يعرض 1 - 3 نتائج من 3 نتيجة بحث عن '"К. Шмагель В."', وقت الاستعلام: 0.41s تنقيح النتائج
  1. 1
    Academic Journal

    المساهمون: Работа выполнена в рамках государственного задания «Механизмы регуляции иммунной системы» (номер госрегистрации темы ААААА19–119112290007–7) с использованием оборудования ЦКП «Исследования материалов и вещества» ПФИЦ УрО РАН.

    المصدر: HIV Infection and Immunosuppressive Disorders; Том 13, № 3 (2021); 52-60 ; ВИЧ-инфекция и иммуносупрессии; Том 13, № 3 (2021); 52-60 ; 2077-9828 ; 10.22328/2077-9828-2021-13-3

    وصف الملف: application/pdf

    Relation: https://hiv.bmoc-spb.ru/jour/article/view/659/450; Autran B., Carcelaint G., Li T.S., Gorochov G., Blanc C., Renaud M., Durali, M., Mathez D., Calvez V., Leibowitch J., Katlama C., Debre P. Restoration of the immune system with anti-retroviral therapy // Immunol. Lett. 1999. Vol. 66, No. 1–3. Р. 207–211.; Gaardbo J.C., Hartling H. J., Gerstoft J., Nielsen S.D. Incomplete immune recovery in HIV infection: mechanisms, relevance for clinical care, and possible solutions // Clin. Dev. Immunol. 2012. Vol. 2012. Р. 670957. doi:10.1155/2012/670957.; Lederman M.M., Calabrese L., Funderburg N.T., Clagett B., Medvik K., Bonilla H., Gripshover B., Salata R.A., Taege A., Lisgaris M., McComsey G.A., Kirchner E., Baum J., Shive C., Asaad R., Kalayjian R.C., Sieg S.F., Rodriguez B. Immunologic failure despite suppressive antiretroviral therapy is related to activation and turnover of memory CD4 cells // J. Infect. Dis. 2011. Vol. 204, No. 8. Р. 1217–1226. doi:10.1093/infdis/jir507.; Lapadula G., Cozzi-Lepri A., Marchetti G., Antinori A., Chiodera A., Nicastri E., Parruti G., Galli M., Gori A., Monforte Ad Icona Foundation Study. Risk of clinical progression among patients with immunological nonresponse despite virological suppression after combination antiretroviral treatment // AIDS. 2013. Vol. 27, No. 5. Р. 769–779. doi:10.1097/QAD.0b013e32835cb747.; Santin M., Mestre M., Shaw E., Barbera M.J., Casanova A., Niubo J., Bolao F., Podzamczer D., Gudiol F. Impact of hepatitis C virus coinfection on immune restoration during successful antiretroviral therapy in chronic human immunodeficiency virus type 1 disease // Eur. J. Clin. Microbiol. Infect. Dis. 2008. Vol. 27, No. 1. Р. 65–73. doi:10.1007/s10096-007-0384-3.; Chen T.Y., Ding E.L., Seage Iii G.R., Kim A.Y. Meta-analysis: increased mortality associated with hepatitis C in HIV-infected persons is unrelated to HIV disease progression // Clin. Infect. Dis. 2009. Vol. 49, No. 10. Р. 1605–1615. doi:10.1086/644771.; Kuhlbrandt W., Structure and function of mitochondrial membrane protein complexes // BMC Biol. 2015. Vol. 13. Р. 89. doi:10.1186/s12915-015-0201-x.; Gottlieb E., Armour S.M., Harris M.H., Thompson C.B. Mitochondrial membrane potential regulates matrix configuration and cytochrome c release during apoptosis // Cell Death Differ. 2003. Vol. 10, No. 6. Р. 709–717. doi:10.1038/sj.cdd.4401231.; Palikaras K., Tavernarakis N. Mitochondrial homeostasis: the interplay between mitophagy and mitochondrial biogenesis // Exp. Gerontol. 2014. Vol. 56. Р. 182–188. doi:10.1016/j.exger.2014.01.021.; Petrovas C., Mueller Y.M., Dimitriou I.D., Altork S.R., Banerjee A., Sklar P., Mounzer K.C., Altman J.D., Katsikis P.D. Increased mitochondrial mass characterizes the survival defect of HIV-specific CD8(+) T cells // Blood. 2007. Vol. 109, No. 6. Р. 2505–2513. doi:10.1182/blood-2006-05-021626.; Yu F., Hao Y., Zhao H., Xiao J., Han N., Zhang Y., Dai G., Chong X., Zeng H., Zhang F. Distinct Mitochondrial Disturbance in CD4+T and CD8+T Cells From HIV-Infected Patients // J. Acquir. Immune Defic. Syndr. 2017. Vol. 74, No. 2. Р. 206–212. doi:10.1097/QAI.0000000000001175.; Masson J.J.R., Murphy A.J., Lee M.K.S., Ostrowski M., Crowe S.M., Palmer C.S. Assessment of metabolic and mitochondrial dynamics in CD4+ and CD8+ T cells in virologically suppressed HIV-positive individuals on combination antiretroviral therapy // PLoS One. 2017. Vol. 12, No. 8. Р. e0183931. doi:10.1371/journal.pone.0183931.; Sternfeld T., Schmid M., Tischleder A., Mudra S., Schlamp A., Kost B.P., Gruber R., Youle M., Bogner J.R., Goebel F.D. The influence of HIV infection and antiretroviral therapy on the mitochondrial membrane potential of peripheral mononuclear cells // Antivir. Ther. 2007. Vol. 12, No. 5. Р. 769–778.; Deguit C.D.T., Hough M., Hoh R., Krone M., Pilcher C.D., Martin J.N., Deeks S.G., McCune J.M., Hunt P.W., Rutishauser R.L. Some Aspects of CD8(+) T-Cell Exhaustion Are Associated With Altered T-Cell Mitochondrial Features and ROS Content in HIV Infection // Jaids-Journal of Acquired Immune Deficiency Syndromes. 2019. Vol. 82, No. 2. Р. 211–219. doi:10.1097/Qai.0000000000002121.; Barbaro G., Di Lorenzo G., Asti A., Ribersani M., Belloni G., Grisorio B., Filice G., Barbarini G. Hepatocellular mitochondrial alterations in patients with chronic hepatitis C: ultrastructural and biochemical findings // Am. J. Gastroenterol. 