-
1Academic Journal
المؤلفون: E. V. Verbitskaya, D. Yu. Belousov, A. S. Kolbin
المصدر: Качественная клиническая практика, Vol 0, Iss 3, Pp 15-28 (2023)
مصطلحات موضوعية: доказательная медицина, адаптивные клинические испытания, мастер протоколы, зонтичное исследование, корзинное исследование, исследования платформы, мастер-обсервационное испытание, цифровые конечные точки, виртуальные клинические испытания, Medical technology, R855-855.5, Pharmacy and materia medica, RS1-441
وصف الملف: electronic resource
-
2Academic Journal
المؤلفون: V. P. Maksimova, J. V. Makus, V. G. Popova, O. G. Usalka, G. A. Belitsky, M. G. Yakubovskaya, K. I. Kirsanov, В. П. Максимова, Ю. В. Макусь, В. Г. Попова, О. Г. Усалка, Г. А. Белицкий, М. Г. Якубовская, К. И. Кирсанов
المساهمون: This work was financially supported by the Russian Science Foundation (project No. 21-75-10163)., Финансирование Работа выполнена при финансовой поддержке Российского научного фонда (проект № 21-75- 10163).
المصدر: Siberian journal of oncology; Том 23, № 4 (2024); 125-140 ; Сибирский онкологический журнал; Том 23, № 4 (2024); 125-140 ; 2312-3168 ; 1814-4861
مصطلحات موضوعية: клинические испытания, DNA methylation, DNMTs inhibitors, TETs inhibitors, clinical trials, метилирование ДНК, ингибиторы DNMTs, ингибиторы TETs
وصف الملف: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/3199/1258; Hanahan D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022; 12(1): 31–46. doi:10.1158/2159-8290.CD-21-1059.; Cheng Y., He C., Wang M., Ma X., Mo F., Yang S., Han J., Wei X. Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduct Target Ther. 2019; 4: 62. doi:10.1038/s41392-019-0095-0.; Максимова В.П., Усалка О.Г., Макусь Ю.В., Попова В.Г., Трапезникова Е.С., Хайриева Г.И., Сагитова Г.Р., Жидкова Е.М., Прус А.Ю., Якубовская М.Г., Кирсанов К.И. Нарушение метилирования ДНК при злокачественных новообразованиях. Успехи молекулярной онкологии. 2022; 9(4): 24–40. doi:10.17650/2313-805X-2022-9-4-24-40.; Kohli R.M., Zhang Y. TET enzymes, TDG and the dynamics of DNA demethylation. Nature. 2013; 502(7472): 472–9. doi:10.1038/nature12750.; Takeshima H., Niwa T., Yamashita S., Takamura-Enya T., Iida N., Wakabayashi M., Nanjo S., Abe M., Sugiyama T., Kim Y.J., Ushijima T. TET repression and increased DNMT activity synergistically induce aberrant DNA methylation. J Clin Invest. 2020; 130(10): 5370–9. doi:10.1172/JCI124070.; Liu X.L., Liu H.Q., Li J., Mao C.Y., He J.T., Zhao X. Role of epigenetic in leukemia: From mechanism to therapy. Chem Biol Interact. 2020; 317. doi:10.1016/j.cbi.2020.108963.; Stresemann C., Lyko F. Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine. Int J Cancer. 2008; 123(1): 8–13. doi:10.1002/ijc.23607.; Yang X., Lay F., Han H., Jones P.A. Targeting DNA methylation for epigenetic therapy. Trends Pharmacol Sci. 2010; 31(11): 536–46. doi:10.1016/j.tips.2010.08.001.; Gu X., Tohme R., Tomlinson B., Sakre N., Hasipek M., Durkin L., Schuerger C., Grabowski D., Zidan A.M., Radivoyevitch T., Hong C., Carraway H., Hamilton B., Sobecks R., Patel B., Jha B.K., Hsi E.D., Maciejewski J., Saunthararajah Y. Decitabine- and 5-azacytidine resistance emerges from adaptive responses of the pyrimidine metabolism network. Leukemia. 2021; 35(4): 1023–36. doi:10.1038/s41375-020-1003-x.; Malik P., Cashen A.F. Decitabine in the treatment of acute myeloid leukemia in elderly patients. Cancer Manag Res. 2014; 6: 53–61. doi:10.2147/CMAR.S40600.; Kaminskas E., Farrell A.T., Wang Y.C., Sridhara R., Pazdur R. FDA drug approval summary: azacitidine (5-azacytidine, Vidaza) for injectable suspension. Oncologist. 2005; 10(3): 176–82. doi:10.1634/theoncologist.10-3-176.; Tallman M.S., Wang E.S., Altman J.K., Appelbaum F.R., Bhatt V.R., Bixby D., Coutre S.E., De Lima M., Fathi A.T., Fiorella M., Foran J.M., Hall A.C., Jacoby M., Lancet J., LeBlanc T.W., Mannis G., Marcucci G., Martin M.G., Mims A., O'Donnell M.R., Olin R., Peker D., Perl A., Pollyea D.A., Pratz K., Prebet T., Ravandi F., Shami P.J., Stone R.M., Strickland S.A., Wieduwilt M., Gregory K.M.; OCN; Hammond L., Ogba N. Acute Myeloid Leukemia, Version 3.2019, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2019; 17(6): 721–49. doi:10.6004/jnccn.2019.0028.; Савченко В.Г., Паровичникова Е.Н., Афанасьев Б.В., Грицаев С.В., Семочкин С.В., Бондаренко С.Н., Троицкая В.В., Соколов А.Н., Кузьмина Л.А., Клясова Г.А., Гапонова Т.В., Баранова О.Ю., Лапин В.А., Константинова Т.С., Самойлова О.С., Капорская Т.С., Шатохин С.A. Клинические рекомендации по диагностике и лечению острых лимфобластных лейкозов взрослых. Национальное гематологическое общество. 2014. 65 с.; Wei A.H., Döhner H., Pocock C., Montesinos P., Afanasyev B., Dombret H., Ravandi F., Sayar H., Jang J.H., Porkka K., Selleslag D., Sandhu I., Turgut M., Giai V., Ofran Y., Kizil Çakar M., Botelho de Sousa A., Rybka J., Frairia C., Borin L., Beltrami G., Čermák J., Ossenkoppele G.J., La Torre I., Skikne B., Kumar K., Dong Q., Beach C.L., Roboz G.J., for the QUAZAR AML-001 Trial Investigators†. Oral Azacitidine Maintenance Therapy for Acute Myeloid Leukemia in First Remission. N Engl J Med. 2020; 383(26): 2526–37. doi:10.1056/NEJMoa2004444.; Montesinos P., Recher C., Vives S., Zarzycka E., Wang J., Bertani G., Heuser M., Calado R.T., Schuh A.C., Yeh S.P., Daigle S.R., Hui J., Pandya S.S., Gianolio D.A., de Botton S., Döhner H. Ivosidenib and Azacitidine in IDH1-Mutated Acute Myeloid Leukemia. N Engl J Med. 2022; 386(16): 1519–31. doi:10.1056/NEJMoa2117344.; Niemeyer C.M., Flotho C., Lipka D.B., Starý J., Rössig C., Baruchel A., Klingebiel T., Micalizzi C., Michel G., Nysom K., Rives S., Schmugge Liner M., Zecca M., Schönung M., Baumann I., Nöllke P., Benettaib B., Biserna N., Poon J., Simcock M., Patturajan M., Menezes D., Gaudy A., van den Heuvel-Eibrink M.M., Locatelli F. Response to upfront azacitidine in juvenile myelomonocytic leukemia in the AZA-JMML001 trial. Blood Adv. 2021; 5(14): 2901–8. doi:10.1182/bloodadvances.2020004144.; Jabbour E., Issa J.P., Garcia-Manero G., Kantarjian H. Evolution of decitabine development: accomplishments, ongoing investigations, and future strategies. Cancer. 2008; 112(11): 2341–51. doi:10.1002/cncr.23463.; Briski R., Garcia-Manero G., Kantarjian H., Ravandi F. The history of oral decitabine/cedazuridine and its potential role in acute myeloid leukemia. Ther Adv Hematol. 2023; 14. doi:10.1177/20406207231205429.; Pollyea D.A., Winters A., McMahon C., Schwartz M., Jordan C.T., Rabinovitch R., Abbott D., Smith C.A., Gutman J.A. Venetoclax and azacitidine followed by allogeneic transplant results in excellent outcomes and may improve outcomes versus maintenance therapy among newly diagnosed AML patients older than 60. Bone Marrow Transplant. 2022; 57(2): 160–6. doi:10.1038/s41409-021-01476-7.; Sekeres M.A., Watts J., Radinoff A., Sangerman M.A., Cerrano M., Lopez P.F., Zeidner J.F., Campelo M.D., Graux C., Liesveld J., Selleslag D., Tzvetkov N., Fram R.J., Zhao D., Bell J., Friedlander S., Faller D.V., Adès L. Randomized phase 2 trial of pevonedistat plus azacitidine versus azacitidine for higher-risk MDS/CMML or low-blast AML. Leukemia. 2021; 35(7): 2119–24. doi:10.1038/s41375-021-01125-4. Erratum in: Leukemia. 2021; 35(12): 3637. doi:10.1038/s41375-021-01473-1.; DiNardo C.D., Schuh A.C., Stein E.M., Montesinos P., Wei A.H., de Botton S., Zeidan A.M., Fathi A.T., Kantarjian H.M., Bennett J.M., Frattini M.G., Martin-Regueira P., Lersch F., Gong J., Hasan M., Vyas P., Döhner H. Enasidenib plus azacitidine versus azacitidine alone in patients with newly diagnosed, mutant-IDH2 acute myeloid leukaemia (AG221- AML-005): a single-arm, phase 1b and randomised, phase 2 trial. Lancet Oncol. 2021; 22(11): 1597–608. doi:10.1016/S1470-2045(21)00494-0.; Ohanian M., Garcia-Manero G., Levis M., Jabbour E., Daver N., Borthakur G., Kadia T., Pierce S., Burger J., Richie M.A., Patel K., Andreeff M., Estrov Z., Cortes J., Kantarjian H., Ravandi F. Sorafenib Combined with 5-azacytidine in Older Patients with Untreated FLT3-ITD Mutated Acute Myeloid Leukemia. Am J Hematol. 2018; 93(9): 1136–41. doi:10.1002/ajh.25198.; Hu J., Wang X., Chen F., Ding M., Dong M., Yang W., Yin M., Wu J., Zhang L., Fu X., Sun Z., Li L., Wang X., Li X., Guo S., Zhang D., Lu X., Leng Q., Zhang M., Zhu L., Zhang X., Chen Q. Combination of Decitabine and a Modified Regimen of Cisplatin, Cytarabine and Dexamethasone: A Potential Salvage Regimen for Relapsed or Refractory Diffuse Large B-Cell Lymphoma After Second-Line Treatment Failure. Front Oncol. 2021; 11. doi:10.3389/fonc.2021.687374.; Buocikova V., Tyciakova S., Pilalis E., Mastrokalou C., Urbanova M., Matuskova M., Demkova L., Medova V., Longhin E.M., Rundén-Pran E., Dusinska M., Rios-Mondragon I., Cimpan M.R., Gabelova A., Soltysova A., Smolkova B., Chatziioannou A. Decitabine-induced DNA methylationmediated transcriptomic reprogramming in human breast cancer cell lines; the impact of DCK overexpression. Front Pharmacol. 2022; 13. doi:10.3389/fphar.2022.991751.; Champion C., Guianvarc’h D., Sénamaud-Beaufort C., Jurkowska R.Z., Jeltsch A., Ponger L., Arimondo P.B., Guieysse-Peugeot A.L. Mechanistic insights on the inhibition of c5 DNA methyltransferases by zebularine. PLoS One. 2010; 5(8). doi:10.1371/journal.pone.0012388.; Lu Y., Chan Y.T., Tan H.Y., Li S., Wang N., Feng Y. Epigenetic regulation in human cancer: the potential role of epi-drug in cancer therapy. Mol Cancer. 2020; 19(1): 79. doi:10.1186/s12943-020-01197-3.; Cheng J.C., Yoo C.B., Weisenberger D.J., Chuang J., Wozniak C., Liang G., Marquez V.E., Greer S., Orntoft T.F., Thykjaer T., Jones P.A. Preferential response of cancer cells to zebularine. Cancer Cell. 2004; 6(2): 151–8. doi:10.1016/j.ccr.2004.06.023.; Takemura Y., Satoh M., Hatanaka K., Kubota S. Zebularine exerts its antiproliferative activity through S phase delay and cell death in human malignant mesothelioma cells. Biosci Biotechnol Biochem. 2018; 82(7): 1159–64. doi:10.1080/09168451.2018.1459466.; Cheng J.C., Weisenberger D.J., Gonzales F.A., Liang G., Xu G.L., Hu Y.G., Marquez V.E., Jones P.A. Continuous zebularine treatment effectively sustains demethylation in human bladder cancer cells. Mol Cell Biol. 2004; 24(3): 1270–8. doi:10.1128/MCB.24.3.1270-1278.2004.; Lemaire M., Momparler L.F., Raynal N.J., Bernstein M.L., Momparler R.L. Inhibition of cytidine deaminase by zebularine enhances the antineoplastic action of 5-aza-2'-deoxycytidine. Cancer Chemother Pharmacol. 2009; 63(3): 411–6. doi:10.1007/s00280-008-0750-6.; Fulkerson C.M., Dhawan D., Jones D.R., Marquez V.E., Jones P.A., Wang Z., Wu Q., Klaunig J.E., Fourez L.M., Bonney P.L., Knapp D.W. Pharmacokinetics and toxicity of the novel oral demethylating agent zebularine in laboratory and tumor bearing dogs. Vet Comp Oncol. 2017; 15(1): 226–36. doi:10.1111/vco.12159.; Holleran J.L., Eiseman J.L., Parise R.A., Kummar S., Beumer J.H. LC-MS/MS assay for the quantitation of FdCyd and its metabolites FdUrd and FU in human plasma. J Pharm Biomed Anal. 2016; 129: 359–66. doi:10.1016/j.jpba.2016.07.027.; Guo D., Myrdal P.B., Karlage K.L., O’Connell S.P., Wissinger T.J., Tabibi S.E., Yalkowsky S.H. Stability of 5-fluoro-2'-deoxycytidine and tetrahydrouridine in combination. AAPS PharmSciTech. 2010; 11(1): 247–52. doi:10.1208/s12249-010-9383-2.; Holleran J.L., Beumer J.H., McCormick D.L., Johnson W.D., Newman E.M., Doroshow J.H., Kummar S., Covey J.M., Davis M., Eiseman J.L. Oral and intravenous pharmacokinetics of 5-fluoro-2'-deoxycytidine and THU in cynomolgus monkeys and humans. Cancer Chemother Pharmacol. 2015; 76(4): 803–11. doi:10.1007/s00280-015-2857-x.; Coyne G.O.', Wang L., Zlott J., Juwara L., Covey J.M., Beumer J.H., Cristea M.C., Newman E.M., Koehler S., Nieva J.J., Garcia A.A., Gandara D.R.,Miller B., Khin S., Miller S.B., Steinberg S.M., Rubinstein L., Parchment R.E., Kinders R.J., Piekarz R.L., Kummar S., Chen A.P., Doroshow J.H. Intravenous 5-fluoro-2’-deoxycytidine administered with tetrahydrouridine increases the proportion of p16-expressing circulating tumor cells in patients with advanced solid tumors. Cancer Chemother Pharmacol. 2020; 85(5): 979–93. doi:10.1007/s00280-020-04073-5.; Brueckner B., Rius M., Markelova M.R., Fichtner I., Hals P.A., Sandvold M.L., Lyko F. Delivery of 5-azacytidine to human cancer cells by elaidic acid esterification increases therapeutic drug efficacy. Mol Cancer Ther. 2010; 9(5): 1256–64. doi:10.1158/1535-7163.MCT-09-1202.; Rius M., Stresemann C., Keller D., Brom M., Schirrmacher E., Keppler D., Lyko F. Human concentrative nucleoside transporter 1-mediated uptake of 5-azacytidine enhances DNA demethylation. Mol Cancer Ther. 2009; 8(1): 225–31. doi:10.1158/1535-7163.MCT-08-0743.; Byun H.M., Choi S.H., Laird P.W., Trinh B., Siddiqui M.A., Marquez V.E., Yang A.S. 2'-Deoxy-N4-[2-(4-nitrophenyl)ethoxycarbonyl]-5 -azacytidine: a novel inhibitor of DNA methyltransferase that requires activation by human carboxylesterase 1. Cancer Lett. 2008; 266(2): 238–48. doi:10.1016/j.canlet.2008.02.069.; Srivastava P., Paluch B.E., Matsuzaki J., James S.R., CollamatLai G., Karbach J., Nemeth M.J., Taverna P., Karpf A.R., Griffiths E.A. Immunomodulatory action of SGI-110, a hypomethylating agent, in acute myeloid leukemia cells and xenografts. Leuk Res. 2014; 38(11): 1332–41. doi:10.1016/j.leukres.2014.09.001.; Garcia-Manero G., Roboz G., Walsh K., Kantarjian H., Ritchie E., Kropf P., O’Connell C., Tibes R., Lunin S., Rosenblat T., Yee K., Stock W., Griffiths E., Mace J., Podoltsev N., Berdeja J., Jabbour E., Issa J.J., Hao Y., Keer H.N., Azab M., Savona M.R. Guadecitabine (SGI-110) in patients with intermediate or high-risk myelodysplastic syndromes: phase 2 results from a multicentre, open-label, randomised, phase 1/2 trial. Lancet Haematol. 2019; 6(6): 317–27. doi:10.1016/S2352-3026(19)30029-8.; Oza A.M., Matulonis U.A., Secord A.A., Nemunaitis J., Roman L.D., Blagden S.P., Banerjee S., McGuire W.P., Ghamande S., Birrer M.J., Fleming G.F., Markham M.J., Hirte H.W., Provencher D.M., Basu B., Kristeleit R., Armstrong D.K., Schwartz B., Braly P., Hall G.D., Nephew K.P., Jueliger S., Oganesian A., Naim S., Hao Y., Keer H., Azab M., Matei D. A Randomized Phase II Trial of Epigenetic Priming with Guadecitabine and Carboplatin in Platinum-resistant, Recurrent Ovarian Cancer. Clin Cancer Res. 2020; 26(5): 1009–16. doi:10.1158/1078-0432.CCR-19-1638.; Chen S., Xie P., Cowan M., Huang H., Cardenas H., Keathley R., Tanner E.J., Fleming G.F., Moroney J.W., Pant A., Akasha A.M., Davuluri R.V., Kocherginsky M., Zhang B., Matei D. Epigenetic priming enhances antitumor immunity in platinum-resistant ovarian cancer. J Clin Invest. 2022; 132(14). doi:10.1172/JCI158800.; Crabb S.J., Danson S., Catto J.W.F., Hussain S., Chan D., Dunkley D., Downs N., Marwood E., Day L., Saunders G., Light M., Whitehead A., Ellis D., Sarwar N., Enting D., Birtle A., Johnson B., Huddart R., Griffiths G. Phase I Trial of DNA Methyltransferase Inhibitor Guadecitabine Combined with Cisplatin and Gemcitabine for Solid Malignancies Including Urothelial Carcinoma (SPIRE). Clin Cancer Res. 2021; 27(7): 1882–92. doi:10.1158/1078-0432.CCR-20-3946.; Brueckner B., Lyko F. DNA methyltransferase inhibitors: old and new drugs for an epigenetic cancer therapy. Trends Pharmacol Sci. 2004; 25(11): 551–4. doi:10.1016/j.tips.2004.09.004.; Ou Y., Zhang Q., Tang Y., Lu Z., Lu X., Zhou X., Liu C. DNA methylation enzyme inhibitor RG108 suppresses the radioresistance of esophageal cancer. Oncol Rep. 2018; 39(3): 993–1002. doi:10.3892/or.2018.6210.; Yang L., Hou J., Cui X.H., Suo L.N., Lv Y.W. RG108 induces the apoptosis of endometrial cancer Ishikawa cell lines by inhibiting the expression of DNMT3B and demethylation of HMLH1. Eur Rev Med Pharmacol Sci. 2017; 21(22): 5056–64. doi:10.26355/eurrev_201711_13818.; Lee B.H., Yegnasubramanian S., Lin X., Nelson W.G. Procainamide is a specific inhibitor of DNA methyltransferase 1. J Biol Chem. 2005; 280(49): 40749–56. doi:10.1074/jbc.M505593200.; Villar-Garea A., Fraga M.F., Espada J., Esteller M. Procaine is a DNA-demethylating agent with growth-inhibitory effects in human cancer cells. Cancer Res. 2003; 63(16): 4984–9.; Sabit H., Samy M.B., Said O.A., El-Zawahri M.M. Procaine Induces Epigenetic Changes in HCT116 Colon Cancer Cells. Genet Res Int. 2016. doi:10.1155/2016/8348450.; Li Y.C., Wang Y., Li D.D., Zhang Y., Zhao T.C., Li C.F. Procaine is a specific DNA methylation inhibitor with anti-tumor effect for human gastric cancer. J Cell Biochem. 2018; 119(2): 2440–9. doi:10.1002/jcb.26407.; Ma X.W., Li Y., Han X.C., Xin Q.Z. The effect of low dosage of procaine on lung cancer cell proliferation. Eur Rev Med Pharmacol Sci. 2016; 20(22): 4791–5.; Gao Z., Xu Z., Hung M.S., Lin Y.C., Wang T., Gong M., Zhi X., Jablons D.M., You L. Procaine and procainamide inhibit the Wnt canonical pathway by promoter demethylation of WIF-1 in lung cancer cells. Oncol Rep. 2009; 22(6): 1479–84. doi:10.3892/or_00000590.; Uetrecht J.P., Freeman R.W., Woosley R.L. The implications of procainamide metabolism to its induction of lupus. Arthritis Rheum. 