يعرض 1 - 8 نتائج من 8 نتيجة بحث عن '"Л. Таширева А."', وقت الاستعلام: 0.36s تنقيح النتائج
  1. 1
    Academic Journal

    المساهمون: Исследование выполнено при поддержке гранта Президента РФ НШ-2701.2020.7.

    المصدر: Siberian journal of oncology; Том 19, № 3 (2020); 54-63 ; Сибирский онкологический журнал; Том 19, № 3 (2020); 54-63 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2020-19-3

    وصف الملف: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/1488/747; Candido J., Hagemann T. Cancer-related inflammation. J Clin Immunol. 2013 Jan; 33 Suppl 1: S79–84. doi:10.1007/s10875-012-9847-0.; Перельмутер В.М., Манских В.Н. Прениша как отсутствующее звено концепции метастатических ниш, объясняющее избирательное метастазирование злокачественных опухолей и форму метастатической болезни. Биохимия. 2012; 77(1): 130–139. doi:10.1134/S0006297912010142.; Barcellos-Hoff M.H., Lyden D., Wang T.C. The evolution of the cancer niche during multistage carcinogenesis. Nat Rev Cancer. 2013 Jul; 13(7): 511–8. doi:10.1038/nrc3536.; Retsky M., Demicheli R., Hrushesky W.J., Forget P., De Kock M., Gukas I., Rogers R.A., Baum M., Pachmann K., Vaidya J.S. Promising development from translational or perhaps anti-translational research in breast cancer. Clin Transl Med. 2012 Aug 28; 1(1): 17. doi:10.1186/2001-1326-1-17.; Zhao Z., Zhao X., Lu J., Xue J., Liu P., Mao H. Prognostic roles of neutrophil to lymphocyte ratio and platelet to lymphocyte ratio in ovarian cancer: a meta-analysis of retrospective studies. Arch Gynecol Obstet. 2018 Apr; 297(4): 849–857. doi:10.1007/s00404-018-4678-8.; Yu X., Wen Y., Lin Y., Zhang X., Chen Y., Wang W., Wang G., Zhang L. The value of preoperative Glasgow Prognostic Score and the C-Reactive Protein to Albumin Ratio as prognostic factors for long-term survival in pathological T1N0 esophageal squamous cell carcinoma. J Cancer. 2018 Feb 12; 9(5): 807–815. doi:10.7150/jca.22755.; Chen S., Guo J., Feng C., Ke Z., Chen L., Pan Y. The preoperative platelet-lymphocyte ratio versus neutrophil-lymphocyte ratio: which is better as a prognostic factor in oral squamous cell carcinoma? Ther Adv Med Oncol. 2016 May; 8(3): 160–7. doi:10.1177/1758834016638019.; Sun H., Yin C.Q., Liu Q., Wang F., Yuan C.H. Clinical Significance of Routine Blood Test-Associated Inflammatory Index in Breast Cancer Patients. Med Sci Monit. 2017 Oct 25; 23: 5090–5095. doi:10.12659/msm.906709.; Feng J.F., Chen S., Yang X. Systemic immune-inflammation index (SII) is a useful prognostic indicator for patients with squamous cell carcinoma of the esophagus. Medicine (Baltimore). 2017; 96(4): e5886. doi:10.1097/MD.0000000000005886.; Geng Y., Shao Y., Zhu D., Zheng X., Zhou Q., Zhou W., Ni X., Wu C., Jiang J. Systemic Immune-Inflammation Index Predicts Prognosis of Patients with Esophageal Squamous Cell Carcinoma: A Propensity Score-matched Analysis. Sci Rep. 2016 Dec 21; 6: 39482. doi:10.1038/srep39482.; Ma M., Yu N., Wu B. High systemic immune-inflammation index represents an unfavorable prognosis of malignant pleural mesothelioma. Cancer Manag Res. 2019 May 2; 11: 3973–3979. doi:10.2147/CMAR.S201269.; Stotz M., Pichler M., Absenger G., Szkandera J., Arminger F., Schaberl-Moser R., Samonigg H., Stojakovic T., Gerger A. The preoperative lymphocyte to monocyte ratio predicts clinical outcome in patients with stage III colon cancer. Br J Cancer. 2014 Jan 21; 110(2): 435–40. doi:10.1038/bjc.2013.785.; Chan J.C., Chan D.L., Diakos C.I., Engel A., Pavlakis N., Gill A., Clarke S.J. The Lymphocyte-to-Monocyte Ratio is a Superior Predictor of Overall Survival in Comparison to Established Biomarkers of Resectable Colorectal Cancer. Ann Surg. 2017 Mar; 265(3): 539–546. doi:10.1097/SLA.0000000000001743.; Селье Г., Саарма Ю.М., Лука А.Н., Хорол И.С. Стресс без дистресса. М., 1979. 126 с. [Selye H., Saarma Ju.M., Luka A.N., Horol I.S. Stress without Distress. Moscow, 1979. 126 p. (in Russian)].; Гаркави Л.Х., Квакина Е.Б., Уколова М.А. Адаптационные реакции и резистентность организма. Ростов-на-Дону, 1990. 256 с.; Karagiannis G.S., Pastoriza J.M., Wang Y., Harney A.S., Entenberg D., Pignatelli J., Sharma V.P., Xue E.A., Cheng E., D’Alfonso T.M., Jones J.G., Anampa J., Rohan T.E., Sparano J.A., Condeelis J.S., Oktay M.H. Neoadjuvant chemotherapy induces breast cancer metastasis through a TMEM-mediated mechanism. Sci Transl Med. 2017 Jul 5; 9(397): eaan0026. doi:10.1126/scitranslmed.aan0026.; Zhang Y., Xiao G., Wang R. Clinical significance of systemic immune-inflammation index (SII) and C-reactive protein-to-albumin ratio (CAR) in patients with esophageal cancer: a meta-analysis. Cancer Manag Res. 2019 May 7; 11: 4185–200. doi:10.2147/CMAR.S190006.; Shoenfeld Y., Gurewich Y., Gallant L.A., Pinkhas J. Prednisoneinduced leukocytosis. Influence of dosage, method and duration of administration on the degree of leukocytosis. Am J Med. 1981 Nov; 71(5): 773–8. doi:10.1016/0002-9343(81)90363-6.; https://www.siboncoj.ru/jour/article/view/1488

  2. 2
    Academic Journal

    المساهمون: Russian Foundation for Basic Research and the government of the Tomsk region of the Russian Federation, grant № 18-415-703014\18, РФФИ и администрация Томской области в рамках научного проекта № 18-415-703014\18

    المصدر: Siberian journal of oncology; Том 17, № 6 (2018); 57-63 ; Сибирский онкологический журнал; Том 17, № 6 (2018); 57-63 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2018-17-6

    وصف الملف: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/903/587; Савенкова О.В., ЗавьяловаМ.В., Бычков В.А., Чойнзонов Е.Л., Перельмутер В.М. Связь экспрессии матриксных металлопротеиназ с морфологической гетерогенностью, дифференцировкой опухоли и лимфогенным метастазированием плоскоклеточной карциномы гортани. Сибирский онкологический журнал. 2015; 1: 51-58.; Бычков В.А., Бондарь Л.Н., Чойнзонов Е.Л., Перельмутер В.М. Характер течения плоскоклеточных карцином головы и шеи в зависимости от морфологических особенностей исходной опухоли. Сибирский онкологический журнал. 2017; 16 (2): 20-26. doi:10.21294/18144861-2017-16-2-20-26.; Grivennikov S.I., Greten F.R., Karin M. Immunity, inflammation, and cancer. Cell. 2010 Mar 19; 140 (6): 883-99. doi:10.1016/j.cell.2010.01.025.; Scheele C.L.G.J., Maynard C., van Rheenen J. Intravital insights into heterogeneity, metastasis, and therapy responses. Trends Cancer. 2016 Apr; 2 (4): 205-216. doi:10.1016/j.trecan.2016.03.001.; Bonnans C., Chou J., Werb Z. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol. 2014 Dec; 15 (12): 786-801. doi:10.1038/nrm3904.; Salgado R., Denkert C., Demaria S., Sirtaine N., Klauschen F, Pruneri G., Wienert S., Van den Eynden G., Baehner F.L., Penault-Llorca F, Perez E.A., Thompson E.A., Symmans W.F., Richardson A.L., Brock J., Criscitiello C., Bailey H., Ignatiadis M., Floris G., Sparano J., Kos Z., Nielsen T., Rimm D.L., AllisonK.H., Reis-Filho J.S., Loibl S., Sotiriou C., Viale G., Badve S., Adams S., Willard-GalloK., Loi S.; International TILs Working Group 2014. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TlLs Working Group 2014. Ann Oncol. 2015 Feb; 26 (2): 259-71. doi:10.1093/annonc/mdu450.; Teunissen M.B. Dynamic nature and function of epidermal Langer-hans cells in vivo and in vitro: a review, with emphasis on human Langer-hans cells. Histochem J. 1992 Oct; 24 (10): 697-716.; Gallo O., Libonati GA., Gallina E., Fini-Storchi O., Giannini A., Urso C., Bondi R. Langerhans cells related to prognosis in patients with laryngeal carcinoma. Arch Otolaryngol Head Neck Surg. 1991; 117 (9): 1007-10. doi:10.1001/archotol.1991.01870210079015.; Esteban F, Ruiz-Cabello F, Gonzalez-Moles MA., Lopez-Gonza-lezMA., Funez R., RedondoM. Clinical significance of Langerhans cells in squamous cell carcinoma of the larynx. J Oncol. 2012; 2012: 753296. doi:10.1155/2012/753296.; MalothA., Dorankula S.P.R., PasupulaA.P., ThokalaM.R., Mud-dana K., Ramavath R. A Comparative immunohistochemical analysis of Langerhans cells in oral mucosa, oral lichen planus and oral squamous cell carcinoma. J Clin Diagn Res. 2015 Jul; 9 (7): ZC76-9. doi:10.7860/JCDR/2015/14170.6235.; https://www.siboncoj.ru/jour/article/view/903

