يعرض 1 - 5 نتائج من 5 نتيجة بحث عن '"К. Д. Наумов"', وقت الاستعلام: 0.33s تنقيح النتائج
  1. 1
    Academic Journal

    المساهمون: This research was funded by the government task of the Russian Federation, Grant № 075-03-2021-051/5 (FEUZ-2021-0017), Исследование выполнено в рамках госзадания РФ по гранту № 075-03-2021-051/5 (FEUZ-2021-0017)

    المصدر: Izvestiya Vuzov. Tsvetnaya Metallurgiya (Izvestiya. Non-Ferrous Metallurgy); № 3 (2022); 4-12 ; Известия вузов. Цветная металлургия; № 3 (2022); 4-12 ; 2412-8783 ; 0021-3438

    وصف الملف: application/pdf

    Relation: https://cvmet.misis.ru/jour/article/view/1372/586; Чем опасны батарейки. URL: http://cgon.rospotrebnadzor.ru/content/62/1040/ (дата обращения: 15. 10. 2021). / What are the dangers of batteries? URL: http://cgon.rospotrebnadzor.ru/content/62/1040 (accessed: 15. 10. 2021) (In Russ.).; Sadeghi Maryam S., Jesus J., Soares Helena M. V. M. A critical updated review of the hydrometallurgical routes for recycling zinc and manganese from spent zinc-based batteries. Waste Manag. 2020. Vol. 113. P. 342—350. DOI:10.1016/j.wasman.2020.05.049.; Работа правительства. URL: http://government.ru/rugovclassifier/848/main/ (дата обращения: 15. 10. 2021). / Government work. URL: http://government.ru/rugovclassifier/848/main/ (accessed: 15. 10. 2021) (In Russ.).; De Souza Martha C. C., Correa de Oliveira D., Tenorio J. A. Characterization of used alkaline batteries powder and analysis of zinc recovery by acid leaching. J. Power Sources. 2001. Vol. 103. No. 1. P. 120—126. DOI:10.1016/S0378-7753(01)00850-3.; De Souza Martha C. C., Tenorio J. A. Simultaneous recovery of zinc and manganese dioxide from household alkaline batteries through hydrometallurgical processing. J. Power Sources. 2004. Vol. 136. No. 1. P. 191—196. DOI:10.1016/j.jpowsour.2004.05.019.; Ranjit K. B., Aneek K. K., Sree L. K. Recovery of manganese and zinc from spent Zn—C cell powder: Experimental design of leaching by sulfuric acid solution containing glucose. Waste Manag. 2016. Vol. 51. No. 5. P. 174—181. DOI:10.1016/j.wasman.2015.11.002.; Grudinsky P. I., Zinoveev D. V., Dyubanov V. G., Kozlov P. A. State of the art and prospect for recycling of waelz slag from electric arc furnace dust processing. Inorg. Mater.: Appl. Res. 2019. Vol. 10. No. 5. P. 1220—1226. DOI:10.1134/S2075113319050071.; Belardi G., Medici F., Piga L. Influence of gaseous atmosphere during a thermal process for recovery of manganese and zinc from spent batteries. J. Power Sources. 2014. Vol. 248. P. 1290—1298. DOI:10.1016/j.jpowsour.2013.10.064.; Burri R., Weber A. The wimmis project. Proceedings of battery recycling. J. Power Sources. 1995. Vol. 57. No. 1/2. P. 31—35. DOI:10.1016/0378-7753(95)02235-X.; Sobianowska-Turek A., Szczepaniak W., Maciejewski P., Gawlik-Kobylińska M. Recovery of zinc and manganese, and other metals (Fe, Cu, Ni, Co, Cd, Cr, Na, K) from Zn—MnO 2 and Zn—C waste batteries: Hydroxyl and carbonate co-precipitation from solution after reducing acidic leaching with use of oxalic acid. J. Power Sources. 2016. Vol. 325. P. 220—228. DOI:10.1016/j.jpowsour.2016.06.042.; Rácz R., Ilea P. Electrolytic recovery of Mn 3 O 4 and Zn from sulphuric acid leach liquors of spent zinc—carbon—MnO 2 battery powder. Hydrometallurgy. 2013. Vol. 139. P. 116—123. DOI:10.1016/j.hydromet.2013.08.006.; Sadeghi Maryam S., Vanpeteghem Guillaumme, Neto Isabel F. F., Soares Helena M. V. M. Selective leaching of Zn from spent alkaline batteries using environmentally friendly approaches. Waste Manag. 2017. Vol. 60. P. 696—705. DOI:10.1016/j.wasman.2016.12.002.; Senanayake G., Avraamides J., Clegg R. Sulfur dioxide leaching of spent zinc—carbon-battery scrap. J. Power Sources. 2006. Vol. 159. No. 2. P. 1488—1493. DOI:10.1016/j.jpowsour.2005.11.081.; Cruz-Díaz M. R., Arauz-Torres Y., Caballero F., Lapidus G. T., González I. Recovery of MnO 2 from a spent alkaline battery leach solution via ozone treatment. J. Power Sources. 2015. Vol. 274. P. 839—845. DOI:10.1016/j.jpowsour.2014.10.121.; Petranikova M., Ebin B., Mikhailova S., Steenari B.-M., Ekberg C. Investigation of the effects of thermal treatment on the leachability of Zn and Mn from discarded alkaline and Zn—C batteries. J. Cleaner Product. Vol. 170. P. 1195—1205. DOI:10.1016/j.jclepro.2017.09.238.; Andak B., Özduğan E., Türdü S., Bulutcu A. N. Recovery of zinc and manganese from spent zinc-carbon and alkaline battery mixtures via selective leaching and crystallization processes. J. Environ. Chem. Eng. 2019. Vol. 7. No. 5. DOI:10.1016/j.jece.2019.103372.; Demirkıran N., Şenel M. Dissolution kinetics of metallic zinc obtained from spent zinc-carbon batteries in nitric acid solutions. Environ. Prog. Sustain. Energy. 