يعرض 1 - 2 نتائج من 2 نتيجة بحث عن '"К. Т. Момыналиев"', وقت الاستعلام: 0.32s تنقيح النتائج
  1. 1
    Academic Journal

    المساهمون: This research did not receive financial support in the form of a grant from any governmental, for-profit, or non-profit organizations, Это исследование не получало финансовой поддержки в виде гранта от какой-либо организации государственного, коммерческого или некоммерческого сектора

    المصدر: Measurement Standards. Reference Materials; Том 19, № 5 (2023); 113-125 ; Эталоны. Стандартные образцы; Том 19, № 5 (2023); 113-125 ; 2687-0886

    وصف الملف: application/pdf

    Relation: https://www.rmjournal.ru/jour/article/view/448/320; Avari P., Reddy M., Oliver N. Is it possible to constantly and accurately monitor blood sugar levels, in people with Type 1 diabetes, with a discrete device (non-invasive or invasive)? // Diabetic Medicine. 2020. Vol. 37, № 4. P. 532–544. doi:10.1111/dme.13942; Health equity and diabetes technology: A study of access to continuous glucose monitors by payer, geography and race executive summary // American Diabetes Association [websiete]. URL: https://diabetes.org/sites/default/files/2022–10/ADA-CGM-Utilization-White-Paper-Oct-2022.pdf (date of access: 08. 06. 2023).; Time lag of glucose from intravascular to interstitial compartment in type 1 diabetes / A. Basu [et al.] // Journal of Diabetes Science and Technology. 2015. Vol. 9, № 1. P. 63–68. doi:10.1177/1932296814554797; Standardization process of continuous glucose monitoring: Traceability and performance / G. Freckmann [et al.] // Clinica Chimica Acta. 2021. Vol. 515. P. 5–12. doi:10.1016/j.cca.2020.12.025; The performance and usability of a factory-calibrated flash glucose monitoring system / T. Bailey [et al.] // Diabetes Technology & Therapeutics. 2015. Vol. 17, № 11. P. 787–794. doi:10.1089/dia.2014.0378; Bailey T. S., Chang A., Christiansen M. Clinical accuracy of a continuous glucose monitoring system with an advanced algorithm // Journal of Diabetes Science and Technology. 2015. Vol. 9, № 2. P. 209–214. doi:10.1177/1932296814559746; Freckmann G. Basics and use of continuous glucose monitoring (CGM) in diabetes therapy // Journal of Laboratory Medicine. 2020. Vol. 44, № 2. P. 71–79. doi:10.1515/labmed-2019–0189; Effect of continuous glucose monitoring on glycemic control in adults with type 1 diabetes using insulin injections: The DIAMOND randomized clinical trial / R. W. Beck [et al.] // JAMA. 2017. Vol. 317, № 4. P. 371–378. doi:10.1001/jama.2016.19975; Flash glucose-sensing technology as a replacement for blood glucose monitoring for the management of insulin-treated type 2 diabetes: a multicenter, open-label randomized controlled trial / T. Haak [et al.] // Diabetes Ther. 2017. Vol. 8, № 1. P. 55–73. doi:10.1007/s13300-016-0223-6; Continuous glucose monitoring vs conventional therapy for glycemic control in adults with type 1 diabetes treated with multiple daily insulin injections: The GOLD randomized clinical trial [published correction appears in JAMA. 2017. Vol. 317, № 18. P. 1912] / M. Lind [et al.] // JAMA. 2017. Vol. 317, № 4. P. 379–387. doi:10.1001/jama.2016.19976; Switching from flash glucose monitoring to continuous glucose monitoring on hypoglycemia in adults with type 1 diabetes at high hypoglycemia risk: The extension phase of the I HART CGM Study / M. Reddy [et al.] // Diabetes Technol Ther. 2018. Vol. 20, № 11. P. 751–757. doi:10.1089/dia.2018.0252; Kovatchev B. P. Metrics for glycaemic control – from HbA1c to continuous glucose monitoring // Nat Rev Endocrinol. 2017. Vol. 13, № 7. P. 425–436. doi:10.1038/nrendo.2017.3; International consensus on use of continuous glucose monitoring / T. Danne [et al.] // Diabetes Care. 2017. Vol. 40, № 12. P. 1631–1640. doi:10.2337/dc17–1600; Standardizing clinically meaningful outcome measures beyond HbA1c for type 1 diabetes: A consensus report of the american association of clinical endocrinologists, the american association of diabetes educators, the american diabetes association, the endocrine society, JDRF International, the Leona M. and Harry B. helmsley charitable trust, the pediatric endocrine society, and the T1D Exchange / G. Agiostratidou [et al.] // Diabetes Care. 2017. Vol. 40, № 12. P. 1622–1630. doi:10.2337/dc17–1624; Time in range: a new parameter to evaluate blood glucose control in patients with diabetes / M. A. L. Gabbay [et al.] // Diabetology & Metabolic Syndrome. 2020. Vol. 12. P. 22. doi:10.1186/s13098–020–00529-z; Glucose management indicator (GMI): A New term for estimating A1C from continuous glucose monitoring / R. M. Bergenstal [et al.] // Diabetes Care. 2018. Vol. 41, № 11. P. 2275–2280. doi:10.2337/dc18–1581; Сахарный диабет 1 типа у взрослых : клинические рекомендации Министерства здравоохранения Российской Федерации; Разработчик Российская ассоциация эндокринологов; Одобрено Научно-практическим Советом Минздрава РФ. 2022 // Официальный интернет-портал правовой информации [сайт]. URL: https://base.garant.ru/406534305/ (дата обращения: 08. 06. 2023).; Сахарный диабет 2 типа у взрослых : клинические рекомендации Министерства здравоохранения Российской Федерации; Разработчик Российская ассоциация эндокринологов; Одобрено Научно-практическим Советом Минздрава РФ. 2022 // Рубрикатор клинических исследований [сайт]. URL: https://cr.minzdrav.gov.ru/schema/290_2 (дата обращения: 08. 06. 2023).; Сахарный диабет 1 типа у детей : клинические рекомендации Министерства здравоохранения Российской Федерации; Разработчик Российская ассоциация эндокринологов; Одобрено Научно-практическим Советом Минздрава РФ. 2022 // Рубрикатор клинических исследований [сайт]. URL: https://cr.minzdrav.gov.ru/recomend/287_1 (дата обращения: 08. 06. 