  3. 3
    Academic Journal

    المصدر: Siberian journal of oncology; Том 16, № 3 (2017); 65-78 ; Сибирский онкологический журнал; Том 16, № 3 (2017); 65-78 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2017-16-3

    وصف الملف: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/543/452; Mantovani A., Allavena P., Sica A., Balkwill F. Cancer-related inflammation. Nature. 2008 Jul 24; 454 (7203): 436–44. doi:10.1038/ nature07205.; Coussens L.M., Werb Z. Inflammation and cancer. Nature. 2002 Dec 19-26; 420 (6917): 860–7. doi:10.1038/nature01322.; Trinchieri G. Cancer and inflammation: an old intuition with rapidly evolving new concepts. Annu Rev Immunol. 2012; 30: 677–706. doi:10.1146/annurev-immunol-020711-075008.; Retsky M., Demicheli R., Hrushesky W.J., Forget P., De Kock M., Gukas I., Rogers R.A., Baum M., Sukhatme V., Vaidya J.S. Reduction of Breast Cancer Relapses with Perioperative Non-Steroidal Anti-Inflammatory Drugs: New Findings and a Review. Curr Med Chem. 2013; 20 (33): 4163–76. doi:10.2174/09298673113209990250.; Mantovani A. Cancer: inflaming metastasis. Nature. 2009 Jan 1; 457 (7225): 36–7. doi:10.1038/457036b.; Nguyen D.X., Bos P.D., Massague J. Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer. 2009 Apr; 9 (4): 274–84. doi:10.1038/nrc2622.; Polyak K., Weinberg R.A. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer. 2009 Apr; 9 (4): 265–73. doi:10.1038/nrc2620.; Kaplan R.N., Riba R.D., Zacharoulis S., Bramley A.H., Vincent L., Costa C., MacDonald D.D., Jin D.K., Shido K., Kerns S.A., Zhu Z., Hicklin D., Wu Y., Port J.L., Altorki N., Port E.R., Ruggero D., Shmelkov S.V., Jensen K.K., Rafii S., Lyden D. VEGFR1-positive haematopoietic bone marrow progenitors initiate the premetastatic niche. Nature. 2005 Dec 8; 438 (7069): 820–7. doi:10.1038/nature04186.; Perelmuter V.M., Manskikh V.N. The Concept of a Preniche for Localization of Future Metastases. Tumors of the Central Nervous System Types of Tumors, Diagnosis, Ultrasonography, Surgery, Brain Metastasis, and General CNS Diseases. Ed. Hayat MA. Berlin: Springer. 2014; 13: 93–106.; Barcellos-Hoff M.H., Lyden D., Wang T.C. The evolution of the cancer niche during multistage carcinogenesis. Nat Rev Cancer. 2013 Jul; 13 (7): 511–8. doi:10.1038/nrc3536.; Mantovani A., Sica A. Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol. 2010 Apr; 22 (2): 231–7. doi:10.1016/j.coi.2010.01.009.; Perelmuter V.M., Manskikh V.N. Preniche as missing link of the metastatic niche concept explaining organ-preferential metastasis of malignant tumors and the type of metastatic disease. Biochemistry (Mosc). 2012 Jan; 77 (1): 111–8. doi:10.1134/S0006297912010142.; Lin K.T., Wang L.H. New dimension of glucocorticoids in cancer treatment. Steroids. 2016 Jul; 111: 84–8. doi:10.1016/j. steroids.2016.02.019.; Coutinho A.E., Chapman K.E. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol Cell Endocrinol. 2011 Mar 15; 335 (1): 2–13. doi:10.1016/j.mce.2010.04.005.; Singh P.P., Lemanu D.P., Taylor M.H., Hill A.G. Association between preoperative glucocorticoids and long-term survival and cancer recurrence after colectomy: follow-up analysis of a previous randomized controlled trial. Br J Anaesth. 2014 Jul; 113 Suppl 1: i68 73. doi:10.1093/bja/aet577.; Yu H.C., Luo Y.X., Peng H., Kang L., Huang M.J., Wang J.P. Avoiding perioperative dexamethasone may improve the outcome of patients with rectal cancer. Eur J Surg Oncol. 2015 May; 41 (5): 667–73. doi:10.1016/j.ejso.2015.01.034.; Rutz H.P. Effects of corticosteroid use on treatment of solid tumours. Lancet. 2002 Dec 14; 360 (9349): 1969–70. doi:10.1016/S0140- 6736(02)11922-2.; Khan Z., Khan N., Tiwari R.P., Sah N.K., Prasad G.B., Bisen P.S. Biology of Cox-2: an application in cancer therapeutics. Curr Drug Targets. 2011 Jun; 12 (7): 1082–93.; Giovannucci E., Rimm E.B., Stampfer M.J., Colditz G.A., Ascherio A., Willett W.C. Aspirin use and the risk for colorectal cancer and adenoma in male health professionals. Ann Intern Med. 1994 Aug 15; 121 (4): 241–6. doi:10.7326/0003-4819-121-4-199408150-00001.; Giovannucci E., Egan K.M., Hunter D.J., Stampfer M.J., Colditz G.A., Willett W.C., Speizer F.E. Aspirin and the risk of colorectal cancer in women. N Engl J Med. 1995 Sep 7; 333 (10): 609–14. doi:10.1056/ NEJM199509073331001.; Harris R.E. Cyclooxygenase-2 (cox-2) blockade in the chemoprevention of cancers of the colon, breast, prostate, and lung. Inflammopharmacology. 2009 Apr; 17 (2): 55–67. doi:10.1007/s10787-009-8049-8.; Daugherty S.E., Pfeiffer R.M., Sigurdson A.J., Hayes R.B., Leitzmann M., Schatzkin A., Hollenbeck A.R., Silverman D.T. Nonsteroidal Antiinflammatory Drugs and Bladder Cancer: A Pooled Analysis. Am J Epidemiol. 2011 Apr 1; 173 (7): 721–30. doi:10.1093/aje/kwq437.; Zhang D., Bai B., Xi Y., Wang T., Zhao Y. Is aspirin use associated with a decreased risk of ovarian cancer? A systematic review and metaanalysis of observational studies with dose-response analysis. Gynecol Oncol. 2016 Aug; 142 (2): 368–77. doi:10.1016/j.ygyno.2016.04.543.; Zhang B., Liang X., Ye L., Wang Y. No Chemopreventive Effect of Nonsteroidal Anti-Inflammatory Drugs on Nonmelanoma Skin Cancer: Evidence from Meta-Analysis. PLoS One. 2014 May 14; 9 (5): e96887. doi:10.1371/journal.pone.0096887.; Rothwell P.M., Fowkes F.G., Belch J.F., Ogawa H., Warlow C.P., Meade T.W. Effect of daily aspirin on long-term risk of death due to cancer: analysis of individual patient data from randomised trials. Lancet. 2011 Jan 1; 377 (9759): 31–41. doi:10.1016/S0140-6736(10)62110-1.; Schernhammer E.S., Kang J.H., Chan A.T., Michaud D.S., Skinner H.G., Giovannucci E., Colditz G.A., Fuchs C.S. A prospective study of aspirin use and the risk of pancreatic cancer in women. J Natl Cancer Inst. 2004 Jan 7; 96 (1): 22–8. doi:10.1093/jnci/djh001.; Larsson S.C., Giovannucci E., Bergkvist L., Wolk A. Aspirin and Nonsteroidal Anti-inflammatory Drug Use and Risk of Pancreatic Cancer: A Meta-analysis. Cancer Epidemiol Biomarkers Prev. 2006 Dec; 15 (12): 2561–4. doi:10.1158/1055-9965.EPI-06-0574.; Cao Y., Nishihara R., Wu K., Wang M., Ogino S., Willett W.C., Spiegelman D., Fuchs C.S., Giovannucci E.L., Chan A.T. Population-wide Impact of Long-term Use of Aspirin and the Risk for Cancer. JAMA Oncol. 2016 Jun 1; 2 (6): 762–9. doi:10.1001/jamaoncol.2015.6396.; Eibl G., Takata Y., Boros L.G., Liu J., Okada Y., Reber H.A., Hines O.J. Growth stimulation of COX-2-negative pancreatic cancer by a selective COX-2 inhibitor. Cancer Res. 2005 Feb 1; 65 (3): 982–90.; Bastiaannet E., Sampieri K., Dekkers O.M., de Craen A.J., van Herk-Sukel M.P., Lemmens V., van den Broek C.B., Coebergh J.W., Herings R.M., van de Velde C.J., Fodde R., Liefers G.J. Use of Aspirin postdiagnosis improves survival for colon cancer patients. Br J Cancer. 2012 Apr 24; 106 (9): 1564–70. doi:10.1038/bjc.2012.101.; Walker A.J., Grainge M.J., Card T.R. Aspirin and other nonsteroidal anti-inflammatory drug use and colorectal cancer survival: a cohort study. Br J Cancer. 2012 Oct 23; 107 (9): 1602–7. doi:10.1038/ bjc.2012.427.; Fraser D.M., Sullivan F.M., Thompson A.M., McCowan C. Aspirin use and survival after the diagnosis of breast cancer: a population-based cohort study. Br J Cancer. 2014 Jul 29; 111 (3): 623–7. doi:10.1038/ bjc.2014.264.; Ogawa F., Amano H., Ito Y., Matsui Y., Hosono K., Kitasato H., Satoh Y., Majima M. Aspirin reduces lung cancer metastasis to regional lymph nodes. Biomed Pharmacother. 2014 Feb; 68 (1): 79–86. doi:10.1016/j. biopha.2013.11.006.; Zhang G., Panigrahy D., Hwang S.H., Yang J., Mahakian L.M., Wettersten H.I., Liu J.Y., Wang Y., Ingham E.S., Tam S., Kieran M.W., Weiss R.H., Ferrara K.W., Hammock B.D. Dual inhibition of cyclooxygenase-2 and soluble epoxide hydrolase synergistically suppresses primary tumor growth and metastasis. Proc Natl Acad Sci USA. 2014 Jul 29; 111 (30): 11127–32. doi:10.1073/pnas.1410432111.; Forget P., De Kock M. Perspectives in anaesthesia for cancer surgery. J Cancer Res Clin Oncol. 2014 Mar; 140 (3): 353–9. doi:10.1007/ s00432-013-1522-1.; Demaria S., Pikarsky E., Karin M., Coussens L.M., Chen Y.C., El-Omar E.M., Trinchieri G., Dubinett S.M., Mao J.T., Szabo E., Krieg A., Weiner G.J., Fox B.A., Coukos G., Wang E., Abraham R.T., Carbone M., Lotze M.T. Cancer and inflammation: promise for biologic therapy. J Immunother. 2010 May; 33 (4): 335–51. doi:10.1097/ CJI.0b013e3181d32e74.; Wrona D. Neural-immune interactions: an integrative view of the bidirectional relationship between the brain and immune systems. J Neuroimmunol. 2006 Mar; 172 (1–2): 38–58. doi:10.1016/j. jneuroim.2005.10.017.; Bartal I., Melamed R., Greenfeld K., Atzil S., Glasner A., Domankevich V., Naor R., Beilin B., Yardeni I.Z., Ben-Eliyahu S. Immune perturbations in patients along the perioperative period: alterations in cell surface markers and leukocyte subtypes before and after surgery. Brain Behav Immun. 2010 Mar; 24 (3): 376–86. doi:10.1016/j.bbi.2009.02.010.; Forget P., Vandenhende J., Berliere M., Machiels J.P., Nussbaum B., Legrand C., De Kock M. Do Intraoperative Analgesics Influence Breast Cancer Recurrence After Mastectomy? A Retrospective Analysis. Anesth Analg. 2010 Jun 1; 110 (6): 1630–5. doi:10.1213/ ANE.0b013e3181d2ad07.; Slattery M.L., Herrick J.S., Bondurant K.L., Wolff R.K. Toll-like receptor genes and their association with colon and rectal cancer development and prognosis. Int J Cancer. 2012 Jun 15; 130 (12): 2974–80. doi:10.1002/ijc.26314.; Chan A.T., Ogino S., Fuchs C.S. Aspirin Use and Survival After Diagnosis of Colorectal Cancer. JAMA. 2009 Aug 12; 302 (6): 649–58. doi:10.1001/jama.2009.1112.; Liao X., Morikawa T., Lochhead P., Imamura Y., Kuchiba A., Yamauchi M., Nosho K., Qian Z.R., Nishihara R., Meyerhardt J.A., Fuchs C.S., Ogino S. Prognostic Role of PIK3CA Mutation in Colorectal Cancer: Cohort Study and Literature Review. Clin Cancer Res. 2012 Apr 15; 18 (8): 2257–68. doi:10.1158/1078-0432.CCR-11-2410.; Domingo E., Church D.N., Sieber O., Ramamoorthy R., Yanagisawa Y., Johnstone E., Davidson B., Kerr D.J., Tomlinson I.P., Midgley R. Evaluation of PIK3CA Mutation As a Predictor of Benefit From Nonsteroidal Anti-Inflammatory Drug Therapy in Colorectal Cancer. J Clin Oncol. 