome, oligo amenorrhoea and subfertility. Cochrane Database Syst Rev. 2012;(5):CD003053. https://doi.org/10.1002/14651858.CD003053.pub5.; Legro RS, Barnhart HX, Schlaff WD, Carr BR, Diamond MP, Carson SA. Clomiphene, metformin, or both for infertility in the polycystic ovary syndrome. N Engl J Med. 2007;356(6):551–566. https://doi.org/10.1056/NEJMoa063971.; Chen Y, Wang G, Chen J, Wang C, Dong X, Chang HM. Genetic and Epigenetic Landscape for Drug Development in Polycystic Ovary Syndrome. Endocr Rev. 2024;31:bnae002. https://doi.org/10.1210/endrev/bnae002.; Khan MJ, Ullah A, Basit S. Genetic Basis of Polycystic Ovary Syndrome (PCOS): Current Perspectives. Appl Clin Genet. 2019;12:249–260. https://doi.org/10.2147/TACG.S200341.; https://www.med-sovet.pro/jour/article/view/8278

  3. 3
    Academic Journal

    المصدر: Meditsinskiy sovet = Medical Council; № 23 (2023); 192-200 ; Медицинский Совет; № 23 (2023); 192-200 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/8018/7110; Дедов ИИ, Шестакова МВ, Майоров АЮ. (ред.). Алгоритмы специализированной медицинской помощи больным сахарным диабетом. М.; 2023. 234 с. Режим доступа: https://webmed.irkutsk.ru/doc/pdf/algosd.pdf.; Дедов ИИ, Шестакова МВ, Галстян ГР. Распространенность сахарного диабета 2-го типа у взрослого населения России (исследование NATION). Сахарный диабет. 2016;19(2):104–112. https://doi.org/10.14341/DM2004116-17.; Stratton IM, Adler AI, Neil HA, Matthews DR, Manley SE, Cull CA et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ. 2000;321(7258):405–412. https://doi.org/10.1136/bmj.321.7258.405.; Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998;352(9131):854–865. Available at: https://pubmed.ncbi.nlm.nih.gov/9742977.; Бирюкова ЕВ, Шинкин МВ, Соловьева ИВ. Современная практика самоконтроля гликемии: основы эффективного управления сахарным диабетом. Клинический разбор в общей медицине. 2023;4(2):60–67 https://doi.org/10.47407/kr2023.4.2.00205.; Светлова ОВ, Гурьева ИВ. Инновационные технологии в управлении сахарным диабетом: предупреждение гипогликемии. Медицинский совет. 2023;17(9):89–95. https://doi.org/10.21518/ms2023-167.; Светлова ОВ, Гурьева ИВ, Савченко ЛС. Современные возможности самоконтроля: Новая эра эффективного управления сахарным диабетом. Медицинский совет. 2019;(4):30–33. https://doi.org/10.21518/2079701X-2019-4-30-33.; Моргунова ТБ, Глинкина ИВ, Пешева ЕД, Зорина АА, Фадеев ВВ. Место метформина в современных клинических рекомендациях по лечению сахарного диабета 2-го типа. Медицинский совет. 2023;17(13):122–129. https://doi.org/10.21518/ms2023-211.; Моргунов ЛЮ. Сиофор: плейотропные эффекты в реальной клинической практике. Эффективная фармакотерапия. Эндокринология. 2014;(5):46. Режим доступа: https://umedp.ru/articles/siofor_pleyotropnye_effekty_v_realnoy_klinicheskoy_praktike.html?forgot_password=yes&%2Farticles%2Fsiofor_pleyotropnye_effekty_v_realnoy_klinicheskoy_praktike_html.; Sanchez-Rangel E, Inzucchi SE. Metformin: clinical use in type 2 diabetes. Diabetologia. 2017;60(9):1586–1593. https://doi.org/10.1007/s00125-017-336-x.; Introduction: Standards of Medical Care in Diabetes-2018. Diabetes Care. 2018;41(1):1–2. https://doi.org/10.2337/dc18-Sint01.; Bonnet F, Scheen A. Understanding and overcoming metformin gastrointestinal intolerance. Diabetes Obes Metab. 2017;19(4):473–481. https://doi.org/10.1111/dom.12854.; Bailey CJ, Day C. Traditional plant medicines as treatments for diabetes. Diabetes Care. 1989;12(8):553–564. https://doi.org/10.2337/diacare.12.8.553.; Sivitz WI, Phillips LS, Wexler DJ, Fortmann SP, Camp AW, Tiktin M. et al. Optimization of Metformin in the GRADE Cohort: Effect on Glycemia and Body Weight. Diabetes Care. 2020;43(5):940–947. https://doi.org/10.2337/dc19-1769.; Walker EA, Gonzalez JS, Tripputi MT, Dagogo-Jack S, Matulik MJ, Montez MG et al. Group. Long-term metformin adherence in the Diabetes Prevention Program Outcomes Study. BMJ Open Diabetes Res Care. 2020;8(1):e001537. https://doi.org/10.1136/bmjdrc-2020-001537.; Garber AJ, Handelsman Y, Grunberger G, Einhorn D, Abrahamson MJ, Barzilay JI et al. Consensus statement by the American association of clinical endocrinologists and American college of endocrinology on the comprehensive type 2 diabetes management algorithm – 2020. Endocr Pract. 2020;26(1):107–139. https://doi.org/10.4158/CS-2019-0472.; Patel-Sanchez N, Perito E, Tsai P, Raymond-Flesch M, Lodish M, Sarkar M. Prevalence of nonalcoholic fatty liver disease increased with type 2 diabetes mellitus in overweight/obese youth with polycystic ovary syndrome. J Pediatr Endocrinol Metab. 2023;36(5):441–446. https://doi.org/10.1515/jpem-2022-0527.; Stedman M, Rea R, Duff CJ, Livingston M, McLoughlin K, Wong L et al. People with Type Diabetes Mellitus (T1DM) self-reported views on their own condition management reveal links to potentially improved outcomes and potential areas for service improvement. Diabetes Res Clin Pract. 2020;170:108479. https://doi.org/10.1016/j.diabres.2020.108479.; Дедов ИИ, Шестакова МВ, Викулова ОК, Железнякова АВ, Исаков МА. Эпидемиологические характеристики сахарного диабета в Российской Федерации: клинико-статистический анализ по данным регистра сахарного диабета на 01.01.2021. Сахарный диабет. 2021;24(3):204–221. https://doi.org/10.14341/DM12759.; Kautzky-Willer A, Michael Leutner M, Jürgen Harreiter J. Sex differences in type 2 diabetes. Diabetologia. 2023;66(6):986–1002. https://doi.org/10.1007/s00125-023-05891-x.; Hong SH, Sung YA, Hong YS, Song DK, Jung H, Jeong K et al. Non-alcoholic fatty liver disease is associated with hyperandrogenism in women with polycystic ovary syndrome. Sci Rep. 2023;13(1):13397. https://doi.org/10.1038/s41598-023-39428-4.; Abu-Freha N, Cohen B, Weissmann S, Hizkiya R, Abu-Hammad R, Gadeer Taha G, Gordon M. Comorbidities and Outcomes among Females with Non-Alcoholic Fatty Liver Disease Compared to Males. Biomedicines. 2022;10(11):2908. https://doi.org/10.3390/biomedicines10112908.; Chang SH, Wu LS, Chiou MJ, Liu JR, Yu KH, Kuo CF et al. Association of metformin with lower atrial fibrillation risk among patients with type 2 diabetes mellitus: a population-based dynamic cohort and in vitro studies. Cardiovasc Diabetol. 2014;13:123. https://doi.org/10.1186/s12933-014-0123-x.; DiStefano JK. The Role of Choline, Soy Isoflavones, and Probiotics as Adjuvant Treatments in the Prevention and Management of NAFLD in Postmenopausal Women. Nutrients. 2023;15(12):2670. https://doi.org/10.3390/nu15122670.; Соколова АВ, Климова АВ, Драгунов ДО, Арутюнов ГП. Оценка влияния терапии метформином на величину мышечной массы и мышечной силы у больных с и без сахарного диабета. Метаанализ 15 исследований. Российский кардиологический журнал. 2021;26(3):4331. https://doi.org/10.15829/1560-4071-2021-4331.; Григорьева ИИ, Раскина ТА, Летаева МВ, Малышенко ОС, Аверкиева ЮВ, Масенко ВЛ, Коков АН. Саркопения: особенности патогенеза и диагностики. Фундаментальная и клиническая медицина. 2019;4(4):105–116. https://doi.org/10.23946/2500-0764-2019-4-4-105-116.; Rodriguez Moctezuma JR, Robles López G, López Carmona JM, Gutiérrez- Rosas MJ. Effects of metformin on the body composition in subjects with risk factors for type 2 diabetes. Diabetes Obes Metab. 2005;7(2):189–192. https://doi.org/10.1111/j.1463-1326.2004.00385.x.; Chen LK, Woo J, Assantachai P, Auyeung TW, Chou MY, Iijima K et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J Am Med Dir Assoc. 2020;21(3):300–307. https://doi.org/10.1016/j.jamda.2019.12.012.; Matthews DR, Paldánius PM, Proot P, Chiang Y, Stumvoll M, Del Prato S. Glycaemic durability of an early combination therapy with vildagliptin and metformin versus sequential metformin monotherapy in newly diagnosed type 2 diabetes (VERIFY): a 5-year, multicentre, randomised, double-blind trial. Lancet. 2019;394(10208):1519–1529. https://doi.org/10.1016/s0140-6736(19)32131-2.; Wee AKH, Sultana R. Determinants of vitamin B12 deficiency in patients with type-2 diabetes mellitus – A primary-care retrospective cohort study. BMC Prim Care. 2023;24(1):102. https://doi.org/10.1186/s12875-023-02057-x.; Schwartz S, Fonseca V, Berner B, Cramer M, Chiang YK, Lewin A. Efficacy, tolerability, and safety of a novel once-daily extended-release metformin in patients with type 2 diabetes. Diabetes Care. 2006;29(4):759–764. https://doi.org/10.2337/diacare.29.04.06.dc05-1967.; Rathis TS, Ranganathan RS, Solai Raja M, Srivastav PSS. Prevalence of Vitamin B12 Deficiency in Type 2 Diabetes Mellitus Patients on Metformin Therapy. Cureus. 2023;15(4):e37466. https://doi.org/10.7759/Cureus.37466.; Kim J, Ahn CW, Fang S, Lee HS, Park JS. Association between metformin dose and vitamin B12 deficiency in patients with type 2 diabetes. Medicine (Baltimore). 2019;98(46):e17918. https://doi.org/10.1097MD.0000000000017918.; https://www.med-sovet.pro/jour/article/view/8018

  4. 4
    Academic Journal

    المساهمون: Работа выполнена при поддержке Российского научного фонда, грант № 22-15-00048. Исследование механизмов формирования артериальной гипертензии при МетС выполнено в рамках государственного задания 122020300042-4. В работе было использовано оборудование Центра коллективного пользования «Медицинская геномика» ФГБНУ «Томский национальный исследовательский медицинский центр Российской академии наук».

    المصدر: Acta Biomedica Scientifica; Том 9, № 1 (2024); 222-232 ; 2587-9596 ; 2541-9420