2021. Vol. 40. No. 3. P. 10. DOI:10.1002/ep.13553.; Shin S. M., Senanayake G., Sohn J. S., Kang J. G., Yang D. H., Kim T. H. Separation of zinc from spent zinc-carbon batteries by selective leaching with sodium hydroxide. Hydrometallurgy. Vol. 96. No. 4. P. 349—353. DOI:10.1016/j.hydromet.2008.12.010.; Senanayake G., Shin S.-M., Senaputra A., Winn A., Pugaev D., Avraamides J., Sohn J.-S., Kim D.-J. Comparative leaching of spent zinc-manganese-carbon batteries using sulfur dioxide in ammoniacal and sulfuric acid solutions. Hydrometallurgy. 2010. Vol. 105. No. 1. P. 36—41. DOI:10.1016/j.hydromet.2010.07.004.; Nogueira C. A., Margarido F. Selective process of zinc extraction from spent Zn—MnO 2 batteries by ammonium chloride leaching. Hydrometallurgy. 2015. Vol. 157. P. 13—21. DOI:10.1016/j.hydromet.2015.07.004.; Buzatu T., Popescu G., Birloaga I., Simona S. A. Study concerning the recovery of zinc and manganese from spent batteries by hydrometallurgical processes. Waste Manag. 2013. Vol. 33. No. 3. P. 699—705. DOI:10.1016/j.wasman.2012.10.005.; Baba A. A., Adekola A. F., Bale R. B. Development of a combined pyro- and hydro-metallurgical route to treat spent zinc—carbon batteries. J. Hazard. Mater. 2009. Vol. 171. No. 1. P. 838—844. DOI:10.1016/j.jhazmat.2009.06.068.; Demirkiran N., Ozdemir G. D. T. A kinetic model for dissolution of zinc oxide powder obtained from waste alkaline batteries in sodium hydroxide solutions. Metall. Mater. Trans. B. 2019. Vol. 50. No. 1. P. 491—501. DOI:10.1007/s11663-018-1469-3.; Shin S. M., Kang J. G., Yang D. H., Sohn J. S. Development of metal recovery process from alkaline manganese batteries in sulfuric acid solutions. Mater. Trans. Japan Inst. Met. 2007. Vol. 48. No. 2. P. 244—248. DOI:10.2320/matertrans.48.244.; Gęga J., Walkowiak W. Leaching of zinc and manganese from used up zinc-carbon batteries using aqueous sulfuric acid solutions. Physicochem. Probl. Miner. Process. 2011. Vol. 46. P. 155—162.; Shin S. M., Kang J. G., Yang D. H., Sohn J. S., Kim T. H. Selective leaching of zinc from spent zinc-carbon battery with ammoniacal ammonium carbonate. Mater. Trans. Jap. Inst. Met. 2008. Vol. 49. No. 9. P. 2124—2128. DOI:10.2320/matertrans.MRA2008164.; Shalchian H., Rafsanjani-Abbasi A., Vahdati-Khaki J., Babakhani A. Selective acidic leaching of spent zinc-carbon batteries followed by zinc electrowinning. Metall. Mater. Trans. B. 2015. Vol. 46. No. 1. P. 38—47. DOI:10.1007/s11663-014-0216-7.; Chen A., Xu D., Chen X., Zhang W., Liu X. Measurements of zinc oxide solubility in sodium hydroxide solution from 25 to 100 °C. Trans. Nonferr. Met. Soc. China. 2012. Vol. 22. No. 6. P. 1513—1516. DOI:10.1016/S1003-6326(11)61349-6.; Gallaway J. W., Menard M., Hertzberg B., Zhong Z., Croft M., Sviridov L. A., Turney D. E., Banerjee S., Steingart D. A., Erdonmez C. K. Hetaerolite profiles in alkaline batteries measured by high energy EDXRD. J. Electrochem. Soc. Vol. 162. No. 1. P. 162—168. DOI:10.1149/2.0811501JES.; Farzana R., Rajarao R., Hassan K., Behera P. R., Sahajwalla V. Thermal nanosizing: Novel route to synthesize manganese oxide and zinc oxide nanoparticles simultaneously from spent Zn—C battery. J. Cleaner Product. 2018. Vol. 196. P. 478—488. DOI:10.1016/j.jclepro.2018.06.055.; Мамяченков С. В. Исследование влияния технологических параметров на эффективность электролиза цинка из щелочных растворов / С. В. Мамяченков // Известия вузов. Цветная металлургия. – 2018. – No 6. – C. 12—19. DOI:10.17073/0021-3438-2018-6-12-19. / Mamyachenkov S. V., Yakornov S. A., Anisimova O. S., Kozlov P. A., Ivakin D. A. Research into the influence of process parameters on the efficiency of zinc electrolysis from alkaline solutions. Russ. J. Non-Ferr. Met. 2019. Vol. 60. No. 1. P. 1—7. DOI:10.3103/S1067821219010097.; Youcai Z., Chenglong Z. Electrowinning of zinc and lead from alkaline solutions. In: Pollution control and resource reuse for alkaline hydrometallurgy of amphoteric metal hazardous wastes: Handbook of environmental engineering. Cham: Springer, 2017. P. 171—262.; https://cvmet.misis.ru/jour/article/view/1372