1981; 24(8): 994–1003. doi:10.1002/art.1780240803.; Paşa S., Erdogan O., Cevik O. Design, synthesis and investigation of procaine based new Pd complexes as DNA methyltransferase inhibitor on gastric cancer cells. Inorg Chem Comm. 2021; 132. doi:10.1016/j.inoche.2021.108846.; Tanaka H., Marumo H., Nagai T., Okada M., Taniguchi K. Nanaomycins, new antibiotics produced by a strain of Streptomyces. III. A new component, nanaomycin C, and biological activities of nanaomycin derivatives. J Antibiot (Tokyo). 1975; 28(12): 925–30. doi:10.7164/antibiotics.28.925.; Kormanec J., Novakova R., Csolleiova D., Feckova L., Rezuchova B., Sevcikova B., Homerova D. The antitumor antibiotic mithramycin: new advanced approaches in modification and production. Appl Microbiol Biotechnol. 2020; 104(18): 7701–21. doi:10.1007/s00253-020-10782-x.; Kuck D., Caulfield T., Lyko F., Medina-Franco J.L. Nanaomycin A selectively inhibits DNMT3B and reactivates silenced tumor suppressor genes in human cancer cells. Mol Cancer Ther. 2010; 9(11): 3015–23. doi:10.1158/1535-7163.MCT-10-0609.; Liu P.Y., Sokolowski N., Guo S.T., Siddiqi F., Atmadibrata B., Telfer T.J., Sun Y., Zhang L., Yu D., Mccarroll J., Liu B., Yang R.H., Guo X.Y., Tee A.E., Itoh K., Wang J., Kavallaris M., Haber M., Norris M.D., Cheung B.B., Byrne J.A., Ziegler D.S., Marshall G.M., Dinger M.E., Codd R., Zhang X.D., Liu T. The BET bromodomain inhibitor exerts the most potent synergistic anticancer effects with quinone-containing compounds and anti-microtubule drugs. Oncotarget. 2016; 7(48): 79217–32. doi:10.18632/oncotarget.12640.; Lin R.K., Hsu C.H., Wang Y.C. Mithramycin A inhibits DNA methyltransferase and metastasis potential of lung cancer cells. Anticancer Drugs. 2007; 18(10): 1157–64. doi:10.1097/CAD.0b013e3282a215e9.; Arce C., Segura-Pacheco B., Perez-Cardenas E., Taja-Chayeb L., Candelaria M., Dueñnas-Gonzalez A. Hydralazine target: from blood vessels to the epigenome. J Transl Med. 2006; 4: 10. doi:10.1186/1479-5876-4-10.; Graça I., Sousa E.J., Costa-Pinheiro P., Vieira F.Q., TorresFerreira J., Martins M.G., Henrique R., Jerónimo C. Anti-neoplastic properties of hydralazine in prostate cancer. Oncotarget. 2014; 5(15): 5950–64. doi:10.18632/oncotarget.1909.; Singh N., Dueñas-González A., Lyko F., Medina-Franco J.L. Molecular modeling and molecular dynamics studies of hydralazine with human DNA methyltransferase 1. ChemMedChem. 2009; 4(5): 792–9. doi:10.1002/cmdc.200900017.; Kumanishi S., Yamanegi K., Nishiura H., Fujihara Y., Kobayashi K., Nakasho K., Futani H., Yoshiya S. Epigenetic modulators hydralazine and sodium valproate act synergistically in VEGI-mediated anti-angiogenesis and VEGF interference in human osteosarcoma and vascular endothelial cells. Int J Oncol. 2019; 55(1): 167–78. doi:10.3892/ijo.2019.4811.; Bauman J., Shaheen M., Verschraegen C.F., Belinsky S.A., Houman Fekrazad M., Lee F.C., Rabinowitz I., Ravindranathan M., Jones D.V. Jr. A Phase I Protocol of Hydralazine and Valproic Acid in Advanced, Previously Treated Solid Cancers. Transl Oncol. 2014; 7(3): 349–54. doi:10.1016/j.tranon.2014.03.001.; Espinoza-Zamora J.R., Labardini-Méndez J., Sosa-Espinoza A., López-González C., Vieyra-García M., Candelaria M., Lozano-Zavaleta V., Toledano-Cuevas D.V., Zapata-Canto N., Cervera E., Dueñas-González A. Efficacy of hydralazine and valproate in cutaneous T-cell lymphoma, a phase II study. Expert Opin Investig Drugs. 2017; 26(4): 481–7. doi:10.1080/13543784.2017.1291630. Erratum in: Expert Opin Investig Drugs. 2017; 26(4): 523. doi:10.1080/13543784.2017.1306178.; Maiti A., Daver N.G. Eprenetapopt in the Post-Transplant Setting: Mechanisms and Future Directions. J Clin Oncol. 2022; 40(34): 3994–7. doi:10.1200/JCO.22.01505.; Qiang W., Jin T., Yang Q., Liu W., Liu S., Ji M., He N., Chen C., Shi B., Hou P. PRIMA-1 selectively induces global DNA demethylation in p53 mutant-type thyroid cancer cells. J Biomed Nanotechnol. 2014; 10(7): 1249–58. doi:10.1166/jbn.2014.1862.; Teoh P.J., Bi C., Sintosebastian C., Tay L.S., Fonseca R., Chng W.J. PRIMA-1 targets the vulnerability of multiple myeloma of deregulated protein homeostasis through the perturbation of ER stress via p73 demethylation. Oncotarget. 2016; 7(38): 61806–19. doi:10.18632/oncotarget.11241.; Fujihara K.M., Zhang B.Z., Jackson T.D., Ogunkola M.O., Nijagal B., Milne J.V., Sallman D.A., Ang C.S., Nikolic I., Kearney C.J., Hogg S.J., Cabalag C.S., Sutton V.R., Watt S., Fujihara A.T., Trapani J.A., Simpson K.J., Stojanovski D., Leimkühler S., Haupt S., Phillips W.A., Clemons N.J. Eprenetapopt triggers ferroptosis, inhibits NFS1 cysteine desulfurase, and synergizes with serine and glycine dietary restriction. Sci Adv. 2022; 8(37). doi:10.1126/sciadv.abm9427.; Amirtharaj F., Venkatesh G.H., Wojtas B., Nawafleh H.H., Mahmood A.S., Nizami Z.N., Khan M.S., Thiery J., Chouaib S. p53 reactivating small molecule PRIMA-1MET/APR-246 regulates genomic instability in MDA-MB-231 cells. Oncol Rep. 2022; 47(4): 85. doi:10.3892/or.2022.8296.; Fransson Å., Glaessgen D., Alfredsson J., Wiman K.G., BajalicaLagercrantz S., Mohell N. Strong synergy with APR-246 and DNAdamaging drugs in primary cancer cells from patients with TP53 mutant High-Grade Serous ovarian cancer. J Ovarian Res. 2016; 9(1): 27. doi:10.1186/s13048-016-0239-6.; Sallman D.A., Dezern A.E., Steensma D., Sweet K.L., Cluzeau T., Sekeres M., Garcia-Manero G., Roboz G.J., McLemore A.F., McGraw K.L., Puskas J., Zhang L., Bhagat C.K., Yao J., Ali N.A., Padron E., Tell R., Lancet J.E., Fenaux P., List A., Komrokji R.S. Phase 1b/2 Combination Study of APR-246 and Azacitidine (AZA) in Patients with TP53 mutant Myelodysplastic Syndromes (MDS) and Acute Myeloid Leukemia (AML). Blood Adv. 2018; 132 (s1). doi:10.1182/blood-2018-99-119990.; Sun N., Zhang J., Zhang C., Zhao B., Jiao A. DNMTs inhibitor SGI-1027 induces apoptosis in Huh7 human hepatocellular carcinoma cells. Oncol Lett. 2018; 16(5): 5799–806. doi:10.3892/ol.2018.9390.; García-Domínguez P., Dell'aversana C., Alvarez R., Altucci L., de Lera A.R. Synthetic approaches to DNMT inhibitor SGI-1027 and effects on the U937 leukemia cell line. Bioorg Med Chem Lett. 2013; 23(6): 1631–5. doi:10.1016/j.bmcl.2013.01.085.; Kelly G.S. Quercetin. Monograph. Altern Med Rev. 2011; 16(2): 172–94.; Билык О.В., Рыбальченко В.К., Романюк Б.П. Биофлавоноид кверцетин и перспективы его использования в медицине. Загальна патология та патологiчна фiзiологiя. 2007; 2(1): 4–9.; Alvarez M.C., Maso V., Torello C.O., Ferro K.P., Saad S.T.O. The polyphenol quercetin induces cell death in leukemia by targeting epigenetic regulators of pro-apoptotic genes. Clin Epigenetics. 2018; 10(1): 139. doi:10.1186/s13148-018-0563-3.; Kedhari Sundaram M., Hussain A., Haque S., Raina R., Afroze N. Quercetin modifies 5’CpG promoter methylation and reactivates various tumor suppressor genes by modulating epigenetic marks in human cervical cancer cells. J Cell Biochem. 2019; 120(10): 18357–69. doi:10.1002/jcb.29147.; Almatroodi S.A., Almatroudi A., Khan A.A., Alhumaydhi F.A., Alsahli M.A., Rahmani A.H. Potential Therapeutic Targets of Epigallocatechin Gallate (EGCG), the Most Abundant Catechin in Green Tea, and Its Role in the Therapy of Various Types of Cancer. Molecules. 2020; 25(14): 3146. doi:10.3390/molecules25143146.; Minnelli C., Cianfruglia L., Laudadio E., Mobbili G., Galeazzi R., Armeni T. Effect of Epigallocatechin-3-Gallate on EGFR Signaling and Migration in Non-Small Cell Lung Cancer. Int J Mol Sci. 2021; 22(21). doi:10.3390/ijms222111833.; Della Via F.I., Shiraishi R.N., Santos I., Ferro K.P., SalazarTerreros M.J., Franchi Junior G.C., Rego E.M., Saad S.T.O., Torello C.O. (-)-Epigallocatechin-3-gallate induces apoptosis and differentiation in leukaemia by targeting reactive oxygen species and PIN1. Sci Rep. 2021; 11(1). doi:10.1038/s41598-021-88478-z.; Sheng J., Shi W., Guo H., Long W., Wang Y., Qi J., Liu J., Xu Y. The Inhibitory Effect of (-)-Epigallocatechin-3-Gallate on Breast Cancer Progression via Reducing SCUBE2 Methylation and DNMT Activity. Molecules. 2019; 24(16). doi:10.3390/molecules24162899.; Khan M.A., Hussain A., Sundaram M.K., Alalami U., Gunasekera D., Ramesh L., Hamza A., Quraishi U. (-)-Epigallocatechin-3-gallate reverses the expression of various tumor-suppressor genes by inhibiting DNA methyltransferases and histone deacetylases in human cervical cancer cells. Oncol Rep. 2015; 33(4): 1976–84. doi:10.3892/or.2015.3802.; Nandakumar V., Vaid M., Katiyar S.K. (-)-Epigallocatechin3-gallate reactivates silenced tumor suppressor genes, Cip1/p21 and p16INK4a, by reducing DNA methylation and increasing histones acetylation in human skin cancer cells. Carcinogenesis. 2011; 32(4): 537–44. doi:10.1093/carcin/bgq285.; Alizadeh M., Nafari A., Safarzadeh A., Veiskarami S., Almasian M., Asghar Kiani A. The Impact of EGCG and RG108 on SOCS1 Promoter DNA Methylation and Expression in U937 Leukemia Cells. Rep Biochem Mol Biol. 2021; 10(3): 455–61. doi:10.52547/rbmb.10.3.455.; Khan M.I., Nur S.M., Abdulaal W.H. A study on DNA methylation modifying natural compounds identified EGCG for induction of IFI16 gene expression related to the innate immune response in cancer cells. Oncol Lett. 2022; 24(1): 218. doi:10.3892/ol.2022.13339.; Fang M.Z., Wang Y., Ai N., Hou Z., Sun Y., Lu H., Welsh W., Yang C.S. Tea polyphenol (-)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res. 2003; 63(22): 7563–70.; Chen L.L., Han W.F., Geng Y., Su J.S. A genome-wide study of DNA methylation modified by epigallocatechin-3-gallate in the CAL-27 cell line. Mol Med Rep. 2015; 12(4): 5886–90. doi:10.3892/mmr.2015.4118.; McLarty J., Bigelow R.L., Smith M., Elmajian D., Ankem M., Cardelli J.A. Tea polyphenols decrease serum levels of prostate-specific antigen, hepatocyte growth factor, and vascular endothelial growth factor in prostate cancer patients and inhibit production of hepatocyte growth factor and vascular endothelial growth factor in vitro. Cancer Prev Res (Phila). 2009; 2(7): 673–82. doi:10.1158/1940-6207.CAPR-08-0167.; Jazvinšćak Jembrek M., Oršolić N., Mandić L., Sadžak A., Šegota S. Anti-Oxidative, Anti-Inflammatory and Anti-Apoptotic Effects of Flavonols: Targeting Nrf2, NF-κB and p53 Pathways in Neurodegeneration. Antioxidants (Basel). 2021; 10(10). doi:10.3390/antiox10101628.; Jia S., Xu X., Zhou S., Chen Y., Ding G., Cao L. Fisetin induces autophagy in pancreatic cancer cells via endoplasmic reticulum stress- and mitochondrial stress-dependent pathways. Cell Death Dis. 2019; 10(2). doi:10.1038/s41419-019-1366-y. Erratum in: Cell Death Dis. 2024; 15(1). doi:10.1038/s41419-023-06399-3.; Mukhtar E., Adhami V.M., Sechi M., Mukhtar H. Dietary flavonoid fisetin binds to β-tubulin and disrupts microtubule dynamics in prostate cancer cells. Cancer Lett. 2015; 367(2): 173–83. doi:10.1016/j.canlet.2015.07.030.; Hassan F.U., Rehman M.S., Khan M.S., Ali M.A., Javed A., Nawaz A., Yang C. Curcumin as an Alternative Epigenetic Modulator: Mechanism of Action and Potential Effects. Front Genet. 2019; 10. doi:10.3389/fgene.2019.00514.; Кирсанов К.И., Власова О.А., Фетисов Т.И., Зенков Р.Г., Лесовая Е.А., Белицкий Г.А., Гурова К., Якубовская М.Г. Влияние ДНКтропных антиканцерогенных соединений на механизмы регуляции экспрессии генов. Успехи молекулярной онкологии. 2018; 5(4): 41–63. doi:10.17650/2313-805X-2018-5-4-41-63.; Yu J., Peng Y., Wu L.C., Xie Z., Deng Y., Hughes T., He S., Mo X., Chiu M., Wang Q.E., He X., Liu S., Grever M.R., Chan K.K., Liu Z. Curcumin down-regulates DNA methyltransferase 1 and plays an anti-leukemic role in acute myeloid leukemia. PLoS One. 2013; 8(2). doi:10.1371/ journal.pone.0055934.; Chen J., Ying Y., Zhu H., Zhu T., Qu C., Jiang J., Fang B. Curcumininduced promoter hypermethylation of the mammalian target of rapamycin gene in multiple myeloma cells. Oncol Lett. 2019; 17(1): 1108–14. doi:10.3892/ol.2018.9662.; Al-Yousef N., Shinwari Z., Al-Shahrani B., Al-Showimi M., AlMoghrabi N. Curcumin induces re-expression of BRCA1 and suppression of γ synuclein by modulating DNA promoter methylation in breast cancer cell lines. Oncol Rep. 2020; 43(3): 827–38. doi:10.3892/or.2020.7473.; Link A., Balaguer F., Shen Y., Lozano J.J., Leung H.C., Boland C.R., Goel A. Curcumin modulates DNA methylation in colorectal cancer cells. PLoS One. 2013; 8(2). doi:10.1371/journal.pone.0057709.; Hosokawa M., Seiki R., Iwakawa S., Ogawara K.I. Combination of azacytidine and curcumin is a potential alternative in decitabineresistant colorectal cancer cells with attenuated deoxycytidine kinase. Biochem Biophys Res Commun. 2021; 578: 157–62. doi:10.1016/j.bbrc.2021.09.041.; Howells L.M., Iwuji C.O.O., Irving G.R.B., Barber S., Walter H., Sidat Z., Griffin-Teall N., Singh R., Foreman N., Patel S.R., Morgan B., Steward W.P., Gescher A., Thomas A.L., Brown K. Curcumin Combined with FOLFOX Chemotherapy Is Safe and Tolerable in Patients with Metastatic Colorectal Cancer in a Randomized Phase IIa Trial. J Nutr. 2019; 149(7): 1133–9. doi:10.1093/jn/nxz029.; Saghatelyan T., Tananyan A., Janoyan N., Tadevosyan A., Petrosyan H., Hovhannisyan A., Hayrapetyan L., Arustamyan M., Arnhold J., Rotmann A.R., Hovhannisyan A., Panossian A. Efficacy and safety of curcumin in combination with paclitaxel in patients with advanced, metastatic breast cancer: A comparative, randomized, double-blind, placebo-controlled clinical trial. Phytomedicine. 2020; 70. doi:10.1016/j.phymed.2020.153218.; Rauf A., Imran M., Suleria H.A.R., Ahmad B., Peters D.G., Mubarak M.S. A comprehensive review of the health perspectives of resveratrol. Food Funct. 2017; 8(12): 4284–305. doi:10.1039/c7fo01300k.; Aldawsari F.S., Aguayo-Ortiz R., Kapilashrami K., Yoo J., Luo M., Medina-Franco J.L., Velázquez-Martínez C.A. Resveratrolsalicylate derivatives as selective DNMT3 inhibitors and anticancer agents. J Enzyme Inhib Med Chem. 2016; 31(5): 695–703. doi:10.3109/14756366.2015.1058256.; Izquierdo-Torres E., Hernández-Oliveras A., Meneses-Morales I., Rodríguez G., Fuentes-García G., Zarain-Herzberg Á. Resveratrol upregulates ATP2A3 gene expression in breast cancer cell lines through epigenetic mechanisms. Int J Biochem Cell Biol. 2019; 113: 37–47. doi:10.1016/j.biocel.2019.05.020.; Sharifi-Rad J., Quispe C., Imran M., Rauf A., Nadeem M., Gondal T.A., Ahmad B., Atif M., Mubarak M.S., Sytar O., Zhilina O.M., Garsiya E.R., Smeriglio A., Trombetta D., Pons D.G., Martorell M., Cardoso S.M., Razis A.F.A., Sunusi U., Kamal R.M., Rotariu L.S., Butnariu M., Docea A.O., Calina D. Genistein: An Integrative Overview of Its Mode of Action, Pharmacological Properties, and Health Benefits. Oxid Med Cell Longev. 2021. doi:10.1155/2021/3268136.; Sundaram M.K., Ansari M.Z., Al Mutery A., Ashraf M., Nasab R., Rai S., Rais N., Hussain A. Genistein Induces Alterations of Epigenetic Modulatory Signatures in Human Cervical Cancer Cells. Anticancer Agents Med Chem. 2018; 18(3): 412–21. doi:10.2174/1871520617666170918142114.; Sharma M., Tollefsbol T.O. Combinatorial epigenetic mechanisms of sulforaphane, genistein and sodium butyrate in breast cancer inhibition. Exp Cell Res. 2022; 416(1). doi:10.1016/j.yexcr.2022.113160.; Xie Q., Bai Q., Zou L.Y., Zhang Q.Y., Zhou Y., Chang H., Yi L., Zhu J.D., Mi M.T. Genistein inhibits DNA methylation and increases expression of tumor suppressor genes in human breast cancer cells. Genes Chromosomes Cancer. 2014; 53(5): 422–31. doi:10.1002/gcc.22154.; Romagnolo D.F., Donovan M.G., Papoutsis A.J., Doetschman T.C., Selmin O.I. Genistein Prevents BRCA1 CpG Methylation and Proliferation in Human Breast Cancer Cells with Activated Aromatic Hydrocarbon Receptor. Curr Dev Nutr. 2017; 1(6). doi:10.3945/cdn.117.000562.; Li H., Xu W., Huang Y., Huang X., Xu L., Lv Z. Genistein demethylates the promoter of CHD5 and inhibits neuroblastoma growth in vivo. Int J Mol Med. 2012; 30(5): 1081–6. doi:10.3892/ijmm.2012.1118.; Pintova S., Dharmupari S., Moshier E., Zubizarreta N., Ang C., Holcombe R.F. Genistein combined with FOLFOX or FOLFOX-Bevacizumab for the treatment of metastatic colorectal cancer: phase I/II pilot study. Cancer Chemother Pharmacol. 2019; 84(3): 591–8. doi:10.1007/s00280-019-03886-3.; Chua G.N.L., Wassarman K.L., Sun H., Alp J.A., Jarczyk E.I., Kuzio N.J., Bennett M.J., Malachowsky B.G., Kruse M., Kennedy A.J. Cytosine-Based TET Enzyme Inhibitors. ACS Med Chem Lett. 2019; 10(2): 180–5. doi:10.1021/acsmedchemlett.8b00474.; Weirath N.A., Hurben A.K., Chao C., Pujari S.S., Cheng T., Liu S., Tretyakova N.Y. Small Molecule Inhibitors of TET Dioxygenases: Bobcat339 Activity Is Mediated by Contaminating Copper(II). ACS Med Chem Lett. 2022; 13(5): 792–8. doi:10.1021/acsmedchemlett.1c00677.; Singh A.K., Zhao B., Liu X., Wang X., Li H., Qin H., Wu X., Ma Yu., Horne D., Yu X. Selective targeting of TET catalytic domain promotes somatic cell reprogramming. Proc Natl Acad Sci U S A. 2020; 117(7): 3621–6. doi:10.1073/pnas.1910702117.; Guan Y., Tiwari A.D., Phillips J.G., Hasipek M., Grabowski D.R., Pagliuca S., Gopal P., Kerr C.M., Adema V., Radivoyevitch T., Parker Y., Lindner D.J., Meggendorfer M., Abazeed M., Sekeres M.A., Mian O.Y., Haferlach T., Maciejewski J.P., Jha B.K. A Therapeutic Strategy for Preferential Targeting of TET2 Mutant and TET-dioxygenase Deficient Cells in Myeloid Neoplasms. Blood Cancer Discov. 2021; 2(2): 146–61. doi:10.1158/2643-3230.BCD-20-0173.; https://www.siboncoj.ru/jour/article/view/3199
-
3Academic Journal
المؤلفون: Rozhkova, O. A., Belousova, E. V., Рожкова, О. А., Белоусова, Е. В.