    وصف الملف: application/pdf

    Relation: https://www.actabiomedica.ru/jour/article/view/4616/2749; Maslov LN, Naryzhnaia NV, Tsibulnikov SY, Kolar F, Zhang Y, Wang H, et al. Role of endogenous opioid peptides in the infarct size-limiting effect of adaptation to chronic continuous hypoxia. Life Sci. 2013; 93(9-11): 373-379. doi:10.1016/j.lfs.2013.07.018; Mukhomedzyanov AV, Sirotina MA, Logvinov SV, Naryzhnaya NV. Remote postconditioning of myocardium: Mechanisms, efficacy in metabolic syndrome in experimental and clinical studies (review). Siberian Journal of Clinical and Experimental Medicine 2023; 38(1): 37–45. doi:10.29001/2073-8552-2023-38-1-37-45; Zhou JJ, Wei Y, Zhang L, Zhang J, Guo LY, Gao C, et al. Chronic intermittent hypobaric hypoxia prevents cardiac dysfunction through enhancing antioxidation in fructose-fed rats. Can J Physiol Pharmacol. 2013; 91(5): 332-337. doi:10.1139/cjpp-2012-0059; Naryzhnaya NV, Derkachev IA, Kurbatov BK, Sirotina MA, Kilin M, Maslov LN. Decrease in infarct-limiting effect of the chronic normobaric hypoxia in rats with diet induced metabolic syndrome is associated with disturbance of carbohydrate and lipid metabolism. Bulletin of Experimental Biology and Medicine. 2022; 174(12): 692-697. doi:10.47056/0365-9615-2022-174-12-692-697; Nedvedova I, Kolar D, Neckar J, Kalous M, Pravenec M, Šilhavý J, et al. Cardioprotective regimen of adaptation to chronic hypoxia diversely alters myocardial gene expression in SHR and SHR-mtBN conplastic rat strains. Front Endocrinol. 2019; 9: 809. doi:10.3389/fendo.2018.00809; Birulina JG, Ivanov VV, Buyko EE, Bykov VV, Dzyuman AN, Nosarev АV, et al. Morphological changes in the heart and aorta of rats with diet-induced metabolic syndrome. Bulletin of Siberian Medicine. 2022; 21(3): 13-21. doi:10.20538/1682-0363-2022-3-13-21; Donner D, Headrick JP, Peart JN, Du Toit EF. Obesity improves myocardial ischaemic tolerance and RISK signalling in insulin-insensitive rats. Dis Model Mech. 2013; 6: 457-466. doi:10.1242/dmm.010959; Penna C, Andreadou I, Aragno M, Beauloye C, Bertrand L, Lazou A, et al. Effect of hyperglycaemia and diabetes on acute myocardial ischaemia-reperfusion injury and cardioprotection by ischaemic conditioning protocols. Br J Pharmacol. 2020; 177(23): 5312-5335. doi:10.1111/bph.14993; Okatan EN, Olgar Y, Tuncay E, Turan B. Azoramide improves mitochondrial dysfunction in palmitate-induced insulin resistant H9c2 cells. Mol Cell Biochem. 2019; 461(1-2): 65-72. doi:10.1007/s11010-019-03590-z; Mansor LS, Mehta K, Aksentijevic D, Carr CA, Lund T, Cole MA, et al. Increased oxidative metabolism following hypoxia in the type 2 diabetic heart, despite normal hypoxia signalling and metabolic adaptation. J Physiol. 2016; 594(2): 307-320. doi:10.1113/JP271242; Zuo A, Zhao X, Li T, Li J, Lei S, Chen J, et al. CTRP9 knockout exaggerates lipotoxicity in cardiac myocytes and high‐fat diet‐induced cardiac hypertrophy through inhibiting the LKB1/AMPK pathway. J Cell Mol Med. 2020; 24(4): 2635-2647. doi:10.1111/jcmm.14982; Zhang H, Liu B, Li T, Zhu Y, Luo G, Jiang Y, et al. AMPK activation serves a critical role in mitochondria quality control via modulating mitophagy in the heart under chronic hypoxia. Int J Mol Med. 2018; 41(1): 69-76. doi:10.3892/ijmm.2017.3213; Sumneang N, Oo TT, Singhanat K, Maneechote C, Arunsak B, Nawara W, et al. Inhibition of myeloid differentiation factor 2 attenuates cardiometabolic impairments via reducing cardiac mitochondrial dysfunction, inflammation, apoptosis and ferroptosis in prediabetic rats. Biochim Biophys Acta Mol Basis Dis. 2022; 1868(2): 166301. doi:10.1016/j.bbadis.2021.166301; Kravchuk E, Grineva E, Bairamov A, Galagudza M, Vlasov T. The effect of metformin on the myocardial tolerance to ischemiareperfusion injury in the rat model of diabetes mellitus type II. Exp Diabetes Res. 2011; 2011: 10-15. doi:10.1155/2011/907496; Ren C, Yi W, Jiang B, Gao E, Liang J, Zhang B, et al. Diminished adipoR1/APPL1 interaction mediates reduced cardioprotective actions of adiponectin against myocardial ischemia/reperfusion injury in type-2 diabetic mice. Stem Cells Int. 2023; 2023: 1-8. doi:10.1155/2023/7441367; Van Berendoncks AM, Stensvold D, Garnier A, Fortin D, Sente T, Vrints CJ, et al. Disturbed adiponectin – AMPK system in skeletal muscle of patients with metabolic syndrome. Eur J Prevent Cardiol. 2015; 22(2): 203-205. doi:10.1177/2047487313508034; Lochner A, Genade S, Genis A, Marais E, Salie R. Long-chain free fatty acids inhibit ischaemic preconditioning of the isolated rat heart. Mol Cell Biochem. 2020; 473(1-2): 111-132. doi:10.1007/s11010-020-03812-9; Semenza GL. Angiogenesis ischemic and neoplastic disorders. Ann Rev Med. 2003; 54(1): 17-28. doi:10.1146/annurev.med.54.101601.152418; Liu T, Wu Z, Liu J, Lv Y, Li W. Metabolic syndrome and its components reduce coronary collateralization in chronic total occlusion: An observational study. Cardiovasc Diabetol. 2021; 20(1): 104. doi:10.1186/s12933-021-01297-4; Zeng Y, Liu H, Kang K, Wang Z, Hui G, Zhang X, et al. Hypoxia inducible factor-1 mediates expression of miR-322: Potential role in proliferation and migration of pulmonary arterial smooth muscle cells. Sci Rep. 2015; 5(1): 12098. doi:10.1038/srep12098; Dong W, Dong C, Zhu J, Zheng Y, Weng J, Liu L, et al. HIF‐1α‐ induced upregulated miR‐322 forms a feedback loop by targeting Smurf2 and Smad7 to activate Smad3/β‐catenin/HIF‐1α, thereby improving myocardial ischemia‐reperfusion injury. Cell Biol Int. 2023; 47(5): 894-906. doi:10.1002/cbin.11954; Marchand A, Atassi F, Mougenot N, Clergue M, Codoni V, Berthuin J, et al. miR-322 regulates insulin signaling pathway and protects against metabolic syndrome-induced cardiac dysfunction in mice. Biochim Biophys Acta (BBA) Mol Basis Dis. 2016; 1862(4): 611-621. doi:10.1016/j.bbadis.2016.01.010; Lefebvre P, Fruchart J, Staels B, Lefebvre P, Chinetti G, Fruchart J, et al. Sorting out the roles of PPAR a in energy metabolism and vascular homeostasis. J Clin Invest 2006; 116(3): 571-580. doi:10.1172/JCI27989.symptoms; Barger PM, Kelly DP. PPAR signaling in the control of cardiac energy metabolism. Trends Cardiovasc Med. 2000; 10(6): 238- 245. doi:10.1016/S1050-1738(00)00077-3; Sánchez-Aguilar M, Ibarra-Lara L, Cano-Martínez A, Soria-Castro E, Castrejón-Téllez V, Pavón N, et al. PPAR alpha activation by clofibrate alleviates ischemia/reperfusion injury in metabolic syndrome rats by decreasing cardiac inflammation and remodeling and by regulating the atrial natriuretic peptide compensatory response. Int J Mol Sci. 2023; 24(6): 5321. doi:10.3390/ijms24065321; Rajlic S, Surmann L, Zimmermann P, Weisheit CK, Bindila L, Treede H, et al. Fatty acid amide hydrolase deficiency is associated with deleterious cardiac effects after myocardial ischemia and reperfusion in mice. Int J Mol Sci. 2022; 23(20): 12690. doi:10.3390/ijms232012690; Yan J, Song K, Bai Z, Ge R-L. WY14643 improves left ventricular myocardial mitochondrial and systolic functions in obese rats under chronic persistent hypoxia via the PPARα pathway. Life Sci. 2021; 266: 118888. doi:10.1016/j.lfs.2020.118888; https://www.actabiomedica.ru/jour/article/view/4616

  5. 5
  6. 6
    Academic Journal

    المصدر: Meditsinskiy sovet = Medical Council; № 13 (2023); 122-129 ; Медицинский Совет; № 13 (2023); 122-129 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/7720/6855; Дедов И.И., Шестакова М.В., Майоров А.Ю. (ред.). Алгоритмы специализированной медицинской помощи больным сахарным диабетом. 11-й выпуск. М.; 2023. 234 с. Режим доступа: https://webmed.irkutsk.ru/doc/pdf/algosd.pdf.; Montvida O., Shaw J., Atherton J.J., Stringer F., Paul S.K. Long-term Trends in Antidiabetes Drug Usage in the U.S.: Real-world Evidence in Patients Newly Diagnosed With Type 2 Diabetes. Diabetes Care. 2018;41(1):69–78. https://doi.org/10.2337/dc17-1414.; Maruthur N.M., Tseng E., Hutfless S., Wilson L.M., Suarez-Cuervo C., Berger Z. et al. Diabetes Medications as Monotherapy or Metformin-Based Combination Therapy for Type 2 Diabetes: A Systematic Review and Meta-analysis. Ann Intern Med. 2016;164(11):740–751. https://doi.org/10.7326/M15-2650.; Fang M., Wang D., Coresh J., Selvin E. Trends in Diabetes Treatment and Control in U.S. Adults, 1999–2018. N Engl J Med. 2021;384(23):2219–2228. https://doi.org/10.1056/NEJMsa2032271.; Hadden D.R. Goat’s rue – French lilac – Italian fitch – Spanish sainfoin: gallega officinalis and metformin: the Edinburgh connection. J R Coll Physicians Edinb. 2005;35(3):258–260. Available at: https://pubmed.ncbi.nlm.nih.gov/16402501.; Keeler R.F., Baker D.C., Evans J.O. Individual animal susceptibility and its relationship to induced adaptation or tolerance in sheep to Galega officinalis L. Vet Hum Toxicol. 1988;30(5):420–423. Available at: https://pubmed.ncbi.nlm.nih.gov/3188360.; Bailey C.J., Day C. Traditional plant medicines as treatments for diabetes. Diabetes Care. 1989;12(8):553–564. https://doi.org/10.2337/diacare.12.8.553.; Mckendry J.B., Kuwayti K., Rado P.P. Clinical experience with DBI (phenformin) in the management of diabetes. Can Med Assoc J. 1959;80(10):773–778. Available at: https://pubmed.ncbi.nlm.nih.gov/13652024.; Bailey C.J. Metformin: historical overview. Diabetologia. 2017;60(9):1566–1576. https://doi.org/10.1007/s00125-017-4318-z.; IDF Clinical Guidelines Task Force. Global Guideline for Type 2 Diabetes: recommendations for standard, comprehensive, and minimal care. Diabet Med. 2006;23(6):579–593. https://doi.org/10.1111/j.1464-5491.2006.01918.x.; Смирнова О.М. Место метформина в современном лечении и профилактике сахарного диабета 2 типа. Сахарный диабет. 2010;13(3):83–90. https://doi.org/10.14341/2072-0351-5494.; American Diabetes Association. Standards of Medical Care in Diabetes – 2021. Diabetes Care. 2021;44(Suppl. 1):111–124. https://doi.org/10.2337/dc21-S009.; Garber A.J., Handelsman Y., Grunberger G., Einhorn D., Abrahamson M.J., Barzilay J.I. et al. Consensus statement by the American association of clinical endocrinologists and American college of endocrinology on the comprehensive type 2 diabetes management algorithm – 2020. Endocr Pract. 2020;26(1):107–139. https://doi.org/10.4158/CS-2019-0472.; Cosentino F., Grant P.J., Aboyans V., Bailey C.J., Ceriello A., Delgado V. et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J. 2020;41(2):255–323. https://doi.org/10.1093/eurheartj/ehz486.; Blonde L., Umpierrez G.E., Reddy S.S., McGill J.B., Berga S.L., Bush M. et al. American Association of Clinical Endocrinology Clinical Practice Guideline: Developing a Diabetes Mellitus Comprehensive Care Plan – 2022 Update. Endocr Pract. 2022;28(10):923–1049. https://doi.org/10.1016/j.eprac.2022.08.002.; Sanchez-Rangel E., Inzucchi S.E. Metformin: clinical use in type 2 diabetes. Diabetologia. 2017;60(9):1586–1593. https://doi.org/10.1007/s00125-017-4336-x.; Hostalek U., Gwilt M., Hildemann S. Therapeutic Use of Metformin in Prediabetes and Diabetes Prevention. Drugs. 2015;75(10):1071–1094. https://doi.org/10.1007/s40265-015-0416-8.; Matthews D.R., Paldánius P.M., Proot P., Chiang Y., Stumvoll M., Del Prato S.; VERIFY study group. Glycaemic durability of an early combination therapy with vildagliptin and metformin versus sequential metformin monotherapy in newly diagnosed type 2 diabetes (VERIFY): a 5-year, multicentre, randomised, double-blind trial. Lancet. 2019;394(10208):1519–1529. https://doi.org/10.1016/S0140-6736(19)32131-2.; Sivitz W.I., Phillips L.S., Wexler D.J., Fortmann S.P., Camp A.W., Tiktin M. et al. Optimization of Metformin in the GRADE Cohort: Effect on Glycemia and Body Weight. Diabetes Care. 2020;43(5):940–947. https://doi.org/10.2337/dc19-1769.; Garber A.J., Duncan T.G., Goodman A.M., Mills D.J., Rohlf J.L. Efficacy of metformin in type II diabetes: results of a double-blind, placebo-controlled, dose-response trial. Am J Med. 1997;103(6):491–497. https://doi.org/10.1016/s0002-9343(97)00254-4.; Mahabaleshwarkar R., DeSantis A. Metformin dosage patterns in type 2 diabetes patients in a real-world setting in the United States. Diabetes Res Clin Pract. 2021;172:108531. https://doi.org/10.1016/j.diabres.2020.108531.; Дедов И.И., Шестакова М.В., Галстян Г.Р. Распространенность сахарного диабета 2 типа у взрослого населения России (исследование NATION). Сахарный диабет. 2016;19(2):104–112. https://doi.org/10.14341/DM2004116-17.; Ali M.K., Bullard K.M., Saydah S., Imperatore G., Gregg E.W. Cardiovascular and renal burdens of prediabetes in the USA: analysis of data from serial cross-sectional surveys, 1988–2014. Lancet Diabetes Endocrinol. 2018;6(5):392–403. https://doi.org/10.1016/S2213-8587(18)30027-5.; Vistisen D., Witte D.R., Brunner E.J., Kivimäki M., Tabák A., Jørgensen M.E., Færch K. Risk of Cardiovascular Disease and Death in Individuals With Prediabetes Defined by Different Criteria: The Whitehall II Study. Diabetes Care. 2018;41(4):899–906. https://doi.org/10.2337/dc17-2530.; Diabetes Prevention Program Research Group. Long-term safety, tolerability, and weight loss associated with metformin in the Diabetes Prevention Program Outcomes Study. Diabetes Care. 2012;35(4):731–737. https://doi.org/10.2337/dc11-1299.; Diabetes Prevention Program Research Group. Long-term Effects of Metformin on Diabetes Prevention: Identification of Subgroups That Benefited Most in the Diabetes Prevention Program and Diabetes Prevention Program Outcomes Study. Diabetes Care. 2019;42(4):601–608. https://doi.org/10.2337/dc18-1970.; Walker E.A., Gonzalez J.S., Tripputi M.T., Dagogo-Jack S., Matulik M.J., Montez M.G. et al. Group. Long-term metformin adherence in the Diabetes Prevention Program Outcomes Study. BMJ Open Diabetes Res Care. 2020;8(1):e001537. https://doi.org/10.1136/bmjdrc-2020-001537.; Hughes A., Khan T., Kirley K., Moin T., Mainous A., Sachdev N. et al. Metformin Prescription Rates for Patients with Prediabetes. J Am Board Fam Med. 2022;35(4):821–826. https://doi.org/10.3122/jabfm.2022.04.210485.; McCreight L.J., Bailey C.J., Pearson E.R. Metformin and the gastrointestinal tract. Diabetologia. 2016;59(3):426–435. https://doi.org/10.1007/s00125015-3844-9.; Bonnet F., Scheen A. Understanding and overcoming metformin gastrointestinal intolerance. Diabetes Obes Metab. 2017;19(4):473–481. https://doi.org/10.1111/dom.12854.; Wee A.K.H., Sultana R. Determinants of vitamin B12 deficiency in patients with type-2 diabetes mellitus – A primary-care retrospective cohort study. BMC Prim Care. 2023;24(1):102. https://doi.org/10.1186/s12875-023-02057-x.; Rathis T.S., Ranganathan R.S., Solai Raja M., Srivastav P.S.S. Prevalence of Vitamin B12 Deficiency in Type 2 Diabetes Mellitus Patients on Metformin Therapy. Cureus. 2023;15(4):e37466. https://doi.org/10.7759/cureus.37466.; Kim J., Ahn C.W., Fang S., Lee H.S., Park J.S. Association between metformin dose and vitamin B12 deficiency in patients with type 2 diabetes. Medicine (Baltimore). 2019;98(46):e17918. https://doi.org/10.1097/MD.0000000000017918.; Aroda V.R., Edelstein S.L., Goldberg R.B., Knowler W.C., Marcovina S.M., Orchard T.J. et al. Long-term Metformin Use and Vitamin B12 Deficiency in the Diabetes Prevention Program Outcomes Study. J Clin Endocrinol Metab. 2016;101(4):1754–1761. https://doi.org/10.1210/jc.2015-3754.; Liu L., Simon B., Shi J., Mallhi A.K., Eisen H.J. Impact of diabetes mellitus on risk of cardiovascular disease and all-cause mortality: Evidence on health outcomes and antidiabetic treatment in United States adults. World J Diabetes. 2016;7(18):449–461. https://doi.org/10.4239/wjd.v7.i18.449.; Khunti K., Millar-Jones D. Clinical inertia to insulin initiation and intensification in the UK: A focused literature review. Prim Care Diabetes. 2017;11(1):3–12. https://doi.org/10.1016/j.pcd.2016.09.003.; Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998;352(9131):854865. Available at: https://pubmed.ncbi.nlm.nih.gov/9742977.; Hong J., Zhang Y., Lai S., Lv A., Su Q., Dong Y. et al. Effects of metformin versus glipizide on cardiovascular outcomes in patients with type 2 diabetes and coronary artery disease. Diabetes Care. 2013;36(5):1304–1311. https://doi.org/10.2337/dc12-0719.; Selvin E., Bolen S., Yeh H.C., Wiley C., Wilson L.M., Marinopoulos S.S. et al. Cardiovascular outcomes in trials of oral diabetes medications: a systematic review. Arch Intern Med. 2008;168(19):2070–2080. https://doi.org/10.1001/archinte.168.19.2070.; Han Y., Xie H., Liu Y., Gao P., Yang X., Shen Z. Effect of metformin on allcause and cardiovascular mortality in patients with coronary artery diseases: a systematic review and an updated meta-analysis. Cardiovasc Diabetol. 2019;18(1):96. https://doi.org/10.1186/s12933-019-0900-7.; Kim Y., Kim H.S., Lee J.W., Kim Y.S., You H.S., Bae Y.J. et al. Metformin use in el der ly population with diabetes reduced the risk of dementia in a dose-dependent manner, based on the Korean NHIS-HEALS cohort. Diabetes Res Clin Pract. 2020;170:108496. https://doi.org/10.1016/j.diabres.2020.108496.; Zhang Q.Q., Li W.S., Liu Z., Zhang H.L., Ba Y.G., Zhang R.X. Metformin therapy and cognitive dysfunction in patients with type 2 diabetes: A meta-analysis and systematic review. Medicine (Baltimore). 2020;99(10):e19378. https://doi.org/10.1097/MD.0000000000019378.; https://www.med-sovet.pro/jour/article/view/7720