  2. 2
    Academic Journal

    المساهمون: The research was conducted as part of Research and Educational Center «Advanced Production Technologies and Materials» Project № 075-03-2021-051/5., Исследование выполнено в рамках реализации проекта НОЦ «Передовые производственные технологии и материалы», номер проекта 075-03-2021-051/5

    المصدر: Izvestiya Vuzov. Tsvetnaya Metallurgiya (Izvestiya. Non-Ferrous Metallurgy); № 5 (2021); 13-24 ; Известия вузов. Цветная металлургия; № 5 (2021); 13-24 ; 2412-8783 ; 0021-3438

    وصف الملف: application/pdf

    Relation: https://cvmet.misis.ru/jour/article/view/1284/555; Wood J., Wilson D., Hughes S. A new era in smelting sustainability — intensification of the Outotec® Ausmelt top submerged lance (TSL) process for zinc production. Miner., Met., Mater. Ser. 2020. P. 63—73. DOI:10.1007/978-3-030-37070-1_6.; Садыков С.Б. Автоклавная переработка низкосортных цинковых концентратов. Екатеринбург: УрО РАН, 2006.; Набойченко С.С., Болатбаев К.Н. Закономерности гидрохимического окисления сульфидных минералов в сернокислых средах (> 380 К). Комплекс. использ. минер. сырья. 2005. No. 1. С. 46—52.; Jan R.J., Hepworth M.T., Fox V.G. A kinetic study on the pressure leaching of sphalerite. Metall. Trans. B. 1976. No. 7. P. 353—361. DOI:10.1007/BF02652705.; Halfyard J.E., Hawboldt K. Separation of elemental sulfur from hydrometallurgical residue: A review. Hydrometallurgy. 2011. Vol. 109. No. 1—2. P. 80—89. DOI:10.1016/j.hydromet.2011.05.012.; Owusu G., Peters E., Dreisinger D.B. Surface tensions and contact angles due to lignin sulphonates in the system: Liquid sulphur, aqueous zinc sulphate and zinc sulphide. Canad. J. Chem. Eng. 1992. Vol. 70. No. 1. P. 173—180. DOI:10.1002/cjce.5450700125.; Owusu G., Dreisinger D. B., Peters E. Effect of surfactants on zinc and iron dissolution rates during oxidative leaching of sphalerite. Hydrometallurgy. 1995. Vol. 38. No. 3. P. 315—324. DOI:10.1016/0304-386X(94)00061-7.; Suárez-Gómez S.L., Sánchez M.L., Blanco F., Ayala J., de Cos Juez F.J. Successful sulfur recovery in low sulfurate compounds obtained fromthe zinc industry: Evaporation-condensation method. J. Hazard. Mater. 2017. Vol. 336. P. 168—173. DOI:10.1016/j.jhazmat.2017.04.051.; Jorjani E., Ghahreman A. Challenges with elemental sulfur removal during the leaching of copper and zinc sulfides, and from the residues: A review. Hydrometallurgy. 2017. Vol. 171. P. 333—343. DOI:10.1016/j.hydromet.2017.06.011.; Rutledge J., Anderson C.G. Tannins in mineral processing and extractive metallurgy. Metals. 