المصدر: Сборник статей
مصطلحات موضوعية: CLINICAL TRIALS, VOLUNTEERS, EXPERIMENTS ON HUMAN, INFORMED CONSENT, ИНФОРМИРОВАННОЕ СОГЛАСИЕ, КЛИНИЧЕСКИЕ ИСПЫТАНИЯ, ДОБРОВОЛЬЦЫ, ЭКСПЕРИМЕНТЫ НАД ЛЮДЬМИ
وصف الملف: application/pdf
Relation: Актуальные вопросы современной медицинской науки и здравоохранения : Сборник статей IX Международной научно-практической конференции молодых ученых и студентов, 17-18 апреля 2024 г. Т. 1.; Рожкова, О. А. Информированное согласие при проведении клинических испытаний: история вопроса и понимание молодого поколения / О. А. Рожкова, Е. В. Белоусова. - Текст: электронный // Актуальные вопросы современной медицинской науки и здравоохранения : Сборник статей IX Международной научно-практической конференции молодых ученых и студентов, 17-18 апреля 2024 г. Т. 1. - Екатеринбург, 2024. – C. 706-711.; http://elib.usma.ru/handle/usma/21343
-
4Academic Journal
المؤلفون: A. N. Afanaseva, V. B. Saparova, I. E. Makarenko, T. A. Selmenskikh, D. V. Kurkin, A. L. Hohlov, R. V. Drai, А. Н. Афанасьева, В. Б. Сапарова, И. Е. Макаренко, Т. А. Сельменских, Д. В. Куркин, А. Л. Хохлов, Р. В. Драй
المساهمون: The work was carried out with the financial support of LLC "GEROPHARM". The sponsor had no influence on the course of the study or interpretation of the results., Работа выполнена при финансовой поддержке ООО «ГЕРОФАРМ». Спонсор не оказывал влияния на ход исследования и интерпретацию результатов.
المصدر: Drug development & registration; Том 13, № 1 (2024); 247-255 ; Разработка и регистрация лекарственных средств; Том 13, № 1 (2024); 247-255 ; 2658-5049 ; 2305-2066
مصطلحات موضوعية: антитела к ромиплостиму, biosimilar, neutralizing antibody studies, clinical studies of immunogenicity, validation, cell viability determination, antibodies to romiplostim, биоаналог, исследования нейтрализующих антител, клинические испытания иммуногенности, валидация, определение жизнеспособности клеток
وصف الملف: application/pdf
Relation: https://www.pharmjournal.ru/jour/article/view/1757/1252; https://www.pharmjournal.ru/jour/article/downloadSuppFile/1757/2133; Kayal L., Jayachandran S., Singh K. Idiopathic thrombocytopenic purpura. Contemporary Clinical Dentistry. 2014;5(3):410–414. DOI:10.4103/0976-237X.137976.; Provan D., Arnold D. M., Bussel J. B., Chong B. H., Cooper N., Gernsheimer T., Ghanima W., Godeau B., González-López T. J., Grainger J., Hou M., Kruse C., McDonald V., Michel M., Newland A. C., Pavord S., Rodeghiero F., Scully M., Tomiyama Y., Wong R. S., Zaja F., Kuter D. J. Updated international consensus report on the investigation and management of primary immune thrombocytopenia. Blood Advances. 2019;3(22):3780–3817. DOI:10.1182/bloodadvances.2019000812.; Zufferey A., Kapur R., Semple J. Pathogenesis and Therapeutic Mechanisms in Immune Thrombocytopenia (ITP). Journal of Clinical Medicine. 2017;6(2):16. DOI:10.3390/jcm6020016.; Pietras N. M., Pearson-Shaver A. L. Immune Thrombocytopenic Purpura. StatPearls. Treasure Island (FL): StatPearls Publishing; 2022.; Neunert C., Noroozi N., Norman G., Buchanan G. R., Goy J., Nazi I., Kelton J. G., Arnold D. M. Severe bleeding events in adults and children with primary immune thrombocytopenia: a systematic review. Journal of Thrombosis and Haemostasis. 2015;13(3):457–464. DOI:10.1111/jth.12813.; Soff G. A., Miao Y., Bendheim G., Batista J., Mones J. V., Parameswaran R., Wilkins C. R., Devlin S. M., Abou-Alfa G. K., Cercek A., Kemeny N. E., Sarasohn D. M., Mantha S. Romiplostim Treatment of Chemotherapy-Induced Thrombocytopenia. Journal of Clinical Oncology. 2019;37(31):2892–2898. DOI:10.1200/JCO.18.01931.; Bussel J. B., Soff G., Balduzzi A., Cooper N., Lawrence T., Semple J. W. A Review of Romiplostim Mechanism of Action and Clinical Applicability. Drug Design, Development and Therapy. 2021;15:2243–2268. DOI:10.2147/DDDT.S299591.; Kuter D. J. Romiplostim. In: Lyman G. H., Dale D. C., editors. Hematopoietic Growth Factors in Oncology. New York: Springer; 2011. P. 267–288. DOI:10.1007/978-1-4419-7073-2_16.; Yang A. S. Development of romiplostim: a novel engineered peptibody. Seminars in Hematology. 2015;52(1):12–15. DOI:10.1053/j.seminhematol.2014.10.007.; Bussel J.B., Kuter D. J., George J. N., McMillan R., Aledort L. M., Conklin G. T., Lichtin A. E., Lyons R. M., Nieva J., Wasser J. S., Wiznitzer I., Kelly R., Chen C.-F., Nichol J. L. AMG 531, a thrombopoiesis-stimulating protein, for chronic ITP. New England Journal of Medicine. 2006;355(16):1672–1681. DOI:10.1056/NEJMoa054626.; Kuter D. J., Bussel J. B., Lyons R. M., Pullarkat V., Gernsheimer T. B., Senecal F. M., Aledort L. M., George J. N., Kessler C. M., Sanz M. A., Liebman H. A., Slovick F. T., de Wolf J. T. M., Bourgeois E., Guthrie T. H., Newland A., Wasser J. S., Hamburg S. I., Grande C., Lefrère F., Lichtin A. E., Tarantino M. D., Terebelo H. R., Viallard J.-F., Cuevas F. J., Go R. S., Henry D. H., Redner R. L., Rice L., Schipperus M. R., Guo D. M., Nichol J. L. Efficacy of romiplostim in patients with chronic immune thrombocytopenic purpura: a double-blind randomised controlled trial. The Lancet. 2008;371(9610):395–403. DOI:10.1016/S0140-6736(08)60203-2.; Shirasugi Y., Ando K., Miyazaki K., Tomiyama Y., Okamoto S., Kurokawa M., Kirito K., Yonemura Y., Mori S., Usuki K., Iwato K., Hashino S., Wei H., Lizambri R. Romiplostim for the treatment of chronic immune thrombocytopenia in adult Japanese patients: a double-blind, randomized Phase III clinical trial. International Journal of Hematology. 2011;94(1):71–80. DOI:10.1007/s12185-011-0886-8.; Schellekens H. Immunogenicity of therapeutic proteins: Clinical implications and future prospects. Clinical Therapeutics. 2002;24(11):1720–1740. DOI:10.1016/s0149-2918(02)80075-3.; Civoli F., Kroenke M. A., Reynhardt K., Zhuang Y., Kaliyaperumal A., Gupta S. Development and optimization of neutralizing antibody assays to monitor clinical immunogenicity. Bioanalysis. 2012;4(22):2725–2735. DOI:10.4155/bio.12.239.; Chalmers S., Tarantino M. D. Romiplostim as a treatment for immune thrombocytopenia: a review. Journal of Blood Medicine. 2015;6:37–44. DOI:10.2147/JBM.S47240.; Shankar G., Devanarayan V., Amaravadi L., Barrett Y. C., Bowsher R., Finco-Kent D., Fiscella M., Gorovits B., Kirschner S., Moxness M., Parish T., Quarmby V., Smith H., Smith W., Zuckerman L. A., Koren E. Recommendations for the validation of immunoassays used for detection of host antibodies against biotechnology products. Journal of Pharmaceutical and Biomedical Analysis. 2008;48(5):1267–1281. DOI:10.1016/j.jpba.2008.09.020.; Shen M., Dai T. Statistical methods of screening cut point determination in immunogenicity studies. Bioanalysis. 2021;13(7):551–563. DOI:10.4155/bio-2019-0296.; Arefeva A. N., Makarenko I. E., Saparova V. B., Karal-ogli D. D., Afanaseva A. N., Dorotenko A. R., Kalatanova A. V., Kurkin D. V., Khokhlov A. L., Drai R. V. Comparability of biosimilar romiplostim with originator: Protein characterization, animal pharmacodynamics and pharmacokinetics. Biologicals. 2023;81:101666. DOI:10.1016/j.biologicals.2023.101666.; Jawa V., Hokom M., Hu Z., El-Abaadi N., Zhuang Y., Berger D., Gupta S., Swanson S. J., Chirmule N. Assessment of immunogenicity of romiplostim in clinical studies with ITP subjects. Annals of Hematology. 2010;89(1):75–85. DOI:10.1007/s00277-010-0908-2.; Mytych D. T., Park J. K., Kim J., Barger T. E., Boshier A., Jawa V., Kuter D. J. Assessment of romiplostim immunogenicity in adult patients in clinical trials and in a global postmarketing registry. British Journal of Haematology. 2020;190(6):923–932. DOI:10.1111/bjh.16658.; Fang Q., Huang F., Liang J., Chen Y., Li C., Zhang M., Wu X., Luo W. Safety of romiplostim and eltrombopag for children with immune thrombocytopenia: a pharmacovigilance study of the FDA adverse event reporting system database. Expert Opinion on Drug Safety. 2023;22(8):707–714. DOI:10.1080/14740338.2023.2182288.; https://www.pharmjournal.ru/jour/article/view/1757
-
5Academic Journal
المؤلفون: M. M. Galagudza, Yu. P. Belsky, N. N. Belsky, М. М. Галагудза, Ю. П. Бельский, Н. В. Бельская
المصدر: The Siberian Journal of Clinical and Experimental Medicine; Том 38, № 1 (2023); 13-20 ; Сибирский журнал клинической и экспериментальной медицины; Том 38, № 1 (2023); 13-20 ; 2713-265X ; 2713-2927
مصطلحات موضوعية: клинические испытания, inhibitor of inducible nitric oxide synthase, preclinical trials, clinical trials, ингибитор индуцибельной синтазы оксида азота, доклинические исследования
وصف الملف: application/pdf
Relation: https://www.sibjcem.ru/jour/article/view/1710/784; Cinelli M.A., Do H.T., Miley G.P., Silverman R.B. Inducible nitric oxide synthase: regulation, structure, and inhibition. Med. Res. Rev. 2020;40(1):158–189. DOI:10.1002/med.21599.; Ahmad N., Ansari M.Y., Haqqi T.M. Role of iNOS in osteoarthritis: Pathological and therapeutic aspects. J. Cell. Physiol. 2020;235:6366–6376. DOI:10.1002/jcp.29607.; Ferreiro C.R., Chagas A.C.P., Carvalho M.H.C., Dantas A.P., Jatene M.B., Bento De Souza L.C. et al. Influence of hypoxia on nitric oxide synthase activity and gene expression in children with congenital heart disease: a novel pathophysiological adaptive mechanism. Circulation. 2001;103(18):2272–2276. DOI:10.1161/01.cir.103.18.2272.; Navasardyan I., Bonavida B. Regulation of T cells in cancer by nitric oxide. Cells. 2021;10:2655. DOI:10.3390/cells10102655.; Бельский Ю.П., Бельская Н.В., Данилец М.Г., Трофимова Е.С., Патрушев В.К., Агафонов В.И. Клетки опухоли Эрлиха стимулируют продукцию интерферона-γ Т-клетками и не чувствительны к аутокринному оксиду азота. Вопросы онкологии. 2004;50(6):689–692.; Pautz A., Art J., Hahn S., Nowag S., Voss C., Kleinert H. Regulation of the expression of inducible nitric oxide synthase. Nitric Oxide. 2010;23(2):75–93. DOI:10.1016/j.niox.2010.04.007.; Anavia S., Tirosha O. iNOS as a metabolic enzyme under stress conditions. Free Radic. Biol. Med. 2020;146:16–35. DOI:10.1016/j.freerad-biomed.2019.10.411.; Lirk P., Hoffmann G., Rieder J. Inducible nitric oxide synthase-time for reappraisal. Curr. Drug Targets Inflamm. Allergy. 2002;l(1):89–108. DOI:10.2174/1568010023344913.; Данилец М.Г., Бельский Ю.П., Бельская Н.В., Трофимова Е.С., Учасова Е.Г., Агафонов В.И. Экспрессия аргиназы перитонеальными макрофагами и продукция ими оксида азота при Th1- и Th2- зависимом иммунном ответе. Бюлл. эксперим. биол. и медицины. 2007;S1:97–100.; Nagy G., Koncz A., Telarico T., Fernandez D., Ersek B., Buzás E. et al. Central role of nitric oxide in the pathogenesis of rheumatoid arthritis and systemic lupus erythematosus. Arthritis Res. Ther. 2010;12(3):210. DOI:10.1186/ar3045.; Burggraaf S., Bingham J., Payne J., Kimpton W.G., Lowenthal J.W., Bean A.G. Increased inducible nitric oxide synthase expression in organs is associated with a higher severity of H5N1 influenza virus infection. PLoS One. 2011;6(1):e14561. DOI:10.1371/journal.pone.0014561.; Almeida-Souza F., Souza C., Taniwaki N., Silva J., Oliveira R., Abreu-Silva A.L. et al. Morinda citrifolia Linn. fruit (Noni) juice induces an increase in NO production and death of Leishmania amazonensis amastigotes in peritoneal macrophages from BALB/c. Nitric Oxide 2016;58:51–58. DOI:10.1016/j.niox.2016.06.004.; Sharma J.N., Al-Omran A., Parvathy S.S. Role of nitric oxide in inflammatory diseases. Inflammopharmacology. 2007;15(6):252–259. DOI:10.1007/s10787-007-0013-x.; Thomas D.D., Ridnour L.A., Isenberg J.S., Flores-Santana W., Switzer C.H., Donzelli S. et al. The chemical biology of nitric oxide: Implications in cellular signaling. Free Radic. Biol. Med. 2008;45(1):18–31. DOI:10.1016/j.freeradbiomed.2008.03.020.; Szabo C. Gasotransmitters in cancer: From pathophysiology to experimental therapy. Nat. Rev. Drug Discov. 2016;15(3):185–203. DOI:10.1038/nrd.2015.1.; Kawasaki K., Smith R.S.Jr., Hsieh C.M., Sun J., Chao J., Liao J.K. Activation of the phosphatidylinositol 3-kinase/protein kinase Akt pathway mediates nitric oxide-induced endothelial cell migration and angiogenesis. Mol. Cell. Biol. 2003;23:5726–5737. DOI:10.1128/MCB.23.16.5726-5737.2003.; Olson N., van der Vliet A. Interactions between nitric oxide and hypoxia-inducible factor signaling pathways in inflammatory disease. Nitric Oxide. 2011;25(2):125–137. DOI:10.1016/j.niox.2010.12.010.; Ambs S., Merriam W.G., Bennett W.P., Felley-Bosco E., Ogunfusika M.O., Oser S.M. et al. Frequent nitric oxide synthase-2 expression in human colon adenomas: Implication for tumor angiogenesis and colon cancer progression. Cancer Res. 1998;58(2):334–341.; Lee S.W., Choi H., Eun S.Y., Fukuyama S., Croft M. Nitric oxide modulates TGF-beta-directive signals to suppress Foxp3+ regulatory T cell differentiation and potentiate Th1 development. J. Immunol. 2011;186(12):6972–6980. DOI:10.4049/jimmunol.1100485.; Cinier J., Hubert M., Besson L., Di Roio A., Rodriguez C., Lombardi V. et al. Recruitment and expansion of Tregs cells in the tumor environment-how to target them? Cancers. 2021;13(8):1850. DOI:10.3390/cancers13081850.; Schietinger A., Greenberg P.D. Tolerance and exhaustion: Defining mechanisms of T cell dysfunction. Trends Immunol. 2013;35(2):51–60. DOI:10.1016/j.it.2013.10.001.; Jiang W., He Y., He W., Wu G., Zhou X., Sheng Q. et al. Exhausted CD8+T cells in the tumor immune microenvironment: new pathways to therapy. Front. Immunol. 2021;11:622509. DOI:10.3389/fimmu.2020.622509.11.; Rodriguez P.C., Quiceno D.G., Zabaleta J., Ortiz B., Zea A.H., Piazuelo M.B. et al. Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Canc. Res. 2004;64(16):5839–5849. DOI:10.1158/0008-5472.CAN-04-0465.; Parker K.H., Beury D.W., Ostrand-Rosenberg S. Myeloid-derived suppressor cells: critical cells driving immune suppression in the tumor microenvironment. Adv. Cancer. Res. 2015;128:95–139. DOI:10.1016/bs.acr.2015.04.002.; Girotti A.W., Fahey J.F., Korytowski W. Role of nitric oxide in hyper-aggressiveness of tumor cells that survive various anti-cancer therapies. Crit. Rev. Oncol. Hematol. 2022;179:103805. DOI:10.1016/j.critrevonc.2022.103805.; Khan F.H., Dervan E., Bhattacharyya D.D., McAuliffe J.D., Miranda K.M., Glynn S.A. The role of nitric oxide in cancer: master regulator of NoT? Int. J. Mol. Sci. 2020;21(24):9393. DOI:10.3390/ijms21249393.; Vannini F., Kashfi K., Nath N. The dual role of iNOS in cancer. Redox Biol. 2015;6:334–343. DOI:10.1016/j.redox.2015.08.009.; Somasundaram V., Ridnour L.A., Cheng R.Y., Walke A.J., Kedei N., Bhattacharyya D.D. et al. Systemic NOS2 depletion and COX inhibition limits TNBC disease progression and alters lymphoid cell spatial orientation and density. Redox Biol. 2022;58:102529. DOI:10.1016/j.redox.2022.102529.; Miyoshi T., Li Y., Shih D.M., Wang X., Laubach V.E., Matsumoto A.H. et al. Deficiency of inducible NO synthase reduces advanced but not early atherosclerosis in apolipoprotein E-deficient mice. Life. Sci. 2006;79(6):525–531. DOI:10.1016/j.lfs.2006.01.043.; Mercanoglu G., Safran N., Ahishali B.B., Uzun H., Yalcin A., Mercanoglu F. Nitric oxide mediated effects of nebivolol in myocardial infarction: the source of nitric oxide. Eur. Rev. Med. Pharmacol. Sci. 2015;19(24):4872–4889.; El-Awady M.S., Suddek G.M. Agmatine ameliorates atherosclerosis progression and endothelial dysfunction in high cholesterol-fed rabbits. J. Pharm. Pharmacol. 2014;66(6):835–843. DOI:10.1111/jphp.12204.; Chauhan S.D., Seggara G., Vo P.A., Macallister R.J., Hobbs A.J., Ahluwalia A. Protection against lipopolysaccharide-induced endothelial dysfunction in resistance and conduit vasculature of iNOS knockout mice. FASEB. J. 2003;17(6):773–775. DOI:10.1096/fj.02-0668fje.; Guo Y., Jones W.K., Xuan Y.T., Tang X.L., Bao W., Wu W.J. et al. The late phase of ischemic preconditioning is abrogated by targeted disruption of the inducible NO synthase gene. Proc. Natl. Acad. Sci. 1999;96(20):11507–11512. DOI:10.1073/pnas.96.20.11507.; Mungrue I.N., Gros R., You X., Pirani A., Azad A., Csont T. et al. Cardiomyocyte overexpression of iNOS in mice results in peroxynutrite generation, heart block, and sudden death. J. Clin. Invest. 2002;109(6):735–743. DOI:10.1172/JCI13265.; Lind M., Hayesa A., Caprndab M., Petrovicc D., Rodrigod L., Kruzliake P. et al. Inducible nitric oxide synthase: Good or bad? Biomed. Pharmacother. 2017;93:370–375. DOI:10.1016/j.biopha.2017.06.036.; Oliveira-Paula G.H., Lacchini R., Tanus-Santos J.E. Inducible nitric oxide synthase as a possible target in hypertension. Curr. Drug Targets. 