2013 Dec 1; 31 (34): 4297–305. doi:10.1200/JCO.2013.50.0322.; Steinbach G., Lynch P.M., Phillips R.K., Wallace M.H., Hawk E., Gordon G.B., Wakabayashi N., Saunders B., Shen Y., Fujimura T., Su L.K., Levin B., Godio L., Patterson S., Rodriguez-Bigas M.A., Jester S.L., King K.L., Schumacher M., Abbruzzese J., DuBois R.N., Hittelman W.N., Zimmerman S., Sherman J.W., Kelloff G. The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. N Engl J Med. 2000 Jun 29; 342 (26): 1946–52. doi:10.1056/NEJM200006293422603.; Baron J.A., Sandler R.S., Bresalier R.S., Lanas A., Morton D.G., Riddell R., Iverson E.R., Demets D.L. Cardiovascular events associated with rofecoxib: final analysis of the APPROVe trial. Lancet. 2008 Nov 15; 372 (9651): 1756–64. doi:10.1016/S0140-6736(08)61490-7.; Arber N., Lieberman D., Wang T.C., Zhang R., Sands G.H., Bertagnolli M.M., Hawk E.T., Eagle C., Coindreau J., Zauber A., Lanas A., Levin B. The APC and PreSAP Trials: A Post Hoc Noninferiority Analysis Using a Comprehensive New Measure for Gastrointestinal Tract Injury in 2 Randomized, Double-Blind Studies Comparing Celecoxib and Placebo. Clin Ther. 2012 Mar; 34 (3): 569–79. doi:10.1016/j.clinthera.2012.02.001.; Xu H.B., Shen F.M., Lv Q.Z. Celecoxib enhanced the cytotoxic effect of cisplatin in chemo-resistant gastric cancer xenograft mouse models through a cyclooxygenase-2-dependent manner. Eur J Pharmacol. 2016 Apr 5; 776: 1–8. doi:10.1016/j.ejphar.2016.02.035.; Nugent F.W., Mertens W.C., Graziano S., Levitan N., Collea R., Gajra A., Marshall J., McCann J. Docetaxel and cyclooxygenase-2 inhibition with celecoxib for advanced non-small cell lung cancer progressing after platinum-based chemotherapy: a multicenter phase II trial. Lung Cancer. 2005 May; 48 (2): 267–73. doi:10.1016/j.lungcan. 2004.11.004.; Pruthi R.S., Derksen J.E., Moore D., Carson C.C., Grigson G., Watkins C., Wallen E. Phase II trial of celecoxib in prostate-specific antigen recurrent prostate cancer after definitive radiation therapy or radical prostatectomy. Clin Cancer Res. 2006 Apr 1; 12 (7 Pt 1): 2172–7. doi:10.1158/1078-0432.CCR-05-2067.; Fox A., Medhurst S., Courade J.P., Glatt M., Dawson J., Urban L., Bevan S., Gonzalez I. Anti-hyperalgesic activity of the cox-2 inhibitor lumiracoxib in a model of bone cancer pain in the rat. Pain. 2004 Jan; 107 (1–2): 33–40. doi:10.1016/j.pain.2003.09.003.; Lai V., George J., Richey L., Kim H.J., Cannon T., Shores C., Couch M. Results of a pilot study of the effects of celecoxib on cancer cachexia in patients with cancer of the head, neck, and gastrointestinal tract. Head Neck. 2008 Jan; 30 (1): 67–74. doi:10.1002/hed.20662.; Gately S., Li W.W. Multiple Roles of COX-2 in Tumor Angiogenesis: A Target for Antiangiogenic Therapy. Semin Oncol. 2004 Apr; 31 (2 Suppl 7): 2–11. doi:10.1016/j.semincol.2004.03.040.; Singh B., Lucci A. Role of cyclooxygenase-2 in breast cancer. J Surg Res. 2002 Nov; 108 (1): 173–9.; Seno H., Oshima M., Ishikawa T.O., Oshima H., Takaku K., Chiba T., Narumiya S., Taketo M.M. Cyclooxygenase 2- and prostaglandin E(2) receptor EP(2)-dependent angiogenesis in Apc(Delta716) mouse intestinal polyps. Cancer Res. 2002 Jan 15; 62 (2): 506–11.; Williams C.S., Tsujii M., Reese J., Dey S.K., DuBois R.N. Host cyclooxygenase- 2 modulates carcinoma growth. J Clin Invest. 2000 Jun; 105 (11): 1589–94. doi:10.1172/JCI9621.; Yuan A., Yu C.J., Shun C.T., Luh K.T., Kuo S.H., Lee Y.C., Yang P.C. Total cyclooxygenase-2 mRNA levels correlate with vascular endothelial growth factor mRNA levels, tumor angiogenesis and prognosis in nonsmall cell lung cancer patients. Int J Cancer. 2005 Jul 1; 115 (4): 545–55. doi:10.1002/ijc.20898.; Reddy B.S., Rao C.V., Seibert K. Evaluation of cyclooxygenase-2 inhibitor for potential chemopreventive properties in colon carcinogenesis. Cancer Res. 1996 Oct 15; 56 (20): 4566–9.; Mutoh M., Takahashi M., Wakabayashi K. Roles of Prostanoids in Colon Carcinogenesis and their Potential Targeting for Cancer Chemoprevention. Curr Pharm Des. 2006; 12 (19): 2375–82. doi:10.2174/138161206777698972.; Allavena P., Sica A., Garlanda C., Mantovani A. The Yin-Yang of tumor-associated macrophages in neoplastic progression and immune surveillance. Immunol Rev. 2008 Apr; 222: 155–61. doi:10.1111/j.1600- 065X.2008.00607.x.; Garlanda C., Dinarello C.A., Mantovani A. The interleukin-1 family: back to the future. Immunity. 2013 Dec 12; 39 (6): 1003–18. doi:10.1016/j.immuni.2013.11.010.; Motz G.T., Santoro S.P., Wang L.P., Garrabrant T., Lastra R.R., Hagemann I.S., Lal P., Feldman M.D., Benencia F., Coukos G. Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors. Nat Med. 2014 Jun; 20 (6): 607–15. doi:10.1038/nm.3541.; Dormond O., Foletti A., Paroz C., Rüegg C. NSAIDs inhibit alpha V beta 3 integrin-mediated and Cdc42/Rac-dependent endothelial-cell spreading, migration and angiogenesis. Nat Med. 2001 Sep; 7 (9): 1041–7. doi:10.1038/nm0901-1041.; Rodrigues S., Van Aken E., Van Bocxlaer S., Attoub S., Nguyen Q.D., Bruyneel E., Westley B.R., May F.E., Thim L., Mareel M., Gespach C., Emami S. Trefoil peptides as proangiogenic factors in vivo and in vitro: Implication of cyclooxygenase-2 and EGF receptor signaling. FASEB J. 2003 Jan; 17 (1): 7–16. doi:10.1096/fj.02-0201com.; Hedi H., Norbert G. 5-Lipoxygenase Pathway, Dendritic Cells, and Adaptive Immunity. J. Biomed. Biotechnol. J Biomed Biotechnol. 2004; 2004 (2): 99–105. doi:10.1155/S1110724304310041.; Langley R.E., Rothwell P.M. Potential biomarker for aspirin use in colorectal cancer therapy. Nat Rev Clin Oncol. 2013 Jan; 10 (1): 8–10. doi:10.1038/nrclinonc.2012.216.; Zhang H., Tian M., Xiu C., Wang Y., Tang G. Enhancement of antitumor activity by combination of tumor lysate-pulsed dendritic cells and celecoxib in a rat glioma model. Oncol Res. 2013; 20 (10): 447–55. doi:10.3727/096504013X13685487925176.; Sceneay J., Smyth M.J., Möller A. The pre-metastatic niche: finding common ground. Cancer Metastasis Rev. 2013 Dec; 32 (3–4): 449–64. doi:10.1007/s10555-013-9420-1.; Schönthal A.H. Exploiting cyclooxygenase-(in)dependent properties of COX-2 inhibitors for malignant glioma therapy. Anticancer Agents Med Chem. 2010 Jul; 10 (6): 450–61. doi:10.2174/1871520611009060450.; Shiang J.C., Jan R.L., Tsai M.K., Hsieh C.C., Kuo H.F., Kuo C.H., Yang S.N., Huang M.Y., Chen L.C., Hung C.H. Dipyrone & 2,5-dimethylcelecoxib suppress Th2-related chemokine production in monocyte. Indian J Med Res. 2014 Jul; 140 (1): 109–15.; Herrmann C., Block C., Geisen C., Haas K., Weber C., Winde G., Möröy T., Müller O. Sulindac sulfide inhibits Ras signaling. Oncogene. 1998 Oct 8; 17 (14): 1769–76. doi:10.1038/sj.onc.1202085.; Lönnroth C., Andersson M., Asting A.G., Nordgren S., Lundholm K. Preoperative low dose NSAID treatment influences the genes for stemness, growth, invasion and metastasis in colorectal cancer. Int J Oncol. 2014 Dec; 45 (6): 2208–20. doi:10.3892/ijo.2014.2686.; Samal S.K., Routray S., Veeramachaneni G.K., Dash R., Botlagunta M. Ketorolac salt is a newly discovered DDX3 inhibitor to treat oral cancer. Sci Rep. 2015 Apr 28; 5: 9982. doi:10.1038/srep09982.; Botlagunta M., Vesuna F., Mironchik Y., Raman A., Lisok A., Winnard P.Jr., Mukadam S., Van Diest P., Chen J.H., Farabaugh P., Patel A.H., Raman V. Oncogenic role of DDX3 in breast cancer biogenesis. Oncogene. 2008 Jun 26; 27 (28): 3912–22. doi:10.1038/onc.2008.33.; Arnold K.M., Opdenaker L.M., Flynn D., Sims-Mourtada J. Wound Healing and Cancer Stem Cells: Inflammation as a Driver of Treatment Resistance in Breast Cancer. Cancer Growth Metastasis. 2015 Jan 29; 8: 1–13. doi:10.4137/CGM.S11286.; Fridman W.H., Pagès F., Sautès-Fridman C., Galon J. The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer. 2012 Mar 15; 12 (4): 298–306. doi:10.1038/nrc3245.; Cui Y.L., Li H.K., Zhou H.Y., Zhang T., Li Q. Correlations of tumor-associated macrophage subtypes with liver metastases of colorectal cancer. Asian Pac J Cancer Prev. 2013; 14 (2): 1003–7. doi:10.7314/ APJCP.2013.14.2.1003.; Paget S. The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev. 1989 Aug; 8 (2): 98–101.; Yamamura K., Sugimoto H., Kanda M., Yamada S., Nomoto S., Nakayama G., Fujii T., Koike M., Fujiwara M., Kodera Y. Comparison of inflammation-based prognostic scores as predictors of tumor recurrence in patients with hepatocellular carcinoma after curative resection. J Hepatobiliary Pancreat Sci. 2014 Sep; 21 (9): 682–8. doi:10.1002/jhbp.114.; Kos M., Hocazade C., Kos F.T., Uncu D., Karakas E., Dogan M., Uncu H.G., Yildirim N., Zengin N. Prognostic role of pretreatment platelet/ lymphocyte ratio in patients with non-small cell lung cancer. Wien Klin Wochenschr. 2016 Sep; 128 (17–18): 635–40. doi:10.1007/s00508-015- -0724-8.; Feng J.F., Huang Y., Chen Q.X. A new inflammation index is useful for patients with esophageal squamous cell carcinoma. Onco Targets Ther. 2014 Sep 30; 7: 1811–5. doi:10.2147/OTT.S68084.; Franklin B.S., Bossaller L., De Nardo D., Ratter J.M., Stutz A., Engels G., Brenker C., Nordhoff M., Mirandola S.R., Al-Amoudi A., Mangan M.S., Zimmer S., Monks B.G., Fricke M., Schmidt R.E., Espevik T., Jones B., Jarnicki A.G., Hansbro P.M., Busto P., Marshak-Rothstein A., Hornemann S., Aguzzi A., Kastenmüller W., Latz E. The adaptor ASC has extracellular and ‘prionoid’ activities that propagate inflammation. Nat Immunol. 2014 Aug; 15 (8): 727–37. doi:10.1038/ni.2913.; https://www.siboncoj.ru/jour/article/view/543