2015. No. 5. P. 1520— 1542. DOI:10.3390/met5031520.; Dreisinger D., Zheng Z., Hannigan N.J. The use of OrthoPhenylene-Diamine (OPD) as a surfactant in the pressure oxidation of pyritic gold ores and concentrates. Proc. TMS Fall Extract. Process. Conf. 2003. Vol. 1. P. 603—615.; Шнеерсон Я.М., Онацкая А.А., Краснов А.Л. Применение поверхностно-активных веществ при автоклавном выщелачивании пирротиновых концентратов. Цветные металлы. 1982. No. 9. С. 26—30.; Tong L., Dreisinger D. The adsorption of sulfur dispersing agents on sulfur and nickel sulfide concentrate surfaces. Miner. Eng. 2009. Vol. 22. No. 5. P. 445—450.; Owusu G., Dreisinger D.B., Peters E. Interfacial effects of surface-active agents under zinc pressure leach conditions. Metall. Mater. Trans. B. 1995. Vol. 26. P. 5—12. DOI:10.1007/BF02648972.; Набойченко С.С., Ни Л.П., Шнеерсон Я.М., Чугаев Л.В. Автоклавная гидрометаллургия цветных металлов. Екатеринбург: УГТУ—УПИ, 2002.; Шпаер В.М., Калашникова М.И. Влияние серной кислоты на автоклавное выщелачивание низкосортных цинковых концентратов. Цветные металлы. 2010. No. 8. С. 23—27.; Sofekun G.O., Evoy E., Lesage K.L., Chou N., Marriott R.A. The rheology of liquid elemental sulfur across the λ-transition. J. Rheol. 2018. No. 62. P. 469—476. DOI:10.1122/1.5001523.; Steudel R. Liquid sulfur. In: Elemental sulfur and sulfur-rich compounds I (Top. Current Chem. Vol. 230). Chapter 2. Berlin: Springer, 2003. P. 81—116. DOI:10.1007/b12111.; Тимрот Д.Л., Трактуева С.А., Алексеев Б.А. Поверхностное натяжение жидкой серы. Теплофизика высоких температур. 1983. Т. 21. No. 5. С. 884—889.; Crundwell F.K. Analysis of the activation energy of dissolution of the iron-containing zinc sulfide (sphalerite). J. Phys. Chem. C. 2020. No. 124. P. 15347—15354. DOI:10.1016/j.mineng.2020.106702.; Zhukov V.V., Laari A., Lampinen M., Koiranen T. A mechanistic kinetic model for direct pressure leaching of iron containing sphalerite concentrate. Chem. Eng. Res. Design. 2017. Vol. 118. P. 131—141. DOI:10.1016/j.cherd.2016.12.004.; Xie K., Yang X., Wang J., Yan J., Shen Q. Kinetic study on pressure leaching of high iron sphalerite concentrate. Trans. Nonferr. Met. Soc. China. 2007. Vol. 17. No. 1. P. 187—194. DOI:10.1016/S1003-6326(07)60070-3.; Bailey L.K., Peters E. Decomposition of pyrite in acids by pressure leaching and anodization: the case for an electrochemical mechanism. Canad. Metall. Quart. 1976. Vol. 15. No. 4. P. 333—344. DOI:10.1179/000844376795050462.; Long H., Dixon D.G. Pressure oxidation of pyrite in sulfuric acid media: A kinetic study. Hydrometallurgy. 2004. Vol. 73. No. 3—4. P. 335—349. DOI:10.1016/j.hydromet.2003.07.010.; Lowson R.T. Aqueous oxidation of pyrite by molecular oxygen. Chem. Rev. 1982. Vol. 82. No. 5. P. 461—497. DOI:10.1021/cr00051a001.; https://cvmet.misis.ru/jour/article/view/1284