  7. 7
    Academic Journal

    المصدر: Meditsinskiy sovet = Medical Council; № 23 (2022); 199-204 ; Медицинский Совет; № 23 (2022); 199-204 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/7327/6549; Дедов И.И., Шестакова М.В., Викулова О.К., Железнякова А.В., Исаков М.А. Эпидемиологические характеристики сахарного диабета в Российской Федерации: клинико-статистический анализ по данным регистра сахарного диабета на 01.01.2021. Сахарный диабет. 2021;24(3):204–221. https://doi.org/10.14341/DM12759.; Дедов И.И., Шестакова М.В., Майоров А.Ю. (ред.). Алгоритмы специализированной медицинской помощи больным сахарным диабетом. 9-й выпуск. Сахарный диабет. 2019;22(Suppl. 1):1–144. https://doi.org/10.14341/DM221S1.; Викулова О.К., Железнякова А.В., Исаков М.А., Серков А.А., Шестакова М.В., Дедов И.И. Динамический анализ состояния углеводного обмена в субъектах Российской Федерации по данным мобильного медицинского центра (Диамодуль) и регистра сахарного диабета Российской Федерации. Сахарный диабет. 2020;23(2):104–112. https://doi.org/10.14341/DM12327.; Дедов И.И., Шестакова М.В., Майоров А.Ю., Шамхалова М.Ш., Сухарева О.Ю., Галстян Г.Р. и др. Сахарный диабет 2 типа у взрослых. Клинические рекомендации. Сахарный диабет. 2020;23(2 Suppl.):4–102. https://doi.org/10.14341/DM12507.; Shu A.D. Adherence to osteoporosis medication after patient and physician brief education: post hoc analysis of a randomized controller trial. Am J Manag Care. 2009;15(7):417–424. Available at: https://pubmed.ncbi.nlm.nih.gov/19589009.; Morris A.D. Considerations in assessing effectiveness and costs of diabetes care: lessons from DARTS. Diabetes Metab Res Rev. 2002;8(3):32–35. https://doi.org/10.1002/dmrr.295.; Rojas L.B., Gomes M.B. Metformin: an old but still the best treatment for type 2 diabetes. Diabetol Metab Syndr. 2013;5(1):6. https://doi.org/10.1186/1758-5996-5-6.; Markowicz-Piasecka M., Huttunen K.M., Mateusiak L., Mikiciuk-Olasik E., Sikora J. Is Metformin a Perfect Drug? Updates in Pharmacokinetics and Pharmacodynamics. Curr Pharm Des. 2017;23(17):2532–2550. https://doi.org/10.2174/1381612822666161201152941.; Rena G., Hardie G.G., Pearson E.A. The mechanisms of action of metformin. Diabetologia. 2017;60(9):1577–1585. https://doi.org/10.1007/s00125-017-4342-z.; Вербовой А.Ф., Вербовая Н.И., Ломонова Т.В., Долгих Ю.А. Метформин – время расширять показания? РМЖ. 2021;(2):37–41. Режим доступа: https://www.rmj.ru/articles/endokrinologiya/Metformin_vremya_rasshiryaty_pokazaniya/#ixzz7HyWgr6AV.; Древаль А.В., Мисникова И.В., Триголосова И.В., Тишенина Р.С. Влияние метформина на углеводный и липидный обмен у лиц с ранними нарушениями углеводного обмена. Сахарный диабет. 2010;13(2):63–67. https://doi.org/10.14341/2072-0351-5676.; Effect of intensive blood-glucose control with metformin on complication in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998;352(9131):854–865. Available at: https://pubmed.ncbi.nlm.nih.gov/9742977.; Scarpello J.H. Improving survival with metformin: the evidence base today. Diabetes Metab. 2003;29(4):636–643. https://doi.org/10.1016/s1262-3636(03)72786-4.; McFarlane S.I., Banerij M., Sowers J.R. Insulin resistance and cardiovascular disease. J Clin Endocrinol Metab. 2001;86:713–718. https://doi.org/10.1210/jcem.86.2.7202.; Davidson M.B., Peters A.L. An overview of metformin in the treatment of type 2 diabetes mellitus. Am J Med. 1997;102(1):99–110. https://doi.org/10.1016/s0002-9343(96)00353-1.; Phung O.J., Sobieraj D.M., Engel S.S., Rajpathak S.N. Early combination therapy for the treatment of type 2 diabetes mellitus: systematic review and metaanalysis. Diabetes Obes Metab. 2014;16(5):410–417. https://doi.org/10.1111/dom.12233.; Zhang Y., McCoy R.G., Mason J.E., Smith S.A., Shah N.D., Denton B.T. et al. Second-line agents for glycemic control for type 2 diabetes: are newer agents better? Diabetes Care. 2014;37(5):1338–1345. https://doi.org/10.2337/dc13-1901.; Blonde L., Wogen J., Kreilick C., Seymour A.A. Greater reductions in A1C in type 2 diabetic patients new to therapy with glyburide-metformin tablets as compared to glyburide co-administered with metformin. Diabetes Obes Metab. 2003;5(6):424–431. https://doi.org/10.1046/j.1463-1326.2003.00297.x.; Duckworth W., Marcelli M., Padden M. et al. Improvements in glycemic control in type 2 diabetes patients switched from sulfonylurea coadministered with metformin to glyburide-metformin tablets. J Manag Care Pharm. 2003;9(3):256–262. https://doi.org/10.18553/jmcp.2003.9.3.256.; Lim P.C., Lim S.L., Oiyammaal C. Glycaemic control and cost analysis when changing from gliclazide co-administered with metformin to pre-combined glibenclamide-metformin tablets in type 2 diabetes mellitus. Med J Malaysia. 2012;67(1):21–24. Available at: https://pubmed.ncbi.nlm.nih.gov/22582544.; Cheong C., Barner J.C., Lawson K.A., Johnsrud M.T. Patient adherence and reimbursement amount for antidiabetic fixed dose combination products compared with dual therapy among texas medicaid recipients. Clin Ther. 2008;30(10):1893–1907. https://doi.org/10.1016/j.clinthera.2008.10.003.; Charpentier G., Fleury F., Kabir M., Vaur L., Halimi S. Improved glycaemic control by addition of glimepiride to metformin monotherapy in type 2 diabetic patients. Diabetic Medicine. 2001;18(10):828–834. https://doi.org/10.1046/j.1464-5491.2001.00582.x.; Müller G., Hartz D., Pünter J., Okonomopulos R., Kramer W. Differential interaction of glimepiride and glibenclamide with the beta-cell sulfonylurea receptor. I. Binding characteristics. Biochimica et Biophysica Acta. 1994;1191(2):267–277. https://doi.org/10.1016/0005-2736(94)90177-5.; Shukla U.A., Chi E.M., Lehr K.H. Glimepiride pharmacokinetics in obese versus non-obese diabetic patients. Annals of Pharmacotherapy. 2004;38(1):30–35. https://doi.org/10.1345/aph.1C397.; Matsuki M., Matsuda M., Kohara K., Shimoda M., Kanda Y., Tawaramoto K. et al. Pharmacokinetics and pharmacodynamics of glimepiride in type 2 diabetic patients: compared effects of onceversus twice-daily dosing. Endocrine Journal. 2007;54(4):571–576. https://doi.org/10.1507/endocrj.k06-052.; Rosenkranz B., Profozic V., Metelko Z., Mrzljak V., Lange C., Malerczyk V. Pharmacokinetics and safety of glimepiride at clinically effective doses in diabetic patients with renal impairment. Diabetologia. 1996;39(12):1617–1624. https://doi.org/10.1007/s001250050624.; Pareek A., Chandurkar N.B., Salkar H.R., Borkar M.S., Tiwari D. Evaluation of efficacy and tolerability of glimepiride and metformin combination: a multicentric study in patients with type-2 diabetes mellitus, uncontrolled on monotherapy with sulfonylurea or metformin. Am J Ther. 2013;20(1):41–47. https://doi.org/10.1097/MJT.0b013e3181ff7c63.; González-Ortiz M., Guerrero-Romero J.F., Violante-Ortiz R., Wacher-Rodarte N., Martínez-Abundis E., Aguilar-Salinas C. et al. Efficacy of glimepiride/metformin combination versus glibenclamide/metformin in patients with uncontrolled type 2 diabetes mellitus. J Diabetes Complications. 2009;23(6):376–379. https://doi.org/10.1016/j.jdiacomp.2008.09.002.; Мкртумян А.М. Результаты наблюдательного исследования ESCALATION: особенности применения глимепирида у пациентов с сахарным диабетом 2-го типа, не достигших целевых показателей углеводного обмена на фоне терапии ингибитором ДПП-4 в комбинации с метформином. Проблемы эндокринологии. 2017;63(1):30–38. https://doi.org/10.14341/probl201763131-38.; Perkovic V., Heerspink H.L., Chalmers J., Woodward M., Jun M., Li Q. et al; ADVANCE Collaborative Group. Intensive glucose control improves kidney outcomes in patients with type 2 diabetes. Kidney Int. 2013;83(3):517–523. https://doi.org/10.1038/ki.2012.401.; ADVANCE Collaborative Group, Patel A., MacMahon S., Chalmers J., Neal B., Billot L., Woodward M. et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358(24):2560–2572. https://doi.org/10.1056/NEJMoa0802987.; Oellgaard J., Gæde P., Rossing P., Persson F., Parving H.H., Pedersen O. Intensified multifactorial intervention in type 2 diabetics with microalbuminuria leads to long-term renal benefits. Kidney Int. 2017;91(9):982–988. https://doi.org/10.1016/j.kint.2016.11.023.; Katakami N., Yamasaki Y., Hayashi-Okano R., Ohtoshi K., Kaneto H., Matsuhisa M. et al. Metformin or gliclazide, rather than glibenclamide, attenuate progression of carotid intima-media thickness in subjects with type 2 diabetes. Diabetologia. 2004;47(11):1906–1913. https://doi.org/10.1007/s00125-004-1547-8.; Шестакова М.В., Викулова О.К. Результаты открытой наблюдательной программы DIAMOND. Сахарный диабет. 2011;14(3):96–102. https://doi.org/10.14341/2072-0351-6232.; Аметов А.С., Бутаева С.Г. Комбинированная сахароснижающая терапия: иДПП-4 в сравнении с сульфонилмочевиной. Эндокринологи: новости, мнения, обучение. 2018;7(1):76–81. https://doi.org/10.24411/2304-9529-2018-00008.; Zaccardi F., Jacquot E., Cortese V., Tyrer F., Seidu S., Davies M.J., Khunti K. Comparative effectiveness of gliclazide modified release versus sitagliptin as second-line treatment after metformin monotherapy in patients with uncontrolled type 2 diabetes. Diabetes, Obes Metab. 2020;22(12):2417–2426. https://doi.org/10.1111/dom.14169.; Maloney A., Rosenstock J., Fonseca V. A Model-Based Meta-Analysis of 24 Antihyperglycemic Drugs for Type 2 Diabetes: Comparison of Treatment Effects at Therapeutic Doses. Clin Pharmacol Ther. 2019;105(5):1213–1223. https://doi.org/10.1002/cpt.1307.; https://www.med-sovet.pro/jour/article/view/7327

  8. 8
    Academic Journal

    المصدر: The Russian Archives of Internal Medicine; Том 13, № 2 (2023); 129-135 ; Архивъ внутренней медицины; Том 13, № 2 (2023); 129-135 ; 2411-6564 ; 2226-6704