2023).; Head-to-head comparison of the accuracy of abbott freestyle libre and dexcom G5 mobile / F. Boscari [et al.] // Nutrition, Metabolism and Cardiovascular Diseases. 2018. Vol. 28, № 4. P. 425–427. doi:10.1016/j.numecd.2018.01.003; A three-way accuracy comparison of the dexcom G5, abbott freestyle libre pro, and senseonics eversense continuous glucose monitoring devices in a home-use study of subjects with type 1 diabetes / R. Z. Jafri [et al.] // Diabetes Technology & Therapeutics. 2020. Vol. 2, № 11. P. 846–852. doi:10.1089/dia.2019.0449; Measurement performance of two continuous tissue glucose monitoring systems intended for replacement of blood glucose monitoring / G. Freckmann [et al.] // Diabetes Technology & Therapeutics. 2018. Vol. 20, № 8. P. 541–549. doi:10.1089/dia.2018.0105; FreeStyle Libre and Dexcom G4 Platinum sensors: Accuracy comparisons during two weeks of home use and use during experimentally induced glucose excursions / F. Boscari [et al.] // Nutrition, Metabolism and Cardiovascular Diseases. 2018. Vol. 28, № 2. P. 180–186. doi:10.1016/j.numecd.2017.10.023; Discrepancies between methods of continuous glucose monitoring in key metrics of glucose control in children with type 1 diabetes / A. Michalak [et al.] // Pediatric Diabetes. 2019. Vol. 20, № 5. P. 604–612. doi:10.1111/pedi.12854; Time in specific glucose ranges, glucose management indicator, and glycemic variability: impact of continuous glucose monitoring (CGM) system model and sensor on cgm metrics / S. Pleus [et al.] // Journal of Diabetes Science and Technology. 2021. Vol. 15, № 5. P. 1104–1110. doi:10.1177/1932296820931825; ГОСТ Р ИСО 17511–2022. Изделия медицинские для диагностики in vitro. Требования к установлению метрологической прослеживаемости значений, приписанных калибраторам, контрольным материалам правильности и образцам биологического материала человека. М.: Российский институт стандартизации, 2022.; Samant P. P., Prausnitz M. R. Mechanisms of sampling interstitial fluid from skin using a microneedle patch // Proceedings of the National Academy of Sciences. 2018. Vol. 115, № 18. P. 4583–4588. doi:10.1073/pnas.1716772115; Improving the bias of comparator methods in analytical performance assessments through recalibration / S. Pleus [et al.] // Journal of Diabetes Science and Technology. 2022. doi:10.1177/19322968221133107; Seibold A., Brines R. Comment on Grino et al: Suitability of flash glucose monitoring for detection of hypoglycemia // Journal of Diabetes Science and Technology. 2019. Vol. 13, № 3. P. 607–608. doi:10.1177/1932296819838534; Results of a near continuous glucose monitoring technology in surgical intensive care and trauma / E. Nohra [et al.] // Contemp Clin Trials. 2016. Vol. 50. P. 1–4. doi:10.1016/j.cct.2016.07.007; Significance and reliability of MARD for the accuracy of CGM Systems / F. Reiterer [et al.] // Journal of Diabetes Science and Technology. 2017. Vol. 11, № 1. P. 59–67. doi:10.1177/1932296816662047; Bailey T. S., Alva S. Landscape of continuous glucose monitoring (CGM) and integrated CGM: Accuracy considerations // Diabetes Technology & Therapeutics. 2021. Vol. 23. S5–S11. doi:10.1089/dia.2021.0236; Measures of accuracy for continuous glucose monitoring and blood glucose monitoring devices / G. Freckmann [et al.] // Journal of Diabetes Science and Technology. 2019. Vol.13, № 3. P. 575–583. doi:10.1177/1932296818812062; Benefits and limitations of MARD as a performance parameter for continuous glucose monitoring in the interstitial space / L. Heinemann [et al.] // Journal of Diabetes Science and Technology. 2020. Vol. 14, № 1. P. 135–150. doi:10.1177/1932296819855670; Performance comparison of CGM systems: MARD values are not always a reliable indicator of CGM system accuracy / H. Kirchsteiger [et al.] // Journal of Diabetes Science and Technology. 2015. Vol. 9, № 5. P. 1030–1040. doi:10.1177/1932296815586013; Venous, arterialized-venous, or capillary glucose reference measurements for the accuracy assessment of a continuous glucose monitoring system / J. Kropff [et al.] // Journal of Diabetes Science and Technology. 2017. Vol. 19, № 11. P. 609–617. doi:10.1089/dia.2017.0189; Macleod K., Katz L. B., Cameron H. Capillary and venous blood glucose accuracy in blood glucose meters versus reference standards: The impact of study design on accuracy evaluations // Journal of Diabetes Science and Technology. 2019. Vol. 13, № 3. P. 546–552. doi:10.1177/1932296818790228; Continuous glucose deviation interval and variability analysis (CG-DIVA): A novel approach for the statistical accuracy assessment of continuous glucose monitoring systems / M. Eichenlaub [et al.] // Journal of Diabetes Science and Technology. 2022. P. 19322968221134639. doi:10.1177/19322968221134639; POCT05 Performance metrics for continuous interstitial glucose monitoring / eds. D. C. Klonoff [et al.]. 2 nd ed. / CLSI [websiete]. URL: https://clsi.org/standards/products/new-products/documents/poct05/ (date of access: 08. 06. 2023).; Continuous glucose monitoring and other wearable devices to assess hypoglycemia among older adult outpatients with diabetes mellitus / M. Weiner [et al.] // Applied Clinical Informatics. 2023. Vol. 14, № 1. P. 37–44. doi:10.1055/a-1975–4136; Clinical targets for continuous glucose monitoring data interpretation: recommendations from the international consensus on time in range / T. Battelino [et al.] // Diabetes Care. 2019. Vol. 42, № 8. P. 1593–1603. doi:10.2337/dci19–0028; CFR – Code of Federal regulations title 21 // U. S. Food and Drug Administration [websiete]. URL: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr = 862.1355 (date of access: 08. 06. 2023).; https://www.rmjournal.ru/jour/article/view/448