  3. 3
    Academic Journal

    المصدر: Izvestiya Vuzov. Tsvetnaya Metallurgiya (Izvestiya. Non-Ferrous Metallurgy); № 4 (2020); 36-43 ; Известия вузов. Цветная металлургия; № 4 (2020); 36-43 ; 2412-8783 ; 0021-3438

    وصف الملف: application/pdf

    Relation: https://cvmet.misis.ru/jour/article/view/1152/500; Jiachao J., Jianli M., Xiaofu S.,Yuan T., Ping1 L., Youcai Z. Particle size refinement of Zn Electrodeposits in alkaline zincate solutions with polyethylene glycol and Tween 80. Int. J. Electrochem. Sci. 2017. Vol. 12. P. 917—927.; Abbar A.H., Rushdi S.A., Al-Tameemi H.M. Electrochemical preparation of ultrafine zinc powder. Int. J. Electrochem. Sci. 2017. Vol. 12. No. 8. P. 7075—7088.; Kim H.I., Shin H.C. SnO additive for dendritic growth suppression of electrolytic zinc. J. Alloys Compd. 2015. Vol. 645. P. 7—10.; St-Pierre J. Piron D.L. Electrowinning of zinc from alkaline solutions at high current densities. J. Appl. Electrochem. 1990. Vol. 20. No. 1. P. 163—165.; Gürmen S., Emre M. A laboratory-scale investigation of alkaline zinc electrowinning. Miner. Eng. 2003. Vol. 16. No. 6. P. 559—562.; Palimakaa P., Pietrzyk S., Stępień M., Ciećko K., Nejman I. Zinc recovery from steelmaking dust by hydrometallurgical methods. Metals. 2018. Vol. 8. No. 7. P. 547.; Kamran Haghighi H., Moradkhani D., Sardari M.H., Sedaghat B. Production of zinc powder from Co—Zn plant residue using selective alkaline leaching followed by electrowinning. Physicochem. Probl. Miner. Proces. 2015. Vol. 51. No. 2. P. 411—425.; Алкацев М.И. Процессы цементации в цветной металлургии. Москва: Металлургия, 1981.; Yap C.Y., Mohamed N. An electrogenerative process for the recovery of gold from cyanide solutions. Chemosphere. 2007. Vol. 67. No. 8. P. 1502—1510.; Fabian M., Balaz P., Briancin J. Study of the silver ions cementation after mechanical activation of cementator. Hydrometallurgy. 2009. Vol. 97. P. 15—20.; Наумов К.Д., Лобанов В.Г. Особенности цементации золота электролизными цинковыми порошками в режиме перколяции. Известия вузов. Цветная металлургия. 2020. No. 1. С. 19—26.; Буйновский А.С. Концентрирование золота и металлов платиновой группы на углеродных сорбентах. Северск: СГТИ, 2005.; Оо М.Т., Tran T. The effect of lead on the cementation of gold by zinc. Hydrometallurgy. 1991. Vol. 26. P. 61—74.; Nguyen H.H., Tran T., Wong P.L.M. A kinetic study of the cementation of gold from cyanide solutions onto copper. Hydrometallurgy. 1997. Vol. 46. P. 55—69.; Lee H.Y., Kim S.G., Oh J.K. Cementation behavior of gold and silver onto Zn, Al and Fe powders from acid thiourea solutions. Canadian Metallurgical Quarterly. 1997. Vol. 36. P. 149—155.; Mpinga C.N. Evaluation of the Merrill—Crowe process for the simultaneous removal of platinum, palladium and gold from cyanide leach solutions. Hydrometallurgy. 2014. Vol. 142. P. 36—46.; Gal-Or L., Calmanovici B. Gold recovery from cyanide solutions. Part I. Electrochemical deposition. Metal Finishing. 1983. Vol. 15. P. 15—21.; Martinez G.V.F., Torres J.R.P., García J.L.V., Munive G.C.T., Zamarripa G.G. Kinetic aspects of gold and silver recovery in cementation with zinc power and electrocoagulation iron process. Adv. Chem. Eng. Sci. 2012. Vol. 2. P. 342—349.; Karavasteva M. Kinetics and deposit morphology of gold cemented on magnesium, aluminum, zinc, iron and copper from ammonium thiosulfate—ammonia solutions. Hydrometallurgy. 2010. Vol. 104. P. 119—122.; Gamboa G.V., Noyola M.M., Valdivieso A.L. The effect of cyanide and lead ions on the cementation rate, stoichiometry and morphology of silver in cementation from cyanide solutions with zinc powder. Hydrometallurgy. 2005. Vol. 76. P. 193—205.; Hsu Y.J., Tran T. Selective removal of gold from coppergold cyanide liquors by cementation using zinc. Miner. Eng. 1996. Vol. 9. P. 1—13.; https://cvmet.misis.ru/jour/article/view/1152