    وصف الملف: application/pdf

    Relation: https://www.medarhive.ru/jour/article/view/1595/1207; https://www.medarhive.ru/jour/article/view/1595/1215; Steenblock Ch., Schwarz P.E. H., Ludwig B. et al. COVID-19 and metabolic disease: mechanisms and clinical management. Lancet Diabetes Endocrinol. 2021; 9 (11): 786-798. https://doi.org/10.1016/S2213-8587(21)00244-8; Игнатенко Г.А., Багрий А.Э., Оприщенко А.А. и др. Сахарный диабет: руководство для врачей. Донецк, РБ Позитив. 2022; 640 с.; Apicella M., Campopiano M.C., Mazoni L. et al. COVID-19 in people with diabetes: understanding the reasons for worse out-comes. Lancet Diabetes Endocrinol. 2020; 8 (9): 782-792. doi:10.1016/S2213-8587(20)30238-2; Lim S., Bae J.H., Kwon H.S. et al. COVID-19 and diabetes mellitus: From pathophysiology to clinical management. Nat Rev Endocrinol. 2021; 17 (1): 11-30. https://doi.org/10.1038/s41574-020-00435-4; Davis H.E., Assaf G.S., McCorkell L. et al. Characterizing long COVID in an international: 7 months of symptoms and their impact. EClini-calMedicine. 2021; 38: 101019. https://doi.org/10.1016/j.eclinm.2021.101019; Nalbandian A., Sehgal K., Gupta A. et al. Post-acute COVID-19 syndrome. Nature Medicine. 2021; 27 (4): 601-615. doi:10.1038/s41591-021-01283-z; COVID-19 Treatment Guidelines Panel. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines. National Institutes of Health. Available at https://www.covid19treatmentguidelines.nih.gov/. Accessed [May 31, 2022]; Kosiborod M.N., Esterline R., Furtado R.H. M. et al. Dapagliflozin in patients with cardiometabolic risk factors hospitalised with COVID-19 (DARE-19): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Diabetes Endocrinol. 2021; 9 (9): 586-594. doi:10.1016/S2213-8587(21)00180-7; Manu P. Drug Therapy for Unexplained Dyspnea in Post-COVID-19 Fatigue Syndrome: Empagliflozin and Sildenafil. Am J Ther. 2022; 29 (4): e447-e448. doi:10.1097/MJT.0000000000001483. PMID: 35412483; Kang Y., Zhan F., He M. et al. Anti-inflammatory effects of sodium-glucose co-transporter 2 inhibitors on atherosclerosis. Vascul Pharmacol. 2020; 133-134: 106779. doi:10.1016/j.vph.2020.106779; Pawlos A., Broncel M., Wozniak E. et al. Neuroprotective effect of SGLT2 inhibitors. Molecules. 2021; 26: 7213. doi:10.3390/molecules26237213; Wiciński M., Wódkiewicz E., Górski K. et al. Perspective of SGLT2 inhibition in treatment of conditions connected to neuronal loss: focus on alzheimer’s disease and ischemia-related brain injury. Pharmaceuticals (Basel). 2020; 13: 379. doi:10.3390/ph13110379; Bornstein S.R., Rubino F., Khunti K. et al. Practical recommendations for the management of diabetes in patients with COVID-19. Lancet Diabetes Endocrinol. 2020; 8 (6): 546-550. doi:10.1016/S2213-8587(20)30152-2; Жмеренецкий К.В., Витько А.В., Петричко Т.А. и др. Сложные вопросы ведения пациентов с COVID-19, коморбидных по сердечно-сосудистым заболеваниям и сахарному диабету 2-го типа. Дальневосточный медицинский журнал. 2020; 2: 102-114.; Kleine-Weber H., Schroeder S., Krüger N. et al. Polymorphisms in dipeptidylpeptidase 4 reduce host cell entry of Middle East respiratory syndrome coronavirus. Emerg. Microbes Infect. 2020; 9 (1): 155-168. doi:10.1080/22221751.2020.1713705; Solerte S.B., D’Addio F., Trevisan R. et al. Sitagliptin treatment at the time of hospitalization was associated with reduced mortality in patients with type 2 diabetes and COVID-19: a multicenter case-control retrospective observational study. Diabetes Care. 2020; 43 (12): 2999-3006. https://doi.org/10.2337/dc20-1521; Mirani M., Favacchio G., Carrone F. et al. Impact of comorbidities, glycemia at admission, and DPP-4 inhibitors in type 2 diabetic patients with COVID-19: a case series from an academic hospital in Lombardy, Italy. Diabetes Care. 2020; 43 (12): 3042-3049. https://doi.org/10.2337/dc20-1340; Dalan R., Ang L.W., Tan W.Y. T. et al. The association of hypertension and diabetes pharmacotherapy with COVID-19 severity and immune signatures: an observational study. Eur. Heart J. Cardiovasc. Pharmacother. 2021; 7 (3): e48-e51. https://doi.org/10.1093/ehjcvp/pvaa098; Scherer P.E., Kirwan J.P., Rosen C.J. Post-acute sequelae of COVID-19: A metabolic perspective. Elife. 2022; 11: e78200. doi:10.7554/eLife.78200; https://www.medarhive.ru/jour/article/view/1595

  9. 9
  10. 10
    Academic Journal
  11. 11
    Academic Journal
  12. 12
    Academic Journal
  13. 13
    Academic Journal

    المساهمون: The clinical study was carried out with the support of Promomed RUS LLC. The sponsor had no influence on the choice of material for publication, analysis and interpretation of the data., Клиническое исследование проводилось при поддержке компании ООО «Промомед РУС». Спонсор не оказывал влияние на выбор материала для публикации, анализ и интерпретацию данных.

    المصدر: Pharmacy & Pharmacology; Том 10, № 3 (2022); 289-304 ; Фармация и фармакология; Том 10, № 3 (2022); 289-304 ; 2413-2241 ; 2307-9266 ; 10.19163/2307-9266-2022-10-3

    وصف الملف: application/pdf

    Relation: https://www.pharmpharm.ru/jour/article/view/1121/941; https://www.pharmpharm.ru/jour/article/view/1121/942; Дедов И.И., Мокрышева Н.Г., Мельниченко Г.А., Трошина Е.А., Мазурина Н.В., Ершова Е.В., Комшилова К.А., Андреева Е.Н., Анциферов М.Б., Бирюкова Е.В., Бордан Н.С., Вагапова Г.Р., Волкова А.Р., Волкова Н.И., Волынкина А.П., Дзгоева Ф.Х., Киселева Т.П., Неймарк А.Е., Романцова Т.И., Руяткина Л.А., Суплотова Л.А., Халимов Ю.Ш., Яшков Ю.И. Ожирение. Клинические рекомендации // Consilium Medicum. – 2021. – Т. 23, №4. – С. 311–325. DOI:10.26442/20751753.2021.4.200832.; Boutari C., Mantzoros C.S. A 2022 update on the epidemiology of obesity and a call to action: as its twin COVID-19 pandemic appears to be receding, the obesity and dysmetabolism pandemic continues to rage on // Metabolism. – 2022. – Т. 133. – Art. ID: 155217.; Mohammed M.S., Sendra S., Lloret J., Bosch I. Systems and WBANs for Controlling Obesity // J. Healthc. Eng. – 2018. – Vol. 2018. – Art. ID: 1564748. DOI:10.1155/2018/1564748.; Antwi F., Fazylova N., Garcon M.C., Lopez L., Rubiano R., Slyer J.T. The effectiveness of web-based programs on the reduction of childhood obesity in school-aged children: A systematic review // JBI Libr. Syst. Rev. – 2012. – Vol. 10, 42 Suppl. – P. 1–14. DOI:10.11124/jbisrir-2012-248.; Al Kibria G.M. Prevalence and factors affecting underweight, overweight and obesity using Asian and World Health Organization cutoffs among adults in Nepal: Analysis of the Demographic and Health Survey 2016 // Obes. Res. Clin. Pract. – 2019. – Vol. 13, No.2. – P. 129–136. DOI:10.1016/j.orcp.2019.01.006. Erratum in: Obes. Res. Clin. Pract. – 2019. – Vol. 13, No.3. – Art. No. 328.; Shi Q., Wang Y., Hao Q., Vandvik P.O., Guyatt G., Li J., Chen Z., Xu S., Shen Y., Ge L., Sun F., Li L., Yu J., Nong K., Zou X., Zhu S., Wang C., Zhang S., Qiao Z., Jian Z., Li Y., Zhang X., Chen K., Qu F., Wu Y., He Y., Tian H., Li S. Pharmacotherapy for adults with overweight and obesity: a systematic review and network meta-analysis of randomised controlled trials // Lancet. – 2022. – Vol. 399, No.10321. – P. 259–269. DOI:10.1016/S0140-6736(21)01640-8.; Драпкина О. М., Самородская И. В., Старинская М. А., Ким О. Т., Неймарк А. Е. Ожирение: оценка и тактика ведения пациентов // Коллективная монография, М.: ФГБНМИЦ ТПМ Минздрава России. – Издательство ООО «Силицея-Полиграф», 2021. – 180 с.; Дедов И.И., Шестакова М.В., Мельниченко Г.А., Мазурина Н.В., Андреева Е.Н., Бондаренко И.З., Гусова З.Р., Дзгоева Ф.Х., Елисеев М.С., Ершова Е.В., Журавлева М.В., Захарчук Т.А., Исаков В.А., Клепикова М.В., Комшилова К.А., Крысанова В.С., Недогода С.В., Новикова А.М., Остроумова О.Д., Переверзев А.П., Роживанов Р.В., Романцова Т.И., Руяткина Л.А., Саласюк А.С., Сасунова А.Н., Сметанина С.А., Стародубова А.В., Суплотова Л.А., Ткачева О.Н., Трошина Е.А., Хамошина М.Б., Чечельницкая С.М., Шестакова Е.А., Шереметьева Е.В. Междисциплинарные клинические рекомендации «Лечение ожирения и коморбидных заболеваний» // Ожирение и метаболизм. – 2021. – Т. 18, №1. – С. 5–99. DOI:10.14341/omet12714.; Батрак Г.А. Эффективность комбинированной терапии сибутрамином и метформином у пациентов с абдоминальным типом ожирения // Вестник Ивановской медицинской академии. – 2015. – Т. 20, №3. – С. 59–60.; Clinical Guidelines on the Identification, Evaluation, and Treatment of Overweight and Obesity in Adults--The Evidence Report // National Institutes of Health. Obes. Res. – 1998. – Suppl 2. – P. 51S–209S. Erratum in: Obes. Res. – 1998. – Vol. 6, No.6. – Art. No. 464.; Романцова Т.И. Сибутрамин: эффективность и безопасность применения в рутинной клинической практике. Ожирение и метаболизм. – 2015. – Т. 12, №3. – С. 18-24. DOI:10.14341/omet2015318-24.; Hansen D.L., Toubro S., Stock M.J., Macdonald I.A., Astrup A. Thermogenic effects of sibutramine in humans // Am. J. Clin. Nutr. – 1998. – Vol. 68, No.6. – P. 1180–1186. DOI:10.1093/ajcn/68.6.1180.; Руяткина Л.А., Руяткин Д.С. Ожирение: «перекрестки» мнений, знаний и возможностей. Медицинский совет. – 2020. – №.7. – С. 108–120. DOI:10.21518/2079-701X-2020-7-108-120.; Malin S.K., Kashyap S.R. Effects of metformin on weight loss: potential mechanisms // Curr. Opin. Endocrinol. Diabetes. Obes. – 2014. – Vol. 21, No.5. – P. 323–329. DOI:10.1097/MED.0000000000000095.; Fantino M., Souquet A.M. Effects of metabolite 1 and 2 of sibutramine on the short-term control of food intake in the rat // Int. J. Obes. – 1995. – Vol. 1, Suppl. 