  2. 2
    Academic Journal

    المصدر: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; № 1 (2011); 26-31 ; Вестник Московского университета. Серия 16. Биология; № 1 (2011); 26-31 ; 0137-0952 ; 10.1234/XXXX-XXXX-2011-1

    وصف الملف: application/pdf

    Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/249/246; Королев Ю.Н., Малахов Ю.И., Калабеков А.Л. Использование методов спектрометрии МНПВО для анализа биологических объектов // Измерительные технологии. 2002. № 8. С. 40—45.; Асланян Р.Р., Лебедева А.Ф., Бабусенко Е.С., Королев Ю.Н., Королева С.Ю. Культуры микроорганизмов как пример информационного взаимодействия // Вестн. Моск. ун-та. Сер. Биология. 2009. № 2. С. 19—25.; Асланян Р.Р., Королев Ю.Н. Исследование роста культуры одноклеточных зеленых водорослей методом неинвазивного анализа // Вестн. Моск. ун-та. Сер. Биология. 2007. № 3. С. 13—16.; Бинги В.Н. Физика взаимодействия живых объектов с окружающей средой. М., 2004. 230 с.; Кудряшов Ю.Б., Петров Ю.Ф., Рубин А.Б. Радиационная биофизика: радиочастотные и микроволновые электромагнитные излучения. М.: ФИЗМАТЛИТ, 2008. 184 с.; Гусев М.В., Королев Ю.Н. О взаимосвязи эволюции живых систем и их открытости // Синергетика. Т. 7. Проблемы открытости сложных эволюционирующих систем. М.: МГУ, 2004. С. 150—169.; https://vestnik-bio-msu.elpub.ru/jour/article/view/249