2014;15(2):164–174. DOI:10.2174/13894501113146660227.; Результаты поиска по запросу: публикации, посвященные ингибиторам NOS за период с 1991 по январь 2023 гг. (по данным сайта PubMed). URL: https://pubmed.ncbi.nlm.nih.gov/?term=%28%28Nitric+oxide+synthase+inhibitor%5BTitle%5D%29+OR+%28Nitric+oxide+synthase+inhibitors%5BTitle%5D%29%29+AND+%28%28%221900%2F01%2F01%22%5BDate+-+Publication%5D+%3A+%223000%22%5B-Date+-+Publication%5D%29%29&sort=&filer=pubt.review&filer=pubt.review (02.03.2023).; Yang Y., Yu T., Lian Y.J., Ma R., Yang S., Cho J.Y. Nitric oxide synthase inhibitors: a review of patents from 2011 to the present. Expert Opin. Ther. Pat. 2015;25(1):49–68. DOI:10.1517/13543776.2014.979154.; Minhas R., Bansal Y., Bansal G. Inducible nitric oxide synthase inhibitors: A comprehensive update. Med. Res. Rev. 2020;40:823–855. DOI:10.1002/med.21636.; Sorrells D.L., Friend C., Koltuksuz U., CourcoulasA., Boyle P., Garrett M. et al. Inhibition of nitric oxide with aminoguanidine reduces bacterial translocation after endotoxin challenge in vivo. Arch. Surg. 1996;131(11):1155–1163. DOI:10.1001/archsurg.1996.01430230037007.; Nilsson B., Delbro D., Hedin L., Conradi N., Thune A., Friman S. et al. Role of nitric oxide in induction of inflammatory fluid secretion by the mucosa of the feline gallbladder. Gastroenterology. 1996;110(2):598–606. DOI:10.1053/gast.1996.v110.pm8566609.; Lu G., Su R.B., Li J., Qin B.Y. Modulation by alpha-difluoromethyl-orn - thine and aminoguanidine of pain threshold, morphine analgesia and tolerance. Eur. J. Pharmacol. 2003;478(2–3):139–144. DOI:10.1016/j.ejphar.2003.08.048.; Abdel-Zahera A.O., Hamdya M.M., Alya S.A., Abdel-Hadyb R.H., Abdel-Rahmanc S. Attenuation of morphinetolerance and dependence by aminoguanidine in mice. Europ. J. Pharmacol. 2006;540(1–3):60–66. DOI:10.1016/j.ejphar.2006.03.059.; Brownlee M., Vlassara H., Kooney A., Ulrich P., Cerami A. Aminoguanidine prevents diabetes-induced arterial wall protein cross-linking. Science. 1986;232(4758):1629–1632. DOI:10.1126/science.3487117.; Haddad E.K., Duclos A.J., Baines M.G. Early embryo loss is associated with local production of nitric oxide by decidual mononuclear cells. J. Exp. Med. 1995;182(4):1143–1151. DOI:10.1084/jem.182.4.1143.; Worrall N.K., Lazenby W.D., Misko T.P., Lin T.S., Rodi C.P., Manning P.T. et al. Modulation of in vivo alloreactivity by inhibition of inducible nitric oxide synthase. J. Exp. Med. 1995;181(1):63–70. DOI:10.1084/jem.181.1.63.; Kihara M., Schmelzer J.D., Poduslo J.F., Curran G.L., Nickander K.K., Low P.A. Aminoguanidine effects on nerve blood flo , vascular permeability, electrophysiology, and oxygen free radicals. Proc. Natl. Acad. Sci. USA. 1991;88(14):6107–6111. DOI:10.1073/pnas.88.14.6107.; Onorato J.M., Jenkins A.J., Thorpe S.R., Baynes J.W. Pyridoxamine, an inhibitor of advanced glycation reactions, also inhibits advanced lipoxidation reactions. Mechanism of action of pyridoxamine. J. Biol. Chem. 2000;275(28):21177–21184. DOI:10.1074/jbc.M003263200.; Viberti G., Slama G., Pozza G., Czyzyk A., Bilous R.W., Gries A. et al. Early closure of European Pimagedine trial. Steering Committee. Safety Committee. The Lancet. 1997;350(9072):214–215. DOI:10.1016/S01406736(97)26029-0.; A curious stopping rule from Hoechst Marion Roussel (Editorial). The Lancet. 1997;350(9072):155. DOI:10.1016/S0140-6736(97)21029-9.; Chung A.W., Anand K., Anselme A.C., Chan A.A., Gupta N., Venta L.A. et.al. A phase 1/2 clinical trial of the nitric oxide synthase inhibitor L-NM-MA and taxane for treating chemoresistant triple-negative breast cancer. Sci. Transl. Med. 2021;13(624):eabj5070. DOI:10.1126/scitranslmed. abj5070.; Dávila-González D., Choi D.S., Rosato R.R., Granados-Principal S.M., Kuhn J.G., Li W.F. et al. Pharmacological inhibition of NOS activates ASK1/JNK pathway augmenting docetaxel-mediated apoptosis in triple-negative breast cancer. Clin. Cancer Res. 2018;24(5):1152–1162. DOI:10.1158/1078-0432.CCR-17-1437.; Howes L.G., Brillante D.G. Expert opinion on tilarginine in the treatment of shock. Expert. Opin. Investig. Drugs. 2008;17(10):1573–1580. DOI:10.1517/13543784.17.10.1573.; Barbanti P., Egeo G., Aurilia C., Fofi L., Della-Morte D. Drugs targeting nitric oxide synthase for migraine treatment. Expert. Opin. Investig. Drugs. 2014;23(8):1141–1148. DOI:10.1517/13543784.2014.918953.; Ott C., Bosch A., Winzer N., Friedrich S., Schinzel R., Tegtmeier F. et al. Effects of the nitric oxide synthase inhibitor ronopterin (VAS203) on renal function in healthy volunteers. Br. J. Clin. Pharmacol. 2019;85(5):900–907. DOI:10.1111/bcp.13870.; https://www.sibjcem.ru/jour/article/view/1710
-
6Academic Journal
المؤلفون: S. V. Timofeeva, A. O. Sitkovskaya, I. A. Novikova, M. A. Ezhova, E. P. Lysenko, O. I. Kit
المصدر: Медицинская иммунология, Vol 23, Iss 3, Pp 483-496 (2021)
مصطلحات موضوعية: car-t-терапия, глиобластома, клинические испытания, il-13r α2, her2, egfrviii, Immunologic diseases. Allergy, RC581-607
وصف الملف: electronic resource
-
7Academic Journal
المؤلفون: A. L. Khokhlov, D. Yu. Belousov
المصدر: Качественная клиническая практика, Vol 0, Iss 1, Pp 70-84 (2021)
مصطلحات موضوعية: биомедицинские исследования, искусственный интеллект, системы искусственного интеллекта, технологии искусственного интеллекта, клинические испытания, этическая экспертиза, медицинские изделия, нейронная сеть, глубокое машинное обучение, большие данные, экспериментальный правовой режим, программное обеспечение, программные медицинские изделия, Medical technology, R855-855.5, Pharmacy and materia medica, RS1-441
وصف الملف: electronic resource
-
8Academic Journal
المؤلفون: A. Koterov N., O. Tikhonova A., L. Ushenkova N., A. Biryukov P., А. Котеров Н., О. Тихонова А., Л. Ушенкова Н., А. Бирюков П.
المساهمون: Within the broader budget research theme of the FMBA of Russia., В рамках более широкой бюджетной темы НИР ФМБА России.
المصدر: FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology; Vol 14, No 4 (2021); 593-631 ; ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология; Vol 14, No 4 (2021); 593-631 ; 2070-4933 ; 2070-4909
مصطلحات موضوعية: history of experimental medicine, clinical trials, alternate allocation, quasi-randomized and randomized controlled trials, история экспериментальной медицины, клинические испытания, распределение чередованием, квазирандомизированные и рандомизированные контролируемые испытания
وصف الملف: application/pdf
Relation: https://www.pharmacoeconomics.ru/jour/article/view/633/408; Котеров А.Н., Тихонова О.А., Ушенкова Л.Н., Бирюков А.П. История контролируемых испытаний в медицине: реальные приоритеты малоизвестны. Сообщение 1. Основные понятия, термины и дисциплины, использующие медицинский эксперимент: их исторические и философские истоки. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2021; 14 (1): 72–98. https://doi.org/10.17749/2070-4909/farmakoekonomika.2021.059.; Котеров А.Н., Тихонова О.А., Ушенкова Л.Н., Бирюков А.П. История контролируемых испытаний в медицине: реальные приоритеты малоизвестны. Сообщение 2. От ранних экспериментов до наших дней: без чередования и рандомизации. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2021; 14 (3): 423–44. https://doi.org/10.17749/2070-4909/farmakoekonomika.2021.062.; Arditi C., Burnand B., Peytremann-Bridevaux I. Adding nonrandomised studies to a Cochrane review brings complementary information for healthcare stakeholders: an augmented systematic review and meta-analysis. BMC Health Serv Res. 2016; 16 (1): 598. https://doi.org/10.1186/s12913-016-1816-5.; Mayer D. Essential evidence-based medicine. 2nd ed. Cambridge University Press; 2010: 442 p. URL: https://www.yumpu.com/en/document/read/56834431/dan-mayer-essential-evidence-basedmedicine (дата обращения 11.04.2021).; Jadad A.R., Enkin M.W. Randomized controlled trials. Questions, answers, and musings. 2nd ed. Malden, Oxford, Carlton: BMJ Books; 2007: 136 pp.; Bickman L., Reich S.M. Randomized controlled trials: a gold standard or gold plated? In: Christie C.A., Donaldson S.I., Mark M.M. (Eds.) Credible and actionable evidence: the foundation for rigorous and influential evaluations. 2nd ed. Los Angeles: SAGE Publications; 2015: 83–113. https://doi.org/10.4135/9781483385839.n7.; Alexander P. Atomic radiation and life. London: Penguin Books; 1957: 239 pp.; Kohn H.I., Kallman R.F. The influence of strain on acute X-ray lethality in the mouse: I. LD50 and death rate studies. Radiat Res. 1956; 5 (4): 309–17.; Gordis L. Epidemiology. 5th ed. Philadelphia: Saunders Elsevier Inc.; 2014: 392 pp.; Schulz K.F. Subverting randomization in controlled trials. J Am Med Assoc. 1995; 274 (18): 1456–8. https://doi.org/10.1001/jama.1995.03530180050029.; Schulz K.F., Grimes D.A. Allocation concealment in randomised trials: defending against deciphering. Lancet. 2002; 359 (9306): 614–8. https://doi.org/10.1016/S0140-6736(02)07750-4.; Vandenbroucke J.P. When are observational studies as credible as randomised trials? Lancet. 2004; 363 (9422): 1728–31. https://doi.org/10.1016/S0140-6736(04)16261-2.; Мелихов О.Г. Клинические исследования. 3-е изд. М.: Атмосфера; 2013: 200 с.; Bell J.A. Pertussis prophylaxis with two doses of alum-precipitated vaccine. Public Health Rep. 1941; 56 (31): 1535–46. https://doi.org/10.2307/4583816.; Medical Research Council. Prevention of whooping-cough by vaccination; a Medical Research Council investigation. Br Med J. 1951; 1 (4721): 1463–71. https://doi.org/10.1136/bmj.1.4721.1463.; Medical Research Council. Streptomycin treatment of pulmonary tuberculosis: a Medical Research Council investigation. Brit Med J. 1948; 2 (4582): 769–82. https://doi.org/10.1136/bmj.2.4582.769.; Quasi-randomised trial. European Patients' Academy (EUPATY). Glossary. URL: https://toolbox.eupati.eu/glossary/quasi-randomisedtrial/ (дата обращения 11.04.2021).; Власов В.В. Эпидемиология: учебное пособие. 2-е изд. М.: ГЭОТАР-Медиа; 2006: 464 с.; Davidson I., Hillier V.F. Comparison of four methods of allocation for clinical trials with small sample sizes. Physiotherapy. 2002; 88 (12): 722–9. https://doi.org/10.1016/S0031-9406(05)60715-8.; Deeks J.J., Dinnes J., D’Amico R., et al. Evaluating non-randomised intervention studies. Health Technol Assess. 2003; 7 (27): iii–x, 1–173. https://doi.org/10.3310/hta7270.; Piantadosi S. Clinical trials: a methodologic perspective. 2nd ed. Hoboken, New Jersey: John Wiley & Sons Inc.; 2005: 687 pp.; Howick J. The philosophy of evidence-based medicine. Chichester: Wiley-Blackwell; 2011: 248 pp.; Chalmers I., Dukan E., Podolsky S., Davey Smith G. The advent of fair treatment allocation schedules in clinical trials during the 19th and early 20th centuries. J R Soc Med. 2012; 105 (5): 221–7. https://doi.org/10.1258/jrsm.2012.12k029.; Bland M. Randomisation methods. URL: https://www-users.york.ac.uk/~mb55/msc/trials/howrand.htm (дата обращения 11.04.2021).; Pai M. Randomized controlled trials. In: Fundamentals of epidemiology. Lections. Montreal, Canada: McGill University; 2014. URL: https://www.teachepi.org/courses/fundamentals-of-epidemiology/ (дата обращения 11.04.2021).; Altman D.G. Randomisation. Essential for reducing bias. Brit Med J. 1991; 302 (6791): 1481–2. https://doi.org/10.1136/bmj.302.6791.1481.; Juni P., Altman D.G., Egger M. Systematic reviews in health care: assessing the quality of controlled clinical trials. Brit Med J. 2001; 323 (7303): 42–6. https://doi.org/10.1136/bmj.323.7303.42.; Wyckoff J., DuBois E.F., Woodruff I.O. The therapeutic value of digitalis in pneumonia. J Am Med Assoc. 1930; 95 (17): 1243–9. https://doi.org/10.1001/jama.1930.02720170025006.; Chalmers I. UK Medical Research Council and multicentre clinical trials: from a damning report to international recognition. J R Soc Med. 2013; 106 (12): 498–509. https://doi.org/10.1177/0141076813510452.; Хилл Бредфорд А. Основы медицинской статистики. 6-е изд. М.: Медгиз; 1958: 306 с.; Bondemark L., Ruf S. Randomized controlled trial: the gold standard or an unobtainable fallacy? Eur J Orthod. 2015; 37 (5): 57– 61. https://doi.org/10.1093/ejo/cjv046.; Гетше П. Смертельно опасные лекарства и организованная преступность: как большая фарма коррумпировала здравоохранение. М.: Издательство «Э»; 2016: 464 с.; Голдакр Б. Обман в науке. М.: Эксмо; 2010: 368 с.; Авксентьева М.В. Контролируемый эксперимент в медицине. Медицинские технологии. Оценка и выбор. 2011; 3: 88–93.; Chalmers I. Why the 1948 MRC trial of streptomycin used treatment allocation based on random numbers. J R Soc Med. 2011; 104 (9): 383–6. https://doi.org/10.1258/jrsm.2011.11k023.; Van Helmont J.B. Ortus medicinæ: Id est Initia physicæ inaudita. Progressus medicinæ novus, in morborum ultionem, ad vitam longam. Amsterodami: Apud Ludovicum Elzevirium; 1648: 526–7 (на лат. яз.). URL: https://www.jameslindlibrary.org/van-helmont-jb-1648/ (дата обращения 11.04.2021).; Donaldson I.M. Mesmer's 1780 proposal for a controlled trial to test his method of treatment using ‘animal magnetism’. J R Soc Med. 2005; 98 (12): 572–5. https://doi.org/10.1258/jrsm.98.12.572.; Morabia A. P.C.A. Louis and the birth of clinical epidemiology. J Clin Epidemiol. 1996; 49 (12): 1327–33. https://doi.org/10.1016/s0895-4356(96)00294-6.; Splawa-Neyman J., Dabrowska D.M., Speed T.P. On the application of probability theory to agricultural experiments: essay on principles. Section 9. Statist Sci. 1990; 5 (4): 465–72. https://doi.org/10.1214/ss/1177012031.; Fisher R.A. The arrangement of field experiments. Journal of the Ministry of Agriculture. 1926; 33: 503–13. https://doi.org/10.23637/rothamsted.8v61q.; Lesassier Hamilton A. Dissertatio medica lnauguralis de synocho castrensi. Edinburgh: J. Ballantyne; 1816 (на лат. яз.).; Milne I., Chalmers I. Alexander Lesassier Hamilton's 1816 report of a controlled trial of bloodletting. J R Soc Med. 2015; 108 (2): 68–70. https://doi.org/10.1177/0141076814566587.; Rosner L. The most beautiful man in existence: the scandalous life of Alexander Lesassier. Philadelphia: University of Pennsylvania Press; 1999: 284 pp.; Van den Broeck J., Brestoff J.R. (Eds.) Epidemiology: principles and practical guidelines. Dordrecht: Springer; 2013: 621 pp.; Брико Н.И., Полибин Р.В., Миндлина А.Я. Клиническая эпидемиология: история становления и перспективы развития. Медицинский альманах. 2012; 3: 28–31.; Петренко А. С миру по нитке: как соединились компоненты клинического исследования. URL: https://biomolecula.ru/articles/s-miru-po-nitke-kak-soedinilis-komponenty-klinicheskogoissledovaniia (дата обращения 28.06.2020).; Всемирная история клинических исследований. Clinical-Trial.ru. Клинические исследования в Российской Федерации. Центр исследований. 2007. URL: http://clinical-trials.ru/8.html (дата обращения 13.01.2020).; Спасов А.А., Черников М.В. Основы доказательной медицины. Лекарственный вестник. 2007; 4 (1): 4–12.; Сергиенко В.И., Бондарева И.Б. Математическая статистика в клинических исследованиях. М.: ГЭОТАР-Медиа; 2006: 304 с.; O’Cathain A. A practical guide qualitative research with randomized controlled trials. Oxford: Oxford University Press; 2018: 224 pp.; Hrobjartsson B., Gotzsche P.C., Gluud C. The controlled clinical trial turns 100 years: Fibiger’s trial of serum treatment of diphtheria. Brit Med J.1998; 317 (7167): 1243–5. https://doi.org/10.1136/bmj.317.7167.1243.; Edwards M.V. Control and the therapeutic trial, 1918–1948. MD thesis. University of London; 2004: 142 pp. URL: https://www.jameslindlibrary.org/wp-data/uploads/2014/05/edwards-2004.pdf (дата обращения 11.04.2021).; Варшавский С.Ю. Кто был первым? Международный журнал медицинской практики. 2005; 4: 12–3.; Opinel A., Gachelin G. French 19th century contributions to the development of treatments for diphtheria. J R Soc Med. 2011; 104 (4): 173–8. https://doi.org/10.1258/jrsm.2010.10k069.; Medical Research Council Therapeutic Trials Committee. The serum treatment of lobar pneumonia. Br Med J. 1934; 1 (3814): 241–5. https://doi.org/10.1016/S0140-6736(00)43968-1.; Medical Research Council. Clinical trial of patulin in the common cold. Lancet. 1944; 244 (6316): 373–5. https://doi.org/10.1016/S0140-6736(00)45330-4.; Herdan G. Statistics of therapeutic trials. Amsterdam: Elsevier; 1955: 383 pp.; Johnson T. Textbooks and other publications on controlled clinical trials, 1948 to 1983. J R Soc Med. 2019; 112 (10): 438–41. https://doi.org/10.1177/0141076819878968.; Paterson R. Clinical trials in malignant disease. I. Principles of random selection. J Fac Radiol. 1958; 9 (2): 80–3. https://doi.org/10.1016/s0368-2242(58)80019-6.; Paterson R., Russell M.J. Clinical trials in malignant disease. Part III. J Fac Radiol. 1959; 10 (4): 175–80. https://doi.org/10.1016/S0368-2242(59)80048-8.; Park W.H., Bullowa J.G.M., Rosenbluth N.M. The treatment of lobar pneumonia with refined specific antibacterial serum. J Am Med Assoc. 