2. – P. 145.; Connoley I.P., Liu Y.L., Frost I., Reckless I.P., Heal D.J., Stock M.J. Thermogenic effects of sibutramine and its metabolites // Br. J. Pharmacol. – 1999. – Vol. 126, No.6. – P. 1487–1495. DOI:10.1038/sj.bjp.0702446.; Cheetham S.C., Viggers J.A., Butler S.A., Prow M.R., Heal D.J. [3H]nisoxetine--a radioligand for noradrenaline reuptake sites: correlation with inhibition of [3H]noradrenaline uptake and effect of DSP-4 lesioning and antidepressant treatments // Neuropharmacology. – 1996. – Vol. 35, No.1. – P. 63–70. DOI:10.1016/0028-3908(95)00134-4.; Шупенина Е.Ю., Ющук Е.Н., Васюк Ю.А., Юренева С.В., Дубровина А.В. Опыт применения сибутрамина у пациентов с ожирением и контролируемой артериальной гипертонией // Ожирение и метаболизм. – 2019. – Т. 16, №2. – С. 42–48.; Luscombe G.P., Hopcroft R.H., Thomas P.C., Buckett W.R. The contribution of metabolites to the rapid and potent down-regulation of rat cortical beta-adrenoceptors by the putative antidepressant sibutramine hydrochloride // Neuropharmacology. – 1989. – Vol. 28, No.2. – P. 129–134. DOI:10.1016/0028-3908(89)90048-8.; Janssen P.J., Gardiner S.M., Compton A.M., Bennett T. Mechanisms contributing to the differential haemodynamic effects of bombesin and cholecystokinin in conscious, Long Evans rats // Br. J. Pharmacol. – 1991. – Vol. 102, No.1. – P. 123–134. DOI:10.1111/j.1476-5381.1991.tb12143.x.; de Souza B.P., da Silva E.D. Jr., Jurkiewicz A., Jurkiewicz N.H. Influence of acute treatment with sibutramine on the sympathetic neurotransmission of the young rat vas deferens // Eur. J. Pharmacol. – 2014. – Vol. 738. – P. 118–124. DOI:10.1016/j.ejphar.2014.05.035.; Brown M., Bing C., King P., Pickavance L., Heal D., Wilding J. Sibutramine reduces feeding, body fat and improves insulin resistance in dietary-obese male Wistar rats independently of hypothalamic neuropeptide Y // Br. J. Pharmacol. – 2001. – Vol. 132, No.8. – P. 1898–1904. DOI:10.1038/sj.bjp.0704030.; Шишкова В.Н. Ожирение в зеркале психоэмоциональных нарушений: фокус на фармакотерапию // Фармация и фармакология. – 2022. – Т. 10, №1. – С. 19–30. DOI:10.19163/2307-9266-2022-10-1-19-3.; Paul D., Allakonda L., Satheeshkumar N. A validated UHPLC-QTOF-MS method for quantification of metformin and teneligliptin in rat plasma: Application to pharmacokinetic interaction study // J. Pharm. Biomed. Anal. – 2017. – Vol. 143. – P. 1–8. DOI:10.1016/j.jpba.2017.05.026.; Li X., Chen Y., Zhao Z., Lu W., Zhou T. Pharmacokinetic/Pharmacodynamic Analysis of Metformin using Different Models in Diabetic Rats // Drug Res. (Stuttg). – 2016. – Vol. 66, No.10. – P. 547–554. DOI:10.1055/s-0042-111514.; Ford M.D., Delaney K.A., Ling L.J., Erickson T. Clinical toxicology. – WB Saunders. – 2000.; Stepensky D., Friedman M., Raz I., Hoffman A. Pharmacokinetic-pharmacodynamic analysis of the glucose-lowering effect of metformin in diabetic rats reveals first-pass pharmacodynamic effect // Drug Metab. Dispos. – 2002. – Vol.30, No.8. – P.861-868. DOI:10.1124/dmd.30.8.861.; Kappe C., Patrone C., Holst J.J., Zhang Q., Sjöholm A. Metformin protects against lipoapoptosis and enhances GLP-1 secretion from GLP-1-producing cells // J. Gastroenterol. – 2013. – Vol. 48, No.3. – P. 322–332. DOI:10.1007/s00535-012-0637-5.; Murai Y., Ohta T., Tadaki H., Miyajima K., Shinohara M., Fatchiyah F., Yamada T. Assessment of Pharmacological Responses to an Anti-diabetic Drug in a New Obese Type 2 Diabetic Rat Model // Med. Arch. – 2017. – Vol. 71, No.6. – P. 380–384. DOI:10.5455/medarh.2017.71.380-384.; Спасов А.А, Воронкова М.П., Снигур Г.Л, епляева Н.И., Чепурнова М.В. Экспериментальная модель сахарного диабета типа 2 // Биомедицина. – 2011. – Т. 1, №3. – С. 12–18.; Дедов И.И., Трошина Е.А., Мазурина Н.В., Галиева М., Логвинова О.В. Роль нейротрансмиттеров в регуляции энергетического гомеостаза и возможности медикаментозной коррекции его нарушений при ожирении // Ожирение и метаболизм. – 2016. – Т. 13, №1. – С. 9–15. DOI:10.14341/omet201619-15.; Bouchoucha M., Uzzan B., Cohen R. Metformin and digestive disorders // Diabetes Metab. – 2011. – Vol. 37, No.2. – P. 90–96. DOI:10.1016/j.diabet.2010.11.002.; Vettor R., Serra R., Fabris R., Pagano C., Federspil G. Effect of sibutramine on weight management and metabolic control in type 2 diabetes: a meta-analysis of clinical studies // Diabetes Care. – 2005. – Vol. 28, No.4. – P. 942–949. DOI:10.2337/diacare.28.4.942.; Fujioka K., Seaton T.B., Rowe E., Jelinek C.A., Raskin P., Lebovitz H.E., Weinstein S.P., Sibutramine/Diabetes Clinical Study Group. Weight loss with sibutramine improves glycaemic control and other metabolic parameters in obese patients with type 2 diabetes mellitus // Diabetes Obes. Metab. – 2000. – Vol. 2, No.3. – P. 175–187. DOI:10.1046/j.1463-1326.2000.00081.x.; Дедов И.И., Мельниченко Г.А., Романцова Т.И. Стратегия управления ожирением: итоги Всероссийской наблюдательной программы «ПримаВера» // Ожирение и метаболизм. – 2016. – Т.13, №1. – С. 36-44. DOI:10.14341/omet2016136-44.; Mahmood K., Naeem M., Rahimnajjad N.A. Metformin: the hidden chronicles of a magic drug // Eur. J. Intern. Med. – 2013. – Vol. 24, No.1. – P. 20–26. DOI:10.1016/j.ejim.2012.10.011.; Viollet B., Guigas B., Sanz Garcia N., Leclerc J., Foretz M., Andreelli F. Cellular and molecular mechanisms of metformin: an overview // Clin. Sci. (Lond). – 2012. – Vol. 122, No.6. – P. 253–270. DOI:10.1042/CS20110386.; Дедов И.И., Романцова Т.И., Шестакова М.В. Рациональный подход к терапии пациентов с СД2 и ожирением: итоги Всероссийской наблюдательной программы «АВРОРА» // Ожирение и метаболизм. – 2018. – Т. 15, №4. – С. 48–58. DOI:10.14341/omet10076.; Freemark M., Bursey D. The effects of metformin on body mass index and glucose tolerance in obese adolescents with fasting hyperinsulinemia and a family history of type 2 diabetes // Pediatrics. – 2001. – Vol. 107, No.4. – P. E55. DOI:10.1542/peds.107.4.e55.; Foster G.D., Wadden T.A., Vogt R.A., Brewer G. What is a reasonable weight loss? Patients’ expectations and evaluations of obesity treatment outcomes // J. Consult. Clin. Psychol. – 1997. – Vol. 65, No.1. – P. 79–85. DOI:10.1037//0022-006x.65.1.79.; Sari R., Eray E., Ozdem S., Akbas H., Coban E. Comparison of the effects of sibutramine versus sibutramine plus metformin in obese women // Clin. Exp. Med. – 2010. – Vol. 10, No.3. – P. 179–184. DOI:10.1007/s10238-009-0080-y.; Gokcel A., Gumurdulu Y., Karakose H., Melek Ertorer E., Tanaci N., BascilTutuncu N., Guvener N. Evaluation of the safety and efficacy of sibutramine, orlistat and metformin in the treatment of obesity // Diabetes Obes. Metab. – 2002. – Vol. 4, No.1. – P. 49–55. DOI:10.1046/j.1463-1326.2002.00181.x.; Baptista T., Uzcátegui E., Rangel N., El Fakih Y., Galeazzi T., Beaulieu S., de Baptista E.A. Metformin plus sibutramine for olanzapine-associated weight gain and metabolic dysfunction in schizophrenia: a 12-week double-blind, placebo-controlled pilot study // Psychiatry Res. – 2008. – Vol. 159, No.1–2. – P. 250–253. DOI:10.1016/j.psychres.2008.01.011.; Guerrero-Romero F., Rodríguez-Morán M., Pérez-Fuentes R., Sánchez-Guillén M.C., González-Ortiz M., Martínez-Abundis E., Brito-Zurita O., Madero A., Figueroa B., Revilla-Monsalve C., Flores-Martínez S.E,. Islas-Andrade S., Rascón-Pacheco R.A., Cruz M., Sánchez-Corona J. Prediabetes and its relationship with obesity in Mexican adults: The Mexican Diabetes Prevention (MexDiab) Study // Metab. Syndr. Relat. Disord. – 2008. – Vol. 6, No.1. – P. 15–23. DOI:10.1089/met.2007.0020.; Аметов А.С., Пьяных О.П., Невольникова А.О. Современные возможности управления метаболическим здоровьем у пациентов с ожирением и нарушениями углеводного обмена // Эндокринология: новости, мнения, обучение. – 2020. – Т. 9, №1. – С. 17–26. DOI:10.33029/2304-9529-2020-9-1-17-26.; Пьяных О.П., Гусенбекова Д.Г., Аметов А.С. Преимущества долгосрочного управления метаболическим здоровьем у пациентов с ожирением и ранними нарушениями углеводного обмена // Эндокринология: новости, мнения, обучение. – 2020. – Т. 9, №2. – C. 40–48. DOI:10.33029/2304-9529-2020-9-2-40-48.; Mehta A., Marso S.P., Neeland I.J. Liraglutide for weight management: a critical review of the evidence // Obes. Sci. Pract. – 2017. – Vol. 3, No.1. – P. 3–14. DOI:10.1002/osp4.84.; Wharton S., Lau D.C.W., Vallis M., Sharma A.M., Biertho L., Campbell-Scherer D., Adamo K., Alberga A., Bell R., Boulé N., Boyling E., Brown J., Calam B., Clarke C., Crowshoe L., Divalentino D., Forhan M., Freedhoff Y., Gagner M., Glazer S., Grand C., Green M., Hahn M., Hawa R., Henderson R., Hong D., Hung P., Janssen I., Jacklin K., Johnson-Stoklossa C., Kemp A., Kirk S., Kuk J., Langlois M.F., Lear S., McInnes A., Macklin D., Naji L., Manjoo P., Morin M.P., Nerenberg K., Patton I., Pedersen S., Pereira L., Piccinini-Vallis H., Poddar M., Poirier P., Prud’homme D., Salas X.R., Rueda-Clausen C., Russell-Mayhew S., Shiau J., Sherifali D., Sievenpiper J., Sockalingam S., Taylor V., Toth E., Twells L., Tytus R., Walji S., Walker L., Wicklum S. Obesity in adults: a clinical practice guideline // CMAJ. – 2020. – Vol. 192, No.31. – P. E875–E891. DOI:10.1503/cmaj.191707.; https://www.pharmpharm.ru/jour/article/view/1121