  4. 4
    Academic Journal

    المصدر: Izvestiya Vuzov. Tsvetnaya Metallurgiya (Izvestiya. Non-Ferrous Metallurgy); № 1 (2020); 19-26 ; Известия вузов. Цветная металлургия; № 1 (2020); 19-26 ; 2412-8783 ; 0021-3438

    وصف الملف: application/pdf

    Relation: https://cvmet.misis.ru/jour/article/view/1064/467; Marsden J.O., House C.I. The chemistry of gold extraction. 2-nd ed. Colrado: Society for mining, metallurgy, and exploration, 2006.; Adams M.D. Developments in mineral processing. Vol. 15 (Advances in gold ore processing). Boston: Elsevier, 2005.; Мамяченков С.В., Якорнов С.А, Анисимова О.С., Козлов П.А., Ивакин Д.А. Исследование влияния технологических параметров на эффективность электролиза цинка из щелочных растворов. Известия вузов. Цветная металлургия. 2018. No. 6. С. 12—19.; Jiang J., Yang X., Zhao Y.Y. Recovery of zinc from EAF dust by alkaline extraction. Adv. Mater. Res. 2010. Vol. 113—116. P. 2299—2304.; Youcai Z., Stanford R. Integrated hydrometallurgical process for production of zinc from electric arc furnace dust in alkaline medium. J. Hazard. Mater. 2000. Vol. 80. P. 223—240.; Chairaksa-Fujimoto R., Maruyama K., Mikia T., Nagasaka T. The selective alkaline leaching of zinc oxide from Electric Arc Furnace dust pre-treated with calcium oxide. Hydrometallurgy. 2016. Vol. 159. P. 120—125.; Dutra A.J.B., Paiva P.R.P., Tavares L.M. Alkaline leaching of zinc from electric arc furnance steel dust. Miner. Eng. 2006. Vol. 19. P. 478—485.; Якорнов С.А., Наумов К.Д., Лобанов В.Г., Козлов П.А., Зелях Я.Д., Крутиков И.М., Скопин Д.Ю., Ивакин Д.А. Применение электролитических цинковых порошков для цементации золота из цианистых растворов. Металлург. 2018. No. 5. С. 50—55.; Naumov K.D., Lobanov V.G., Zelyah Y.D, Yakornov S.A., Skopin D.Y. Technogenic zinc usage possibilities investigation for gold cementation. In: Materials science (Technogen-2017). Ekaterinburg: Knowledgee, 2017. P. 28—33.; Youcai Z., Qiang L., Chenglong Z., Jiachao J. Production of ultrafine zinc powder from wastes containing zinc by electrowinning in alkaline solution. Brazil. J. Chem. Eng. 2013. Vol. 30. Iss. 4. P. 857—864.; Jiang J.C., Zhang C.L., Zhao Y.C. An experimental investigation of alkaline zinc electrowinning using magnesium alloy as cathode. Adv. Mater. Res. 2010. Vol. 113—116. P. 2208—2211.; Chandrasekar M.S., Srinivasan S., Pushpavanam M. Structural and textural study of electrodeposited zinc from alkaline non-cyanide electrolyte. J. Mater. Sci. 2009. Vol. 45. Iss. 5. P. 1160—1169.; Abbar A.H., Rushdi S.A., Al-Tameemi H.M. Electrochemical preparation of ultrafine zinc powder. Int. J. Electrochem. Sci. 2017. Vol. 12. Iss. 8. P. 7075—7088.; Pereira M.S., Barbosa L.L., Souza C.A.C., Moraes A.C.M., Carlos I.A. The influence of sorbitol on zinc film deposition, zinc dissolution process and morphology of deposits obtained from alkaline bath. J. Appl. Electrochem. 2006. Vol. 36. Iss. 6. P. 727—732.; Jiachao J., Jianli M., Xiaofu S., Yuan T., Ping1 L., Youcai Z. Particle size refinement of Zn electrodeposits in alkaline zincate solutions with polyethylene glycol and tween 80. Int. J. Electrochem. Sci. 2017. Vol. 12. P. 917—927.; Carvalho M.F., Barbano E.P., Carlos I.A. Influence of disodium ethylenediaminetetraacetate on zinc electrode-position process and on the morphology, chemical composition and structure of the electrodeposits. Electrochim. Acta. 2013. Vol. 109. Iss. 30. P. 798—808.; Li Q., Zhao Y., Zhang C. Influence of cetyltrimethylammonium bromide and sodium lauryl sulfate on production of zinc powders by alkaline electrowinning. Russ. J. Non-Ferr. Met. 2014. Vol. 55. Iss. 1. P. 65—72.; Ortiz-Aparicio J. L., Meas Y., Ortega G.T., Chapman T.W., Chainet E. Effects of organic additives on zinc electrodeposition from alkaline electrolytes. J. Appl. Electrochem. 2013. Vol. 43. Iss. 3. P. 289—300.; Qiang Li., Zhao Y., Jiang J., Zhang C. Optimized hydrometallurgical route to produce ultrafine zinc powder from industrial wastes in alkaline medium. Procedia Environ. Sci. 2012. Vol. 16. P. 674—682.; Gurmen S., Emre M. A laboratory-scale investigation of alkaline zinc electrowinning. Miner. Eng. 2003. Vol. 16. Iss. 6. P. 559—562.; Jiang J., Guo C., Zhao Y. Production of zinc powder by alkaline hydrometallurgy. Appl. Mech. Mater. 2010. Vol. 20— 28. P. 1142—1146.; St-Pierre J., Piron D.L. Electrowinning of zinc from alkaline solutions. J. Appl. Electrochem. 1986. Vol. 16. P. 447—456.; https://cvmet.misis.ru/jour/article/view/1064