  4. 4
    Academic Journal

    المصدر: Siberian journal of oncology; № 2 (2014); 19-23 ; Сибирский онкологический журнал; № 2 (2014); 19-23 ; 2312-3168 ; 1814-4861 ; undefined

    وصف الملف: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/26/28; Буланов Д.В., Махсон А.Н. Иммуногистохимическая характеристика и критерии прогноза саркомы Юинга/PNET // Российский онкологический журнал. 2010. № 1. С. 17–19.; Васильев Н.В. Синовиальная саркома. Оценка прогноза // Сибирский онкологический журнал. 2010. № 1. С. 73–78.; Кекеева Т.В., Рязанцева А.А., Завалишина Л.Э., Андреева Ю.Ю., Бабенко О.В., Залетаев Д.В., Франк Г.А. Анализ химерных онкогенов SYT/SSX1 и SYT/SXX2 при синовиальной саркоме // Молекулярная биология. 2011. Т. 45, № 5. С. 840–844.; Кекеева Т.В., Рязанцева А.А., Завалишина Л.Э., Андреева Ю.Ю., Бабенко О.В., Залетаев Д.В., Франк Г.А. Комплексная молекулярная диагностика синовиальной саркомы // Молекулярная медицина. 2010. № 3. С. 43–47.; Amary M., Berisha F., Bernardi F.C., Herbert A., James M., Reis-Filho J.S., Fisher C., Nicholson A.G., Tirabosco R., Diss T.C., Flanagan A.M. Detection of SS18-SSX fusion transcripts in formalin-Bxed parafin-embedded neoplasms: analysis of conventional RT-PCR, qRT-PCR and dual color FlSH as diagnostic tools for synovial sarcoma // Mod. Pathol. 2007. Vol. 20 (4). P. 482–496.; Fletcher C.D.M., Bridge J.A., Hogendoorn P.C.W., Mertens F. WHO Classification of Tumours of Soft Tissue and Bone. IARC: Lyon, 2013. 468 p.; Hakky T.S., Gonzalvo A.A., Lockhart J.L., Rodriguez A.R. Primary Ewing sarcoma of the kidney: a symptomatic presentation and review of the literature // Ther. Adv. Urol. 2013. Vol. 5 (3). P. 153–159. doi:10.1177/1756287212471095.; Hosono Т., Hironaka M., Kobayashi A., Yamasawa H., Bando M., Ohno S., Sohara Y., Sugiyama Y. Primary pulmonary synovial sarcoma confirmed by molecular detection of SYT-SSX1 Fusion Gene Transcripts: a case report and review of the literature // Jpn. J. Clin. Oncol. 2005. Vol. 35 (5). P. 274–279.; Lopes H., Pereira C.A., Zucca L.E., Serrano S.V., Silva S.R., Camparoto M.L., Cárcano F.M. Primary monophasic synovial sarcoma of the kidney: a case report and review of literature // Clin. Med. Insights Oncol. 2013. Vol. 7 (7). P. 257–262. doi:10.4137/CMO.S12243.; Olsen S.H., Thomas D.G., Lucas D.R. Cluster analysis of immunohistochemical profiles in synovial sarcoma, malignant peripheral nerve sheath tumor and Ewing sarcoma // Mod. Pathol. 2006. Vol. 19 (5). P. 659–668.; White B.E., Kaplan A., Lopez-Terrada D.H., Ro J.Y., Benjamin R.S., Ayala A.G. Monophasic synovial sarcoma arising in the vulva // Arch. Pathol. Lab. Med. 2008. Vol. 132. P. 698–702. doi:10.1043/1543-2165; https://www.siboncoj.ru/jour/article/view/26; undefined