  14. 14
    Academic Journal

    المساهمون: The study was financially supported by the Ministry of Science and Higher Education of the Russian Federation (Agreement No. 075-15-2022-301 dated April 20, 2022)., Исследование выполнено при финансовой поддержке Министерства науки и высшего образования Российской Федерации (соглашение №075-15-2022-301 от 20.04.2022).

    المصدر: Meditsinskiy sovet = Medical Council; № 10 (2022); 96-103 ; Медицинский Совет; № 10 (2022); 96-103 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/6920/6244; Lakka H.M., Laaksonen D.E., Lakka T.A., Niskanen L.K., Kumpusalo E., Tuomilehto J., Salonen J.T. The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA. 2002;288(21):2709–2716. https://doi.org/10.1001/jama.288.21.2709.; Thomas M.C., Cooper M.E., Zimmet P. Changing epidemiology of type 2 diabetes mellitus and associated chronic kidney disease. Nat Rev Nephrol. 2016;12(2):73–81. https://doi.org/10.1038/nrneph.2015.173.; Einarson T.R., Acs A., Ludwig C., Panton U.H. Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientific evidence from across the world in 2007–2017. Cardiovasc Diabetol. 2018;17(1):83. https://doi.org/10.1186/s12933-018-0728-6.; Nichols G.A., Gullion C.M., Koro C.E., Ephross S.A., Brown J.B. The incidence of congestive heart failure in type 2 diabetes: an update. Diabetes Care. 2004;27(8):1879–1784. https://doi.org/10.2337/diacare.27.8.1879.; Ndumele C.E., Matsushita K., Lazo M., Bello N., Blumenthal R.S., Gerstenblith G. et al. Obesity and Subtypes of Incident Cardiovascular Disease. J Am Heart Assoc. 2016;5(8):e003921. https://doi.org/10.1161/JAHA.116.003921.; Jenkins D.J.A., Dehghan M., Mente A., Bangdiwala S.I., Rangarajan S., Srichaikul K. et al. Glycemic Index, Glycemic Load, and Cardiovascular Disease and Mortality. N Engl J Med. 2021;384(14):1312–1322. https://doi.org/10.1056/NEJMoa2007123.; Leow M.K., Henry C.J. Glycemic Index, Glycemic Load, and Cardiovascular Disease and Mortality. N Engl J Med. 2021;385(4):378. https://doi.org/10.1056/NEJMc2107926.; Kirkpatrick C.F., Maki K.C. Dietary Influences on Atherosclerotic Cardiovascular Disease Risk. Curr Atheroscler Rep. 2021;23(10):62. https://doi.org/10.1007/s11883-021-00954-z.; Morigny P., Boucher J., Arner P., Langin D. Lipid and glucose metabolism in white adipocytes: pathways, dysfunction and therapeutics. Nat Rev Endocrinol. 2021;17(5):276–295. https://doi.org/10.1038/s41574-021-00471-8.; Stenkula K.G., Erlanson-Albertsson C. Adipose cell size: importance in health and disease. Am J Physiol Regul Integr Comp Physiol. 2018;315(2):R284–R295. https://doi.org/10.1152/ajpregu.00257.2017.; Ahlqvist E., Storm P., Käräjämäki A., Martinell M., Dorkhan M., Carlsson A. et al. Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol. 2018;6(5):361–369. https://doi.org/10.1016/S2213-8587(18)30051-2.; Häring H.U. Novel phenotypes of prediabetes? Diabetologia. 2016;59(9):1806–1818. https://doi.org/10.1007/s00125-016-4015-3.; Stefan N., Fritsche A., Schick F., Häring H.U. Phenotypes of prediabetes and stratification of cardiometabolic risk. Lancet Diabetes Endocrinol. 2016;4(9):789–798. https://doi.org/10.1016/S2213-8587(16)00082-6.; Stefan N., Staiger H., Wagner R., Machann J., Schick F., Häring H.U., Fritsche A. A high-risk phenotype associates with reduced improvement in glycaemia during a lifestyle intervention in prediabetes. Diabetologia. 2015;58(12):2877–2884. https://doi.org/10.1007/s00125-015-3760-z.; Wagner R., Heni M., Tabák A.G., Machann J., Schick F., Randrianarisoa E. et al. Pathophysiology-based subphenotyping of individuals at elevated risk for type 2 diabetes. Nat Med. 2021;27(1):49–57. https://doi.org/10.1038/s41591-020-1116-9.; Hur K.Y., Lee M.S. New mechanisms of metformin action: Focusing on mitochondria and the gut. J Diabetes Investig. 2015;6(6):600–609. https://doi.org/10.1111/jdi.12328.; Van Son J., Koekkoek L.L., La Fleur S.E., Serlie M.J., Nieuwdorp M. The Role of the Gut Microbiota in the Gut-Brain Axis in Obesity: Mechanisms and Future Implications. Int J Mol Sci. 2021;22(6):2993. https://doi.org/10.3390/ijms22062993.; Rastelli M., Knauf C., Cani P.D. Gut Microbes and Health: A Focus on the Mechanisms Linking Microbes, Obesity, and Related Disorders. Obesity (Silver Spring). 2018;26(5):792–800. https://doi.org/10.1002/oby.22175.; Belkaid Y., Harrison O.J. Homeostatic Immunity and the Microbiota. Immunity. 2017;46(4):562–576. https://doi.org/10.1016/j.immuni.2017.04.008.; Hersoug L.G., Møller P., Loft S. Gut microbiota-derived lipopolysaccharide uptake and trafficking to adipose tissue: implications for inflammation and obesity. Obes Rev. 2016;17(4):297–312. https://doi.org/10.1111/obr.12370.; Postler T.S., Ghosh S. Understanding the Holobiont: How Microbial Metabolites Affect Human Health and Shape the Immune System. Cell Metab. 2017;26(1):110–130. https://doi.org/10.1016/j.cmet.2017.05.008.; Møller C.L., Vistisen D., Færch K., Johansen N.B., Witte D.R., Jonsson A. et al. Glucose-Dependent Insulinotropic Polypeptide Is Associated With Lower Low-Density Lipoprotein But Unhealthy Fat Distribution, Independent of Insulin: The ADDITION-PRO Study. J Clin Endocrinol Metab. 2016;101(2):485–493. https://doi.org/10.1210/jc.2015-3133.; Meijles D.N., Zoumpoulidou G., Markou T., Rostron K.A., Patel R., Lay K. et al. The cardiomyocyte “redox rheostat”: Redox signalling via the AMPKmTOR axis and regulation of gene and protein expression balancing vival and death. J Mol Cell Cardiol. 2019;129:118–129. https://doi.org/10.1016/j.yjmcc.2019.02.006.; Krzysiak T.C., Thomas L., Choi Y.J., Auclair S., Qian Y., Luan S. et al. An Insulin-Responsive Sensor in the SIRT1 Disordered Region Binds DBC1 and PACS-2 to Control Enzyme Activity. Mol Cell. 2018;72(6):985– 998.e7. https://doi.org/10.1016/j.molcel.2018.10.007.; Paula-Gomes S., Gonçalves D.A., Baviera A.M., Zanon N.M., Navegantes L.C., Kettelhut I.C. Insulin suppresses atrophyand autophagy-related genes in heart tissue and cardiomyocytes through AKT/FOXO signaling. Horm Metab Res. 2013;45(12):849–855. https://doi.org/10.1055/s-0033-1347209.; Baek J.H., Jin S.M., Bae J.C., Jee J.H., Yu T.Y., Kim S.K. et al. Serum Calcium and the Risk of Incident Metabolic Syndrome: A 4.3-Year Retrospective Longitudinal Study. Diabetes Metab J. 2017;41(1):60–68. https://doi.org/10.4093/dmj.2017.41.1.60.; Stepensky D., Friedman M., Raz I., Hoffman A. Pharmacokineticpharmacodynamic analysis of the glucose-lowering effect of metformin in diabetic rats reveals first-pass pharmacodynamic effect. Drug Metab Dispos. 2002;30(8):861–868. https://doi.org/10.1124/dmd.30.8.861.; Bailey C.J., Mynett K.J., Page T. Importance of the intestine as a site of metformin-stimulated glucose utilization. Br J Pharmacol. 1994;112(2):671–675. https://doi.org/10.1111/j.1476-5381.1994.tb13128.x.; Bailey C.J., Wilcock C., Scarpello J.H. Metformin and the intestine. Diabetologia. 2008;51(8):1552–1553. https://doi.org/10.1007/s00125-008-1053-5.; Tucker G.T., Casey C., Phillips P.J., Connor H., Ward J.D., Woods H.F. Metformin kinetics in healthy subjects and in patients with diabetes mellitus. Br J Clin Pharmacol. 1981;12(2):235–246. https://doi.org/10.1111/j.1365-2125.1981.tb01206.x.; Gorboulev V., Schürmann A., Vallon V., Kipp H., Jaschke A., Klessen D. et al. Na(+)-D-glucose cotransporter SGLT1 is pivotal for intestinal glucose absorption and glucose-dependent incretin secretion. Diabetes. 2012;61(1):187–196. https://doi.org/10.2337/db11-1029.; Kuhre R.E., Frost C.R., Svendsen B., Holst J.J. Molecular mechanisms of glucose-stimulated GLP-1 secretion from perfused rat small intestine. Diabetes. 2015;64(2):370–382. https://doi.org/10.2337/db14-0807.; Parker H.E., Adriaenssens A., Rogers G., Richards P., Koepsell H., Reimann F., Gribble F.M. Predominant role of active versus facilitative glucose transport for glucagon-like peptide-1 secretion. Diabetologia. 2012;55(9): 2445–2455. https://doi.org/10.1007/s00125-012-2585-2.; Bauer P.V., Duca F.A., Waise T.M.Z., Rasmussen B.A., Abraham M.A., Dranse H.J. et al. Metformin Alters Upper Small Intestinal Microbiota that Impact a Glucose-SGLT1-Sensing Glucoregulatory Pathway. Cell Metab. 2018;27(1):101–117.e5. https://doi.org/10.1016/j.cmet.2017.09.019.; Sun L., Xie C., Wang G., Wu Y., Wu Q., Wang X. et al. Gut microbiota and intestinal FXR mediate the clinical benefits of metformin. Nat Med. 2018;24(12):1919–1929. https://doi.org/10.1038/s41591-018-0222-4.; Lee C.B., Chae S.U., Jo S.J., Jerng U.M., Bae S.K. The Relationship between the Gut Microbiome and Metformin as a Key for Treating Type 2 Diabetes Mellitus. Int J Mol Sci. 2021;22(7):3566. https://doi.org/10.3390/ijms22073566.; Den Besten G., van Eunen K., Groen A.K., Venema K., Reijngoud D.J., Bakker B.M. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013;54(9):2325–2340. https://doi.org/10.1194/jlr.R036012.; Lee H., Lee Y., Kim J., An J., Lee S., Kong H. et al. Modulation of the gut microbiota by metformin improves metabolic profiles in aged obese mice. Gut Microbes. 2018;9(2):155–165. https://doi.org/10.1080/19490976.2017.1405209.; Rios-Covian D., Arboleya S., Hernandez-Barranco A.M., Alvarez-Buylla J.R., Ruas-Madiedo P., Gueimonde M., de los Reyes-Gavilan C.G. Interactions between Bifidobacterium and Bacteroides species in cofermentations are affected by carbon sources, including exopolysaccharides produced by bifidobacteria. Appl Environ Microbiol. 2013;79(23):7518–7524. https://doi.org/10.1128/AEM.02545-13.; Ryan P.M., Patterson E., Carafa I., Mandal R., Wishart D.S., Dinan T.G. et al. Metformin and Dipeptidyl Peptidase-4 Inhibitor Differentially Modulate the Intestinal Microbiota and Plasma Metabolome of Metabolically Dysfunctional Mice. Can J Diabetes. 2020;44(2):146–155.e2. https://doi.org/10.1016/j.jcjd.2019.05.008.; Zhang W., Xu J.H., Yu T., Chen Q.K. Effects of berberine and metformin on intestinal inflammation and gut microbiome composition in db/db mice. Biomed Pharmacother. 2019;118:109131. https://doi.org/10.1016/j.biopha.2019.109131.; Li X., Wang E., Yin B., Fang D., Chen P., Wang G. et al. Effects of Lactobacillus casei CCFM419 on insulin resistance and gut microbiota in type 2 diabetic mice. Benef Microbes. 2017;8(3):421–432. https://doi.org/10.3920/BM2016.0167.; Zheng J., Li H., Zhang X., Jiang M., Luo C., Lu Z. et al. Prebiotic Mannan-Oligosaccharides Augment the Hypoglycemic Effects of Metformin in Correlation with Modulating Gut Microbiota. J Agric Food Chem. 2018;66(23):5821–5831. https://doi.org/10.1021/acs.jafc.8b00829.; Shin N.R., Lee J.C., Lee H.Y., Kim M.S., Whon T.W., Lee M.S., Bae J.W. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut. 2014;63(5):727–735. https://doi.org/10.1136/gutjnl-2012-303839.; Wu H., Esteve E., Tremaroli V., Khan M.T., Caesar R., Mannerås-Holm L. et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat Med. 2017;23(7):850–858. https://doi.org/10.1038/nm.4345.; Lee H., Ko G. Effect of metformin on metabolic improvement and gut microbiota. Appl Environ Microbiol. 2014;80(19):5935–5943. https://doi.org/10.1128/AEM.01357-14.; Gao Z., Yin J., Zhang J., Ward R.E., Martin R.J., Lefevre M. et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes. 2009;58(7):1509–1517. https://doi.org/10.2337/db08-1637.; Lin H.V., Frassetto A., Kowalik E.J. Jr, Nawrocki A.R., Lu M.M., Kosinski J.R. et al. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS ONE. 2012;7(4):e35240. https://doi.org/10.1371/journal.pone.0035240.; Lynn F.C., Thompson S.A., Pospisilik J.A., Ehses J.A., Hinke S.A., Pamir N. et al. A novel pathway for regulation of glucose-dependent insulinotropic polypeptide (GIP) receptor expression in beta cells. FASEB J. 2003;17(1):91–93. https://doi.org/10.1096/fj.02-0243fje.; Ahmadi S., Razazan A., Nagpal R., Jain S., Wang B., Mishra S.P. et al. Metformin Reduces Aging-Related Leaky Gut and Improves Cognitive Function by Beneficially Modulating Gut Microbiome/Goblet Cell/Mucin Axis. J Gerontol A Biol Sci Med Sci. 2020;75(7):e9–e21. https://doi.org/10.1093/gerona/glaa056.; Liu Y., Wang C., Li J., Li T., Zhang Y., Liang Y., Mei Y. Phellinus linteus polysaccharide extract improves insulin resistance by regulating gut microbiota composition. FASEB J. 2020;34(1):1065–1078. https://doi.org/10.1096/fj.201901943RR.; Pryor R., Norvaisas P., Marinos G., Best L., Thingholm L.B., Quintaneiro L.M. et al. Host-Microbe-Drug-Nutrient Screen Identifies Bacterial Effectors of Metformin Therapy. Cell. 2019;178(6):1299–1312.e29. https://doi.org/10.1016/j.cell.2019.08.003.; Cui H.X., Zhang L.S., Luo Y., Yuan K., Huang Z.Y., Guo Y. A Purified Anthraquinone-Glycoside Preparation From Rhubarb Ameliorates Type 2 Diabetes Mellitus by Modulating the Gut Microbiota and Reducing Inflammation. Front Microbiol. 2019;10:1423. https://doi.org/10.3389/fmicb.2019.01423.; Vrieze A., Van Nood E., Holleman F., Salojärvi J., Kootte R.S., Bartelsman J.F. et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012;143(4):913–916.e7. https://doi.org/10.1053/j.gastro.2012.06.031.; Delzenne N.M., Cani P.D., Everard A., Neyrinck A.M., Bindels L.B. Gut microorganisms as promising targets for the management of type 2 diabetes. Diabetologia. 2015;58(10):2206–2217. https://doi.org/10.1007/s00125-015-3712-7.; Balakumar M., Prabhu D., Sathishkumar C., Prabu P., Rokana N., Kumar R. et al. Improvement in glucose tolerance and insulin sensitivity by probiotic strains of Indian gut origin in high-fat diet-fed C57BL/6J mice. Eur J Nutr. 2018;57(1):279–295. https://doi.org/10.1007/s00394-016-1317-7.; Carvalho B.M., Guadagnini D., Tsukumo D.M.L., Schenka A.A., Latuf-Filho P., Vassallo J. et al. Modulation of gut microbiota by antibiotics improves insulin signalling in high-fat fed mice. Diabetologia. 2012;55(10):2823–2834. https://doi.org/10.1007/s00125-012-2648-4.; Turnbaugh P.J., Hamady M., Yatsunenko T., Cantarel B.L., Duncan A., Ley R.E. et al. A core gut microbiome in obese and lean twins. Nature. 2009;457(7228):480–484. https://doi.org/10.1038/nature07540.; Ma W., Chen J., Meng Y., Yang J., Cui Q., Zhou Y. Metformin Alters Gut Microbiota of Healthy Mice: Implication for Its Potential Role in Gut Microbiota Homeostasis. Front Microbiol. 2018;9:1336. https://doi.org/10.3389/fmicb.2018.01336.; Rosario D., Benfeitas R., Bidkhori G., Zhang C., Uhlen M., Shoaie S., Mardinoglu A. Understanding the Representative Gut Microbiota Dysbiosis in Metformin-Treated Type 2 Diabetes Patients Using Genome-Scale Metabolic Modeling. Front Physiol. 2018;9:775. https://doi.org/10.3389/fphys.2018.00775.; Depommier C., Everard A., Druart C., Plovier H., Van Hul M., Vieira-Silva S. et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat Med. 2019;25(7):1096–1103. https://doi.org/10.1038/s41591-019-0495-2.; Napolitano A., Miller S., Nicholls A.W., Baker D., Van Horn S., Thomas E. et al. Novel gut-based pharmacology of metformin in patients with type 2 diabetes mellitus. PLoS ONE. 2014;9(7):e100778. https://doi.org/10.1371/journal.pone.0100778.; De la Cuesta-Zuluaga J., Mueller N.T., Corrales-Agudelo V., VelásquezMejía E.P., Carmona J.A., Abad J.M., Escobar J.S. Metformin Is Associated With Higher Relative Abundance of Mucin-Degrading Akkermansia muciniphila and Several Short-Chain Fatty Acid-Producing Microbiota in the Gut. Diabetes Care. 2017;40(1):54–62. https://doi.org/10.2337/dc16-1324.; Elbere I., Kalnina I., Silamikelis I., Konrade I., Zaharenko L., Sekace K. et al. Association of metformin administration with gut microbiome dysbiosis in healthy volunteers. PLoS ONE. 2018;13(9):e0204317. https://doi.org/10.1371/journal.pone.0204317.; Li T., Chiang J.Y. Bile acid signaling in metabolic disease and drug therapy. Pharmacol Rev. 2014;66(4):948–983. https://doi.org/10.1124/pr.113.008201.; Sansome D.J., Xie C., Veedfald S., Horowitz M., Rayner C.K., Wu T. Mechanism of glucose-lowering by metformin in type 2 diabetes: Role of bile acids. Diabetes Obes Metab. 2020;22(2):141–148. https://doi.org/10.1111/dom.13869.; Scarpello J.H., Hodgson E., Howlett H.C. Effect of metformin on bile salt circulation and intestinal motility in type 2 diabetes mellitus. Diabet Med. 1998;15(8):651–656. https://doi.org/10.1002/(SICI)1096-9136(199808)15:83.0.CO;2-A.; Meng X.M., Ma X.X., Tian Y.L., Jiang Q., Wang L.L., Shi R. et al. Metformin improves the glucose and lipid metabolism via influencing the level of serum total bile acids in rats with streptozotocin-induced type 2 diabetes mellitus. Eur Rev Med Pharmacol Sci. 2017;21(9):2232–2237. Available at: https://www.europeanreview.org/article/12704.; Brønden A., Albér A., Rohde U., Rehfeld J.F., Holst J.J., Vilsbøll T., Knop F.K. Single-Dose Metformin Enhances Bile Acid-Induced Glucagon-Like Peptide-1 Secretion in Patients With Type 2 Diabetes. J Clin Endocrinol Metab. 2017;102(11):4153–4162. https://doi.org/10.1210/jc.2017-01091.; Forslund K., Hildebrand F., Nielsen T., Falony G., Le Chatelier E., Sunagawa S. et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature. 2015;528(7581):262–266. https://doi.org/10.1038/nature15766.; Breit S.N., Brown D.A., Tsai V.W. The GDF15-GFRAL Pathway in Health and Metabolic Disease: Friend or Foe? Annu Rev Physiol. 2021;83:127–151. https://doi.org/10.1146/annurev-physiol-022020-045449.; Gerstein H.C., Pare G., Hess S., Ford R.J., Sjaarda J., Raman K. et al. Growth Differentiation Factor 15 as a Novel Biomarker for Metformin. Diabetes Care. 2017;40(2):280–283. https://doi.org/10.2337/dc16-1682.; Natali A., Nesti L., Venturi E., Shore A.C., Khan F., Gooding K. et al. Metformin is the key factor in elevated plasma growth differentiation factor-15 levels in type 2 diabetes: A nested, case-control study. Diabetes Obes Metab. 2019;21(2):412–416. https://doi.org/10.1111/dom.13519.; Preiss D., Lloyd S.M., Ford I., McMurray J.J., Holman R.R., Welsh P. et al. Metformin for non-diabetic patients with coronary heart disease (the CAMERA study): a randomised controlled trial. Lancet Diabetes Endocrinol. 2014;2(2):116–124. https://doi.org/10.1016/S2213-8587(13)70152-9.; Coll A.P., Chen M., Taskar P., Rimmington D., Patel S., Tadross J.A. et al. GDF15 mediates the effects of metformin on body weight and energy balance. Nature. 2020;578(7795):444–448. https://doi.org/10.1038/s41586-019-1911-y.; Blonde L., Dailey G.E., Jabbour S.A., Reasner C.A., Mills D.J. Gastrointestinal tolerability of extended-release metformin tablets compared to immediate-release metformin tablets: results of a retrospective cohort study. Curr Med Res Opin. 2004;20(4):565–572. https://doi.org/10.1185/030079904125003278.; Аметов А.С., Барыкина И.Н., Бондарь И.А., Вайсберг А.Р., Вербовая Н.И., Жукова Л.А. и др. Приверженность пациентов терапии метформином пролонгированного действия (Глюкофаж® Лонг) в условиях реальной клинической практики в Российской Федерации. Эндокринология: новости, мнения, обучение. 2017;(4):52–63. https://doi.org/10.24411/2304-9529-2017-00054.; https://www.med-sovet.pro/jour/article/view/6920