1999. Vol. 94, No. 8. Р. 2198–2205. doi:10.1111/j.1572-0241.1999.01294.x.; Piccoli C., Quarato G., Ripoli M., D’Aprile A., Scrima R., Cela O., Boffoli D., Moradpour D., Capitanio N. HCV infection induces mitochondrial bioenergetic unbalance: causes and effects // Biochim. Biophys. Acta. 2009. Vol. 1787, No. 5. Р. 539–546. doi:10.1016/j.bbabio.2008.11.008.; Cottet-Rousselle C., Ronot X., Leverve X., Mayol J.F. Cytometric assessment of mitochondria using fluorescent probes // Cytometry A. 2011. Vol. 79, No. 6. Р. 405–425. doi:10.1002/cyto.a.21061.; Presley A.D., Fuller K.M., Arriaga E.A. MitoTracker Green labeling of mitochondrial proteins and their subsequent analysis by capillary electrophoresis with laser-induced fluorescence detection // Journal of Chromatography B. 2003. Vol. 793, No. 1. Р. 141–150. doi:10.1016/s1570-0232(03)00371-4.; Scarpulla R.C. Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network // Biochim. Biophys. Acta. 2011. Vol. 1813, No. 7. Р. 1269–1278. doi:10.1016/j.bbamcr.2010.09.019.; Wu Z., Puigserver P., Andersson U., Zhang C., Adelmant G., Mootha V., Troy A., Cinti S., Lowell B., Scarpulla R.C., Bruce M. Mechanisms Controlling Mitochondrial Biogenesis and Respiration through the Thermogenic Coactivator PGC-1 // Cell. 1999. Vol. 98, No. 1. Р. 115–124. doi:10.1016/s0092-8674(00)80611-x.; Perry C.G.R., Hawley J.A. Molecular Basis of Exercise-Induced Skeletal Muscle Mitochondrial Biogenesis: Historical Advances, Current Knowledge, and Future Challenges // Cold Spring Harb. Perspect. Med. 2018. Vol. 8, No. 9. doi:10.1101/cshperspect.a029686.; Gonzalez V.D., Falconer K., Blom K.G., Reichard O., Morn B., Laursen A.L., Weis N., Alaeus A., Sandberg J.K. High levels of chronic immune activation in the T-cell compartments of patients coinfected with hepatitis C virus and human immunodeficiency virus type 1 and on highly active antiretroviral therapy are reverted by alpha interferon and ribavirin treatment // J. Virol. 2009. Vol. 83, No. 21. Р. 11407–11411. doi:10.1128/JVI.01211-09.; Akkaya B., Roesler A.S., Miozzo P., Theall B.P., Al Souz J., Smelkinson M.G., Kabat J., Traba J., Sack M.N., Brzostowski J. A., Pena M., Dorward D.W., Pierce S.K., Akkaya M. Increased Mitochondrial Biogenesis and Reactive Oxygen Species Production Accompany Prolonged CD4(+) T Cell Activation // J. Immunol. 2018. Vol. 201, No. 11. Р. 3294–3306. doi:10.4049/jimmunol.1800753.; Cheng C.F., Ku H.C., Lin H. PGC-1alpha as a Pivotal Factor in Lipid and Metabolic Regulation // Int. J. Mol. Sci. 2018. Vol. 19, No. 11. doi:10.3390/ijms19113447.; https://hiv.bmoc-spb.ru/jour/article/view/659

  2. 2
    Academic Journal

    المساهمون: Работа выполнена при поддержке гранта РФФИ № 17-54-30006.

    المصدر: HIV Infection and Immunosuppressive Disorders; Том 10, № 4 (2018); 25-36 ; ВИЧ-инфекция и иммуносупрессии; Том 10, № 4 (2018); 25-36 ; 2077-9828 ; 10.22328/2077-9828-2018-10-4

    وصف الملف: application/pdf

    Relation: https://hiv.bmoc-spb.ru/jour/article/view/389/316; Boulougoura A., Sereti I. HIV infection and immune activation: the role of coinfections. Curr. Opin. HIV AIDS, 2016, Vol. 11, No. 2, pp. 191– 200. URL: http://www.ncbi.nlm.nih.gov/pubmed/26720550.; Appay V., Kelleher A.D. Immune activation and immune aging in HIV infection. Curr. Opin. HIV AIDS, 2016, Vol. 11, No. 2, pp. 242–249. URL: ://WOS:000369652400015.; Matthews P.C., Geretti A.M., Goulder P.J., Klenerman P. Epidemiology and impact of HIV coinfection with hepatitis B and hepatitis C viruses in Sub-Saharan Africa. J. Clin. Virol., 2014, Vol. 61, No. 1, pp. 20–33. URL: http://www.ncbi.nlm.nih.gov/pubmed/24973812.; Effros R.B. The silent war of CMV in aging and HIV infection. Mech. Ageing Dev., 2016, Vol. 158, pp. 46–52. URL: http://www.ncbi.nlm.nih.gov/pubmed/26404009.; Platt L., Easterbrook P., Gower E., McDonald B., Sabin K., McGowan C., Yanny I., Razavi H., Vickerman P. Prevalence and burden of HCV coinfection in people living with HIV: a global systematic review and meta-analysis. Lancet Infect. Dis., 2016, Vol. 16, No. 7, pp. 797–808. URL: http://www.ncbi.nlm.nih.gov/pubmed/26922272.; Alter M.J. Epidemiology of viral hepatitis and HIV co-infection. J. Hepatol., 2006, Vol. 44, No. 1, Suppl., pp. S6–S9. URL: http://www.ncbi.nlm.nih.gov/pubmed/16352363.; Peters L., Mocroft A., Lundgren J., Grint D., Kirk O., Rockstroh J. HIV and hepatitis C co-infection in Europe, Israel and Argentina: a EuroSIDA perspective. BMC Infect. Dis., 2014, Vol. 14, Suppl. 6, pp. S13. URL: http://www.ncbi.nlm.nih.gov/pubmed/25253564.; Rhodes T., Platt L., Judd A., Mikhailova L.A., Sarang A., Wallis N., Alpatova T., Hickman M., Parry J.V. Hepatitis C virus infection, HIV co-infection, and associated risk among injecting drug users in Togliatti, Russia. Int. J. STD AIDS, 2005, Vol. 16, No. 11, pp. 749–754. URL: http://www.ncbi.nlm.nih.gov/pubmed/16303071.; Chen T.Y., Ding E.L., Seage Iii G.R., Kim A.Y. Meta-analysis: increased mortality associated with hepatitis C in HIV-infected persons is unrelated to HIV disease progression. Clin. Infect. Dis., 2009, Vol. 49, No. 10, pp. 1605–1615. URL: http://www.ncbi.nlm.nih.gov/pubmed/19842982.; Deng L.P., Gui X.E., Zhang Y.X., Gao S.C., Yang R.R. Impact of human immunodeficiency virus infection on the course of hepatitis C virus infection: a meta-analysis. World J. Gastroenterol., 2009, Vol. 15, No. 8, pp. 996–1003. URL: http://www.ncbi.nlm.nih.gov/pubmed/19248201.; Brau N., Fox R.K., Xiao P., Marks K., Naqvi Z., Taylor L.E., Trikha A., Sherman M., Sulkowski M.S., Dieterich D.T., Rigsby M.O., Wright T.L., Hernandez M.D., Jain M.K., Khatri G.K., Sterling R.K., Bonacini M., Martyn C.A., Aytaman A., Llovet J.M., Brown S.T., Bini E.J., North American Liver Cancer in H.I.V.S.G. Presentation and outcome of hepatocellular carcinoma in HIV-infected patients: a U.S.