  5. 5
    Academic Journal

    المساهمون: The reported study was funded by RFBR, project number 18-38-00388, Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 18-38-00388

    المصدر: Izvestiya. Non-Ferrous Metallurgy; № 4 (2020); 29-35 ; Izvestiya Vuzov. Tsvetnaya Metallurgiya; № 4 (2020); 29-35 ; 2412-8783 ; 0021-3438

    وصف الملف: application/pdf

    Relation: https://cvmet.misis.ru/jour/article/view/1151/499; Alfantazi A.M., Dreisinger D.B. Foaming behavior of surfactants for acid mist control in zinc electrolysis processes. Hydrometallurgy. 2003. Vol. 69. No. 1-3. P. 57—72. DOI:10.1016/S0304-386X(03)00002-1.; Freire N.H.J., Majuste D., Angora, M.A., Ciminelli V.S.T. The effect of organic impurities and additive on nickel electrowinning and product quality. Hydrometallurgy. 2017. Vol. 169. P. 112—123. DOI:10.1016/j.hydromet.2016.12.009.; Dang D.M.T., Dang C.M., Fribourg-Blanc E. Investigation of the influence of different surfactants on controlling the size of silver nanoparticles. Int. J. Nanotechnol. 2015. Vol. 12. No. 5-7. P. 505—514. DOI:10.1504/IJNT.2015.067908.; Yue S.X., Su Y.C., Luo Z.B., Yu Q.S., Tursun R., Zhang J. Influence of surfactant interaction on ultrafine copper powder electrodeposition. Materialwissenschaft und Werkstofftechnik. 2019. Vol. 50. No. 7. P. 856—863. DOI:10.1002/mawe.201800103.; Demeev B.B., Dauletbay A., Nauryzbaiev M.K. The effect of organic surface-active additives upon the kinetics of electrodeposition of ultrafine copper powder. Chem. Eng. Trans. 2016. Vol. 47. P. 211—216. DOI:10.3303/CET1647036.; Li Q., Zhao Y., Zhang C. Influence of cetyltrimethylammonium bromide and sodium lauryl sulfate on production of zinc powders by alkaline electrowinning. Russ. J. Non-Ferr. Met. 2014. Vol. 55. No. 1. P. 65—72. DOI:10.3103/S1067821214010131.; Salem J.K., Hammad T.M., Almoqayyed S., Hejazy N.K. Influence of cationic surfactant and temperature on the growth of ZnO nanoparticles. Tenside, Surfactants, Detergents. 2018. Vol. 55. No. 3. P. 188—195. DOI:10.3139/113.110563.; Owusu G., Dreisinger D.B., Peters E. Interfacial effects of surface-active agents under zinc pressure leach conditions. Metal. Mater. Trans. B. 1995. Vol. 26. No. 1. P. 5—12. DOI:10.1007/BF02648972.; Owusu G., Dreisinger D.B. Interfacial properties determinations in liquid sulfur, aqueous zinc sulfate and zinc sulfide systems. Hydrometallurgy. 1996. Vol. 43. No. 1-3. P. 207—218.; Owusu G., Peters E., Dreisinger D.B. Surface tensions and contact angles due to lignin sulphonates in the system: Liquid sulphur, aqueous zinc sulphate and zinc sulphide. Canad. J. Chem. Eng. 1992. Vol. 70. No. 1. P. 173—180. DOI:10.1002/cjce.5450700125.; Karavasteva M. The effect of certain surfactants on the cementation of copper by suspended zinc particles. Hydrometallurgy. 1996. Vol. 43. No. 1—3. P. 379—385.; Karavasteva M. The influence of copper on the effect of certain surfactants during the cementation of cadmium by suspended zinc particles. Hydrometallurgy. 