1928; 91 (20): 1503–8. https://doi.org/10.1001/jama.1928.02700200001001.; Hart J.T. Cochrane Lecture 1997. What evidence do we need for evidence based medicine? J Epidemiol Community Health. 1997; 51 (6): 623–9. https://doi.org/10.1136/jech.51.6.623.; Donaldson I. George Starkey's 1658 challenge to Galenists to compare their treatment results with his. J R Soc Med. 2017; 110 (7): 292–4. https://doi.org/10.1177/0141076817719816.; Kaptchuk T.J., Kerr C.E., Zanger A. Placebo controls, exorcisms, and the devil. Lancet. 2009; 374 (9697): 1234–5. https://doi.org/10.1016/s0140-6736(09)61775-x.; Талантов П. 0,05. Доказательная медицина от магии до поисков бессмертия. Москва: Corpus; 2019: 769 с.; Dean M.E. ‘An innocent deception’: placebo controls in the St. Petersburg homeopathy trial, 1829–1830. J R Soc Med. 2006; 99 (7): 375–6. https://doi.org/10.1258/jrsm.99.7.375.; Lilienfeld A.M. The Fielding H. Garrison Lecture: Ceteris paribus: the evolution of the clinical trial. Bull Hist Med. 1982; 56 (1): 1–18.; Louis P.C.A. Researches on the effects of bloodletting in some inflammatory diseases and on the influence of tartarked antimony and vesication in pneumonitis. Boston: Hilliard & Gray; 1836: 208 pp.; Bull J.P. A study of the history and principles of clinical therapeutic trials. MD thesis. University of Cambridge; 1951: 80 pp. URL: https://www.jameslindlibrary.org/wp-data/uploads/2014/05/bull-19511.pdf (дата обращения 11.04.2021).; Kaptchuk T.J. Early use of blind assessment in a homeopathic scientific experiment. JLL Bulletin: Commentaries on the history of treatment evaluation; 2004. URL: https://www.jameslindlibrary.org/articles/early-use-of-blind-assessment-in-a-homeopathic-scientificexperiment/ (дата обращения 11.04.2021).; Kaptchuk T.J. A brief history of the evolution of methods to control of observer biases in tests of treatments. JLL Bulletin Commentaries on the history of treatment evaluation; 2011. URL: https://www.jameslindlibrary.org/articles/a-brief-history-of-the-evolutionof-methods-to-control-of-observer-biases-in-tests-of-treatments/ (дата обращения 11.04.2021).; Armitage P. The role of randomization in clinical trials. Stat Med. 1982; 1 (4): 345–52. https://doi.org/10.1002/sim.4780010412.; Peirce C.S., Jastrow J. On small differences of sensation. National Academy of Sciences Memoirs. 1884; 43 (1): 75–83.; Lind J. A treatise of the scurvy. In three parts. Containing an inquiry into the nature, causes and cure, of that disease. Together with a critical and chronological view of what has been published on the subject. Edinburgh: A. Kincaid and A. Donaldson; 1753. Classic Reprint. Forgotten Books; 2018: 508 pp.; Chalmers I. Why transition from alternation to randomisation in clinical trials? Brit Med J. 1999; 319: (7221): 1372. https://doi.org/10.1136/bmj.319.7221.1372.; Gotzsche P.C. Niels Finsen's treatment for lupus vulgaris. J R Soc Med. 2011; 104 (1): 41–2. https://doi.org/10.1258/jrsm.2010.10k066.; Edwards M. Dora Colebrook and the evaluation of light therapy. J R Soc Med.2011; 104 (2): 84–6. https://doi.org/10.1258/jrsm.2010.10k067.; Colebrook D. Report of the work at the North Islington Infant Welfare Centre Light Department. 3 March, FD1/5052. National Archive in Kew, London; 1925.; Colebrook D. Irradiation and health. Medical Research Council Special Report Series No. 131. JLL; 1929. URL: https://www.jameslindlibrary.org/colebrook-d-1929/ (дата обращения 11.04.2021).; Marks H.M. James Angus Doull and the well-controlled common cold. J R Soc Med. 2008; 101 (10): 517–9. https://doi.org/10.1258/jrsm.2008.08k009.; The James Lind Library. 2.2. The need to compare like-with-like in treatment comparisons. URL: https://www.jameslindlibrary.org/essays/2-2-the-need-to-compare-like-with-like-in-treatmentcomparisons/ (дата обращения 11.04.2021).; Maher C.G., Moseley A.M., Sherrington C., et al. A description of the trials, reviews, and practice guidelines indexed in the PEDro database. Phys Ther. 2008; 88 (9): 1068–77. https://doi.org/10.2522/ptj.20080002.; Kumar S.P. Physical therapy: past, present and future – a paradigm shift. J Phys Ther. 2010; 1 (2): 58–67.; Carter S. The medicalization of sunlight in the early twentieth century. J Hist Sociol. 2012; 25 (1): 83–105. https://doi.org/10.1111/j.1467-6443.2011.01405.x.; Sam A. Investigating the quality and epidemiology of surgical trials. PhD thesis. South Western Sydney Clinical School Faculty of Medicine, University of New South Wales, Sydney, Australia; 2014; 346 pp. URL: http://unsworks.unsw.edu.au/fapi/datastream/unsworks:12219/SOURCE02?view=true (дата обращения 11.04.2021).; Jamison J.C. The entry of randomized assignment into the social sciences. J Causal Infer. 2019; 7 (1): 20170025. https://doi.org/10.1515/jci-2017-0025.; Doull J.A., Hardy M., Clark J.H., Herman N.B. The effect of irradiation with ultra-violet light on the frequency of attacks of upper respiratory disease (common colds). Am J Hyg. 1931; 13 (2): 460–77. https://doi.org/10.1093/oxfordjournals.aje.a117130.; Gallin J.I., Ognibene F.P. (Eds.) Principles and practice of clinical research. 3rd ed. Elsevier, Academic Press; 2018: 806 pp.; Kulkarni K., Harrison J., Baguneid M., Prendergast B. (Eds.) Oxford handbook of key clinical evidence. 2nd ed. Oxford: Oxford University Press; 2016: 949 pp.; Marks H.M. The Kendrick–Eldering–(Frost) pertussis vaccine field trial. J R Soc Med. 2007; 100 (5): 242–7. https://doi.org/10.1177/014107680710000516.; Amberson J.B., McMahon B.T., Pinner M.A. A clinical trial of sanocrysin in pulmonary tuberculosis. Am Rev Tuber. 1931; 24 (4): 401–35.; Armitage P. History of randomised controlled trials. Lancet. 1972; 1 (7765): 1388. https://doi.org/10.1016/s0140-6736(72)91110-5.; Neuhauser D., Diaz M. Shuffle the deck, flip that coin: randomization comes to medicine. Qual Saf Health Care. 2004; 13 (4): 315–6. https://doi.org/10.1136/qhc.13.4.315.; Williams L.S. Randomized controlled trials: methodology, outcomes, and interpretation. In: Blue books of practical neurology. Chapter 1. 2001; 25: 1–26. https://doi.org/10.1016/S1877-3419(09)70008-X.; McCord J. A thirty year follow-up of treatment effects. Am Psychol. 1978; 33 (3): 284–9. https://doi.org/10.1037//0003-066x.33.3.284.; Gill D.B.E. Early controlled trials. Randomised mental health trial began in 1935. Brit Med J. 1996; 312 (7041): 1298. https://doi.org/10.1136/bmj.312.7041.1298.; Hall S.S. Behaviour and biology: the accidental epigeneticist. Nature. 2014; 505 (7481): 14–7. https://doi.org/10.1038/505014a.; Theobald G.W. Effect of calcium and vitamin A and D on incidence of pregnancy toxaemia. Lancet. 1937; 229 (5937): 1397–9. https://doi.org/10.1016/S0140-6736(00)83249-3.; Silverman W.A., Chalmers I. Casting and drawing lots: a time honoured way of dealing with uncertainty and ensuring fairness. Brit Med J.2001; 323 (7327): 1467–8. https://doi.org/10.1136/bmj.323.7327.1467.; Olsen S.F. Use of randomisation in early clinical trials. Theobald's trial in 1936 incorporated some aspects of randomization. Brit Med J. 1999; 318 (7194): 1352.; Olsen S.F. The People's League of health trial. J R Soc Med. 2006; 99 (1): 44–5. https://doi.org/10.1258/jrsm.99.1.44.; Hill A.B. Principles of medical statistics. I. The aim of the statistical method; and General summary and conclusions. Lancet. 1937; 1: 41–3, 883–5.; Hill A.B. Principles of medical statistics. London: The Lancet Ltd.; 1937: 171 pp.; Gaddum J.H. Therapeutic trials on man (chapter). In: Pharmacology. London: Oxford University Press; 1940: 378–83.; Marson Smith P., Colquhoun D., Chalmers I. John Henry Gaddum's 1940 guidance on controlled clinical trials. J R Soc Med. 2019; 112 (9): 394–400. https://doi.org/10.1177/0141076819870674.; Chalmers I. Joseph Asbury Bell and the birth of randomized trials. J R Soc Med. 2007; 100 (6): 287–93. https://doi.org/10.1177/014107680710000616.; Bell J.A. The epidemiological principles and procedures involved in a study of the prophylactic value of an alum-precipitated mixture of diphtheria toxoid and pertussis vaccine. PhD thesis. School of Hygiene and Public Health of the Johns Hopkins University; 1948: 101 pp. URL: https://www.jameslindlibrary.org/wp-data/uploads/2014/06/Bell-1948a-whole-article.pdf (дата обращения 11.04.2021).; Bell J.A. Pertussis immunization; use of two doses of an alumprecipitated mixture of diphtheria toxoid and pertussis vaccine. J Am Med Assoc. 1948; 137 (15): 1276–81. https://doi.org/10.1001/jama.1948.02890490004002.; Hill A.B. The clinical trial. Br Med Bull. 1951; 7 (4): 278–82. https://doi.org/10.1093/oxfordjournals.bmb.a073919.; Hill A.B. Suspended judgment. Memories of the British streptomycin trial in tuberculosis: the first randomized clinical trial. Control Clin Trials. 1990; 11 (2): 77–9. https://doi.org/10.1016/0197-2456(90)90001-i.; Jefferson T. Why the MRC randomized trials of whooping cough (pertussis) vaccines remain important more than half a century after they were done. J R Soc Med. 2007; 100 (7): 343–5. https://doi.org/10.1177/014107680710000720.; Furberg C.D. How should one analyse and interpret clinical trials in which patients don't take the treatments assigned to them? J R Soc Med. 2010; 103 (5): 202–4. https://doi.org/10.1258/jrsm.2009.09k074.; Manzi J. Uncontrolled: the surprising payoff of trial-and-error for business, politics, and society. Basic Books; 2012: 320 pp.; Farewell V., Johnson T. Major Greenwood and clinical trials. J R Soc Med.2017; 110 (11): 452–7. https://doi.org/10.1177/0141076817736028.; Fowke H. The effect of supplements of vitamins and minerals on the health of girls. Br Med J. 1943; 2 (4320): 519. https://doi.org/10.1136/bmj.2.4320.519.; Hinshaw H.C., Feldman W.H. Evaluation of chemotherapeutic agents in clinical trials: a suggested procedure. Am Rev Tuberc. 1944; 50: 202–13. URL: https://www.jameslindlibrary.org/hinshaw-hcfeldman-wh-1944/ (дата обращения 11.04.2021).; Feinstein A.R. Clinical epidemiology: The architecture of clinical research. Philadelphia etc.: W.B. Saunders Company; 1985: 812 pp.; Vandenbroucke J.P. A short note on the history of the randomized controlled trial. J Chronic Dis. 1987; 40 (10): 985–7. https://doi.org/10.1016/0021-9681(87)90149-4.; Yoshioka A. Use of randomisation in the Medical Research Council's clinical trial of streptomycin in pulmonary tuberculosis in the 1940s. Brit Med J. 1998; 317 (7167): 1220–3. https://doi.org/10.1136/bmj.317.7167.1220.; Meldrum M.L. A brief history of the randomized controlled trial. From oranges and lemons to the gold standard. Hematol Oncol Clin North Am. 2000; 14 (4): 745–60. https://doi.org/10.1016/s0889-8588(05)70309-9.; Hinshaw H.C., Pyle M.M., Feldman W.H. Streptomycin in tuberculosis. Am J Med. 1947; 2 (5): 429–35. https://doi.org/10.1016/0002-9343(47)90087-9.; Kerantzasa C.A., Jacobs W.R. Origins of combination therapy for tuberculosis: lessons for future antimicrobial development and application. mBio. 2017; 8 (2): e01586–e015816. https://doi.org/10.1128/mBio.01586-16.; Hinshaw H.C., Feldman W.H. Streptomycin in treatment of clinical tuberculosis: a preliminary report. Proc Staff Meet Mayo Clin. 1945; 20: 313–8.; Hinshaw H.C., Pfuetze K.H., Feldman W.H. Chemotherapy of clinical tuberculosis with promin; p,p’-diaminodiphenylsulfone-N,Ndidextrose sulfonate; a second record in progress. Am Rev Tuberc. 1944; 50: 52–7.; Hill A.B. Medical ethics and controlled trials. Br Med J. 1963; 1 (5337): 1043–9. https://doi.org/10.1136/bmj.1.5337.1043.; Hill A.B. Reflections on the controlled trial. Ann Rheum Dis. 1966; 25 (2): 107–13. https://doi.org/10.1136/ard.25.2.107.; Hill A.B. Medical Research Council 1487, VI: A. Serum treatment of pneumonia. 22 December 1933. In: Austoker J., Bryder L. (Eds.) The National Institute for Medical Research and Related Activities of the MRC. In: Austoker J., Bryder L. (Eds.) Historical perspectives on the role of the MRC. Oxford: Oxford University Press; 1989: 35–57.; Armitage P. Obituary: Sir Austin Bradford Hill, 1897–1991. J R Statist Soc A. 1991; 154 (Pt. 3): 482–4.; Hill B.A. The environment and disease: association or causation? Proc R Soc Med. 1965; 58 (5): 295–300. https://doi.org/10.1177/0141076814562718.; Chalmers I. Statistical theory was not the reason that randomisation was used in the British Medical Research Council’s clinical trial of streptomycin for pulmonary tuberculosis. In: Jorland G., Opinel A., Weisz G. (Eds.) Body counts: medical quantification in historical and sociological perspectives. Montreal: McGill-Queens University Press; 2005: 309–34.; Bryder L. The Medical Research Council and clinical trial methodologies before the 1940s: the failure to develop a ‘scientific’ approach. J R Soc Med. 2011; 104 (8): 335–43. https://doi.org/10.1258/jrsm.2011.11k021.; Schulz K.F., Chalmers I., Altman D.G., et al. ‘Allocation concealment’: the evolution and adoption of a methodological term. J R Soc Med. 2018; 111 (6): 216–24. https://doi.org/10.1177/0141076818776604.; Susser M. Epidemiology in the United States after World War II: the evolution of technique. Epidemiol Rev. 1985; 7: 147–77. https://doi.org/10.1093/oxfordjournals.epirev.a036280.; Susser M., Stein Z. Eras in epidemiology: the evolution of ideas. New York: Oxford University Press; 2009: 368 pp.; Marks H.M. The progress of experiment: science and therapeutic reform in the United States, 1900–1990. Cambridge: Cambridge University Press; 2000: 272 pp.; Modjarrad K. A changing paradigm for medical research: the evolution of the clinical trial. Hektoen International Journal (A Journal of Medical Humanities). 2013; 5 (4). URL: https://hekint.org/2017/02/01/a-changing-paradigm-for-medical-research-theevolution-of-the-clinical-trial/ (дата обращения 11.04.2021).; D’Arcy Hart P. A change in scientific approach: from alternation to randomised allocation in clinical trials in the 1940s. Brit Med J. 1999; 319 (7209): 572–3. https://doi.org/10.1136/bmj.319.7209.572.; Hart P.D. Randomised controlled clinical trials. Brit Med J. 1991; 302 (6787): 1271–2. https://doi.org/10.1136/bmj.302.6787.1271-c.; Hart P.D. Early controlled clinical trials. Brit Med J. 1996; 312 (7027): 378–9. https://doi.org/10.1136/bmj.312.7027.378c.; Hopkins W.A. Patulin in the common cold. IV: Biological properties: extended trial in the common cold. Lancet. 1943; 242 (6273): 631–5. https://doi.org/10.1016/S0140-6736(00)88179-9.; Stuart-Harris C.H., Francis A.E., Stansfeld J.M. Patulin in the common cold. Lancet. 1943; 242 (6274): 684. https://doi.org/10.1016/S0140-6736(00)88238-0.; Evans A.S. Causation and disease: the Henle–Koch postulates revisited. Yale J Biol Med. 1976; 49 (2): 175–95.; Florey M.E. The clinical application of antibiotics. V. II. Streptomycin and other antibiotics active against tuberculosis. New York: Oxford University Press; 1961: 336 pp.; Clarke B., Gillies D., Illari P., et al. The evidence that evidencebased medicine omits. Prev Med. 2013; 57 (6): 745–7. https://doi.org/10.1016/j.ypmed.2012.10.020.; Doll R. Controlled trials: the 1948 watershed. Brit Med J. 1998; 317 (7167): 1217–20. https://doi.org/10.1136/bmj.317.7167.1217.; Doll R. Clinical trials: retrospect and prospect. Stat Med. 1982; 1 (4): 337–44. https://doi.org/10.1002/sim.4780010411.; Nellhaus E.M., Davies T.H. Evolution of clinical trials throughout history. Marshall Journal of Medicine (Marshall University). 2017; 3 (1, Article 9): 41–8. http://dx.doi.org/10.18590/mjm.2017.vol3.iss1.9.; Concato J., Shah N., Horwitz R.I. Randomized, controlled trials, observational studies, and the hierarchy of research designs. N Engl J Med. 2000; 342 (25): 1887–92. https://doi.org/10.1056/NEJM200006223422507.; Worrall J. Causality in medicine: getting back to the Hill top. Prev Med. 2011; 53 (4–5): 235–8. https://doi.org/10.1016/j.ypmed.2011.08.009.; Green F.H. The clinical evaluation of remedies. Lancet. 1954; 267 (6848): 1085–90. https://doi.org/10.1016/s0140-6736(54)90649-2.; Day S. The development of clinical trials. In: Machin D., Day S., Green S. (Eds.) Textbook of Clinical Trials. 2nd ed. Chichester: John Wiley & Sons Ltd.; 2006: 3–11.; Lock S. The randomised controlled trial – a British invention. In: Lawrence G. (Ed.) Technologies of modern medicine. London: Science Museum; 1994: 81–7.; Bothwell L.E., Podolsky S.H. The emergence of the randomized, controlled trial. N Engl J Med. 2016; 375 (6): 501–4. https://doi.org/10.1056/NEJMp1604635.; Bhatt A. Evolution of clinical research: a history before and beyond James Lind. Perspect Clin Res. 2010; 1 (1): 6–10.; Cingi C., Muluk N.B. Quick guide to good clinical practice: how to meet international quality. Switzerland: Springer International Publishing; 2017: 255 pp. https://doi.org/10.1007/978-3-319-44344-7.; Vandenbrouke J.P. Clinical investigation in the 20th century: the ascendancy of numerical reasoning. Lancet. 