-Canadian multicenter study. J. Hepatol., 2007, Vol. 47, No. 4, pp. 527–537. URL: http://www.ncbi.nlm.nih.gov/pubmed/17692986.; Operskalski E.A., Kovacs A. HIV/HCV co-infection: pathogenesis, clinical complications, treatment, and new therapeutic technologies. Curr. HIV/AIDS Rep., 2011, Vol. 8, No. 1, pp. 12–22. URL: http://www.ncbi.nlm.nih.gov/pubmed/21221855.; Hernando V., Alejos B., Monge S., Berenguer J., Anta L., Vinuesa D., Palacios R., Muga R., Moreno S., Jarrin I., CoRIS cohort. All-cause mortality in the cohorts of the Spanish AIDS Research Network (RIS) compared with the general population: 1997–2010. BMC Infect. Dis., 2013, Vol. 13, pp. 382. URL: http://www.ncbi.nlm.nih.gov/pubmed/23961924.; Rotman Y., Liang T.J. Coinfection with hepatitis C virus and human immunodeficiency virus: virological, immunological, and clinical outcomes. J. Virol., 2009, Vol. 83, No. 15, pp. 7366–7374. URL: http://www.ncbi.nlm.nih.gov/pubmed/19420073.; Kim A.Y., Chung R.T. Coinfection with HIV-1 and HCV–A one-two punch. Gastroenterol., 2009, Vol. 137, No. 3, pp. 795–814. URL: http://www.ncbi.nlm.nih.gov/pubmed/19549523.; Kong L., Cardona Maya W., Moreno-Fernandez M.E., Ma G., Shata M.T., Sherman K.E., Chougnet C., Blackard J.T. Low-level HIV infection of hepatocytes. Virol. J., 2012, Vol. 9, pp. 157. URL: http://www.ncbi.nlm.nih.gov/pubmed/22877244.; Pal S., Sullivan D.G., Kim S., Lai K.K., Kae J., Cotler S.J., Carithers R.L., Jr., Wood B.L., Perkins J.D., Gretch D.R. Productive replication of hepatitis C virus in perihepatic lymph nodes in vivo: implications of HCV lymphotropism. Gastroenterology, 2006, Vol. 130, No. 4, pp. 1107– 1116. URL: http://www.ncbi.nlm.nih.gov/pubmed/16618405.; Laskus T., Radkowski M., Wang L.F., Vargas H., Rakela J. The presence of active hepatitis C virus replication in lymphoid tissue in patients coinfected with human immunodeficiency virus type 1. J. Infect. Dis., 1998, Vol. 178, No. 4, pp. 1189–1192. URL: http://www.ncbi.nlm.nih.gov/pubmed/9806058.; Thomas D.L., Astemborski J., Vlahov D., Strathdee S.A., Ray S.C., Nelson K.E., Galai N., Nolt K.R., Laeyendecker O., Todd J.A. Determinants of the quantity of hepatitis C virus RNA. J. Infect. Dis., 2000, Vol. 181, No. 3, pp. 844–851. URL: http://www.ncbi.nlm.nih.gov/pubmed/10720503.; Bonacini M., Govindarajan S., Blatt L.M., Schmid P., Conrad A., Lindsay K.L. Patients co-infected with human immunodeficiency virus and hepatitis C virus demonstrate higher levels of hepatic HCV RNA. J. Viral. Hepat., 1999, Vol. 6, No. 3, pp. 203–208. URL: http://www.ncbi.nlm.nih.gov/pubmed/10607232.; Beld M., Penning M., Lukashov V., McMorrow M., Roos M., Pakker N., van den Hoek A., Goudsmit J. Evidence that both HIV and HIV-induced immunodeficiency enhance HCV replication among HCV seroconverters. Virol., 1998, Vol. 244, No. 2, pp. 504–512. URL: http://www.ncbi.nlm.nih.gov/pubmed/9601518.; Lin W., Weinberg E.M., Tai A.W., Peng L.F., Brockman M.A., Kim K.A., Kim S.S., Borges C.B., Shao R.X., Chung R.T. HIV increases HCV replication in a TGF-beta1-dependent manner. Gastroenterology, 2008, Vol. 134, No. 3, pp. 803–811. URL: http://www.ncbi.nlm.nih.gov/pubmed/18325393.; Reiberger T., Ferlitsch A., Sieghart W., Kreil A., Breitenecker F., Rieger A., Schmied B., Gangl A., Peck-Radosavljevic M. HIV-HCV co-infected patients with low CD4+ cell nadirs are at risk for faster fibrosis progression and portal hypertension. J. Viral. Hepat., 2010, Vol. 17, No. 6, pp. 400–409. URL: http://www.ncbi.nlm.nih.gov/pubmed/19780945.; Rashkin S., Rouster S., Goodman Z.D., Sherman K.E. T-helper cells and liver fibrosis in hepatitis C virus-monoinfected patients. J. Viral. Hepat., 2010, Vol. 17, No. 3, pp. 222–226. URL: http://www.ncbi.nlm.nih.gov/pubmed/19709360.; Kooij K.W., Wit F.W., van Zoest R.A., Schouten J., Kootstra N.A., van Vugt M., Prins M., Reiss P., van der Valk M., Group A.G.C.S. Liver fibrosis in HIV-infected individuals on long-term antiretroviral therapy: associated with immune activation, immunodeficiency and prior use of didanosine. AIDS, 2016, Vol. 30, No. 11, pp. 1771–1780. URL: http://www.ncbi.nlm.nih.gov/pubmed/27088320.; Potter M., Odueyungbo A., Yang H., Saeed S., Klein M.B. Canadian Co-infection Cohort Study I. Impact of hepatitis C viral replication on CD4+ T-lymphocyte progression in HIV-HCV coinfection before and after antiretroviral therapy. AIDS, 2010, Vol. 24, No. 12, pp. 1857–1865. URL: http://www.ncbi.nlm.nih.gov/pubmed/20479633.; Mandorfer M., Schwabl P., Steiner S., Reiberger T., Peck-Radosavljevic M. Advances in the management of HIV/HCV coinfection. Hepatol. Int., 2016, Vol. 10, No. 3, pp. 424–435. URL: http://www.ncbi.nlm.nih.gov/pubmed/26758592.; Zhao Q., Qin C.Y., Zhao Z.H., Fan Y.C., Wang K. Epigenetic modifications in hepatic stellate cells contribute to liver fibrosis. Tohoku J. Exp. Med., 2013, Vol. 229, No. 1, pp. 35–43. URL: http://www.ncbi.nlm.nih.gov/pubmed/23238615.; Lee U.E., Friedman S.L. Mechanisms of hepatic fibrogenesis. Best Pract. Res. Clin. Gastroenterol., 2011, Vol. 25, No. 2, pp. 195–206. URL: http://www.ncbi.nlm.nih.gov/pubmed/21497738.; Marrone G., Shah V.H., Gracia-Sancho J. Sinusoidal communication in liver fibrosis and regeneration. J. Hepatol., 2016, Vol. 65, No. 3, pp. 608–617. URL: DOI:10.1016/j.jhep.2016.04.018. http://www.ncbi.nlm.nih.gov/pubmed/27151183.; Greuter T., Shah V.H. Hepatic sinusoids in liver injury, inflammation, and fibrosis: new pathophysiological insights. J. Gastroenterol., 2016, Vol. 51, No. 6, pp. 511–519. URL: http://www.ncbi.nlm.nih.gov/pubmed/26939970.; Matsuzaki K. Modulation of TGF-beta signaling during progression of chronic liver diseases. Front. Biosci (Landmark Ed), 2009, Vol. 14, pp. 2923–2934. URL: http://www.ncbi.nlm.nih.gov/pubmed/19273245.; Tsukamoto H., Zhu N.L., Asahina K., Mann D.A., Mann J. Epigenetic cell fate regulation of hepatic stellate cells. Hepatol. Res., 2011, Vol. 41, No. 7, pp. 675–682. URL: http://www.ncbi.nlm.nih.gov/pubmed/21504520.; Jain M.K., Adams-Huet B., Terekhova D., Kushner L.E., Bedimo R., Li X., Holodniy M. Acute and chronic immune biomarker changes during interferon/ribavirin treatment in HIV/HCV co-infected patients. J. Viral. Hepat., 2015, Vol. 22, No. 1, pp. 25–36. URL: http://www.ncbi.nlm.nih.gov/pubmed/24506344.; Ciccaglione A.R., Marcantonio C., Tritarelli E., Tataseo P., Ferraris A., Bruni R., Dallapiccola B., Gerosolimo G., Costantino A., Rapicetta M. Microarray analysis identifies a common set of cellular genes modulated by different HCV replicon clones. BMC Genomics, 2008, Vol. 9, pp. 309. URL: http://www.ncbi.nlm.nih.gov/pubmed/18590516.; Hiet M.S., Bauhofer O., Zayas M., Roth H., Tanaka Y., Schirmacher P., Willemsen J., Grunvogel O., Bender S., Binder M., Lohmann V., Lotteau V., Ruggieri A., Bartenschlager R. Control of temporal activation of hepatitis C virus-induced interferon response by domain 2 of nonstructural protein 5A. J. Hepatol., 2015, Vol. 63, No. 4, pp. 829–837. URL: http://www.ncbi.nlm.nih.gov/pubmed/25908268.; Arnaud N., Dabo S., Akazawa D., Fukasawa M., Shinkai-Ouchi F., Hugon J., Wakita T., Meurs E.F. Hepatitis C virus reveals a novel early control in acute immune response. PLoS Pathog., 2011, Vol. 7, pp. e1002289. URL: http://www.ncbi.nlm.nih.gov/pubmed/22022264.; Li K., Li N.L., Wei D., Pfeffer S.R., Fan M., Pfeffer L.M. Activation of chemokine and inflammatory cytokine response in hepatitis C virus-infected hepatocytes depends on Toll-like receptor 3 sensing of hepatitis C virus double-stranded RNA intermediates. Hepatology, 2012, Vol. 55, No. 3, pp. 666–675. URL: http://www.ncbi.nlm.nih.gov/pubmed/22030901.; Wieland S., Makowska Z., Campana B., Calabrese D., Dill M.T., Chung J., Chisari F.V., Heim M.H. Simultaneous detection of hepatitis C virus and interferon stimulated gene expression in infected human liver. Hepatology, 2014, Vol. 59, No. 6, pp. 2121–2130. URL: http://www.ncbi.nlm.nih.gov/pubmed/24122862.; Metz P., Dazert E., Ruggieri A., Mazur J., Kaderali L., Kaul A., Zeuge U., Windisch M.P., Trippler M., Lohmann V., Binder M., Frese M., Bartenschlager R. Identification of type I and type II interferon-induced effectors controlling hepatitis C virus replication. Hepatology, 2012, Vol. 56, No. 6, pp. 2082–2093. URL: http://www.ncbi.nlm.nih.gov/pubmed/22711689.; Scagnolari C., Monteleone K., Cacciotti G., Antonelli G. Role of interferons in chronic hepatitis C infection. Curr. Drug Targets, 5 Feb. 2016. URL: http://www.ncbi.nlm.nih.gov/pubmed/26844564.; Dill M.T., Duong F.H., Vogt J.E., Bibert S., Bochud P.Y., Terracciano L., Papassotiropoulos A., Roth V., Heim M.H. Interferon-induced gene expression is a stronger predictor of treatment response than IL28B genotype in patients with hepatitis C. Gastroenterology, 2011, Vol. 140, No. 3, pp. 1021–1031. URL: http://www.ncbi.nlm.nih.gov/pubmed/21111740.; Norris S., Collins C., Doherty D.G., Smith F., McEntee G., Traynor O., Nolan N., Hegarty J., O’Farrelly C. Resident human hepatic lymphocytes are phenotypically different from circulating lymphocytes. J. Hepatol., 1998, Vol. 28, No. 1, pp. 84–90. URL: http://www.ncbi.nlm.nih.gov/pubmed/9537869.; Amadei B., Urbani S., Cazaly A., Fisicaro P., Zerbini A., Ahmed P., Missale G., Ferrari C., Khakoo S.I. Activation of natural killer cells during acute infection with hepatitis C virus. Gastroenterology, 2010, Vol. 138, No. 4, pp. 1536–1545. URL: http://www.ncbi.nlm.nih.gov/pubmed/20080094.; Ahlenstiel G., Titerence R.H., Koh C., Edlich B., Feld J.J., Rotman Y., Ghany M.G., Hoofnagle J.H., Liang T.J., Heller T., Rehermann B. Natural killer cells are polarized toward cytotoxicity in chronic hepatitis C in an interferon-alfa-dependent manner. Gastroenterology, 2010, Vol. 138, No. 1, pp. 325–335. URL: http://www.ncbi.nlm.nih.gov/pubmed/19747917.; Holder K.A., Stapleton S.N., Gallant M.E., Russell R.S., Grant M.D. Hepatitis C virus-infected cells downregulate NKp30 and inhibit ex vivo NK cell functions. J. Immunol., 2013, Vol. 191, No. 6, pp. 3308–3318. URL: http://www.ncbi.nlm.nih.gov/pubmed/23960237.; Mondelli M.U., Oliviero B., Mele D., Mantovani S., Gazzabin C., Varchetta S. Natural killer cell functional dichotomy: a feature of chronic viral hepatitis? Front. Immunol., 2012, Vol. 3, pp. 351. URL: http://www.ncbi.nlm.nih.gov/pubmed/23420385.; Frese M., Schwarzle V., Barth K., Krieger N., Lohmann V., Mihm S., Haller O., Bartenschlager R. Interferon-gamma inhibits replication of subgenomic and genomic hepatitis C virus RNAs. Hepatology, 2002, Vol. 35, No. 3, pp. 694–703. URL: http://www.ncbi.nlm.nih.gov/pubmed/11870386.; Major M.E., Mihalik K., Puig