  5. 5
    Academic Journal

    المساهمون: РФФИ

    المصدر: Siberian journal of oncology; Том 15, № 6 (2016); 48-54 ; Сибирский онкологический журнал; Том 15, № 6 (2016); 48-54 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2016-15-6

    وصف الملف: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/446/394; Ewing J. Neoplastic diseases. Ed 6. Philadelphia: W. B. Saunders Co. 1928.; Paget S. The distribution of secondary growths in cancer of the breast. The Lancet. 1889; 133 (3421): 571–573.; Barcellos-Hoff M.H., Lyden D., Wang T.C. The evolution of the cancer niche during multistage carcinogenesis. Nat Rev Cancer. 2013 Jul; 13 (7): 511–8. doi:10.1038/nrc3536.; Salgado R., Denkert C., Demaria S., Sirtaine N., Klauschen F., Pruneri G., Wienert S., Van den Eynden G., Baehner F.L., Penault-Llorca F., Perez E.A., Thompson E.A., Symmans W.F., Richardson A.L., Brock J., Criscitiello C., Bailey H., Ignatiadis M., Floris G., Sparano J., Kos Z., Nielsen T., Rimm D.L., Allison K.H., Reis-Filho J.S., Loibl S., Sotiriou C., Viale G., Badve S., Adams S., Willard-Gallo K., Loi S. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Ann Oncol. 2015 Feb; 26 (2): 259–71. doi:10.1093/annonc/mdu450.; Yao M., Brummer G., Acevedo D., Cheng N. Cytokine Regulation of Metastasis and Tumorigenicity. Adv Cancer Res. 2016; 132: 265–367. doi:10.1016/bs.acr.2016.05.005.; Niu J., Chang Z., Peng B., Xia Q., Lu W., Huang P., Tsao M.S., Chiao P.J. Keratinocyte growth factor/fibroblast growth factor-7-regulated cell migration and invasion through activation of NF-kappaB transcription factors. J Biol Chem. 2007 Mar 2; 282 (9): 6001–11. doi:10.1074/jbc.M606878200.; Sasaki T., Hiroki K., Yamashita Y. The role of epidermal growth factor receptor in cancer metastasis and microenvironment. Biomed Res Int. 2013; 2013: 546318. doi:10.1155/2013/546318.; Sato S., Hanibuchi M., Kuramoto T., Yamamori N., Goto H., Ogawa H., Mitsuhashi A., Van T.T., Kakiuchi S., Akiyama S., Nishioka Y., Sone S. Macrophage stimulating protein promotes liver metastases of small cell lung cancer cells by affecting the organ microenvironment. Clin Exp Metastasis. 2013 Mar; 30 (3): 333–44. doi:10.1007/s10585-012-9540-y.; Bertazza L., Mocellin S. The dual role of tumor necrosis factor (TNF) in cancer biology. Curr Med Chem. 2010; 17 (29): 3337–3352.; Перельмутер В.М., Манских В.Н. Прениша как отсутствующее звено концепции метастатических ниш, объясняющее избирательное метастазирование злокачественных опухолей и форму метастатической болезни. Биохимия. 2012; 77 (1): 130–139.; https://www.siboncoj.ru/jour/article/view/446

  6. 6
    Academic Journal

    المساهمون: РФФИ

    المصدر: Bulletin of Siberian Medicine; Том 12, № 3 (2013); 132-147 ; Бюллетень сибирской медицины; Том 12, № 3 (2013); 132-147 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2013-12-3