1998. Vol. 48. No. 3. P. 361—366.; Karavasteva M. The effect of certain surfactants on the cementation of nickel from zinc sulphate solutions by suspended zinc particles in the presence of copper. Canadian Metallurgical Quarterly. 1999. Vol. 38. No. 3. P. 207—210. DOI:10.1016/S0008-4433(99)00008-7.; Karavasteva M. The effect of certain surfactants on the cementation of cobalt from zinc sulphate solutions by suspended zinc particles in the presence of copper or antimony. Canadian Metallurgical Quarterly. 2001. Vol. 40. No. 2. P. 179—184. DOI:10.1179/000844301794388416.; Granata G., Tsendorj U., Liu W., Tokoro C. Direct recovery of copper nanoparticles from leach pad drainage by surfactant-assisted cementation with iron powder. Colloids and Surface. A. 2019. Vol. 580. 123719. DOI:10.1016/j.colsurfa.2019.123719.; Begletsova N., Selifonova E., Chumakov A., Al-Alwani A., Zakharevich A., Chernova R., Glukhovskoy E. Chemical synthesis of copper nanoparticles in aqueous solutions in the presence of anionic surfactant sodium dodecyl sulfate. Colloids and Surface. A. 2018. Vol. 552. P. 75—80. DOI:10.1016/j.colsurfa.2018.05.023.; Cheng X., Zhang X., Yin H., Wang A., Xu Y. Modifier effects on chemical reduction synthesis of nanostructured copper. Applied Surface Science. 2006. Vol. 253. P. 2727— 2732. DOI:10.1016/j.apsusc.2006.05.125.; Zaabar A., Aitout R., Amoura D., Maizia R., Makhloufi L., Saidani B. Effect of nettle plant extract on the overconsumption diminution of zinc as sacrificial metal during cementation of copper. Miner. Eng. 2019. Vol. 142. No. 105933. DOI:10.1016/j.mineng.2019.105933.; Zaabar A., Aitout R., Makhloufi L., Alilat K., Maziz S., Saidani B. Effect of nettle plant extract on the cementation of copper onto zinc in acidic sulfate solutions. Hydrometallurgy. 2013. Vol. 136. P. 58—64. DOI:10.1016/j.hydromet.2013.03.004.; El-Saharty A.A., El-Nammamy N.H., El-Araby H.A. Sodium diethyldithiocarbamate as accelerator of the rate of copper cementation. Egypt. J. Aquatic Res. 2015. Vol. 41. P. 289—293. DOI:10.1016/j.ejar.2015.08.002.; Kolmachikhina E.B., Ryzhkova E.A., Dmitrieva D.V., Sviridov V.V., Naboichenko S.S. Lignosulfonate, anionic surfactants and their mixtures influence on water solutions surface tension and zinc concentrate pressure leaching. IOP Conf. Ser.: Mater. Sci. Eng. 2019. Vol. 525. No. 1. 012023. DOI:10.1088/1757-899X/525/1/012023.; Хазиева Э.Б., Свиридов В.В., Меньщиков В.А., Набойченко С.С. Влияние поверхностно-активных веществ на состояние серы при автоклавном выщелачивании цинковых концентратов. Цвет. металлы. 2017. No. 2. С. 46—50. DOI:10.17580/tsm.2017.02.07.; Ординарцев Д.П., Свиридов А.В., Свиридов В.В. Адсорбционное извлечение ванадия, молибдена и вольфрама из кислых растворов на модифицированном монтмориллоните. Журн. физ. химии. 2018. Т. 92. No. 10. С. 1648—1652. DOI:10.1134/S0036024418100229.; https://cvmet.misis.ru/jour/article/view/1151