M., Rehermann B., Nascimbeni M., Rice C.M., Feinstone S.M. Previously infected and recovered chimpanzees exhibit rapid responses that control hepatitis C virus replication upon rechallenge. J. Virol., 2002, Vol. 76, No. 13, pp. 6586–6595. URL: http://www.ncbi.nlm.nih.gov/pubmed/12050371.; Glässner A., Eisenhardt M., Krämer B., Körner C., Coenen M., Sauerbruch T., Spengler U., Nattermann J. NK cells from HCV-infected patients effectively induce apoptosis of activated primary human hepatic stellate cells in a TRAIL-, FasL- and NKG2D-dependent manner. Lab. Invest., 2012, Vol. 92, No. 7, pp. 967–977. URL: http://www.ncbi.nlm.nih.gov/pubmed/22449797.; Terilli R.R., Cox A.L. Immunity and hepatitis C: a review. Curr. HIV/AIDS Rep., 2013, Vol. 10, No. 1, pp. 51–58. URL: http://www.ncbi.nlm.nih.gov/pubmed/23180007.; Semmo N., Lucas M., Krashias G., Lauer G., Chapel H., Klenerman P. Maintenance of HCV-specific T-cell responses in antibody-deficient patients a decade after early therapy. Blood, 2006, Vol. 107, No. 11, pp. 4570–4571. URL: http://www.ncbi.nlm.nih.gov/pubmed/16717132.; Lauer G.M., Walker B.D. Hepatitis C virus infection. N. Engl. J. Med., 2001, Vol. 345, No. 1, pp. 41–52. URL: http://www.ncbi.nlm.nih.gov/pubmed/11439948.; Morin T.J., Broering T.J., Leav B.A., Blair B.M., Rowley K.J., Boucher E.N., Wang Y., Cheslock P.S., Knauber M., Olsen D.B., Ludmerer S.W., Szabo G., Finberg R.W., Purcell R.H., Lanford R.E., Ambrosino D.M., Molrine D.C., Babcock G.J. Human monoclonal antibody HCV1 effectively prevents and treats HCV infection in chimpanzees. PLoS Pathog., 2012, Vol. 8, pp. e1 002 895. URL: http://www.ncbi.nlm.nih.gov/pubmed/22952447.; Law M., Maruyama T., Lewis J., Giang E., Tarr A.W., Stamataki Z., Gastaminza P., Chisari F.V., Jones I.M., Fox R.I., Ball J.K., McKeating J.A., Kneteman N.M., Burton D.R. Broadly neutralizing antibodies protect against hepatitis C virus quasispecies challenge. Nat. Med., 2008, Vol. 14, No. 1, pp. 25–27. URL: http://www.ncbi.nlm.nih.gov/pubmed/18064037.; Dowd K.A., Netski D.M., Wang X.H., Cox A.L., Ray S.C. Selection pressure from neutralizing antibodies drives sequence evolution during acute infection with hepatitis C virus. Gastroenterology, 2009, Vol. 136, No. 7, pp. 2377–2386. URL: http://www.ncbi.nlm.nih.gov/pubmed/19303013.; Grakoui A., Shoukry N.H., Woollard D.J., Han J.H., Hanson H.L., Ghrayeb J., Murthy K.K., Rice C.M., Walker C.M. HCV persistence and immune evasion in the absence of memory T cell help. Science, 2003, Vol. 302, No. 5645, pp. 659–662. URL: http://www.ncbi.nlm.nih.gov/pubmed/14576438.; Shoukry N.H., Grakoui A., Houghton M., Chien D.Y., Ghrayeb J., Reimann K.A., Walker C.M. Memory CD8+ T cells are required for protection from persistent hepatitis C virus infection. J. Exp. Med., 2003, Vol. 197, No. 12, pp. 1645–1655. URL: http://www.ncbi.nlm.nih.gov/pubmed/12810686.; Shin E.C., Park S.H., Demino M., Nascimbeni M., Mihalik K., Major M., Veerapu N.S., Heller T., Feinstone S.M., Rice C.M., Rehermann B. Delayed induction, not impaired recruitment, of specific CD8(+) T cells causes the late onset of acute hepatitis C. Gastroenterology, 2011, Vol. 141, No. 2, pp. 686–695, 695.e681. URL: http://www.ncbi.nlm.nih.gov/pubmed/21699897.; Klenerman P., Thimme R. T cell responses in hepatitis C: the good, the bad and the unconventional. Gut, 2012, Vol. 61, No. 8, pp. 1226–1234. URL: http://www.ncbi.nlm.nih.gov/pubmed/21873736.; Smyk-Pearson S., Tester I.A., Klarquist J., Palmer B.E., Pawlotsky J.M., Golden-Mason L., Rosen H.R. Spontaneous recovery in acute human hepatitis C virus infection: functional T-cell thresholds and relative importance of CD4 help. J. Virol., 2008, Vol. 82, No. 4, pp. 1827–1837. URL: http://www.ncbi.nlm.nih.gov/pubmed/18045940.; Urbani S., Amadei B., Fisicaro P., Tola D., Orlandini A., Sacchelli L., Mori C., Missale G., Ferrari C. Outcome of acute hepatitis C is related to virus-specific CD4 function and maturation of antiviral memory CD8 responses. Hepatology, 2006, Vol. 44, No. 1, pp. 126–139. URL: http://www.ncbi.nlm.nih.gov/pubmed/16799989.; Raziorrouh B., Ulsenheimer A., Schraut W., Heeg M., Kurktschiev P., Zachoval R., Jung M.C., Thimme R., Neumann-Haefelin C., Horster S., Wachtler M., Spannagl M., Haas J., Diepolder H.M., Gruner N.H. Inhibitory molecules that regulate expansion and restoration of HCV-specific CD4+ T cells in patients with chronic infection. Gastroenterology, 2011, Vol. 141, No. 4, pp. 1422–1431. URL: http://www.ncbi.nlm.nih.gov/pubmed/21763239.; Kared H., Fabre T., Bedard N., Bruneau J., Shoukry N.H. Galectin-9 and IL-21 mediate cross-regulation between Th17 and Treg cells during acute hepatitis C. PLoS Pathog., 2013, Vol. 9, pp. e1003422. URL: http://www.ncbi.nlm.nih.gov/pubmed/23818845.; Taye S., Lakew M. Impact of hepatitis C virus co-infection on HIV patients before and after highly active antiretroviral therapy: an immunological and clinical chemistry observation, Addis Ababa, Ethiopia. BMC Immunol., 2013, Vol. 14, pp. e23. URL: http://www.ncbi.nlm.nih.gov/pubmed/23679118.; Santin M., Mestre M., Shaw E., Barbera M.J., Casanova A., Niubo J., Bolao F., Podzamczer D., Gudiol F. Impact of hepatitis C virus coinfection on immune restoration during successful antiretroviral therapy in chronic human immunodeficiency virus type 1 disease. Eur. J. Clin. Microbiol. Infect. Dis., 