    وصف الملف: application/pdf

    Relation: https://bulletin.tomsk.ru/jour/article/view/350/356; Дедов И.И., Краснопольский В.И., Сухих Г.Т. Российский национальный консенсус «Гестационный сахарный диабет: диагностика, лечение, послеродовое наблюдение» // Сахарный диабет. 2012. № 4. С. 4–10.; Дедов И.И., Шестакова М.В. Инкретины: новая веха в лечении сахарного диабета 2-го типа: практическое руководство для врачей. М.: Дипак, 2010. 92 с.; Abbas T., Faivre E., Holscher C. Impairment of synaptic plasticity and memory formation in GLP-1 receptor KO mice: Interaction between type 2 diabetes and Alzheimer’s disease // Behav. Brain Res. 2009. 205. P. 265–271.; Amori R.E., Lau J., Pittas A.G. Efficacy and safety of incretin therapy in type 2 diabetes: Systematic review and meta analysis // JAMA. 2007. 298. P. 194–206.; Ahren B., Larsson H., Holst J.J. Reduced gastric inhibitory polypeptide but normal glucagon-like peptide 1 response to oral glucose in postmenopausal women with impaired glucose tolerance // Eur. J. Endocrinol. 1997 . 137. P. 127–131.; Bayliss W.M., Starling E.H. The mechanism of pancreatic secre-tion // J. Physiol. 1902. 28. P. 325–353.; Bollag R.J., Zhong Q., Ding K.H. et al. Glucose-dependent insulinotropic peptide is an integrative hormone with osteotropic effects // Mol. Cell Endocrinol. 2001. 177. P. 35–41.; Buteau J., El-Assaad W., Rhodes C.J. et al. Glucagon-like peptide-1 prevents beta cell glucolipotoxicity // Diabetologia. 2004. 47. P. 806–815.; Buteau J., Foisy S., Joly E. et al. Glucagon-like peptide 1 induces pancreatic beta-cell proliferation via transactivation of the epidermal growth factor receptor // Diabetes. 2003. 52. P. 124–132.; Carr R.D., Larsen M.O., Winzell M.S. et al. Incretin and islet hormonal responses to fat and protein ingestion in healthy men // Am. J. Physiol. Endocrinol. Metab. 2008. 295. P. E779–E784.; Chia C.W., Carlson O.D., Kim W. et al. Exogenous glucose dependent insulinotropic polypeptide worsens postprandial hyperglycemia in type 2 diabetes // Diabetes. 2009. 58. P. 1342–1349.; Cypryk K., Vilsboll T., Nadel I. et al. Normal secretion of the incretin hormones glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 during gestational diabetes mellitus // Gynecol. Endocrinol. 2007. V. 23, № 1. Р. 58–62.; Creutzfeldt W., Ebert R., Willms B. et al. Gastric inhibitory poly peptide (GIP) and insulin in obesity: Increased response to stimulation and defective feedback control of serum levels // Diabetologia. 1978. 14. P. 15–24.; Deacon C.F., Holst J.J. Immunoassays for the incretin hormones GIP and GLP-1 // Best Pract. Res. Clin. Endocrinol. Metab. 2009. 23. P. 425–432.; Deacon C.F., Johnsen A.H., Holst J.J. Degradation of glucagon-like peptide-1 by human plasma in vitro yields an Ntermi-nally truncated peptide that is a major endogenous metab-olite in vivo // J. Clin. Endocrinol. Metab. 1995. 80. P. 952–957.; Deacon C.F., Pridal L., Klarskov L. et al. Glucagon-like peptide 1 undergoes differential tissue-specific metabolism in the anesthetized pig // Am. J. Physiol. 1996. 271. P. E458–E464.; Ding K.H., Zhong Q., Xie D. et al. Effects of glucosedependent insulinotropic peptide on behavior // Peptides. 2006. 27. P. 2750–2755.; Dupre J., Ross S.A., Watson D. et al. Stimulation of insulin secretion by gastric inhibitory polypeptide in man // J. Clin. Endocrinol. Metab. 1973. 37. P. 826–828.; Friedrichsen B.N., Neubauer N., Lee Y.C. et al. Stimulation of pancreatic beta-cell replication by incretins involves transcriptional induction of cyclin D1 via multiple signalling pathways // J. Endocrinol. 2006. 188. P. 481–492.; Fujimoto W., Miki T., Ogura T. et al. Niflumic acid-sensitive ion channels play an important role in the induction of glucose-stimulated insulin secretion by cyclic AMP in mice // Diabetologia. 2009. 52. P. 863–872.; Fukushima M., Suzuki H., Seino Y. Insulin secretion capacity in the development from normal glucose tolerance to type2 diabetes // Diabetes Res. Clin. Pract. 2004. P. 37–44.; Gault V.A., Holscher C. Protease-resistant glucosedependent insulinotropic polypeptide agonists facilitate hippocampal LTP and reverse the impairment of LTP induced by beta-amyloid // J. Neurophysiol. 2008. 99. Р. 1590–1595.; Hansen L., Deacon C.F., Orskov C. et al. Glucagon-like peptide-1-(7-36)amide is transformed to glucagon-like peptide1-(9-36)amide by dipeptidyl peptidase IV in the capillaries supplying the L cells of the porcine intestine // Endocrinology. 1999. 140. Р. 5356–5363.; Harada N., Yamada Y., Tsukiyama K. et al. A novel GIP recep-tor splice variant influences GIP sensitivity of pancreatic beta-cells in obese mice // Am. J. Physiol. Endocrinol. Metab. 2008. 294. E61–E68.; Holz G.G. Epac: A new cAMP-binding protein in support of glucagon-like peptide-1 receptor-mediated signal transduction in the pancreatic beta-cell // Diabetes. 2004. 53. Р. 5–13.; Hui H., Nourparvar A., Zhao X. et al. Glucagon-like peptide1 inhibits apoptosis of insulin-secreting cells via a cyclic 5αadenosine monophosphate-dependent protein kinase Aand a phosphatidylinositol 3-kinase-dependent pathway // Endocrinology. 2003. 144. Р. 1444–1455.; Isken F., Pfeiffer A.F., Nogueiras R. et al. Deficiency of glucose dependent insulinotropic polypeptide receptor prevents ovariectomy-induced obesity in mice // Am. J. Physiol. Endocrinol. Metab. 2008. 295. E350–E355.; Hone J., Pettitt D.J., Trugillo A.L. et al. Gestational Diabetes Mellitus (GDM) may reflect GLP-1 resistance. http://professional.diabetes.org/Abstracts_Display.aspx?TYP=1&CID=78958; Kaplan A.M., Vigna S.R. Gastric inhibitory polypeptide (GIP) binding sites in rat brain // Peptides. 1994. 15. Р. 297–302.; Kieffer T.J., McIntosh C.H., Pederson R.A. Degradation of glu-cose-dependent insulinotropic polypeptide and truncated glucagon-like peptide 1 in vitro and in vivo by dipeptidyl peptidase IV // Endocrinology. 1995. 136. Р. 3585–3596.; Kim S.J., Nian C., McIntosh C.H. Activation of lipoprotein lipase by glucose-dependent insulinotropic polypeptide in adipocytes. A role for a protein kinase B, LKB1, and AMPactivated protein kinase cascade // J. Biol. Chem. 2007. 282. Р. 8557–8567.; Kim S.J., Nian C., Widenmaier S. et al. Glucose-dependent insulinotropic polypeptide-mediated up-regulation of betacell antiapoptotic Bcl-2 gene expression is coordinated by cyclic AMP (cAMP) response element binding protein (CREB) and cAMP-responsive CREB coactivator 2 // Mol. Cell. Biol. 2008. 28. Р. 1644–1656.; Kim S.J., Nian C., McIntosh C.H. Resistin is a key mediator of glucose-dependent insulinotropic polypeptide (GIP) stimulation of lipoprotein lipase (LPL) activity in adipocytes // J. Biol. Chem. 2007. 282. Р. 34139–34147.; Kim S.J., Winter K., Nian C. et al. Glucose-dependent insulinotropic polypeptide (GIP) stimulation of pancreatic beta-cell survival is dependent upon phosphatidylinositol 3kinase (PI3K)/protein kinase B (PKB) signaling, inactivation of the forkhead transcription factor Foxo1, and downregulation of bax expression // J. Biol. Chem. 2005. 280. Р. 22297–22307.; Kreymann B., Williams G., Ghatei M.A. et al. Glucagon-like peptide-1 7-36: A physiological incretin in man // Lancet. 1987. 2. Р. 1300–1304.; Kubota A., Yamada Y., Hayami T. et al. Identification of two missense mutations in the GIP receptor gene: a functional study and association analysis with NIDDM: no evidence of association with Japanese NIDDM subjects // Diabetes. 1996. Dec. 45 (12). Р. 1701–1705.; Kwon G., Pappan K.L., Marshall C.A. et al. cAMP Dosedepen-dently prevents palmitate-induced apoptosis by both pro-tein kinase Aand cAMP-guanine nucleotide exchange factor-dependent pathways in beta-cells // J. Biol. Chem. 2004. 279. Р. 8938–8945.; Light P.E., Manning Fox J.E., Riedel M.J. et al. Glucagonlike peptide-1 inhibits pancreatic ATP-sensitive potassium channels via a protein kinase Aand ADP-dependent mechanism // Mol. Endocrinol. 2002. 16. Р. 2135–2144.; Lynn F.C., Pamir N., Ng E.H. et al. Defective glucosedepen-dent insulinotropic polypeptide receptor expression in dia-betic fatty Zucker rats // Diabetes. 2001. 50. Р. 1004–1011.; Maida A., Hansotia T., Longuet C. et al. Differential importance of glucose-dependent insulinotropic polypeptide vs glucagon-like peptide 1 receptor signaling for beta cell survival in mice // Gastroenterology. 