1998; 352 (Suppl. 2): SII12–SII16. https://doi.org/10.1016/s0140-6736(98)90293-8.; Wiedermann W., von Eye Hoboken A. (Eds.) Statistics and causality: methods for applied empirical research. New Jersey: John Wiley & Sons Inc.; 2016: 438 pp.; Tyler D.B. The influence of a placebo, body position and medication on motion sickness. Am J Pysiol. 1946; 146: 458–66. https://doi.org/10.1152/ajplegacy.1946.146.3.458.; Colebrook D. Artificial sunlight in industry. London: HMSO; 1946. URL: https://www.jameslindlibrary.org/colebrook-d-1946/ (дата обращения 11.04.2021).; Robinson M. Hormonal treatment of deficient lactation; results with crude anterior-pituitary extract. Lancet. 1947; 2 (6464): 90–2. https://doi.org/10.1016/s0140-6736(47)90244-4.; Robinson M. Hormones and lactation: hormones and lactation: dried thyroid gland. Lancet. 1947; 2 (6464): 385–7. https://doi.org/10.1016/s0140-6736(47)90373-5.; Clarke M. Early controlled trials . but ‘quasirandom allocation’ of treatment was reported in 1930. Br Med J. 1996; 312 (7041): 1298. https://doi.org/10.1136/bmj.312.7041.1298a.; Harrison S.H., Topley E., Lennard-Jones J. The value of systemic penicillin in finger pulp infections: a controlled trial of 169 cases. Lancet. 1949; 1 (6550): 425–30. https://doi.org/10.1016/s0140-6736(49)90752-7.; Doll R., Pygott F. Factors influencing the rate of healing of gastric ulcers: admission to hospital, phenobarbitone, and ascorbic acid. Lancet. 1952; 1 (6700): 171–5. https://doi.org/10.1016/s0140-6736(52)91405-0.; Doull J.A. Clinical evaluation studies in lepromatous leprosy. First series: diasone (Diamidin, 4-4’-Diaminodiphenyl sulfone, dihydrostreptomycin). Int J Leprosy. 1954; 22: 377–402.; Francis T. Jr., Korns R., Voight R., et al. An evaluation of the 1954 poliomyelitis vaccine trials: summary report. Am J Public Health Nations Health. 1955; 45 (5 Pt. 2): 1–63. https://doi.org/10.1001/jama.1955.02960140028004.; Meldrum M. ‘A calculated risk’: the Salk polio vaccine field trials of 1954. Br Med J. 1998; 317 (7167): 1233–6. https://doi.org/10.1136/bmj.317.7167.1233.; Chalmers T.C., Eckhart R.D., Reynolds W.E., et al. The treatment of acute infectious hepatitis. Controlled studies of the effects of diet, rest, and physical reconditioning on the acute course of the disease and on the incidence of relapses and residual abnormalities. J Clin Invest. 1955; 34 (7 Pt. II): 1163–235. https://doi.org/10.1172/JCI103164.; Doll R. Controlled trials testing two or more treatments simultaneously. J R Soc Med. 2005; 98 (10): 479–80. https://doi.org/10.1258/jrsm.98.10.479.; Herdan G. Statistics of therapeutic trials. Amsterdam: Elsevier; 1955: 383 pp. URL: https://www.jameslindlibrary.org/wp-data/uploads/2019/04/1-Gustav-Herdan-1955-1.pdf (дата обращения 11.04.2021).; Report of a Symposium on Clinical Trials held at the Royal Society of Medicine, London, on Friday, April 25th, 1958. Folkstone, Kent, England: Pfizer Ltd.; 1958.; Mainland D. The clinical trial – some difficulties and suggestions. J Chronic Dis. 1960; 11 (5): 484–96. https://doi.org/10.1016/0021-9681(60)90013-8.; Modell W., Garrett M. Interactions between pharmacodynamic and placebo effects in drug evaluations in man. Nature. 1960; 185 (4712): 538–9. https://doi.org/10.1038/185538a0.; Grin E.I. A controlled trial of home versus hospital treatment of tinea capitis with griseofulvin. Bull World Health Organ. 1965; 33 (2): 193–6.; Brass C.T., Nunez-Neto B., Williams E.D. CRS Report for Congress. Congress and program evaluation: an overview of randomized controlled trials (RCTs) and related issues. March 7, 2006. URL: https://digital.library.unt.edu/ark:/67531/metacrs9145/ (дата обращения 11.04.2021).; Altman D.G., Dore C.J. Randomisation and baseline comparisons in clinical trials. Lancet. 1990; 20; 335 (8682): 149–53. https://doi.org/10.1016/0140-6736(90)90014-v.; Sturmberg J.P. Evidence-based medicine – not a panacea for the problems of a complex adaptive world. J Eval Clin Pract. 2019; 25 (5): 1–11. https://doi.org/10.1111/jep.13122.; Krauss A. Why all randomised controlled trials produce biased results. Ann Med. 2018; 50 (4): 312–22. https://doi.org/10.1080/07853890.2018.1453233.; Реброва О.Ю., Федяева В.К., Хачатрян Г.Р. Адаптация и валидизация вопросника для оценки риска систематических ошибок в рандомизированных контролируемых испытаниях. Медицинские технологии. Оценка и выбор. 2015; 1: 9–17.; Шальнова С.А., Марцевич С.Ю. Российские клинические исследования в кардиологии. Вчера, сегодня, завтра. Рациональная фармакотерапия в кардиологии. 2010; 6 (4): 434–7. https://doi.org/10.20996/1819-6446-2010-6-4-434-437.; Jadad A.R., Moore R.A., Carroll D., et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials. 1996; 17 (1): 1–12. https://doi.org/10.1016/0197-2456(95)00134-4.; Sherrington C., Herbert R.D., Maher C.G., Moseley A.M. PEDro. A database of randomized trials and systematic reviews in physiotherapy. Man Ther. 2000; 5 (4): 223–6. https://doi.org/10.1054/math.2000.0372.; National Institutes of Health. U.S. National Library of Medicine. Map of all studies on ClinicalTrials.gov. URL: https://clinicaltrials.gov/ct2/search/map (дата обращения 10.04.2021).; Всемирная организация здравоохранения. Европейское региональное бюро. Европейский портал информации здравоохранения. Чиcло врачей на 100000 населения. URL: https://gateway.euro.who.int/ru/indicators/hfa_494-5250-physiciansper-100-000/ (дата обращения 23.07.2020).; Delouche C. Preclinical and nonclinical studies – what is the difference, and where in your program should they fall? July 29, 2020. URL: https://camargopharma.com/resources/blog/preclinical-andnonclinical-studies-what-is-the-difference-and-where-in-yourprogram-should-they-fall/ (дата обращения 11.04.2021).; Botker H.E., Hausenloy D., Andreadou I., et al. Practical guidelines for rigor and reproducibility in preclinical and clinical studies on cardioprotection. Basic Res Cardiol. 2018; 113 (5): 39. https://doi.org/10.1007/s00395-018-0696-8.; The European Patients’ Academy on Therapeutic Innovation (EUPATI). Non-clinical development: basic principles. Medicines R&D. URL: https://toolbox.eupati.eu/resources/non-clinical-developmentbasic-principles/ (дата обращения 11.04.2021).; Свистунов А.А. (ред.) Доклинические исследования лекарственных веществ: учебное пособие. М.: ГЭОТАР-Медиа; 2017: 383 с.; Миронов А.Н., Бунятин Н.Д., Васильева А.Н. и др. (ред.) Руководство по проведению доклинических исследований лекарственных средств. Часть 1. М.: Гриф и К.; 2012: 944 с.; Уласевич В. Доклинические исследования: понятие, назначение, руководство по проведению и порядок действий. 2018. URL: https://fb.ru/article/443231/doklinicheskie-issledovaniyaponyatie-naznachenie-rukovodstvo-po-provedeniyu-i-poryadokdeystviy (дата обращения 11.04.2021).; Министерство науки и высшего образования РФ. Федеральное государственное автономное образовательное учреждение высшего образования «Казанский (Приволжский) федеральный университет». Институт фундаментальной медицины и биологии. Программа дисциплины «Организация клинических и доклинических исследований лекарственных средств». 2019. URL: https://kpfu.ru/pdf/portal/oop/334871.pdf (дата обращения 11.04.2021).; Фармакопея.рф. Сайт о регистрации лекарственных средств в России. URL: https://pharmacopoeia.ru/obshhie-polozheniya/ (дата обращения 11.04.2021).; Ahrens W., Pigeot I. (Eds.) Handbook of epidemiology. 2nd ed. New York, Heidelberg, Dordrecht, London: Springer; 2014: 2498 pp.; Котеров А.Н., Ушенкова Л.Н., Бирюков А.П. Критерий Хилла «биологическое правдоподобие». Интеграция данных из различных дисциплин в эпидемиологии и радиационной эпидемиологии. Радиационная биология. Радиоэкология. 2020; 60 (5): 453–80. https://doi.org/10.31857/S0869803120050069.; Fedak K.M., Bernal A., Capshaw Z.A., Gross S. Applying the Bradford Hill criteria in the 21st century: how data integration has changed causal inference in molecular epidemiology. Emerg Themes Epidemiol. 2015; 12: 14. https://doi.org/10.1186/s12982-015-0037-4.; USEPA. Office of Pesticide Programs’ Framework for Incorporating Human Epidemiologic & Incident Data in Risk Assessments for Pesticides. December 28, 2016. URL: https://www3.epa.gov/pesticides/EPA-HQOPP-2008-0316-DRAFT-0075.pdf (дата обращения 11.04.2021).; Diggle G.E. Thalidomide: 40 years on. Int J Clin Pract. 2001; 55 (9): 627–31.; Jacobson R.M., Feinstein A.R. Oxygen as a cause of blindness in premature infants: ‘autopsy’ of a decade of errors in clinical epidemiologic research. J Clin Epidemiol. 1992; 45 (11): 1265–87.; Hollingsworth J.G., Lasker E.G. The case against differential diagnosis: Daubert, medical causation. Testimony, and the scientific method. Journal of Health Law. 2004; 37 (1): 85–111.; Suter G.W. II, Norton S., Cormier S. The science and philosophy of a method for assessing environmental causes. Hum Ecol Risk Assess. 2010; 16 (1): 19–34. https://doi.org/10.1080/10807030903459254.; IARC 2012. Radiation. A review of human carcinogens. Vol. 100 D. IARC monographs on the evaluation of carcinogenic risks to humans. Lyon, France; 2012: 341 pp.; USEPA. Guidelines for Carcinogen Risk Assessment. EPA/630/P-03/001B. – Washington, DC: Risk Assessment Forum. National Center for Environmental Assessment Office of Research and Development U.S. Environmental Protection Agency; 2005: 166 pp.; FDA 2015. Product development under the animal rule. Guidance for Industry. Animal Rule; 2015: 54 pp. URL: https://www.fda.gov/files/drugs/published/Product-Development-Under-the-Animal-Rule.pdf (дата обращения 11.04.2021).; Becker R.A., Dellarco V., Seed J., et al. Quantitative weight of evidence to assess confidence in potential modes of action. Regul Toxicol Pharmacol. 2017; 86: 205–20. https://doi.org/10.1016/j.yrtph.2017.02.017.; Townsend E.C., Murakami M.A., Christodoulou A., et al. The public repository of xenografts enables discovery and randomized phase II-like trials in mice. Cancer Cell. 2016; 29 (4): 574–86. https://doi.org/10.1016/j.ccell.2016.03.008.; Abdullahi A., Amini-Nik S., Jeschke M.G. Animal models in burn research. Cell Mol Life Sci. 2014; 71 (17): 3241–55. https://doi.org/10.1007/s00018-014-1612-5.; Tashiro J., Rubio G.A., Limper A.H., et al. Exploring animal nodels that resemble idiopathic pulmonary fibrosis. Front Med (Lausanne). 2017; 4: 118. https://doi.org/10.3389/fmed.2017.00118.; MacVittie T.J. The MCART consortium animal model series: MCART animal model refinement and MCM development: defining organ dose, organ-specific tissue imaging, model validation and the natural history between the acute radiation syndrome (ARS) and the delayed effects of acute radiation exposure (DEARE). Health Phys. 2015; 109 (5): 335–41. https://doi.org/10.1097/HP.0000000000000318.; Hirst J.A., Howick J., Aronson J.K., et al. The need for randomization in animal trials: an overview of systematic reviews. PLoS One. 2014; 9 (6): e98856. https://doi.org/10.1371/journal.pone.0098856.; Панчин А.Ю. Наука. Маленькие глупости с большими последствиями. URL: https://scinquisitor.livejournal.com/9724.html (дата обращения 11.04.2021).; Кабанов А. Путь к тысячам аптек начинается с одной молекулы URL: https://biomolecula.ru/articles/put-k-tysiachamaptek-nachinaetsia-s-odnoi-molekuly (дата обращения 11.04.2021).; Dohoo I.R. The design of randomized controlled trials of veterinary vaccines. Anim Health Res Rev. 2004; 5 (2): 235–38. https://doi.org/10.1079/ahr200474.; Селезнева А.И., Макарова М.Н., Рыбакова А.В. Методы рандомизации животных в эксперименте. Международный вестник ветеринарии. 2014; 2: 84–9.; Smith T.A., Kirkpatrick D.R., Smith S., et al. Radioprotective agents to prevent cellular damage due to ionizing radiation. J Transl Med. 2017; 15 (1): 232. https://doi.org/10.1186/s12967-017-1338-x.; Ma Q.S., Zhang X.M., Shen C.Y., et al. Magnetic resonance imaging for pancreatic ductal adenocarcinomas induced by N-nitrosobis (2-oxopropyl) amine in Syrian golden hamsters. Pancreas. 2012; 41 (5): 782–8. https://doi.org/10.1097/MPA.0b013e31823ba75a.; Greene J.S., Giddings N.A., Jacobson J.T. Effect of irradiation on guinea pig ABR thresholds. Otolaryngol Head Neck Surg. 1992; 107 (6 Pt. 1): 763–8. https://doi.org/10.1177/019459988910700610.1.; Du Z.Z., Ren H., Song J.F., et al. Rabbit model of radiation-induced lung injury. Asian Pac J Trop Med. 2013; 6 (3): 237–41. https://doi.org/10.1016/S1995-7645(13)60031-0.; Ching S.V., Gillette S.M., Powers B.E., et al. Radiation-induced ocular injury in the dog: a histological study. Int J Radiat Oncol Biol Phys. 1990; 19 (2): 321–8. https://doi.org/10.1016/0360-3016(90)90540-z.; Foubert P., Doyle-Eisele M., Gonzalez A., et al. Development of a combined radiation and full thickness burn injury minipig model to study the effects of uncultured adipose-derived regenerative cell therapy in wound healing. Int J Radiat Biol. 2017 93 (3): 340–50. https://doi.org/10.1080/09553002.2017.1242814.; Jackson I.L., Gibbs A., Poirier Y., et al. Hematological effects of non-homogenous ionizing radiation exposure in a non-human primate model. Radiat Res. 2019; 191 (5): 428–38. https://doi.org/10.1667/RR15280.1.; Macfadyen D.A., Murphy J.B. A method for the study of induced interference with transplantable tissue growth. J Exp Med. 1939; 70 (5): 461–73. https://doi.org/10.1084/jem.70.5.461.; Fisher R.A. The design of experiments. Edinburgh, London: Oliver and Boyd; 1935: 252 pp.; Webster L.T. The epidemiology of a rabbit respiratory infection. III. Nasal flora of a laboratory rabbits. J Exp Med. 1924; 39 (6): 857–77. https://doi.org/10.1084/jem.39.6.857.; Obituary Notices. Br Med J. 1966; 1 (5480): 173–7. https://doi.org/10.1136/bmj.1.5480.173.; https://www.pharmacoeconomics.ru/jour/article/view/633
-
9Conference
مصطلحات موضوعية: хроматографический анализ, масс-спектрометрический анализ, клинические испытания, лекарственные средства, болезни, лечение
وصف الملف: application/pdf
Relation: Химия и химическая технология в XXI веке : материалы XXII Международной научно-практической конференции студентов и молодых ученых имени выдающихся химиков Л. П. Кулёва и Н. М. Кижнера, посвященной 125-летию со дня основания Томского политехнического университета, Томск, 17-20 мая 2021 г. Т. 1. — Томск, 2021; Хроматографический и масс-спектрометрический анализ в доклинических и клинических испытаниях инновационного лекарственного средства для лечения болезни Паркинсона / К. А. Леонов, В. В. Быков, Д. А. Вишенкова, В. И. Павловский // Химия и химическая технология в XXI веке : материалы XXII Международной научно-практической конференции студентов и молодых ученых имени выдающихся химиков Л. П. Кулёва и Н. М. Кижнера, посвященной 125-летию со дня основания Томского политехнического университета, Томск, 17-20 мая 2021 г. : в 2 т. — Томск : Изд-во ТПУ, 2021. — Т. 1. — [С. 340-341].; http://earchive.tpu.ru/handle/11683/66246
-
10Academic Journal
المؤلفون: Гребиневич, Г. Б., Ткаченко, В. В., Хрустицкая, Л. Б.
مصطلحات موضوعية: материалы конференций, цифровая медицина, машинное обучение, клинические испытания, метод Накатани, информатизация здравоохранения
جغرافية الموضوع: Минск
وصف الملف: application/pdf
-
11Academic Journal
المؤلفون: Омонтошева Мухайё Турсунполатовна, Махмудова Мафтуна Мехрожовна, Нажмиддинов Хусан Бахритдинович, Бердимуродова Феруза Пирназаровна
المصدر: BOSHQARUV VA ETIKA QOIDALARI ONLAYN ILMIY JURNALI; Vol. 1 No. 5 (2021): SYNERGY: JOURNAL OF ETHICS AND GOVERNANCE; 6-9 ; 2181-2616
مصطلحات موضوعية: источники получения ЛС, пути получения ЛС, клинические испытания, эффективность ЛС
وصف الملف: application/pdf
-
12Academic Journal
المؤلفون: Dina Glazkova V, Elena Bogoslovskaya V, German Shipulin A, Sergei Yudin M, Дина Глазкова Викторовна, Елена Богословская Владимировна, Герман Шипулин Александрович, Сергей Юдин Михайлович
المصدر: HIV Infection and Immunosuppressive Disorders; Том 13, № 3 (2021) ; ВИЧ-инфекция и иммуносупрессии; Том 13, № 3 (2021) ; 2077-9828 ; 10.22328/2077-9828-2021-13-3
مصطلحات موضوعية: HIV, broadly neutralizing antibodies (bnAbs), clinical trials, ВИЧ, широко нейтрализующие антитела, клинические испытания