2008. Vol. 27, No. 1. pp. 65–73. URL: http://www.ncbi.nlm.nih.gov/pubmed/17938979.; Yacisin K., Maida I., Rios M.J., Soriano V., Nunez M. Hepatitis C virus coinfection does not affect CD4 restoration in HIV-infected patients after initiation of antiretroviral therapy. AIDS Res. Hum. Retroviruses, 2008, Vol. 24, No. 7, pp. 935–940. URL: http://www.ncbi.nlm.nih.gov/pubmed/18593347.; Rockstroh J.K., Mocroft A., Soriano V., Tural C., Losso M.H., Horban A., Kirk O., Phillips A., Ledergerber B., Lundgren J., Euro S.S.G. Influence of hepatitis C virus infection on HIV-1 disease progression and response to highly active antiretroviral therapy. J. Infect. Dis., 2005, Vol. 192, No. 6, pp. 992–1002. URL: http://www.ncbi.nlm.nih.gov/pubmed/16107951.; Tsiara C.G., Nikolopoulos G.K., Dimou N.L., Bagos P.G., Saroglou G., Velonakis E., Hatzakis A. Effect of hepatitis C virus on immunological and virological responses in HIV-infected patients initiating highly active antiretroviral therapy: a meta-analysis. J. Viral Hepat., 2013, Vol. 20, No. 10, pp. 715–724. URL: http://www.ncbi.nlm.nih.gov/pubmed/24010646.; Mohan M., Kaushal D., Aye P.P., Alvarez X., Veazey R.S., Lackner A.A. Focused examination of the intestinal epithelium reveals transcriptional signatures consistent with disturbances in enterocyte maturation and differentiation during the course of SIV infection. PloS One, 2013, Vol. 8, No. 4, pp. e60122. URL: ://WOS:000317909600013.; Klatt N.R., Funderburg N.T., Brenchley J.M. Microbial translocation, immune activation, and HIV disease. Trends Microbiol., 2013, Vol. 21, No. 1, pp. 6–13. URL: http://www.ncbi.nlm.nih.gov/pubmed/23062765.; Nazli A., Chan O., Dobson-Belaire W.N., Ouellet M., Tremblay M.J., Gray-Owen S.D., Arsenault A.L., Kaushic C. Exposure to HIV-1 directly impairs mucosal epithelial barrier integrity allowing microbial translocation. PloS Pathog., 2010, Vol. 6, pp. e1000852. URL: ://WOS:000277722400024.; Smith A.J., Schacker T.W., Reilly C.S., Haase A.T. A role for syndecan-1 and claudin-2 in microbial translocation during HIV-1 infection. JAIDS, 2010, Vol. 55, No. 3, pp. 306–315. URL: ://WOS:000283847400006.; Klatt N.R., Estes J.D., Sun X., Ortiz A.M., Barber J.S., Harris L.D., Cervasi B., Yokomizo L.K., Pan L., Vinton C.L., Tabb B., Canary L.A., Dang Q., Hirsch V.M., Alter G., Belkaid Y., Lifson J.D., Silvestri G., Milner J.D., Paiardini M., Haddad E.K., Brenchley J.M. Loss of mucosal CD103+ DCs and IL-17+ and IL-22+ lymphocytes is associated with mucosal damage in SIV infection. Mucosal Immunol., 2012, Vol. 5, No. 6, pp. 646–657. URL: ://WOS:000310572800007.; Brenchley J.M., Price D.A., Schacker T.W., Asher T.E., Silvestri G., Rao S., Kazzaz Z., Bornstein E., Lambotte O., Altmann D., Blazar B.R., Rodriguez B., Teixeira-Johnson L., Landay A., Martin J.N., Hecht F.M., Picker L.J., Lederman M.M., Deeks S.G., Douek D.C. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat. Med., 2006, Vol. 12, No. 12, pp. 1365–1371. URL: http://www.ncbi.nlm.nih.gov/pubmed/17115046.; Leon A., Leal L., Torres B., Lucero C., Inciarte A., Arnedo M., Plana M., Vila J., Gatell J.M., Garcia F. Association of microbial translocation biomarkers with clinical outcome in controllers HIV-infected patients. AIDS, 2015, Vol. 29, No. 6, pp. 675–681. URL: ://WOS:000351688200005.; Perkins M.R., Bartha I., Timmer J.K., Liebner J.C., Wolinsky D., Gunthard H.F., Hauser C., Bernasconi E., Hoffmann M., Calmy A., Battegay M., Telenti A., Douek D.C., Fellay J., Study S.H.C. The interplay between host genetic variation, viral replication, and microbial translocation in untreated HIV-infected individuals. J. Infect. Dis., 2015, Vol. 212, No. 4, pp. 578–584. URL: ://WOS:000359677600010.; Jiang W., Lederman M.M., Hunt P., Sieg S.F., Haley K., Rodriguez B., Landay A., Martin J., Sinclair E., Asher A.I., Deeks S.G., Douek D.C., Brenchley J.M. Plasma levels of bacterial DNA correlate with immune activation and the magnitude of immune restoration in persons with antiretroviral-treated HIV infection. J. Infect. Dis., 2009, Vol. 199, No. 8, pp. 1177–1185. URL: ://WOS:000264409000013.; Marchetti G., Gori A., Casabianca A., Magnani M., Franzetti F., Clerici M., Perno C.F., Monforte A., Galli M., Meroni L. Comparative analysis of T-cell turnover and homeostatic parameters in HIV-infected patients with discordant immune-virological responses to HAART. AIDS, 2006, Vol. 20, No. 13, pp. 1727–1736. URL: http://www.ncbi.nlm.nih.gov/pubmed/16931937.; Novati S., Sacchi P., Cima S., Zuccaro V., Columpsi P., Pagani L., Filice G., Bruno R. General issues on microbial translocation in HIV-infected patients. Eur. Rev. Med. Pharmacol. Sci., 2015, Vol. 19, No. 5, pp. 866–878. URL: ://WOS:000352642700024.; Marchetti G., Nasta P., Bai F., Gatti F., Bellistri G.M., Tincati C., Borghi F., Carosi G., Puoti M., Monforte A. Circulating sCD14 is associated with virological response to pegylated-interferon-alpha/ribavirin treatment in HIV/HCV co-infected patients. PLoS One, 2012, Vol. 7, pp. e32028. URL: http://www.ncbi.nlm.nih.gov/pubmed/22363790.; de Oca Arjona M.M., Marquez M., Soto M.J., Rodriguez-Ramos C., Terron A., Vergara A., Arizcorreta A., Fernandez-Gutierrez C., GironGonzalez J.A. Bacterial translocation in HIV-infected patients with HCV cirrhosis: implication in hemodynamic alterations and mortality. J. Acquir. Immune Defic. Syndr., 