  15. 15
    Conference
  16. 16
  17. 17
    Academic Journal

    المصدر: Сборник статей

    وصف الملف: application/pdf

    Relation: Актуальные вопросы современной медицинской науки и здравоохранения: Материалы VI Международной научно-практической конференции молодых учёных и студентов, посвященной году науки и технологий, (Екатеринбург, 8-9 апреля 2021): в 3-х т.; Ильиных, М. Г. Механизмы действия метформина / М. Г. Ильиных, В. М. Бахтин, Н. В. Изможерова // Актуальные вопросы современной медицинской науки и здравоохранения: материалы VI Международной научно-практической конференции молодых учёных и студентов, посвященной году науки и технологий, (Екатеринбург, 8-9 апреля 2021 г.) : в 3-х т. – Екатеринбург : УГМУ, 2021. – Т.2. – С. 982-987.; http://elib.usma.ru/handle/usma/5974

  18. 18
    Academic Journal

    المصدر: Medical Herald of the South of Russia; Том 12, № 4 (2021); 27-33 ; Медицинский вестник Юга России; Том 12, № 4 (2021); 27-33 ; 2618-7876 ; 2219-8075 ; 10.21886/2219-8075-2021-12-4

    وصف الملف: application/pdf

    Relation: https://www.medicalherald.ru/jour/article/view/1427/853; https://www.medicalherald.ru/jour/article/downloadSuppFile/1427/518; https://www.medicalherald.ru/jour/article/downloadSuppFile/1427/519; https://www.medicalherald.ru/jour/article/downloadSuppFile/1427/520; Дедов И.И., Шестакова М.В., Майоров А.Ю., Викулова О.К., Галстян Г.Р., и др. «Алгоритмы специализированной медицинской помощи больным сахарным диабетом». Под редакцией И.И. Дедова, М.В. Шестаковой, А.Ю. Майорова 9-й выпуск. Сахарный диабет. 2019; 22(1S1):1-144. DOI:10.14341/DM221S1; Garber AJ, Handelsman Y, Grunberger G, Einhorn D, Abrahamson MJ, et al. Consensus statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the comprehensive type 2 diabetes management algorithm — 2020 executive summary. Endocr Pract. 2020; 26(1):107-139. DOI:10.4158/CS-2019-0472.; Zhou J, Massey S, Story D, Li L. Metformin: An Old Drug with New Applications. Int J Mol Sci. 2018; 19(10):2863. DOI:10.3390/ijms19102863.; Bankura B, Das M, Pattanayak A, Adhikary B, Bhattacharjee R, et al. Inter-patient Variability in Clinical Efficacy of Metformin in Type 2 Diabetes MellitusPatients in West Bengal, India. Journal of Metabolic Syndrome. 2016;(5):2. DOI:10.4172/2167-0943.1000198.; Waterham HR, Ferdinandusse S, Wanders RJ. Human disorders of peroxisome metabolism and biogenesis. Biochim Biophys Acta. 2016; 1863(5):922-33. DOI:10.1016/j.bbamcr.2015.11.015.; Christofides A, Konstantinidou E, Jani C, Boussiotis VA. The role of peroxisome proliferator-activated receptors (PPAR) in immune responses. Metabolism. 2021; 114:154338. DOI:10.1016/j.metabol.2020.154338.; Grygiel-Górniak B. Peroxisome proliferator-activated receptors and their ligands: nutritional and clinical implications — a review. Nutr J. 2014; 13:17. DOI:10.1186/1475-2891-13-17.; Yahaya TO, Salisu TF. A Review of Type 2 Diabetes Mellitus Predisposing Genes. Curr Diabetes Rev. 2019; 16(1):52-61. DOI:10.2174/1573399815666181204145806.; Кононенко И.В., Майоров А.Ю., Кокшарова Е.О., Шестакова М.В. Фармакогенетика сахароснижающих препаратов. Сахарный диабет. 2015; 18(4):28-34. DOI:10.14341/DM7681; Okuno A, Tamemoto H, Tobe K, Ueki K, Mori Y, et al. Troglitazone increases the number of small adipocytes without the change of white adipose tissue mass in obese Zucker rats. J Clin Invest. 1998; 101(6):1354-61. DOI:10.1172/JCI1235.; Sarhangi N, Sharifi F, Hashemian L, Hassani Doabsari M, Heshmatzad K, et al. PPARG (Pro12Ala) genetic variant and risk of T2DM: a systematic review and meta-analysis. Sci Rep. 2020; 10(1):12764. DOI:10.1038/s41598-020-69363-7.; Groop L, Pociot F. Genetics of diabetes — are we missing the genes or the disease? Mol Cell Endocrinol. 2014; 382(1):726- 739. DOI:10.1016/j.mce.2013.04.002.; Leońska-Duniec A, Ahmetov II, Zmijewski P. Genetic variants influencing effectiveness of exercise training programmes in obesity — an overview of human studies. Biol Sport. 2016; 33(3):207-14. DOI:10.5604/20831862.1201052.; Castro GV, Latorre AFS, Korndorfer FP, de Carlos Back LK, Lofgren SE. The Impact of Variants in Four Genes: MC4R, FTO, PPARG and PPARGC1A in Overweight and Obesity in a Large Sample of the Brazilian Population. Biochem Genet. 2021; 59(6):1666-1679. DOI:10.1007/s10528-021-10079-2.; Bordoni L, Marchegiani F, Piangerelli M, Napolioni V, Gabbianelli R. Obesity-related genetic polymorphisms and adiposity indices in a young Italian population. IUBMB Life. 2017; 69(2):108-115. DOI:10.1002/iub.1596.; Wang X, Liu J, Ouyang Y, Fang M, Gao H, Liu L. The association between the Pro12Ala variant in the PPARγ2 gene and type 2 diabetes mellitus and obesity in a Chinese population. PLoS One. 2013; 8(8):e71985. DOI:10.1371/journal.pone.0071985.; Rodrigues APS, Rosa LPS, Silveira EA. PPARG2 Pro12Ala polymorphism influences body composition changes in severely obese patients consuming extra virgin olive oil: a randomized clinical trial. Nutr Metab (Lond). 2018; 15:52. DOI:10.1186/s12986-018-0289-4.; Chmurzynska A, Muzsik A, Krzyżanowska-Jankowska P, Mądry E, Walkowiak J, Bajerska J. PPARG and FTO polymorphism can modulate the outcomes of a central European diet and a Mediterranean diet in centrally obese postmenopausal women. Nutr Res. 2019; 69:94-100. DOI:10.1016/j.nutres.2019.08.005.; Matsuo T, Nakata Y, Katayama Y, Iemitsu M, Maeda S, et al. PPARG genotype accounts for part of individual variation in body weight reduction in response to calorie restriction. Obesity (Silver Spring). 2009; 17(10):1924-31. DOI:10.1038/oby.2009.199.; Pearson ER. Diabetes: Is There a Future for Pharmacogenomics Guided Treatment? Clin Pharmacol Ther. 2019; 106(2):329-337. DOI:10.1002/cpt.1484.; Franks PW, Jablonski KA, Delahanty L, Hanson RL, Kahn SE, et al. The Pro12Ala variant at the peroxisome proliferator-activated receptor gamma gene and change in obesity-related traits in the Diabetes Prevention Program. Diabetologia. 2007; 50(12):2451-60. DOI:10.1007/s00125-007-0826-6.; Masud S, Ye S; SAS Group. Effect of the peroxisome proliferator activated receptor-gamma gene Pro12Ala variant on body mass index: a meta-analysis. J Med Genet. 2003; 40(10):773-80. DOI:10.1136/jmg.40.10.773.; https://www.medicalherald.ru/jour/article/view/1427