Relation: https://hiv.bmoc-spb.ru/jour/article/downloadSuppFile/593/405; https://hiv.bmoc-spb.ru/jour/article/downloadSuppFile/593/406; Wang Q. and Zhang L. Broadly neutralizing antibodies and vaccine design against HIV-1 infection. // Front Med. 2020 Feb;14(1):30-42. doi:10.1007/s11684-019-0721-9.; Zhu P., Liu J., Bess J., Chertova E., Lifson J.D. et al. Distribution and three-dimensional structure of AIDS virus envelope spikes. // Nature. 2006 Jun 15;441(7095):847-52. doi:10.1038/nature04817.; Wyatt R. and Sodroski J. The HIV-1 Envelope Glycoproteins: Fusogens, Antigens, and Immunogens. // Science. 1998 Jun 19;280(5371):1884-8. doi:10.1126/science.280.5371.1884; Stewart-Jones G.B.E., Soto C., Lemmin T., Chuang G.Y. et al. Trimeric HIV-1-Env Structures Define Glycan Shields from Clades A, B, and G. // Cell. 2016 May 5;165(4):813-26. doi:10.1016/j.cell.2016.04.010.; Walker L.M., Phogat S.K., Chan-Hui Po-Y., Wagner D. et al. Broad and potent neutralizing antibodies from an African donor reveal a new HIV-1 vaccine target. // Science. 2009 Oct 9;326(5950):285-9. doi:10.1126/science.1178746.; Alam S.M., McAdams M., Boren D., Rak M. et al. The Role of Antibody Polyspecificity and Lipid Reactivity in Binding of Broadly Neutralizing Anti-HIV-1 Envelope Human Monoclonal Antibodies 2F5 and 4E10 to Glycoprotein 41 Membrane Proximal Envelope Epitopes. // J. Immunol. 2007 Apr 1;178(7):4424-35. doi:10.4049/jimmunol.178.7.4424.; Liao H.-X., Chen Xi, Munshaw S., Zhang R. et al. Initial antibodies binding to HIV-1 gp41 in acutely infected subjects are polyreactive and highly mutated. // J. Exp. Med. 2011 Oct 24;208(11):2237-49. doi:10.1084/jem.20110363.; Haynes B.F., Fleming J., Clair E.W.St. et al. Cardiolipin Polyspecific Autoreactivity in Two Broadly Neutralizing HIV-1 Antibodies. // Science. 2005 Jun 24;308(5730):1906-8. doi:10.1126/science.1111781.; Matyas G.R., Beck Z., Karasavvas N., Alving C.R. Lipid binding properties of 4E10, 2F5, and WR304 monoclonal antibodies that neutralize HIV-1. // Biochim Biophys Acta. 2009 Mar;1788(3):660-5. doi:10.1016/j.bbamem.2008.11.015.; Barbas C.F. III, Björling E., Chiodi F., Dunlop N., Cababa D. et al. Recombinant human Fab fragments neutralize human type 1 immunodeficiency virus in vitro. // Proc. Natl. Acad. Sci. USA. 1992 Oct 1;89(19):9339-43. doi:10.1073/pnas.89.19.9339.; Burton D., Pyati J., Koduri R., Sharp S.J. et al. Efficient neutralization of primary isolates of HIV-1 by a recombinant human monoclonal antibody. // Science. 1994 Nov 11;266(5187):1024-7. doi:10.1126/science.7973652.; Gorny M.K., Conley A.J., Karwowska S., Buchbinder A., Xu J.Y., Emini E.A., Koenig S., Zolla-Pazner S. Neutralization of diverse human immunodeficiency virus type 1 variants by an anti-V3 human monoclonal antibody. // J. Virol. 1992 Vol. 66 (12). P. 7538-42. doi:10.1128/JVI.66.12.7538-7542.1992.; Muster T., Steindl F., Purtscher M., Trkola A., Klima A., Himmler G., Rüker F., Katinger H. A conserved neutralizing epitope on gp41 of human immunodeficiency virus type 1. // J. Virol. 1993 Nov;67(11):6642-7. doi:10.1128/JVI.67.11.6642-6647.1993.; Stiegler G., Kunert R., Purtscher M., Wolbank S., Voglauer R., Steindl F., Katinger H. A Potent Cross-Clade Neutralizing Human Monoclonal Antibody against a Novel Epitope on gp41 of Human Immunodeficiency Virus Type 1. // AIDS Res. Hum. Retroviruses. 2001 Dec 10;17(18):1757-65. doi:10.1089/08892220152741450.; Zwick M.B., Labrijn A.F., Wang M., Spenlehaueret C. et al. Broadly Neutralizing Antibodies Targeted to the Membrane-Proximal External Region of Human Immunodeficiency Virus Type 1 Glycoprotein gp41. // J. Virol. 2001 Nov;75(22):10892-905. doi:10.1128/JVI.75.22.10892-10905.2001.; Wei X., Decker J.M., Wang S., Hui H. et al. Antibody neutralization and escape by HIV-1. // Nature. 2003 Mar 20;422(6929):307-12. doi:10.1038/nature01470.; Richman D.D., Wrin T., Little S.J., Petropoulos C.J. et al. Rapid evolution of the neutralizing antibody response to HIV type 1 infection. // Proc. Natl. Acad. Sci. U. S. A. 2003 Apr 1;100(7):4144-9. doi:10.1073/pnas.0630530100.; Mascola J.R. and Haynes B.F. HIV-1 neutralizing antibodies: understanding nature’s pathways. // Immunol. Rev. 2013 Jul;254(1):225-44. doi:10.1111/imr.12075.; Rusert P., Kouyos R.D., Kadelka C., Ebner H. et al. Determinants of HIV-1 broadly neutralizing antibody induction. // Nat. Med. 2016 Nov;22(11):1260-1267. doi:10.1038/nm.4187.; Subbaraman H., Schanz M., Trkola A. Broadly neutralizing antibodies: What is needed to move from a rare event in HIV-1 infection to vaccine efficacy? // Retrovirology. 2018 Jul 28;15(1):52. doi:10.1186/s12977-018-0433-2.; Dugast A.-S., Arnold K., Lofano G., Moore S. et al. Virus-driven Inflammation Is Associated with the Development of bNAbs in Spontaneous Controllers of HIV. // Clin. Infect. Dis. 2017 Apr 15;64(8):1098-1104. doi:10.1093/cid/cix057.; Aasa-Chapman M.M., Hayman A., Newton P., Cornforth D. et al. Development of the antibody response in acute HIV-1 infection. // AIDS. 2004 Feb 20;18(3):371-81. doi:10.1097/00002030-200402200-00002.; Mikell I., Sather D.N., Kalams S.A., Altfeld M., Alter G., Stamatatos L. et al. Characteristics of the Earliest Cross-Neutralizing Antibody Response to HIV-1. // PLoS Pathog. 2011 Jan 13;7(1):e1001251. doi:10.1371/journal.ppat.1001251.; Landais E. and Moore P.L. Development of broadly neutralizing antibodies in HIV-1 infected elite neutralizers. // Retrovirology. 2018 Sep 5;15(1):61. doi:10.1186/s12977-018-0443-0.; Doria-Rose N.A., Schramm C.A., Gorman J., Moore P.L. et al. Developmental pathway for potent V1V2-directed HIV-neutralizing antibodies. // Nature. 2014 May 1;509(7498):55-62. doi:10.1038/nature13036.; Klein F., Diskin R., Scheid J.F., Gaebler C. et al. Somatic mutations of the immunoglobulin framework are generally required for broad and potent HIV-1 neutralization. // Cell. 2013 Mar 28;153(1):126-38. doi:10.1016/j.cell.2013.03.018.; Kepler T.B., Liao H.-X., Alam SM., Bhaskarabhatla R. et al. Immunoglobulin Gene Insertions and Deletions in the Affinity Maturation of HIV-1 Broadly Reactive Neutralizing Antibodies. // Cell Host Microbe. 2014 Sep 10;16(3):304-13. doi:10.1016/j.chom.2014.08.006.; Wardemann H., Yurasov S., Schaefer A., Young J.W., Meffre E., Nussenzweig M.C. Predominant Autoantibody Production by Early Human B Cell Precursors. // Science. 2003 Sep 5;301(5638):1374-7. doi:10.1126/science.1086907.; Mouquet H., Scheid J.F., Zoller M.J., Krogsgaard M. et al. Polyreactivity increases the apparent affinity of anti-HIV antibodies by heteroligation. // Nature. 2010 Sep 30;467(7315):591-5. doi:10.1038/nature09385.; Diskin R., Scheid J.F., Marcovecchio P.M. et al. Increasing the Potency and Breadth of an HIV Antibody by using Structure-Based Rational Design. // Science. 2011 Dec 2;334(6060):1289-93. doi:10.1126/science.1213782.; Yang G., Holl TM., Liu Y., Li Y., Lu X. et al. Identification of autoantigens recognized by the 2F5 and 4E10 broadly neutralizing HIV-1 antibodies. // J. Exp. Med. 2013 Feb 11;210(2):241-56. doi:10.1084/jem.20121977.; Scheid J.F., Mouquet H., Ueberheide B., Diskin R. et al. Sequence and Structural Convergence of Broad and Potent HIV Antibodies That Mimic CD4 Binding. // Science. 2011 Sep 16;333(6049):1633-7. doi:10.1126/science.1207227.; Zhou P., Wang H., Fang M., Li Y. et al. Broadly resistant HIV-1 against CD4-binding site neutralizing antibodies. // PLOS Pathog. 2019 Jun 13;15(6). P. e1007819. doi:10.1371/journal.ppat.1007819.; Asokan M., Rudicell R.S., Louder M., McKee K. et al. Bispecific Antibodies Targeting Different Epitopes on the HIV-1 Envelope Exhibit Broad and Potent Neutralization. // J. Virol. 2015 Dec;89(24):12501-12. doi:10.1128/JVI.02097-15.; Wagh K., Seaman M.S., Zingg M., Fitzsimons T. et al. Potential of conventional & bispecific broadly neutralizing antibodies for prevention of HIV-1 subtype A, C & D infections. // PLoS Pathog. 2018 Mar 5;14(3):e1006860. doi:10.1371/journal.ppat.1006860.; Xu L., Pegu A., Rao E., Doria-Rose N. et al. Trispecific broadly neutralizing HIV antibodies mediate potent SHIV protection in macaques. // Science. 2017 Oct 6;358(6359):85-90. doi:10.1126/science.aan8630.; Steinhardt J.J., Guenaga J., Turner H.L., McKee K. et al. Rational design of a trispecific antibody targeting the HIV-1 Env with elevated anti-viral activity. // Nat. Commun. 2018 Feb 28;9(1):877. doi:10.1038/s41467-018-03335-4.; Ko S.-Y., Pegu A., Rudicell R.S., Yang Z.-y. et al. Enhanced neonatal Fc receptor function improves protection against primate SHIV infection. // Nature. 2014 Oct 30;514(7524):642-5. doi:10.1038/nature13612.; Gaudinski M.R., Coates E.E., Houser K.V., Chen G.L. et al. Safety and pharmacokinetics of the Fc-modified HIV-1 human monoclonal antibody VRC01LS: A Phase 1 open-label clinical trial in healthy adults. // PLoS Med. 2018 Jan 24;15(1):e1002493. doi:10.1371/journal.pmed.1002493.; Gautam R., Nishimura Y., Pegu A., Nason M.C. et al. A single injection of anti-HIV-1 antibodies protects against repeated SHIV challenges. // Nature 2016 May 5;533(7601):105-109. doi:10.1038/nature17677.; Simek M.D., Rida W., Priddy F.H., Pung P. et al. Human Immunodeficiency Virus Type 1 Elite Neutralizers: Individuals with Broad and Potent Neutralizing Activity Identified by Using a High-Throughput Neutralization Assay together with an Analytical Selection Algorithm. // J. Virol. 2009 Jul;83(14):7337-48. doi:10.1128/JVI.00110-09.; Binley J.M., Wrin T., Korber B., Zwick M.B. et al. Comprehensive Cross-Clade Neutralization Analysis of a Panel of Anti-Human Immunodeficiency Virus Type 1 Monoclonal Antibodies. // J. Virol. 2004 Dec;78(23):13232-52. doi:10.1128/JVI.78.23.13232-13252.2004.; Babcook J.S., Leslie K.B., Olsen O.A., Salmon R.A., Schrader J.W. A novel strategy for generating monoclonal antibodies from single, isolated lymphocytes producing antibodies of defined specificities. // Proc. Natl. Acad. Sci. 1996 Jul 23;93(15):7843-8. doi:10.1073/pnas.93.15.7843.; Tiller T., Meffre E., Yurasov S., Tsuiji M., Nussenzweig M.C., Wardemann H. Efficient generation of monoclonal antibodies from single human B cells by single cell RT-PCR and expression vector cloning. // J. Immunol. Methods. 2008 Jan 1;329(1-2):112-24. doi:10.1016/j.jim.2007.09.017.; West A.P., Scharf L., Scheid J.F., Klein F., Bjorkman P.J., Nussenzweig M.C. Structural Insights on the Role of Antibodies in HIV-1 Vaccine and Therapy. // Cell. 2014 Feb 13;156(4):633-48. doi:10.1016/j.cell.2014.01.052.; Wu X., Yang Z.Y., Li Y., et al. Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1 // Science. 2010. Vol. 329 (5993). P. 856-861. DOI:10.1126/science.1187659; Rudicell R.S., Kwon Y.D., Ko S.Y., et al. Enhanced potency of a broadly neutralizing HIV-1 antibody in vitro improves protection against lentiviral infection in vivo // J Virol. 2014. Vol. 88 (21). P. 12669-12682. DOI:10.1128/JVI.02213-14; Huang J., Kang B.H., Ishida E., et al. Identification of a CD4-Binding-Site Antibody to HIV that Evolved Near-Pan Neutralization Breadth // Immunity. 2016. Vol. 45 (5). P. 1108-1121. DOI:10.1016/j.immuni.2016.10.027; Julg B., Pegu A , Abbink P , et al. Virological Control by the CD4-Binding Site Antibody N6 in Simian-Human Immunodeficiency Virus-Infected Rhesus Monkeys // J Virol. 2017. Vol. 91 (16). P. e00498-17. DOI:10.1128/JVI.00498-17; Scheid J.F., Horwitz J.A., Bar-On Y., et al. HIV-1 antibody 3BNC117 suppresses viral rebound in humans during treatment interruption // Nature. 2016. Vol. 535 (7613). P. 556-560. DOI:10.1038/nature18929; Shingai M., Nishimura Y., Klein F., et al. Antibody-mediated immunotherapy of macaques chronically infected with SHIV suppresses viraemia // Nature. 2013. Vol. 503 (7475). P. 277-280. DOI:10.1038/nature12746; Nishimura Y., Gautam R., Chun T.W., et al. Early antibody therapy can induce long-lasting immunity to SHIV // Nature. 2017. Vol. 543 (7646). P. 559-563. DOI:10.1038/nature21435; Sajadi M.M., Dashti A., Rikhtegaran Tehrani Z., et al. Identification of Near-Pan-neutralizing Antibodies against HIV-1 by Deconvolution of Plasma Humoral Responses // Cell. 2018. Vol. 173 (7). P. 1783-1795. DOI:10.1016/j.cell.2018.03.061; Walker L.M., Huber M., Doores K.J., et al. Broad neutralization coverage of HIV by multiple highly potent antibodies // Nature. 2011. Vol. 477 (7365). P. 466-470. DOI:10.1038/nature10373; Mouquet H., Scharf L., Euler Z., et al. Complex-type N-glycan recognition by potent broadly neutralizing HIV antibodies // Proc Natl Acad Sci U S A. 2012. Vol. 109(47). P. E3268-E3277. DOI:10.1073/pnas.1217207109; Sanders R.W., Derking R., Cupo A., et al. A next-generation cleaved, soluble HIV-1 Env trimer, BG505 SOSIP.664 gp140, expresses multiple epitopes for broadly neutralizing but not non-neutralizing antibodies // PLoS Pathog. 2013. Vol. 9 (9). P. e1003618. DOI:10.1371/journal.ppat.1003618; Doria-Rose N.A., Bhiman J.N., Roark R.S., et al. New Member of the V1V2-Directed CAP256-VRC26 Lineage That Shows Increased Breadth and Exceptional Potency // J Virol. 2015. Vol. 90(1). P. 76-91. DOI:10.1128/JVI.01791-15; Sok D., van Gils M.J., Pauthner M., et al. Recombinant HIV envelope trimer selects for quaternary-dependent antibodies targeting the trimer apex // Proc Natl Acad Sci U S A. 2014. Vol. 111 (49). P. 17624-17629. DOI:10.1073/pnas.1415789111; Huang J., Ofek G., Laub L., et al. Broad and potent neutralization of HIV-1 by a gp41-specific human antibody // Nature. 2012. Vol. 491 (7424). P. 406-412. DOI:10.1038/nature11544; Williams L.D., Ofek G., Schätzle S., et al. Potent and broad HIV-neutralizing antibodies in memory B cells and plasma // Sci Immunol. 2017. Vol. 2 (7). P. eaal2200. DOI:10.1126/sciimmunol.aal2200; Wagh K., Bhattacharya T., Williamson C., et al. Optimal Combinations of Broadly Neutralizing Antibodies for Prevention and Treatment of HIV-1 Clade C Infection // PLoS Pathog. 2016. Vol. 12 (3). P. e1005520. DOI:10.1371/journal.ppat.1005520; Julg B., Liu P.T., Wagh K., et al. Protection against a mixed SHIV challenge by a broadly neutralizing antibody cocktail // Sci Transl Med. 2017. Vol. 9 (408). P. eaao4235. DOI:10.1126/scitranslmed.aao4235; Pegu A., Hessell A.J., Mascola J.R., Haigwood N.L. Use of broadly neutralizing antibodies for HIV-1 prevention // Immunol Rev. 2017. Vol. 275 (1). P. 296-312. DOI:10.1111/imr.12511; Cavacini L.A., Samore M.H., Gambertoglio J., et al. Phase I study of a human monoclonal antibody directed against the CD4-binding site of HIV type 1 glycoprotein 120 // AIDS Res Hum Retroviruses. 1998. Vol. 14 (7). P. 545-550. DOI:10.1089/aid.1998.14.545; Caskey M., Klein F., Lorenzi J.C., et al. Viraemia suppressed in HIV-1-infected humans by broadly neutralizing antibody 3BNC117 // Nature. 2015. Vol. 522 (7557). P. 487-491. DOI:10.1038/nature14411; Ledgerwood J.E., Coates E.E., Yamshchikov G., et al. Safety, pharmacokinetics and neutralization of the broadly neutralizing HIV-1 human monoclonal antibody VRC01 in healthy adults // Clin Exp Immunol. 2015. Vol. 182 (3). P. 289-301. DOI:10.1111/cei.12692; Caskey M., Schoofs T., Gruell H., et al. Antibody 10-1074 suppresses viremia in HIV-1-infected individuals // Nat Med. 2017. Vol. 23 (2). P. 185-191. DOI:10.1038/nm.4268; Lynch R.M., Boritz E., Coates E.E., et al. Virologic effects of broadly neutralizing antibody VRC01 administration during chronic HIV-1 infection // Sci Transl Med. 2015. Vol. 7 (319). P. 319ra206. DOI:10.1126/scitranslmed.aad5752; Bar K.J., Sneller M.C., Harrison L.J., et al. Effect of HIV Antibody VRC01 on Viral Rebound after Treatment Interruption // N Engl J Med. 2016. Vol. 375 (21). P. 2037-2050. DOI:10.1056/NEJMoa1608243; Mendoza P., Gruell H., Nogueira L., et al. Combination therapy with anti-HIV-1 antibodies maintains viral suppression // Nature. 2018. Vol. 561 (7724). P. 479-484. DOI:10.1038/s41586-018-0531-2; Niessl J., Baxter A.E., Mendoza P., et al. Combination anti-HIV-1 antibody therapy is associated with increased virus-specific T cell immunity // Nat Med. 2020. Vol. 26 (2). P. 222-227. DOI:10.1038/s41591-019-0747-1; Bar-On Y, Gruell H, Schoofs T, et al. Safety and antiviral activity of combination HIV-1 broadly neutralizing antibodies in viremic individuals // Nat Med. 2018. Vol. 24 (11). P. 1701-1707. DOI:10.1038/s41591-018-0186-4; Mahomed S., Garrett N., Karim Q.A., et al. Assessing the safety and pharmacokinetics of the anti-HIV monoclonal antibody CAP256V2LS alone and in combination with VRC07-523LS and PGT121 in South African women: study protocol for the first-in-human CAPRISA 012B phase I clinical trial // BMJ Open. 2020. Vol. 10 (11). P. e042247. DOI:10.1136/bmjopen-2020-042247; https://hiv.bmoc-spb.ru/jour/article/view/593
-
13Academic Journal
المؤلفون: D. Glazkova V., E. Bogoslovskaya V., G. Shipulin A., S. Yudin M., Д. Глазкова В., Е. Богословская В., Г. Шипулин А., С. Юдин М.