2011, Vol. 56, No. 5, pp. 420–427. URL: http://www.ncbi.nlm.nih.gov/pubmed/21266909.; Scarpellini E., Valenza V., Gabrielli M., Lauritano E.C., Perotti G., Merra G., Dal Lago A., Ojetti V., Ainora M.E., Santoro M., Ghirlanda G., Gasbarrini A. Intestinal permeability in cirrhotic patients with and without spontaneous bacterial peritonitis: is the ring closed? Am. J. Gastroenterol., 2010, Vol. 105, No. 2, pp. 323–327. URL: http://www.ncbi.nlm.nih.gov/pubmed/19844200.; Nakamoto N., Kanai T. Role of toll-like receptors in immune activation and tolerance in the liver. Front. Immunol., 2014, Vol. 5, pp. e221. URL: http://www.ncbi.nlm.nih.gov/pubmed/24904576.; Paik Y.H., Schwabe R.F., Bataller R., Russo M.P., Jobin C., Brenner D.A. Toll-like receptor 4 mediates inflammatory signaling by bacterial lipopolysaccharide in human hepatic stellate cells. Hepatology, 2003, Vol. 37, No. 5, pp. 1043–1055. URL: http://www.ncbi.nlm.nih.gov/pubmed/12717385.; Scott M.J., Liu S., Shapiro R.A., Vodovotz Y., Billiar T.R. Endotoxin uptake in mouse liver is blocked by endotoxin pretreatment through a suppressor of cytokine signaling-1-dependent mechanism. Hepatology, 2009, Vol. 49, No. 5, pp. 1695–1708. URL: http://www.ncbi.nlm.nih.gov/pubmed/19296467.; Lumsden A.B., Henderson J.M., Kutner M.H. Endotoxin levels measured by a chromogenic assay in portal, hepatic and peripheral venous blood in patients with cirrhosis. Hepatology, 1988, Vol. 8, No. 2, pp. 232–236. URL: http://www.ncbi.nlm.nih.gov/pubmed/3281884.; Gonzalez V.D., Falconer K., Blom K.G., Reichard O., Morn B., Laursen A.L., Weis N., Alaeus A., Sandberg J.K. High levels of chronic immune activation in the T-cell compartments of patients coinfected with hepatitis C virus and human immunodeficiency virus type 1 and on highly active antiretroviral therapy are reverted by alpha interferon and ribavirin treatment. J. Virol., 2009, Vol. 83, No. 21, pp. 11407–11411. URL: http://www.ncbi.nlm.nih.gov/pubmed/19710147.; Feuth T., Arends J.E., Fransen J.H., Nanlohy N.M., van Erpecum K.J., Siersema P.D., Hoepelman A.I., van Baarle D. Complementary role of HCV and HIV in T-cell activation and exhaustion in HIV/HCV coinfection. PLoS One, 2013, Vol. 8, pp. e59302. URL: http://www.ncbi.nlm.nih.gov/pubmed/23555014.; Green D.R., Droin N., Pinkoski M. Activation-induced cell death in T cells. Immunol. Rev., 2003, Vol. 193, pp. 70–81. URL: http://www.ncbi.nlm.nih.gov/pubmed/12752672.; Brenner D., Krammer P.H., Arnold R. Concepts of activated T cell death. Crit. Rev. Oncol. Hematol., 2008, Vol. 66, No. 1, pp. 52–64. URL: http://www.ncbi.nlm.nih.gov/pubmed/18289867.; Funderburg N., Luciano A.A., Jiang W., Rodriguez B., Sieg S.F., Lederman M.M. Toll-like receptor ligands induce human T cell activation and death, a model for HIV pathogenesis. PLoS One., 2008, Vol. 3., pp. e1915. URL: http://www.ncbi.nlm.nih.gov/pubmed/18382686.; Körner C., Krämer B., Schulte D., Coenen M., Mauss S., Fatkenheuer G., Oldenburg J., Nattermann J., Rockstroh J.K., Spengler U. Effects of HCV co-infection on apoptosis of CD4+ T-cells in HIV-positive patients. Clin. Sci. (Lond.), 2009, Vol. 116, No. 12, pp. 861–870. URL:http://www.ncbi.nlm.nih.gov/pubmed/19128241.; Körner C., Tolksdorf F., Riesner K., Krämer B., Schulte D., Nattermann J., Rockstroh J.K., Spengler U. Hepatitis C coinfection enhances sensitization of CD4(+) T-cells towards Fas-induced apoptosis in viraemic and HAART-controlled HIV-1-positive patients. Antivir. Ther., 2011, Vol. 16, No. 7, pp. 1047–1055. URL: http://www.ncbi.nlm.nih.gov/pubmed/22024520.; Dichamp I., Abbas W., Kumar A., Di Martino V., Herbein G. Cellular activation and intracellular HCV load in peripheral blood monocytes isolated from HCV monoinfected and HIV-HCV coinfected patients. PLoS One, 2014, Vol. 9, pp. e96907. URL: http://www.ncbi.nlm.nih.gov/pubmed/24809719.; Rempel H., Sun B., Calosing C., Abadjian L., Monto A., Pulliam L. Monocyte activation in HIV/HCV coinfection correlates with cognitive impairment. PLoS One, 2013, Vol. 8, pp. e55776. URL: http://www.ncbi.nlm.nih.gov/pubmed/23437063.; Goeser F., Glassner A., Kokordelis P., Wolter F., Lutz P., Kaczmarek D.J., Schwarze-Zander C., Boesecke C., Strassburg C.P., Rockstroh J.K., Spengler U., Kramer B., Nattermann J. HIV mono-infection is associated with an impaired anti-hepatitis C virus activity of natural killer cells. AIDS, 2016, Vol. 30, No. 3, pp. 355–363. URL: http://www.ncbi.nlm.nih.gov/pubmed/26558728.; Kahan S.M., Wherry E.J., Zajac A.J. T cell exhaustion during persistent viral infections. Virology, 2015, Vol. 479–480, pp. 180–193. URL: https://www.ncbi.nlm.nih.gov/pubmed/25620767.; Tsoukas C. Immunosenescence and aging in HIV. Curr. Opin. HIV AIDS, 2014, Vol. 9, No. 4, pp. 398–404. URL: https://www.ncbi.nlm.nih.gov/pubmed/24840059.; Hartling H.J., Jespersen S., Gaardbo J.C., Sambleben C., Thorsteinsson K., Gerstoft J., Ullum H., Nielsen S.D. Reduced IL-7R T cell expression and increased plasma sCD127 in late presenting HIV-infected individuals. J. Acquir. Immune Defic. Syndr., 2017, Vol. 74, No. 1, pp. 81–90. URL: https://www.ncbi.nlm.nih.gov/pubmed/27509242.; https://hiv.bmoc-spb.ru/jour/article/view/389

  3. 3
    Academic Journal

    المساهمون: Работа выполнена в рамках государственного задания «Механизмы регуляции иммунной системы», номер госрегистрации темы: 01201353248.