  19. 19
    Academic Journal

    المصدر: Meditsinskiy sovet = Medical Council; № 12 (2021); 220-227 ; Медицинский Совет; № 12 (2021); 220-227 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/6352/5750; Дедов И.И., Шестакова М.В., Майоров А.Ю. (ред.). Алгоритмы специализированной медицинской помощи больным сахарным диабетом. Вып. 9. Сахарный диабет. 2019;22(1S1):1–144. https://doi.org/10.14341/DM221S1.; Dedov I., Shestakova M., Benedetti M.M., Simon D., Pakhomov I., Galstyan G. Prevalence of Type 2 Diabetes Mellitus (T2DM) in the Adult Russian Population (NATION Study). Diabetes Res Clin Pract. 2016;115:90−95. https://doi.org/10.1016/j.diabres.2016.02.010.; Шестакова Е.А., Лунина Е.Ю., Галстян Г.Р., Шестакова М.В., Дедов И.И. Распространенность нарушений углеводного обмена у лиц с различными сочетаниями факторов риска сахарного диабета 2-го типа в когорте пациентов исследования NATION. Сахарный диабет. 2020;23(1):4–11. https://doi.org/10.14341/DM12286.; Дедов И.И., Шестакова М.В. (ред.). Сахарный диабет: диагностика, лечение, профилактика. М.: Медицинское информационное агентство; 2011. 808 c. Режим доступа: https://www.euni.cz/files/fileUploader/download/dia_ru/Textbook_Hibrid%20diabetic%20forms.pdf.; Garber A.J., Handelsman Y., Einhorn D., Bergman D.A., Bloomgarden Z.T., Fonseca V. et al. Diagnosis and Management of Prediabetes in the Continuum of Hyperglycemia: When Do the Risks of Diabetes Begin? A Consensus Statement from the American College of Endocrinology and the American Association of Clinical Endocrinologists. Endocr Pract. 2008;14(7):933–946. https://doi.org/10.4158/EP.14.7.933.; Kanat M., DeFronzo R.A., Abdul-Ghani M. Treatment of Prediabetes. World J Diabetes. 2015;6(12):1207–1222. https://doi.org/10.4239/wjd.v6.i12.1207.; Kanat M., Mari A., Norton L., Winnier D., DeFronzo R.A., Jenkinson Ch., Abdul-Ghani M.A. Distinct B-Cell Defects in Impaired Fasting Glucose and Impaired Glucose Tolerance. Diabetes. 2012;61(2):447–453. https://doi.org/10.2337/db11-0995.; Abdul-Ghani M., DeFronzo R.A., Jayyousi A. Prediabetes and Risk of Diabetes and Associated Complications: Impaired Fasting Glucose versus Impaired Glucose Tolerance: Does It Matter? Curr Opin Clin Nutr Metab Care. 2016;19(5):394–399. https://doi.org/10.1097/MCO.0000000000000307.; Tuomilehto J., Lindström J., Eriksson J.G., Valle T.T., Hämäläinen H., IlanneParikka P. et al. Prevention of Type 2 Diabetes Mellitus by Changes in Lifestyle among Subjects with Impaired Glucose Tolerance. N Engl J Med. 2001;344(18):1343–1350. https://doi.org/10.1056/NEJM200105033441801.; Knowler W.C., Barret-Connor E., Fowler S.E., Hamman R.F., Lachin J.M., Walker E.A., Nathan D.M. Reduction in the Incidence of type 2 Diabetes with Lifestyle Intervention or Metformin. N Engl J Med. 2002;346(6):393–403. https://doi.org/10.1056/NEJMoa012512.; Ramachandran A., Snehalatha C., Mary S., Mukesh B., Bhaskar A.D., Vijay V. The Indian Diabetes Prevention Programme Shows That Lifestyle Modification and Metformin Prevent Type 2 Diabetes in Asian Indian Subjects with Impaired Glucose Tolerance (IDPP-1). Diabetologia. 2006;49(2):289–297. https://doi.org/10.1007/s00125-005-0097-z.; Diabetes Prevention Program Research Group. Long-Term Effects of Lifestyle Intervention or Metformin on Diabetes Development and Microvascular Complications over 15-Year Follow-Up: the Diabetes Prevention Program Outcomes Study. Lancet Diabetes Endocrinol. 2015;3(11):866–875. https://doi.org/10.1016/S2213-8587(15)00291-0.; Diabetes Prevention Program Research Group. Long-Term Safety, Tolerability, and Weight Loss Associated with Metformin in the Diabetes Prevention Program Outcomes Study. Diabetes Care. 2012;35(4):731–737. https://doi.org/10.2337/dc11-1299.; DeFronzo R.A. From the Triumvirate to the Ominous Octet: A New Paradigm for the Treatment of Type 2 Diabetes Mellitus. Diabetes. 2009;58(4):773–795. https://doi.org/10.2337/db09-9028.; DeFronzo R.A. Insulin Resistance, Lipotoxicity, Type 2 Diabetes and Atherosclerosis: the Missing Links. The Claude Bernard Lecture 2009. Diabetologia. 2010;53(7):1270–1287. https://doi.org/10.1007/s00125-010-1684-1.; Yki-Järvinen H. Thiazolidinediones. N Engl J Med. 2004;351(11):1106–1118. https://doi.org/10.1056/NEJMra041001.; Spiegelman B.M. PPAR-Gamma: Adipogenic Regulator and Thiazolidinedione Receptor. Diabetes. 1998;47(4):507–514. https://doi.org/10.2337/diabetes.47.4.507.; Gastaldelli A., Ferrannini E., Miyazaki Y., Matsuda M., Mari A., DeFronzo R.A. Thiazolidinediones Improve Beta-Cell Function in Type 2 Diabetic Patients. Am J Physiol Endocrinol Metab. 2007;292(3):E871–E883. https://doi.org/10.1152/ajpendo.00551.2006.; DeFronzo R.A., Tripathy D., Schwenke D.C., Banerji M.A., Bray G.A., Buchanan T.A. et al. Pioglitazone for Diabetes Prevention in Impaired Glucose Tolerance. N Engl J Med. 2011;364(12):1104–1115. https://doi.org/10.1056/NEJMoa1010949.; Espinoza S.E., Wang C.P., Tripathy D., Clement S.C., Schwenke D.C., Banerji M.A. et al. Pioglitazone Is Equally Effective for Diabetes Prevention in Older versus Younger Adults with Impaired Glucose Tolerance. AGE. 2016;38(5–6):485–493. https://doi.org/10.1007/s11357-016-9946-6.; Tripathy D., Schwenke D.C., Banerji M.A., Bray G.A., Buchanan T.A., Clement S.C. et al. Diabetes Incidence and Glucose Tolerance after Termination of Pioglitazone Therapy: Results from ACT NOW. Clin Endocrinol Metab. 2016;101(5):2056–2062. https://doi.org/10.1210/jc.2015-4202.; Berkowitz K., Peters R., Kjos S.L., Goico J., Marroquin A., Dunn M.E. et al. Effect of Troglitazone on Insulin Sensitivity and Pancreatic Beta-Cell Function in Women at High Risk for NIDDM. Diabetes. 1996;45(11):1572–1579. https://doi.org/10.2337/diab.45.11.1572.; Xiang A.H., Peters R.K., Kjos S.L., Marroquin A., Goico J., Ochoa C. et al. Effect of Pioglitazone on Pancreatic Beta-Cell Function and Diabetes Risk in Hispanic Women with Prior Gestational Diabetes. Diabetes. 2006;55(2): 517–522. https://doi.org/10.2337/diabetes.55.02.06.db05-1066.; Buchanan T.A., Xiang A.H., Peters R.K., Kjos S.L., Marroquin A., Goico J. et al. Preservation of Pancreatic Beta-Cell Function and Prevention of Type 2 Diabetes by Pharmacological Treatment of Insulin Resistance in High-Risk Hispanic Women. Diabetes. 2002;51(90:2796–2803. https://doi.org/10.2337/diabetes.51.9.2796.; Torgerson J.S., Hauptman J., Boldrin M.N., Sjöström L. XENical in the Prevention of Diabetes in Obese Subjects (XENDOS) Study: A Randomized Study of Orlistat as an Adjunct to Lifestyle Changes for the Prevention of Type 2 Diabetes in Obese Patients. Diabetes Care. 2004;27(1):155–161. https://doi.org/10.2337/diacare.27.1.155.; Chiasson J.L., Josse R.G., Gomis R., Hanefeld M., Karasik A., Laakso M. Acarbose for Prevention of Type 2 Diabetes Mellitus: the STOP-NIDDM Randomised Trial. Lancet. 2002;359(9323):2072–2077. https://doi.org/10.1016/S0140-6736(02)08905-5.; Kawamori R., Tajima N., Iwamoto Y., Kashiwagi A., Shimamoto K., Kaku K. Voglibose for Prevention of Type 2 Diabetes Mellitus: A Randomised, DoubleBlind Trial in Japanese Individuals with Impaired Glucose Tolerance. Lancet. 2009;373(9675):1607–1614. https://doi.org/10.1016/S0140-6736(09)60222-1.; DeFronzo R.A., Abdul-Ghani M. Type 2 Diabetes Can Be Prevented with Early Pharmacological Intervention. Diabetes Care. 2011;34(2 Suppl):S202–S209. https://doi.org/10.2337/dc11-s221.; Slack E., Hapfelmeier S., Stecher B., Velykoredko Y., Stoel M., Lawson M.A. et al. Innate and Adaptive Immunity Cooperate Flexibly to Maintain Host-Microbiota Mutualism. Science. 2009;325(5940):617–620. https://doi.org/10.1126/science.1172747.; Le Roux C.W., Astrup A., Fujioka K., Greenway F., Lau D., Gaal L.C. et al. 3 Years of Liraglutide versus Placebo for Type 2 Diabetes Risk Reduction and Weight Management in Individuals with Prediabetes: A Randomised, Double-Blind Trial. Lancet. 2017;389(10077):1399–1409. https://doi.org/10.1016/S0140-6736(17)30069-7.; Armato J.P., DeFronzo R.A., Abdul-Ghani M., Ruby R.J. Successful Treatment of Prediabetes in Clinical Practice Using Physiological Assessment (STOP DIABETES). Lancet Diabetes Endocrinol. 2018;6(10):781–789. https://doi.org/10.1016/S2213-8587(18)30234-1.; Abdul-Ghani M.A., Stern M.P., Lyssenko V., Tuomi T., Groop L., Defronzo R.A. Minimal Contribution of Fasting Hyperglycemia to the Incidence of Type 2 Diabetes in Subjects with Normal 2-h Plasma Glucose. Diabetes Care. 2010;33(3):557–561. https://doi.org/10.2337/dc09-1145.; Cowie C.C., Harris M.I., Silverman R.E., Johnson E.W., Rust K.F. Effect of Multiple Risk Factors on Differences between Blacks and Whites in the Prevalence of Non-Insulin-Dependent Diabetes Mellitus in the United States. Am J Epidemiol 1993;137(7):719–732. https://doi.org/10.1093/oxfordjournals.aje.a116732.; Jarrett R.J., Keen H., McCartney P. The Whitehall Study: ten year follow-up report on men with impaired glucose tolerance with reference to worsening to diabetes and predictors of death. Diabet Med. 1984;1(4):279–283. https://doi.org/10.1111/j.1464-5491.1984.tb01973.x.; Eriksson K.F., Lindgärde F. Prevention of Type 2 (Non-Insulindependent) Diabetes Mellitus by Diet and Physical Exercise. The 6-Year Malmö Feasibility Study. Diabetologia. 1991;34(12):891–898. https://doi.org/10.1007/BF00400196.; Ryder R.E.J. Real-World Diabetes Prevention: From Theory to Practice. Lancet Diabetes Endocrinol. 2018;6(10):756–757. https://doi.org/10.1016/S2213- 8587(18)30267-5.; Gerstein H.C., Yusuf S., Bosch J., Pogue J., Sheridan P., Dinccag N. et al. Effect of Rosiglitazone on the Frequency of Diabetes in Patients with Impaired Glucose Tolerance or Impaired Fasting Glucose: A Randomised Controlled Trial. Lancet. 2006;368(9541):1096–1105. https://doi.org/10.1016/S0140-6736(06)69420-8.; Knowler W.C., Hamman R.F., Edelstein S.L., Barrett-Connor E., Ehrmann D.A., Walker E.A. Prevention of Type 2 Diabetes with Troglitazone in the Diabetes Prevention Program. Diabetes. 2005;54(4):1150–1156. https://doi.org/10.2337/diabetes.54.4.1150.; Ferrannini E., Gastaldelli A., Miyazaki Y., Matsuda M., Mari A., DeFronzo R.A. Beta-Cell Function in Subjects Spanning the Range from Normal Glucose Tolerance to Overt Diabetes: A New Analysis. J Clin Endocrinol Metab. 2005;90(1):493–500. https://doi.org/10.1210/jc.2004-1133.; Abdul-Ghani M.A., Tripathy D., DeFronzo R.A. Contributions of Beta-Cell Dysfunction and Insulin Resistance to the Pathogenesis of Impaired Glucose Tolerance and Impaired Fasting Glucose. Diabetes Care. 2006;29(5):1130– 1139. https://doi.org/10.2337/diacare.2951130.; Abdul-Ghani M.A., Jenkinson C.P., Richardson D.K., Tripathy D., DeFronzo R.A. Insulin Secretion and Action in Subjects with Impaired Fasting Glucose and Impaired Glucose Tolerance: Results from the Veterans Administration Genetic Epidemiology Study. Diabetes. 2006;55(5):1430–1435. https://doi.org/10.2337/db05-1200.; Weyer C., Tataranni P.A., Bogardus C., Pratley R.E. Insulin Resistance and Insulin Secretory Dysfunction Are Independent Predictors of Worsening of Glucose Tolerance during Each Stage of Type 2 Diabetes Development. Diabetes Care. 2001;24(1):89–94. https://doi.org/10.2337/diacare.24.1.89.; Abdul-Ghani M.A., Lyssenko V., Tuomi T., DeFronzo R.A., Groop L. Fasting versus Postload Plasma Glucose Concentration and the Risk for Future Type 2 Diabetes: Results from the Botnia Study. Diabetes Care. 2009;32(2):281–286. https://doi.org/10.2337/dc08-1264.; Khetan A.K., Rajagopalan S. Prediabetes. Can J Cardiol. 2018;34(5):615–623. https://doi.org/10.1016/j.cjca.2017.12.030.; Brannick B., Dagogo-Jack S. Prediabetes and Cardiovascular Disease: Pathophysiology and Interventions for Prevention and Risk Reduction. Endocrinol Metab Clin North Am. 2018;47(1):33–50. https://doi.org/10.1016/j.ecl.2017.10.001.; Wasserman D.H., Wang T.J., Brown N.J. The Vasculature in Prediabetes. Circ Res. 2018;122(8):1135–1150. https://doi.org/10.1161/CIRCRESAHA. 118.311912.; Perreault L., Temprosa M., Mather K.J., Horton E., Kitabchi A., Larkin M. et al. Regression from Prediabetes to Normal Glucose Regulation Is Associated with Reduction in Cardiovascular Risk: Results from the Diabetes Prevention Program Outcomes Study. Diabetes Care. 2014;37(9):2622–2631. https://doi.org/10.2337/dc14-0656.; Yakubovich N., Gerstein H.C. Is Regression to Normoglycaemia Clinically Important? Lancet. 2012;379(9833):2216–2218. https://doi.org/10.1016/S0140-6736(12)60828-9.; Perreault L., Pan Q., Schroeder E.B., Kalyani R.R., Bray G.A., Dagogo-Jack S. et al. Regression from Prediabetes to Normal Glucose Regulation and Prevalence of Microvascular Disease in the Diabetes Prevention Program Outcomes Study (DPPOS). Diabetes Care. 2019;42(9):1809–1815. https://doi.org/10.2337/ dc19-0244.; Vistisen D., Kivimäki M., Perreault L., Hulman A., Witte D.R., Brunner E.J. et al. Reversion from Prediabetes to Normoglycaemia and Risk of Cardiovascular Disease and Mortality: the Whitehall II Cohort Study. Diabetologia. 2019;62(8):1385–1390. https://doi.org/10.1007/s00125-019-4895-0.; https://www.med-sovet.pro/jour/article/view/6352

  20. 20
    Academic Journal

    المساهمون: Работа выполнена по государственному заданию в рамках бюджетных тем № АААА-А17- 117112850280-2 и № 121031300045-2

    المصدر: Complex Issues of Cardiovascular Diseases; Том 10, № 4 (2021); 39-47 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 10, № 4 (2021); 39-47 ; 2587-9537 ; 2306-1278

    وصف الملف: application/pdf

    Relation: https://www.nii-kpssz.com/jour/article/view/988/612; Российское кардиологическое общество. Острый инфаркт миокарда с подъемом сегмента ST электрокардиограммы. Клинические рекомендации 2020. Российский кардиологический журнал. 2020;25(11):4103. doi:10.15829/29/1560-4071-2020-4103; Дедов И.И., Шестакова М.В., Майоров А.Ю., Викулова О.К., Галстян Г.Р., Кураева Т.Л. и др. Алгоритмы специализированной медицинской помощи больным сахарным диабетом. Под редакцией И.И. Дедова, М.В. Шестаковой, А.Ю. Майорова 9-й выпуск. Сахарный диабет. 2019;22(1S1):1-144. doi.org/10.14341/DM221S1.; Бондарева К.И., Николаев К.Ю. Влияние гипогликемической терапии на прогноз острого коронарного синдрома у больных сахарным диабетом второго типа. Под ред. А.Ю. Летягина, В.В. Климонтова. Сахарный диабет - 2019: от мониторинга к управлению. Материалы III Российской мультидисплинарной конференции с международным участием. 2019, С. 6-9. ISBN: 978-5-94520-042-5; Рекомендации ЕОК по ведению пациентов с острым инфарктом миокарда с подъемом сегмента ST 2017. Российский кардиологический журнал 2018; 23 (5): 103–158. doi.org/10.15829/1560-4071-2018-5-103-158; GFR Calculator. National Kidney Foundation. Available at: https://www.kidney.org/professionals/kdoqi/gfr_calculator (accessed 05.02.2016).; Калькулятор шкалы Grace. НМИЦ Кардиологии. Режим доступа: http://www.rusintervention.ru/специалистам/медицинские–калькуляторы/шкала–grace/. (дата обращения 05.02.2016); Bauters C., Lemesle G., de Groote P., Lamblin N. A systematic review and meta-regression of temporal trends in the excess mortality associated with diabetes mellitus after myocardial infarction. Int J Cardiol. 2016;217:109-21. doi:10.1016/j.ijcard.2016.04.182; Buckley L.F., Dixon D.L., Wohlford G.F. 4th, Wijesinghe D.S., Baker W.L., Van Tassell B.W. Response to Comment on Buckley et al. Intensive Versus Standard Blood Pressure Control in SPRINT-Eligible Participants of ACCORD-BP. Diabetes Care 2017;40:1733-1738. Diabetes Care. 2018;41(6):e86-e87. doi:10.2337/dci17-0066.; Аметов А.С. Исследование ADVANCE-20 лет спустя. Эндокринология: новости, мнения, обучение. 2020; 9 (3): 11–2. doI:10.33029/2304-9529-2020-9-3-11-12; Gerbaud E., Darier R., Montaudon M., Beauvieux M.C., Coffin-Boutreux C., Coste P., Douard H., Ouattara A., Catargi B. Glycemic Variability Is a Powerful Independent Predictive Factor of Midterm Major Adverse Cardiac Events in Patients With Diabetes With Acute Coronary Syndrome. Diabetes Care. 2019;42(4):674-681. doi:10.2337/dc18-2047.; Jong C.B., Chen K.Y., Hsieh M.Y., Su F.Y., Wu C.C., Voon W.C., Hsieh I.C., Shyu K.G., Chong J.T., Lin W.S., Hsu C.N., Ueng K.C., Lai C.L. Metformin was associated with lower all-cause mortality in type 2 diabetes with acute coronary syndrome: A Nationwide registry with propensity score-matched analysis. Int J Cardiol. 2019;291:152-157. doi:10.1016/j.ijcard.2019.03.021.; Bromage D.I., Godec T.R., Pujades-Rodriguez M., Gonzalez-Izquierdo A., Denaxas S., Hemingway H., Yellon D.M. Metformin use and cardiovascular outcomes after acute myocardial infarction in patients with type 2 diabetes: a cohort study. Cardiovasc Diabetol. 2019;18(1):168. doi:10.1186/s12933-019-0972-4.; Mohsin A.A., Chen Q., Quan N., Rousselle T., Maceyka M.W., Samidurai A., Thompson J., Hu Y., Li J., Lesnefsky E.J. Mitochondrial Complex I Inhibition by Metformin Limits Reperfusion Injury. J Pharmacol Exp Ther. 2019;369(2):282-290. doi:10.1124/jpet.118.254300.; Wang, Y., Yang, Z., Zheng, G., Yu L., Yin Y., Mu N., Ma H. Metformin promotes autophagy in ischemia/reperfusion myocardium via cytoplasmic AMPKα1 and nuclear AMPKα2 pathways. Life Sciences. 2019; 225: 64–71. doi:10.1016/j.lfs.2019.04.002; Varjabedian L., Bourji M., Pourafkari L. Cardioprotection by Metformin: Beneficial Effects Beyond Glucose Reduction. Am J Cardiovasc Drugs. 2018;18(3):181-193. doi:10.1007/s40256-018-0266-3.; Rena G., Hardie D.G., Pearson E.R. Pearson. The mechanisms of action of metformin. Diabetologia. 2017; 60(9): 1577–1585. doi:10.1007/s00125-017-4342-z.; https://www.nii-kpssz.com/jour/article/view/988