المصدر: HIV Infection and Immunosuppressive Disorders; Том 13, № 3 (2021); 81-95 ; ВИЧ-инфекция и иммуносупрессии; Том 13, № 3 (2021); 81-95 ; 2077-9828 ; 10.22328/2077-9828-2021-13-3
مصطلحات موضوعية: HIV, broadly neutralizing antibodies (bnAbs), clinical trials, ВИЧ, широко нейтрализующие антитела, клинические испытания
وصف الملف: application/pdf
Relation: https://hiv.bmoc-spb.ru/jour/article/view/662/453; Wang Q. and Zhang L. Broadly neutralizing antibodies and vaccine design against HIV-1 infection // Front Med. 2020. Vol. 14, No. 1. Р. 30– 42. doi:10.1007/s11684-019-0721-9.; Zhu P., Liu J., Bess J., Chertova E., Lifson J.D. et al. Distribution and three-dimensional structure of AIDS virus envelope spikes // Nature. 2006. Vol. 441, No. 7095. Р. 847–852. doi:10.1038/nature04817.; Wyatt R., Sodroski J. The HIV-1 Envelope Glycoproteins: Fusogens, Antigens, and Immunogens // Science. 1998. Vol. 280, No. 5371. Р. 1884– 1888. doi:10.1126/science.280.5371.1884.; Stewart-Jones G.B.E., Soto C., Lemmin T., Chuang G.Y. et al. Trimeric HIV-1-Env Structures Define Glycan Shields from Clades A, B, and G // Cell. 2016. Vol. 165, No. 4. Р. 813–826. doi:10.1016/j.cell.2016.04.010.; Walker L.M., Phogat S.K., Chan-Hui Po-Y., Wagner D. et al. Broad and potent neutralizing antibodies from an African donor reveal a new HIV- 1 vaccine target // Science. 2009. Vol. 326, No. 5950. Р. 285–289. doi:10.1126/science.1178746.; Alam S.M., McAdams M., Boren D., Rak M. et al. The Role of Antibody Polyspecificity and Lipid Reactivity in Binding of Broadly Neutralizing Anti-HIV-1 Envelope Human Monoclonal Antibodies 2F5 and 4E10 to Glycoprotein 41 Membrane Proximal Envelope Epitopes. // J. Immunol. 2007. Vol. 178, No. 7. Р. 4424–4235. doi:10.4049/jimmunol.178.7.4424.; Liao H.-X., Chen Xi, Munshaw S., Zhang R. et al. Initial antibodies binding to HIV-1 gp41 in acutely infected subjects are polyreactive and highly mutated // J. Exp. Med. 2011. Vol. 208, No. 11. Р. 2237–2249. doi:10.1084/jem.20110363.; Haynes B.F., Fleming J., Clair E.W.St. et al. Cardiolipin Polyspecific Autoreactivity in Two Broadly Neutralizing HIV-1 Antibodies // Science. 2005. Vol. 308, No. 5730. Р. 1906–1908. doi:10.1126/science.1111781.; Matyas G.R., Beck Z., Karasavvas N., Alving C.R. Lipid binding properties of 4E10, 2F5, and WR304 monoclonal antibodies that neutralize HIV- 1 // Biochim. Biophys. Acta. 2009. Vol. 1788, No. 3. Р. 660–665. doi:10.1016/j.bbamem.2008.11.015.; Barbas C.F. III, Björling E., Chiodi F., Dunlop N., Cababa D. et al. Recombinant human Fab fragments neutralize human type 1 immunodeficiency virus in vitro // Proc. Natl. Acad. Sci. USA. 1992. Vol. 89(19. Р. 9339–9343. doi:10.1073/pnas.89.19.9339.; Burton D., Pyati J., Koduri R., Sharp S.J. et al. Efficient neutralization of primary isolates of HIV-1 by a recombinant human monoclonal antibody // Science. 1994. Vol. 266, No. 5187. Р. 1024–1027. doi:10.1126/science.7973652.; Gorny M.K., Conley A.J., Karwowska S., Buchbinder A., Xu J.Y., Emini E.A., Koenig S., Zolla-Pazner S. Neutralization of diverse human immunodeficiency virus type 1 variants by an anti-V3 human monoclonal antibody // J. Virol. 1992. Vol. 66, No. 12. P. 7538–7542. doi:10.1128/JVI.66.12.7538-7542.1992.; Muster T., Steindl F., Purtscher M., Trkola A., Klima A., Himmler G., Rüker F., Katinger H. A conserved neutralizing epitope on gp41 of human immunodeficiency virus type 1 // J. Virol. 1993. Vol. 67, No. 11. Р. 6642–6647. doi:10.1128/JVI.67.11.6642-6647.1993.; Stiegler G., Kunert R., Purtscher M., Wolbank S., Voglauer R., Steindl F., Katinger H. A Potent Cross-Clade Neutralizing Human Monoclonal Antibody against a Novel Epitope on gp41 of Human Immunodeficiency Virus Type 1 // AIDS Res. Hum. Retroviruses. 2001. Vol. 17, No. 18. Р. 1757–1765. doi:10.1089/08892220152741450.; Zwick M.B., Labrijn A.F., Wang M., Spenlehaueret C. et al. Broadly Neutralizing Antibodies Targeted to the Membrane-Proximal External Region of Human Immunodeficiency Virus Type 1 Glycoprotein gp41 // J. Virol. 2001. Vol. 75, No. 22. Р. 10892–10905. doi:10.1128/JVI.75.22.10892-10905.2001.; Wei X., Decker J.M., Wang S., Hui H. et al. Antibody neutralization and escape by HIV-1. // Nature. 2003. Vol. 422, No. 6929. Р. 307–312. doi:10.1038/nature01470.; Richman D.D., Wrin T., Little S.J., Petropoulos C.J. et al. Rapid evolution of the neutralizing antibody response to HIV type 1 infection // Proc. Natl. Acad. Sci. USA. 2003. Vol. 100, No. 7. Р. 4144–4149. doi:10.1073/pnas.0630530100.; Mascola J.R., Haynes B.F. HIV-1 neutralizing antibodies: understanding nature’s pathways. // Immunol. Rev. 2013. Vol. 254, No. 1. Р. 225– 244. doi:10.1111/imr.12075.; Rusert P., Kouyos R.D., Kadelka C., Ebner H. et al. Determinants of HIV-1 broadly neutralizing antibody induction. // Nat. Med. 2016. Vol. 22, No. 11. Р. 1260–1267. doi:10.1038/nm.4187.; Subbaraman H., Schanz M., Trkola A. Broadly neutralizing antibodies: What is needed to move from a rare event in HIV-1 infection to vaccine efficacy? // Retrovirology. 2018. Vol. 15, No. 1. Р. 52. doi:10.1186/s12977-018-0433-2.; Dugast A.-S., Arnold K., Lofano G., Moore S. et al. Virus-driven Inflammation Is Associated with the Development of bNAbs in Spontaneous Controllers of HIV // Clin. Infect. Dis. 2017. Vol. 64, No. 8. Р. 1098–1104. doi:10.1093/cid/cix057.; Aasa-Chapman M.M., Hayman A., Newton P., Cornforth D. et al. Development of the antibody response in acute HIV-1 infection // AIDS. 2004. Vol. 18, No. 3. Р. 371–381. doi:10.1097/00002030–200402200–00002.; Mikell I., Sather D.N., Kalams S.A., Altfeld M., Alter G., Stamatatos L. et al. Characteristics of the Earliest Cross-Neutralizing Antibody Response to HIV-1 // PLoS Pathog. 2011. Vol. 7, No. 1. Р. e1001251. doi:10.1371/journal.ppat.1001251.; Landais E., Moore P.L. Development of broadly neutralizing antibodies in HIV-1 infected elite neutralizers. // Retrovirology. 2018. Vol. 15, No. 1. Р. 61. doi:10.1186/s12977-018-0443-0.; Doria-Rose N.A., Schramm C.A., Gorman J., Moore P.L. et al. Developmental pathway for potent V1V2-directed HIV-neutralizing antibodies // Nature. 2014. Vol. 509, No. 7498. Р. 55–62. doi:10.1038/nature13036.; Klein F., Diskin R., Scheid J.F., Gaebler C. -et al. Somatic mutations of the immunoglobulin framework are generally required for broad and potent HIV-1 neutralization // Cell. 2013. Vol. 153, No. 1. Р. 126–138. doi:10.1016/j.cell.2013.03.018.; Kepler T.B., Liao H.-X., Alam S.M., Bhaskarabhatla R. et al. Immunoglobulin Gene Insertions and Deletions in the Affinity Maturation of HIV-1 Broadly Reactive Neutralizing Antibodies // Cell Host Microbe. 2014. Vol. 16, No. 3. Р. 304–313. doi:10.1016/j.chom.2014.08.006.; Wardemann H., Yurasov S., Schaefer A., Young J.W., Meffre E., Nussenzweig M.C. Predominant Autoantibody Production by Early Human B Cell Precursors // Science. 2003. Vol. 301, No. 5638. Р. 1374–1377. doi:10.1126/science.1086907.; Mouquet H., Scheid J.F., Zoller M.J., Krogsgaard M. et al. Polyreactivity increases the apparent affinity of anti-HIV antibodies by heteroligation // Nature. 2010. Vol. 467, No. 7315. Р. 591–595. doi:10.1038/nature09385.; Diskin R., Scheid J.F., Marcovecchio P.M. et al. Increasing the Potency and Breadth of an HIV Antibody by using Structure-Based Rational Design // Science. 2011. Vol. 334, No. 6060. Р. 1289–1293. doi:10.1126/science.1213782.; Yang G., Holl TM., Liu Y., Li Y., Lu X. et al. Identification of autoantigens recognized by the 2F5 and 4E10 broadly neutralizing HIV-1 antibodies // J. Exp. Med. 2013. Vol. 210, No. 2. Р. 241–256. doi:10.1084/jem.20121977.; Scheid J.F., Mouquet H., Ueberheide B., Diskin R. et al. Sequence and Structural Convergence of Broad and Potent HIV Antibodies That Mimic CD4 Binding // Science. 2011. Vol. 333, No. 6049. Р. 1633–1637. doi:10.1126/science.1207227.; Zhou P., Wang H., Fang M., Li Y. et al. Broadly resistant HIV-1 against CD4-binding site neutralizing antibodies // PLOS Pathog. 2019. Vol. 15, No. 6. P. e1007819. doi:10.1371/journal.ppat.1007819.; Asokan M., Rudicell R.S., Louder M., McKee K. et al. Bispecific Antibodies Targeting Different Epitopes on the HIV-1 Envelope Exhibit Broad and Potent Neutralization // J. Virol. 2015. Vol. 89, No. 24. Р. 12501–12512. doi:10.1128/JVI.02097-15.; Wagh K., Seaman M.S., Zingg M., Fitzsimons T. et al. Potential of conventional & bispecific broadly neutralizing antibodies for prevention of HIV-1 subtype A, C & D infections // PLoS Pathog. 2018. Vol. 14, No. 3. e1006860. doi:10.1371/journal.ppat.1006860.; Xu L., Pegu A., Rao E., Doria-Rose N. et al. Trispecific broadly neutralizing HIV antibodies mediate potent SHIV protection in macaques // Science. 2017. Vol. 358, No. 6359. Р. 85–90. doi:10.1126/science.aan8630.; Steinhardt J.J., Guenaga J., Turner H.L., McKee K. et al. Rational design of a trispecific antibody targeting the HIV-1 Env with elevated anti-viral activity // Nat. Commun. 2018. Vol. 9, No. 1. Р. 877. doi:10.1038/s41467-018-03335-4.; Ko S.-Y., Pegu A., Rudicell R.S., Yang Z.-y. et al. Enhanced neonatal Fc receptor function improves protection against primate SHIV infection // Nature. 2014. Vol. 514, No. 7524. Р. 642–645. doi:10.1038/nature13612.; Gaudinski M.R., Coates E.E., Houser K.V., Chen G.L. et al. Safety and pharmacokinetics of the Fc-modified HIV-1 human monoclonal antibody VRC01LS: A Phase 1 open-label clinical trial in healthy adults // PLoS Med. 2018. Vol. 15, No. 1. Р. e1002493. doi:10.1371/journal.pmed.1002493.; Gautam R., Nishimura Y., Pegu A., Nason M.C. et al. A single injection of anti-HIV-1 antibodies protects against repeated SHIV challenges // Nature. 2016. Vol. 533, No. 7601. Р. 105–109. doi:10.1038/nature17677.; Simek M.D., Rida W., Priddy F.H., Pung P. et al. Human Immunodeficiency Virus Type 1 Elite Neutralizers: Individuals with Broad and Potent Neutralizing Activity Identified by Using a High-Throughput Neutralization Assay together with an Analytical Selection Algorithm. // J. Virol. 2009. Vol. 83, No. 14. Р. 7337–7348. doi:10.1128/JVI.00110-09.; Binley J.M., Wrin T., Korber B., Zwick M.B. et al. Comprehensive Cross-Clade Neutralization Analysis of a Panel of Anti-Human Immunodeficiency Virus Type 1 Monoclonal Antibodies // J. Virol. 2004. Vol. 78, No. 23. Р. 13232–13252. doi:10.1128/JVI.78.23.13232-13252.2004.; Babcook J.S., Leslie K.B., Olsen O.A., Salmon R.A., Schrader J.W. A novel strategy for generating monoclonal antibodies from single, isolated lymphocytes producing antibodies of defined specificities // Proc. Natl. Acad. Sci. 1996. Vol. 93, No. 15. Р. 7843–7848. doi:10.1073/pnas.93.15.7843.; Tiller T., Meffre E., Yurasov S., Tsuiji M., Nussenzweig M.C., Wardemann H. Efficient generation of monoclonal antibodies from single human B cells by single cell RT-PCR and expression vector cloning // J. Immunol. Methods. 2008. Vol. 329, No. 1–2. Р. 112–124. doi:10.1016/j.jim.2007.09.017.; West A.P., Scharf L., Scheid J.F., Klein F., Bjorkman P.J., Nussenzweig M.C. Structural Insights on the Role of Antibodies in HIV-1 Vaccine and Therapy // Cell. 2014. Vol. 156, No. 4. Р. 633–648. doi:10.1016/j.cell.2014.01.052.; Wu X., Yang Z.Y., Li Y. et al. Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1 // Science. 2010. Vol. 329, No. 5993. P. 856–861. doi:10.1126/science.1187659.; Rudicell R.S., Kwon Y.D., Ko S.Y. et al. Enhanced potency of a broadly neutralizing HIV-1 antibody in vitro improves protection against lentiviral infection in vivo // J. Virol. 2014. Vol. 88 (21). P. 12669–12682. doi:10.1128/JVI.02213–14.; Huang J., Kang B.H., Ishida E. et al. Identification of a CD4-Binding-Site Antibody to HIV that Evolved Near-Pan Neutralization Breadth // Immunity. 2016. Vol. 45, No. 5. P. 1108–1121. doi:10.1016/j.immuni.2016.10.027.; Julg B., Pegu A., Abbink P. et al. Virological Control by the CD4-Binding Site Antibody N6 in Simian-Human Immunodeficiency Virus-Infected Rhesus Monkeys // J. Virol. 2017. Vol. 91, No. 16. P. e00498–17. doi:10.1128/JVI.00498-17.; Scheid J.F., Horwitz J.A., Bar-On Y. et al. HIV-1 antibody 3BNC117 suppresses viral rebound in humans during treatment interruption // Nature. 2016. Vol. 535, No. 7613. P. 556–560. doi:10.1038/nature18929.; Shingai M., Nishimura Y., Klein F. et al. Antibody-mediated immunotherapy of macaques chronically infected with SHIV suppresses viraemia // Nature. 2013. Vol. 503, No. 7475. P. 277–280. doi:10.1038/nature12746.; Nishimura Y., Gautam R., Chun T.W. et al. Early antibody therapy can induce long-lasting immunity to SHIV // Nature. 2017. Vol. 543, No. 7646. P. 559–563. doi:10.1038/nature21435.; Sajadi M.M., Dashti A., Rikhtegaran T.Z. et al. Identification of Near-Pan-neutralizing Antibodies against HIV-1 by Deconvolution of Plasma Humoral Responses // Cell. 2018. Vol. 173 (7). P. 1783–1795. doi:10.1016/j.cell.2018.03.061.; Walker L.M., Huber M., Doores K.J. et al. Broad neutralization coverage of HIV by multiple highly potent antibodies // Nature. 2011. Vol. 477, No. 7365. P. 466–470. doi:10.1038/nature10373; Mouquet H., Scharf L., Euler Z. et al. Complex-type N-glycan recognition by potent broadly neutralizing HIV antibodies // Proc. Natl. Acad. Sci. USA. 2012. Vol. 109, No. 47. P. E3268-E3277. doi:10.1073/pnas.1217207109.; Sanders R.W., Derking R., Cupo A. et al. A next-generation cleaved, soluble HIV-1 Env trimer, BG505 SOSIP.664 gp140, expresses multiple epitopes for broadly neutralizing but not non-neutralizing antibodies // PLoS Pathog. 2013. Vol. 9, No. 9. P. e1003618. doi:10.1371/journal.ppat.1003618.; Doria-Rose N.A., Bhiman J.N., Roark R.S. et al. New Member of the V1V2-Directed CAP256-VRC26 Lineage That Shows Increased Breadth and Exceptional Potency // J. Virol. 2015. Vol. 90, No. 1. P. 76–91. doi:10.1128/JVI.01791-15.; Sok D., van Gils M.J., Pauthner M. et al. Recombinant HIV envelope trimer selects for quaternary-dependent antibodies targeting the trimer apex // Proc. Natl. Acad. Sci. USA. 2014. Vol. 111, No. 49. P. 17624–17629. doi:10.1073/pnas.1415789111.; Huang J., Ofek G., Laub L. et al. Broad and potent neutralization of HIV-1 by a gp41-specific human antibody // Nature. 2012. Vol. 491, No. 7424. P. 406–412. doi:10.1038/nature11544.; Williams L.D., Ofek G., Schätzle S. et al. Potent and broad HIV-neutralizing antibodies in memory B cells and plasma // Sci. Immunol. 2017. Vol. 2, No. 7. P. eaal2200. doi:10.1126/sciimmunol.aal2200.; Wagh K., Bhattacharya T., Williamson C. et al. Optimal Combinations of Broadly Neutralizing Antibodies for Prevention and Treatment of HIV-1 Clade C Infection // PLoS Pathog. 2016. Vol. 12, No. 3. P. e1005520. doi:10.1371/journal.ppat.1005520.; Julg B., Liu P.T., Wagh K. et al. Protection against a mixed SHIV challenge by a broadly neutralizing antibody cocktail // Sci. Transl. Med. 2017. Vol. 9, No. 408. P. eaao4235. doi:10.1126/scitranslmed.aao4235.; Pegu A., Hessell A.J., Mascola J.R., Haigwood N.L. Use of broadly neutralizing antibodies for HIV-1 prevention // Immunol. Rev. 2017. Vol. 275, No. 1. P. 296–312. doi:10.1111/imr.12511.; Cavacini L.A., Samore M.H., Gambertoglio J. et al. Phase I study of a human monoclonal antibody directed against the CD4-binding site of HIV type 1 glycoprotein 120 // AIDS Res. Hum. Retroviruses. 1998. Vol. 14, No. 7. P. 545–550. doi:10.1089/aid.1998.14.545.; Caskey M., Klein F., Lorenzi J.C. et al. Viraemia suppressed in HIV-1-infected humans by broadly neutralizing antibody 3BNC117 // Nature. 2015. Vol. 522, No. 7557. P. 487–491. doi:10.1038/nature14411.; Ledgerwood J.E., Coates E.E., Yamshchikov G. et al. Safety, pharmacokinetics and neutralization of the broadly neutralizing HIV-1 human monoclonal antibody VRC01 in healthy adults // Clin. Exp. Immunol. 2015. Vol. 182 (3). P. 289–301. doi:10.1111/cei.12692.; Caskey M., Schoofs T., Gruell H. et al. Antibody 10–1074 suppresses viremia in HIV-1-infected individuals // Nat. Med. 2017. Vol. 23, No. 2. P. 185–191. doi:10.1038/nm.4268.; Lynch R.M., Boritz E., Coates E.E. et al. Virologic effects of broadly neutralizing antibody VRC01 administration during chronic HIV-1 infection // Sci. Transl. Med. 2015. Vol. 7, No. 319. P. 319ra206. doi:10.1126/scitranslmed.aad5752.; Bar K.J., Sneller M.C., Harrison L.J. et al. Effect of HIV Antibody VRC01 on Viral Rebound after Treatment Interruption // N. Engl. J. Med. 2016. Vol. 375, No. 21. P. 2037–2050. doi:10.1056/NEJMoa1608243.; Mendoza P., Gruell H., Nogueira L. et al. Combination therapy with anti-HIV-1 antibodies maintains viral suppression // Nature. 2018. Vol. 561, No. 7724. P. 479–484. doi:10.1038/s41586-018-0531-2.; Niessl J., Baxter A.E., Mendoza P. et al. Combination anti-HIV-1 antibody therapy is associated with increased virus-specific T cell immunity // Nat. Med. 2020. Vol. 26, No. 2. P. 222–227. doi:10.1038/s41591-019-0747-1.; Bar-On Y., Gruell H., Schoofs T. et al. Safety and antiviral activity of combination HIV-1 broadly neutralizing antibodies in viremic individuals // Nat. Med. 2018. Vol. 24, No. 11. P. 1701–1707. doi:10.1038/s41591-018-0186-4.; Mahomed S., Garrett N., Karim Q.A. et al. Assessing the safety and pharmacokinetics of the anti-HIV monoclonal antibody CAP256V2LS alone and in combination with VRC07–523LS and PGT121 in South African women: study protocol for the first-in-human CAPRISA 012B phase I clinical trial // BMJ Open. 2020. Vol. 10, No. 11. P. e042247. doi:10.1136/bmjopen-2020-042247.; https://hiv.bmoc-spb.ru/jour/article/view/662
-
14Academic Journal
المصدر: Качественная клиническая практика, Vol 0, Iss 2, Pp 21-30 (2018)
مصطلحات موضوعية: этическая экспертиза, рандомизация, информированное согласие, клинические испытания, проспективные исследования, эпидемиологическое исследование, этический комитет, Medical technology, R855-855.5, Pharmacy and materia medica, RS1-441
وصف الملف: electronic resource
-
15Report
المؤلفون: Сечко, О. Г., Царенков, В. М., Голяк, Н. С.
مصطلحات موضوعية: перепрофилированные препараты, терапия туберкулеза, клинические испытания, repurposed medicines, tuberculosis therapy, clinical trials
جغرافية الموضوع: Брест
وصف الملف: application/pdf
Relation: Сечко, О. Г. Перепрофилированные препараты для терапии туберкулеза, находящиеся на стадии клинических испытаний (обзор) = Repurposed medicines for tuberculosis therapy current in clinical trials (review) / О. Г. Сечко, В. М. Царенков, Н. С. Голяк // III Республиканский форум молодых ученых учреждений высшего образования : сборник материалов форума, Брест, 21–24 мая 2024 г. / Министерство образования Республики Беларусь, Брестский государственный технический университет, Брестский государственный университет имени А. С. Пушкина; редкол.: Н. Н. Шалобыта (гл. ред.) [и др.]. – Брест : БрГТУ, 2024. – С. 211–212. – Библиогр.: с. 211–212 (4 назв.).; https://rep.bstu.by/handle/data/43592; 616.24-002.05-8
-
16Academic Journal
المؤلفون: V. K. Lepakhin, Yu. V. Olefir, V. A. Merkulov, N. D. Bunyatyan, B. K. Romanov, A. N. Yavorsky, E. M. Rychihina
المصدر: Регуляторные исследования и экспертиза лекарственных средств, Vol 0, Iss 1, Pp 3-10 (2018)
مصطلحات موضوعية: лекарственные средства, экспертиза, клинические испытания, побочные действия, регистрация, medicines, expert evaluation, clinical trials, adverse drug reactions, marketing authorization, Medicine (General), R5-920
وصف الملف: electronic resource
-
17Academic Journal
المؤلفون: Лебедев Н.В., Климов А.Е., Агрба С.Б.
المصدر: АКТУАЛЬНЫЕ ВОПРОСЫ СОВРЕМЕННОЙ ХИРУРГИИ
مصطلحات موضوعية: перитонит, послеоперационные осложнения, прогноз, клинические испытания
-
18Academic Journal
المؤلفون: Yu. Revazova A., Ю. Ревазова А.
المصدر: Medical Genetics; Том 19, № 10 (2020); 84-85 ; Медицинская генетика; Том 19, № 10 (2020); 84-85 ; 2073-7998
مصطلحات موضوعية: ethics, genomic samples, clinical trials, этика, геномные пробы, клинические испытания
وصف الملف: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/1748/1384; Биоэтика и глобальные вызовы. Документы и размышления. Библиотека биоэтики. М. «Вече».2020. 768 с.; https://www.medgen-journal.ru/jour/article/view/1748
-
19Academic Journal
المؤلفون: Saliy, O. O., Baula, O. P., Sopizhenko, N. A.
المصدر: Управління, економіка та забезпечення якості в фармації; № 4(64) (2020); 36-44 ; Management, economy and quality assurance in pharmacy; No. 4(64) (2020); 36-44 ; Управление, экономика и обеспечение качества в фармации; № 4(64) (2020); 36-44 ; 2519-8807 ; 2311-1127
مصطلحات موضوعية: клінічні випробування, лікарський засіб, ветеринарний препарат, спонсор досліджень, інформована згода, УДК 615.038, clinical trials, medicine, veterinary preparation, research sponsor, informed consent, UDC 615.038, клинические испытания, лекарственный препарат, ветеринарный препарат, спонсор исследований, информированное согласие
وصف الملف: application/pdf
-
20Academic Journal
المؤلفون: Kolbin A.S.
المصدر: Russian Journal of Infection and Immunity; Vol 10, No 2 (2020); 277-286 ; Инфекция и иммунитет; Vol 10, No 2 (2020); 277-286 ; 2313-7398 ; 2220-7619
مصطلحات موضوعية: coronavirus infection, COVID-19, clinical trials, chloroquine, hydroxychloroquine, remdesivir, lopinavir/ritonavir, monoclonal antibodies, коронавирусная инфекция, клинические испытания, хлорохин, гидроксихлорохин, ремдесивир, лопинавир/ритонавир, моноклональные антитела
وصف الملف: application/pdf