    المصدر: HIV Infection and Immunosuppressive Disorders; Том 11, № 3 (2019); 57-63 ; ВИЧ-инфекция и иммуносупрессии; Том 11, № 3 (2019); 57-63 ; 2077-9828 ; 10.22328/2077-9828-2019-11-3

    وصف الملف: application/pdf

    Relation: https://hiv.bmoc-spb.ru/jour/article/view/463/356; Ganesan M., Poluektova L.Y., Kharbanda K.K., Osna N.A. Liver as a target of human immunodeficiency virus infection. World J. Gastroenterol., 2018, Vol. 24, No. 42, pp. 4728–4737. ULR: https://www.ncbi.nlm.nih.gov/pubmed/30479460.; Deng L.P., Gui X.E., Zhang Y.X., Gao S.C., Yang R.R. Impact of human immunodeficiency virus infection on the course of hepatitis C virus infection: a meta-analysis. World J. Gastroenterol., 2009, Vol. 15, No. 8, pp. 996–1003. URL: http://www.ncbi.nlm.nih.gov/pubmed/19248201.; Rhodes T., Platt L., Judd A., Mikhailova L.A., Sarang A., Wallis N., Alpatova T., Hickman M., Parry J.V. Hepatitis C virus infection, HIV co-infection, and associated risk among injecting drug users in Togliatti, Russia. Int. J. STD AIDS, 2005, Vol. 16, No. 11, pp. 749–754. URL: http://www.ncbi.nlm.nih.gov/pubmed/16303071.; Hernandez M.D., Sherman K.E. HIV/hepatitis C coinfection natural history and disease progression. Curr. Opin. HIV AIDS, 2011, Vol. 6, No. 6, pp. 478–482. URL: https://www.ncbi.nlm.nih.gov/pubmed/22001892.; Pinato D.J., Dalla Pria A., Sharma R., Bower M. Hepatocellular carcinoma: an evolving challenge in viral hepatitis and HIV coinfection. AIDS, 2017, Vol. 31, No. 5, pp. 603–611. URL: https://www.ncbi.nlm.nih.gov/pubmed/28121711.; McKibben R.A., Margolick J.B., Grinspoon S., Li X., Palella F.J., Jr., Kingsley L.A., Witt M.D., George R.T., Jacobson L.P., Budoff M., Tracy R.P., Brown T.T., Post W.S. Elevated levels of monocyte activation markers are associated with subclinical atherosclerosis in men with and those without HIV infection. J. Infect. Dis., 2015, Vol. 211, No. 8, pp. 1219–1228. URL: https://www.ncbi.nlm.nih.gov/pubmed/25362192.; Ronsholt F.F., Pett S., Vjecha M.J., French M.A., Lundgren J.D., Insight, Smart Esprit Study Groups the Silcaat Scientific Committee. Factors Associated With Plasma IL-6 Levels During HIV Infection. J. Infect. Dis., 2015, Vol. 212, No. 4, pp. 585–595. URL: https://www.ncbi.nlm.nih.gov/pubmed/25722296.; Li H., Huang M.H., Jiang J.D., Peng Z.G. Hepatitis C: From inflammatory pathogenesis to anti-inflammatory/hepatoprotective therapy. World J. Gastroenterol., 2018, Vol. 24, No. 47, pp. 5297–5311. URL: https://www.ncbi.nlm.nih.gov/pubmed/30598575.; Deeks S.G., Tracy R., Douek D.C. Systemic effects of inflammation on health during chronic HIV infection. Immunity, 2013, Vol. 39, No. 4, pp. 633–645. URL: http://www.ncbi.nlm.nih.gov/pubmed/24138880.; Wai C.T., Greenson J.K., Fontana R.J., Kalbfleisch J.D., Marrero J.A., Conjeevaram H.S., Lok A.S. A simple noninvasive index can predict both significant fibrosis and cirrhosis in patients with chronic hepatitis C. Hepatology, 2003, Vol. 38, No. 2, pp. 518–526. URL: http://www.ncbi.nlm.nih.gov/pubmed/12883497.; Ortega-Gomez A., Perretti M., Soehnlein O. Resolution of inflammation: an integrated view. EMBO Mol. Med., 2013, Vol. 5, No. 5, pp. 661–674. URL: https://www.ncbi.nlm.nih.gov/pubmed/23592557.; Hammerich L., Tacke F. Interleukins in chronic liver disease: lessons learned from experimental mouse models. Clin. Exp. Gastroenterol., 2014, Vol. 7, pp. 297–306. URL: https://www.ncbi.nlm.nih.gov/pubmed/25214799.; Commins S.P., Borish L., Steinke J.W. Immunologic messenger molecules: cytokines, interferons, and chemokines. J. Allergy Clin. Immunol., 2010, Vol. 125, No. 2, Suppl. 2, pp. S53–S72. URL: https://www.ncbi.nlm.nih.gov/pubmed/19932918.; Wynn T.A., Barron L. Macrophages: master regulators of inflammation and fibrosis. Semin. Liver Dis., 2010, Vol. 30, No. 3, pp. 245–257. URL: https://www.ncbi.nlm.nih.gov/pubmed/20665377.; Shmagel K.V., Saidakova E.V., Shmagel N.G., Korolevskaya L.B., Chereshnev V.A., Robinson J., Grivel J.C., Douek D.C., Margolis L., Anthony D.D., Lederman M.M. Systemic inflammation and liver damage in HIV/hepatitis C virus coinfection. HIV Med., 2016, Vol. 17, pp. 581–589. URL: https://www.ncbi.nlm.nih.gov/pubmed/27187749.; Biswas S.K., Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nature Immunology, 2010, Vol. 11, No. 10, pp. 889–896. URL: https://www.ncbi.nlm.nih.gov/pubmed/20856220.; Cassetta L., Cassol E., Poli G. Macrophage polarization in health and disease. Scientific World Journal, 2011, Vol. 11, pp. 2391–2402. URL: http://www.ncbi.nlm.nih.gov/pubmed/22194670.; Akila P., Prashant V., Suma M.N., Prashant S.N., Chaitra T.R. CD163 and its expanding functional repertoire. Clin. Chim. Acta, 2012, Vol. 413, No. 7–8, pp. 669–674. URL: https://www.ncbi.nlm.nih.gov/pubmed/22309681.; Moller H.J. Soluble CD163. Scand. J. Clin. Lab. Invest., 2012, Vol. 72, No. 1, pp. 1–13. URL: http://www.ncbi.nlm.nih.gov/pubmed/22060747.; Lee S.B., Kalluri R. Mechanistic connection between inflammation and fibrosis. Kidney Int. Suppl., 2010, No, 119, pp. S22–S26. URL: https://www.ncbi.nlm.nih.gov/pubmed/21116313.; Wynn T.A. Cellular and molecular mechanisms of fibrosis. J. Pathol., 2008, Vol. 214, No. 2, pp. 199–210. URL: https://www.ncbi.nlm.nih.gov/pubmed/18161745.; Mack M. Inflammation and fibrosis. Matrix Biol., 2018, Vol. 68–69, pp. 106–121. URL: https://www.ncbi.nlm.nih.gov/pubmed/29196207.; Reiman R.M., Thompson R.W., Feng C.G., Hari D.K., Rachel C., Allen W.R., Helene F.W., Thomas A. Interleukin-5 (IL-5) Augments the Progression of Liver Fibrosis by Regulating IL-13 Activity. Infection and Immunity, 2006, Vol. 74, No. 3, pp. 1471–1479. URL: https://iai.asm.org/content/iai/74/3/1471.full.pdf.; Schumacher J.D., Guo G.L. Regulation of Hepatic Stellate Cells and Fibrogenesis by Fibroblast Growth Factors. Biomed. Res. Int., 2016, Vol. 2016, pp. 8323747. URL: https://www.ncbi.nlm.nih.gov/pubmed/27699175.; Rashkin S., Rouster S., Goodman Z.D., Sherman K.E. T-helper cells and liver fibrosis in hepatitis C virus-monoinfected patients. J. Viral. Hepat., 2010, Vol. 17, No. 3, pp. 222–226. URL: https://www.ncbi.nlm.nih.gov/pubmed/19709360.; Reiberger T., Ferlitsch A., Sieghart W., Kreil A., Breitenecker F., Rieger A., Schmied B., Gangl A., Peck-Radosavljevic M. HIV-HCV co-infected patients with low CD4+ cell nadirs are at risk for faster fibrosis progression and portal hypertension. J. Viral. Hepat., 2010, Vol. 17, No. 6, pp. 400–409. URL: https://www.ncbi.nlm.nih.gov/pubmed/19780945.; https://hiv.bmoc-spb.ru/jour/article/view/463