2009. 137. Р. 2146–2157.; Marguet D., Baggio L., Kobayashi T. et al. Enhanced insulin secretion and improved glucose tolerance in mice lacking CD26 // Proc. Natl. Acad. Sci. USA. 2000. 97. Р. 6874–6879.; Mentlein R., Gallwitz B., Schmidt W.E. Dipeptidyl-peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-like pep-tide-1(7-36)amide, peptide histidine methionine and is responsible for their degradation in human serum // Eur. J. Biochem. 1993. 214. Р. 829–835.; Miki T., Minami K., Shinozaki H. et al. Distinct effects of glu-cose-dependent insulinotropic polypeptide and glucagonlike peptide-1 on insulin secretion and gut motility // Diabetes. 2005. 54. Р. 1056–1063.; Miyawaki K., Yamada Y., Ban N. et al. Inhibition of gastric inhibitory polypeptide signaling prevents obesity // Nat. Med. 2002. 8. Р. 738–742.; Miyawaki K., Yamada Y., Yano H. et al. Glucose intolerance caused by a defect in the entero-insular axis: a study in gastric inhibitory polypeptide receptor knockout mice // Proc. Natl. Acad. Sci. USA. 1999. Dec. 21. 96 (26). Р. 14843–14847.; Moore B. On the treatment of diabetus mellitus by acid extract of duodenal mucous membrane // Biochem. J. 1906. 1. Р. 28–38.; Nathan D.M., Buse J.B., Davidson M.B. et al. Medical management of hyperglycemia in type 2 diabetes: A consensus algorithm for the initiation and adjustment of therapy: A consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes // Diabetes Care. 2009. 32. Р. 193–203.; Nauck M.A., Bartels E., Orskov C. et al. Additive insulinotropic effects of exogenous synthetic human gastric inhibitory polypeptide and glucagon-like peptide-1-(7-36) amide infused at near-physiological insulinotropic hormone and glucose concentrations // J. Clin. Endocrinol. Metab.1993. 76. Р. 912–917.; Nauck M.A., Heimesaat M.M., Behle K. et al. Effects of gluca gon-like peptide 1 on counterregulatory hormone responses, cognitive functions, and insulin secretion during hyperinsulinemic, stepped hypoglycemic clamp experiments in healthy volunteers // J. Clin. Endocrinol. Metab. 2002. 87. Р. 1239–1246.; Nuche-Berenguer B., Moreno P., Portal-Nunez S. et al. Exendin-4 exerts osteogenic actions in insulin-resistant and type2 diabetic states // Regul. Pept. 2010. 159. Р. 61–66.; Nyberg J., Anderson M.F., Meister B. et al. Glucosedependent insulinotropic polypeptide is expressed in adult hippocampus and induces progenitor cell proliferation// J. Neurosci. 2005. 25. Р. 1816–1825.; Pederson R.A., Brown J.C. Interaction of gastric inhibitory polypeptide, glucose, and arginine on insulin and glucagon secretion from the perfused rat pancreas // Endocrinology. 1978. 103. Р. 610–615.; Perry T., Lahiri D.K., Sambamurti K. et al. Glucagon-like peptide-1 decreases endogenous amyloid-beta peptide (Abeta) levels and protects hippocampal neurons from death induced by Abeta and iron // J. Neurosci. Res. 2003. 72. Р. 603–612.; Qin Z., Sun Z., Huang J. et al. Mutated recombinant human glucagon-like peptide-1 protects SH-SY5Y cells from apoptosis induced by amyloid-beta peptide (1–42) // Neurosci. Lett. 2008. 444. Р. 217–221.; Saxena R., Hivert M.F., Langenberg C. et al. Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge // Nat. Genet. 2010. Feb. 42 (2). Р. 142–148.; Seino Y., Nakajima H., Miyahara H. et al. Safety, tolerability, pharmacokinetics and pharmacodynamics of albiglutide, a long-acting GLP-1-receptor agonist, in Japanese subjects with type 2 diabetes mellitus // Curr. Med. Res. Opin. 2009. 25. Р. 3049–3057.; Shibasaki T., Takahashi H., Miki T. et al. Essential role of Epac2/Rap1 signaling in regulation of insulin granule dynamics by cAMP // Proc. Natl. Acad. Sci. USA. 2007. 104. Р. 19333–19338.; Takemura J., Seino Y., Tsuda K. et al. Hypersecretion of gastric inhibitory polypeptide induced by glucose ingestion in diabetes mellitus // Endocrinol. Jpn. 1981. 28. Р. 17–21.; Tang-Christensen M., Vrang N., Larsen P.J. Glucagon-like peptide 1(7–36) amide’s central inhibition of feeding and peripheral inhibition of drinking are abolished by neonatalmonosodium glutamate treatment // Diabetes. 1998. 47. Р. 530–537.; Thomsen C., Rasmussen O., Lousen T. et al. Differential effects of saturated and monounsaturated fatty acids on postprandial lipemia and incretin responses in healthy subjects // Am. J. Clin. Nutr. 1999. 69. Р. 1135–1143.; Tsuboi T., da Silva Xavier G., Holz G.G. et al. Glucagon-like peptide-1 mobilizes intracellular Ca2+ and stimulates mitochondrial ATP synthesis in pancreatic MIN6 beta-cells // Biochem. J. 2003. 369. Р. 287–299.; Tsukiyama K., Yamada Y., Yamada C. et al. Gastric inhibitory polypeptide as an endogenous factor promoting new bone formation after food ingestion // Mol. Endocrinol. 2006. 20. Р. 1644–1651.; Turton M.D., O’Shea D., Gunn I. et al. A role for glucagonlike peptide-1 in the central regulation of feeding // Nature. 1996. 379. Р. 69–72.; Vilsboll T., Krarup T., Deacon C.F. et al. Reduced postprandial concentrations of intact biologically active glucagon-like peptide 1 in type 2 diabetic patients // Diabetes. 2001. 50. Р. 609–613.; Vilsboll T., Krarup T., Madsbad S. et al. Both GLP-1 and GIP are insulinotropic at basal and postprandial glucose levels and contribute nearly equally to the incretin effect of a meal in healthy subjects // Regul. Pept. 2003. 114. Р. 115–121.; Vilsboll T., Krarup T., Madsbad S. et al. Defective amplification of the late phase insulin response to glucose by GIP in obese type II diabetic patients // Diabetologia. 2002. 45. Р. 1111–1119.; Vollmer K., Holst J.J., Baller B. et al. Predictors of incretin concentrations in subjects with normal, impaired, and diabetic glucose tolerance // Diabetes. 2008. 57. Р. 678–687.; Wang Q., Brubaker P.L. Glucagon-like peptide-1 treatment delays the onset of diabetes in 8 week-old ab-ab mice // Diabetologia. 2002. 45. Р. 1262–1273.; Widenmaier S.B., Sampaio A.V., Underhill T.M. et al. Noncanon-ical activation of Akt/protein kinase B in {beta}cells by the incretin hormone glucose-dependent insulinotropic poly-peptide // J. Biol. Chem. 2009. 284. Р. 10764–10773.; Xu G., Kaneto H., Laybutt D.R. et al. Downregulation of GLP-1 and GIP receptor expression by hyperglycemia: possible contribution to impaired incretin effects in diabetes // Diabetes. 2007. Jun. 56 (6). Р. 1551–1558.; Yabe D., Kuroe A., Lee S. et al. Little enhancement of mealinduced GLP-1 secretion in Japanese: Comparison of type 2 diabetes and healthy controls // J. Diabetes. Invest. 2010. 1. Р. 56–59.; Yaekura K., Kakei M., Yada T. cAMP-signaling pathway acts in selective synergism with glucose or tolbutamide to increase cytosolic Ca2+ in rat pancreatic beta-cells // Diabetes. 1996. 45. Р. 295–301.; Yamada C., Yamada Y., Tsukiyama K. et al. The murine glucagon-like peptide-1 receptor is essential for control of bone resorption // Endocrinology. 2008. 149. Р. 574–579.; Yavropoulou M.P., Kotsa K., Kesisoglou I. et al. Intracerebro ventricular infusion of neuropeptide Y increases glucose dependent-insulinotropic peptide secretion in the fasting conscious dog // Peptides. 2008. 29. Р. 2281–2285.; Yip R.G., Boylan M.O., Kieffer T.J. et al. Functional GIP receptors are present on adipocytes // Endocrinology. 1998. 139. Р. 4004–4007.; Zander M., Madsbad S., Madsen J.L. et al. Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and beta-cell function in type 2 diabetes: A parallel-group study // Lancet. 2002. 359. Р. 824–830.; Zhang C.L., Katoh M., Shibasaki T. et al. The cAMP sensor Epac2 is a direct target of antidiabetic sulfonylurea drugs // Science. 2009. 325. Р. 607–610.; Zhang Y., Proenca R., Maffei M. et al. Positional cloning of the mouse obese gene and its human homologue // Nature. 1994. 372. Р. 425–432.; Zhou J., Livak M.F., Bernier M. et al. Ubiquitination is involved in glucose-mediated downregulation of GIP receptors in islets // Am. J. Physiol. Endocrinol. Metab. 2007. 293. Р. E538–E547.; Zunz E., La Barre J. Contributiona a l’etude des variations physiologiques de la secretion interne du pancreas: Relations entre les secretions externe et interne du pancreas // Arch. Int. Physiol. Biochim. 1929. 31. Р. 20–44.; https://bulletin.tomsk.ru/jour/article/view/350

  7. 7
    Academic Journal

    المساهمون: Федеральныу целевые программы «Исследования и разработки по приоритетным направлениям развития научно-технологи¬ческого комплекса России на 2007—2013 годы» (государственный контракт № 16.512.11.2087), «Научные и научно-педагогические кадры инновационной России» на 2009—2013 гг. (государственные контракты П861 от 25.05.2010, 16.740.11.0205 от 24.09.2010), грантов президента РФ для поддержки молодых российских ученых — кандидатов наук (МК-1149.2012.8), Национального исследовательского Томского политехнического университета (проект № 11-03/2012).

    المصدر: Bulletin of Siberian Medicine; Том 11, № 4 (2012); 78-85 ; Бюллетень сибирской медицины; Том 11, № 4 (2012); 78-85 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2012-11-4

    وصف الملف: application/pdf

    Relation: https://bulletin.tomsk.ru/jour/article/view/543/516; Бабаева А.Г. Лимфоциты как регуляторы пролиферации и дифференцировки клеток нелимфоидных органов // Вестник АМН СССР. 1990. № 2. С. 43—45.; Биологические методы лечения онкологических заболе-ваний: пер. с англ. / под ред. В.Т. де Вита, С. Хеллмана, С.А. Розенберга. М.: Медицина, 2002. 936 с.; Биосовместимые материалы / под ред. В.И. Севастьянова, М.П. Кирпичникова. М.: Изд-во «Медицинское информационное агентство», 2011. 544 с.; Блохин Д.Ю. Как убить бессмертную клетку // Химия и жизнь. 2009. № 3. С. 20—26.; ГОСТ Р ИСО 10993-18-2009. Изделия медицинские. Оценка биологического действия медицинских изделий. Часть 18. Исследование химических свойств материалов. Введ. 2010-09-01. М.: Стандартинформ, 2010. 26 с.; ГОСТ Р ИСО 10993-20-2009. Изделия медицинские. Оценка биологического действия медицинских изделий. Часть 20. Принципы и методы исследования иммуноток-сичности медицинских изделий. Введ. 2010-09-01. М.: Стандартинформ, 2010. 28 с.; Дыгай А.М., Клименко Н.А. Воспаление и гемопоэз. Томск: Изд-во ТГУ, 1992. 276 с.; Иващенко Ю.Д., Быкорез А.И. Полипептидные факторы роста и канцерогенез. Киев, 1990. 192 с.; Клиническая онкогематология: руководство для врачей / под ред. М.А. Волковой. М.: Медицина, 2001. 576 с.; Окулов В.Б., Зубова С.Г. Адаптивные реакции клетки как основа прогрессии опухолей // Вопросы онкологии. 2000. Т. 46, № 5. С. 505—511.; Пичугин В.Ф., Сурменева М.A., Сурменев Р.А. и др. Ис-следование физико-химических и биологических свойств кальций-фосфатных покрытий, созданных методом вч-магнетронного распыления кремнийзамещенного гидрокси¬апатита // Поверхность. Рентгеновские, синхро-тронные и нейтронные исследования. 2011. № 9. С. 54—61.; Ребров В.Г., Громова О.А. Витамины, макро- и микро-элементы. М.: ГЭОТАР-Медиа, 2008. 960 с.; Рязанцева Н.В., Новицкий В.В., Жукова О.Б. и др. Роль NF-B, p53 и р21 в регуляции ФНО-α опосредованного апоптоза лимфоцитов // Бюл. эксперим. биологии и ме-дицины. 2010. Т. 148, № 2. С. 56—60.; Сурменева М.А., Сурменев Р.А., Пичугин В.Ф. и др. In vitro исследование магнетронных покрытий на основе кремнийзамещенного гидроксиапатита // Поверхность. Рентгеновские, синхротронные и нейтронные исследо-вания. 2011. № 12. С. 81—88.; Сурменева М.A., Сурменев Р.А., Хлусов И.А. и др. Кальцийфосфатные покрытия, созданные методом вч-магнетронного распыления гидроксиапатита: остеогенный потенциал in vitro и in vivo // Известия Том. политехн. ун-та. 2010. Т. 317, № 2. С. 101—106.; Хлусов И.А., Карлов А.В., Шаркеев Ю.П. и др. Остеогенный потенциал мезенхимальных стволовых клеток костного мозга in situ: роль физико-химических свойств искусственных поверхностей // Клеточные технологии в биологии и медицине. 2005. № 3. С. 164—173.; Хлусов И.А., Пичугин В.Ф., Гостищев Э.А. и др. Влия-ние физических, химических и биологических манипуля-ций на поверхностный потенциал кальций-фосфатных по-крытий на металлических подложках // Бюл. сиб. меди-цины. 2011. Т. 10, № 3. С. 72—81.; Хлусов И.А., Шевцова Н.М., Хлусова М.Ю. и др. Концепция «ниша-рельеф» для стволовых клеток как основа биомиметического подхода к инженерии костной и кроветворной тканей // Клеточная трансплантология и тканевая инженерия. 2011. Т. VI, № 2. С. 55—64.; Чайкина М.В., Хлусов И.А., Карлов А.В., Пайчадзе К.С. Механохимический синтез нестехиометрических и за-мещенных апатитов с наноразмерными частицами для использования в качестве биосовместимых материалов // Химия в интересах устойчивого развития. 2004. Т. 12. С. 389—399.; Часовских Н.Ю., Рязанцева Н.В., Новицкий В.В. Апоптоз и окислительный стресс. Томск: Изд-во «Печатная мануфактура», 2009. 140 с.; Чечина О.Е., Биктасова А.К., Сазонова Е.В. и др. Роль цитокинов в редокс-зависимой регуляции апоптоза // Бюл. сиб. медицины. 2009. № 2. С. 67—71.; Aherne S.A., O'Brien N.M. Modulation of cytokine production by plant sterols in stimulated human Jurkat T cells // Mol. Nutr. Food Res. 2008. V. 52 (6). P. 664—673.; Biomaterials science: an introduction to materials in medicine. 2nd edition / ed. by B.D. Ratner, A.S. Hoffman, F.J. Schoen, J.E. Lemons. San Diego: Elsevier Academic Press, 2004. 851 p.; Blaine T.A., Rosier R.N., Puzas J. E. et al. Increased levels of tumor necrosis factor-α and Interleukin-6 protein and messenger RNA in human peripheral blood monocytes due to titanium particles // The journal of bone and Joint Surgery (American). 1996. V. 78. P. 1181—1192.; Damien C.J., Ricci J.L., Christel P. et al. Formation of a cal-cium phosphate-rich layer on absorbable calcium carbonate bone graft substitutes // Calcif Tissue Int. 1994. V. 55. P. 151—158.; De Bruijn J.D. Calcium phosphate biomaterials: Bone-bonding and biodegradation properties. Leiden, 1993. 172 p.; Gibson I.R., Best S.M., Bonfield W. Chemical Characteriza-tion of Silicon-Substituted Hydroxyapatite // J. Bio. Mater. Res. Symp. 1999. V. 44. P. 422—428.; Granchi D., Verri E., Ciapeti G. et al. Bone-resorbing cyto-kines in serum of patients with aseptic loosening of hip pros-theses // The Journal of Bone and Joint Surgery. (British). 1998. V. 80. P. 912—917.; Haynes D.R., Rogers S.D., Hay S. et al. The differences in toxicity and release of bone resorbing mediators induced by titanium and cobalt-chromium alloy wear particles // The Journal of Bone and Joint Surgery (American). 1993. V. 75. P. 825—834.; Khlusov I.A., Zagrebin L.V., Shestov S.S., Naumov S.A. Physical-Chemical Manipulations with Microbial and Mammalian Cells: from Experiments to Clinics // Stem Cell Applications in Disease and Health / Editors W.B. Burnsides et al. N. Y.: Nova Science Publishers, 2008. P. 29—71.; Lahat A., Ben-Horin S., Lang A. et al. Lidocaine down-regulates nuclear factor-kappaB signalling and inhibits cytokine production and T cell proliferation // Clin. Exp. Immunol. 2008. V. 152 (2). P. 320—327.; Morks M.F. Fabrication and characterization of plasma-sprayed HA/SiO2 coatings for biomedical application // J. Mech. Beh. Bio. Mater. 2008. S1. 105 — 111.; Nepola J.V. External fixation // Rockwood and Green’s frac-tures in Adults. Four Edition. Philadelphia: Lippincot-Raven Publishers, 1996. V. 1. P. 229—304.; Pichugin V.F., Eshenko E.V., Surmenev R.A. et al. Applica-tion of High-Frequency Magnetron Sputtering to Deposit Thin Calcium-Phosphate Biocompatible Coatings on a Titanium Surface // Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques. 2007. V. 1, № 6. P. 679—682.; Pichugin V.F., Surmenev R.A., Shesterikov E.V. et al. The preparation of calcium phosphate coatings on titanium and nickel-titanium by rf-magnetron sputtered deposition: com-position, structure and micromechanical properties // Surface & Coatings Technology. 2008. V. 202. P. 3913—3920.; Sharkeev Yu.P., Legostaeva E.V., Eroshenko A.Yu. et al. The structure and physical and mechanical properties of a novel biocomposite material, nanostructured titanium-calcium-phosphate coating // Composite Interfaces. 2009. V. 16. P. 535—546.; Surmenev R.A. A review of plasma-assisted methods for cal-cium phosphate-based coatings fabrication // Surface & Coatings Technology. 2012. V. 206. I. 8—9. P. 2035—2056.; Surmenev R.A., Surmeneva M.A., Evdokimov K.E. et al. The influence of the deposition parameters on the properties of an rf-magnetron-deposited nanostructured calcium phosphate coating and a possible growth mechanism // Surface and Coatings Technology. 2011. V. 205. P. 3600—3606.; Tepperman K., Roy P.W., Moloney B.F., Elder R.C. Dicy-anogold effects on lymphokine production // Met. Based Drugs. 1999. V. 6 (4—5). P. 301—309.; https://bulletin.tomsk.ru/jour/article/view/543

  8. 8
    Academic Journal

    المساهمون: Работа выполнена при финансовой поддержке Министерства образования и науки РФ в рамках Федеральных целевых программ «Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2007—2013 годы» (ГК № 16.512.11.2087), «Научные и научнопедагогические кадры инновационной России на 2009—2013 годы» (ГК № 02.740.11.0311 и ГК № П1311).

    المصدر: Bulletin of Siberian Medicine; Том 10, № 6 (2011); 40-44 ; Бюллетень сибирской медицины; Том 10, № 6 (2011); 40-44 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2011-10-6

    وصف الملف: application/pdf

    Relation: https://bulletin.tomsk.ru/jour/article/view/1499/1022; Степовая Е.А., Жаворонок Т.В., Стариков Ю.В. и др. Регуляторная роль оксида азота в апоптозе нейтрофилов // Бюл. эксперим. биологии и медицины. 2008. Т. 146, № 12. С. 646—650.; Adhikari S., Bhatia M. H2S induced pancreatic acinar cell apoptosis is mediated via Jnk and p38 MAP kinase // J. Cell. Biol. Med. 2007. V. 12. № 4. P. 1374—1383.; Baskar R., Li L., Moore P. Hydrogen sulfide-induces DNA damage and change in apoptotic gene expression in human lung fibroblast cells // The FASEB Journal. 2007. V. 21. P. 247—255.; Hemish J., Nakaya N., Mittal V. et al. Nitric oxide activates diverse signaling pathways to regulate gene expression // J. Biol. Chem. 2003. V. 278. P. 42321—42329.; Hortelano S., Dalloporta B., Zamzami N. et al. Nitric oxide induces apoptosis via triggering mitochondrial permeability transition // FEBS Letters. 1997. V. 410. P. 373—377.; Leffler C., Parfenova H., Jagger J. et al. Carbon monoxide and hydrogen sulfide: gaseous messendgers in cerebrovascular circulation // J. Appl. Physiol. 2006. V. 100. P. 1065— 1076.; Lowiska E., Beltowski J. Hydrogen sulfide (H2S) — the third gas of interest of pharmacologists // Pharmacological reports. 2007. V. 59. P. 4—24.; Olson S., Garban H. Regulation of apoptosis-related genes by nitric oxide in cancer // Nitric Oxide. 2008. V. 19. P. 1— 14.; Rinaldi L., Gobbi G., Pambianco M. Hydrogen sulfide prevents apoptosis of human PMN via inhibition of p38 and caspase 3 // Laboratory Investigation. 2006. V. 86. P. 391— 397.; Thomas D., Ridnour L., Isenberg J. et al. The chemical biology of nitric oxide. Implications in cellular signaling // Free Radic. Biol. Med. 2008. V. 45. P. 1—31.; Tuteja N., Chandra M., Tuteja R. et al. Nitric oxide as a unique bioactive signaling messenger in physiology and pathophysiology // J. Biomed. Biotechnol. 2004. № 4. P. 227— 237.; Wang R. The gasotransmitter role of hydrogen sulfide // Antioxid Redox Signal. 2003. V. 5. P. 493—501.; https://bulletin.tomsk.ru/jour/article/view/1499