-
1Academic Journal
المؤلفون: Д. Л. Строяковский, Н. Х. Абдулоева, Л. В. Демидов, Н. В. Жукова, А. В. Новик, К. В. Орлова, И. В. Самойленко, Г. Ю. Харкевич, И. А. Утяшев, А. Н. Юрченков
المصدر: Malignant tumours; Том 14, № 3s2-2 (2024); 300-329 ; Злокачественные опухоли; Том 14, № 3s2-2 (2024); 300-329 ; 2587-6813 ; 2224-5057
مصطلحات موضوعية: анти CTLA4, мутация в гене BRAF, иммунотерапия, анти-PD1
وصف الملف: application/pdf
Relation: https://www.malignanttumors.org/jour/article/view/1393/998; https://www.malignanttumors.org/jour/article/view/1393
-
2Academic Journal
المؤلفون: I. V. Samoylenko, I. А. Pokataev, L. G. Zhukova, D. L. Stroyakovsky, R. V. Orlova, А. М. Mudunov, М. В. Pak, Е. V. Zernova, А. V. Sobolev, А. S. Mochalova, B. Ya. Alekseev, М. I. Sekacheva, Е. V. Ledin, А. V. Petkova, Е. К. Khanonina, А. I. Podolyakina, V. А. Razzhivina, И. В. Самойленко, И. А. Покатаев, Л. Г. Жукова, Д. Л. Строяковский, Р. В. Орлова, А. М. Мудунов, М. Б. Пак, Е. В. Зернова, А. В. Соболев, А. С. Мочалова, Б. Я. Алексеев, М. И. Секачева, Е. В. Ледин, А. В. Петкова, Е. К. Ханонина, А. И. Подолякина, В. А. Разживина
المصدر: Malignant tumours; Том 14, № 1 (2024); 56-66 ; Злокачественные опухоли; Том 14, № 1 (2024); 56-66 ; 2587-6813 ; 2224-5057
مصطلحات موضوعية: RPH-075, pharmacokinetics, pharmacodynamics, immunogenicity, safety, фармакокинетика, фармакодинамика, иммуногенность, безопасность
وصف الملف: application/pdf
Relation: https://www.malignanttumors.org/jour/article/view/1286/927; Царев И.Л., Мелерзанов А.В. Обзор подходов к иммунотерапии в онкологии. Исследования и практика в медицине 2017;4(3):51–65. https://doi.org/10.17709/2409-2231-2017-4-3-5; Parry R.V., Chemnitz J.M., Frauwirth K.A., et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol 2005;25(21):9543–53. https://doi.org/10.1128/MCB.25.21.9543-9553.2005; Keir M.E., Butte M.J., Freeman G.J., Sharpe A.H. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 2008;26:677–704. https://doi.org/10.1146/annurev.immunol.26.021607.090331; Mellman I., Coukos G., Dranoff G. Cancer immunotherapy comes of age. Nature 2011;480(7378):480–9. https://doi.org/10.1038/nature10673; Hamanishi J., Mandai M., Konishi I. Immune checkpoint inhibition in ovarian cancer. Int Immunol 2016;28(7):339–48. https://doi.org/10.1093/intimm/dxw020; Zhang H., Wu M., Zhu X., et al. A phase I, randomized, single-dose study to evaluate the biosimilarity of QL1206 to denosumab among Chinese healthy subjects. Front Pharmacol 2020;11:01329. https://doi.org/10.3389/fphar.2020.01329; Zhang H., Li C., Liu J., et al. Safety and pharmacokinetics of a biosimilar of denosumab (KN012): Phase 1 and bioequivalence study in healthy Chinese subjects. Expert Opin Investig Drugs 2021;30(2):185–192. https://doi.org/10.1080/13543784.2021.1863371; Farahani M.F., Maghzi P., Aryan N.J., et al. A randomized, double-blind, parallel pharmacokinetic study comparing the trastuzumab biosimilar candidate, AryoTrust®, and reference trastuzumab in healthy subjects. Expert Opin Investig Drugs 2020;29(12):1443–1450. https://doi.org/10.1080/13543784.2020.1831470; Bushra R., Shoaib M.H., Ali H., Ghayas S. Pharmacokinetics and bioequivalence assessment of optimized directly compressible Aceclofenac (100 mg) tablet formulation in healthy human subjects. PLoS One 2020;15(9):e0238951. https://doi.org/10.1371/journal.pone.0238951; Zhu X., Ding Y., Yu Y., et al. A Phase 1 randomized study compare the pharmacokinetics, safety and immunogenicity of HLX02 to reference CN- and EU-sourced trastuzumab in healthy subjects. Cancer Chemother Pharmacol 2021;87(3):349–359. https://doi.org/10.1007/s00280-020-04196-9; Finck B., Tang H., Civoli F., et al. Pharmacokinetic and pharmacodynamic equivalence of pegfilgrastim-cbqv and pegfilgrastim in healthy subjects. Adv Ther. 2020;37(10):4291–4307. https://doi.org/10.1007/s12325-020-01459-y; Shin D., Lee Y.J., Choi J., et al. A phase I, randomized, single-dose pharmacokinetic study comparing sb8 (bevacizumab biosimilar) with reference bevacizumab in healthy volunteers. Cancer Chemother Pharmacol 2020;86(4):567–575. https://doi.org/10.1007/s00280-020-04144-7; Freshwater T., Kondic A., Ahamadi M., et al. Evaluation of dosing strategy for pembrolizumab for oncology indications. J Immunother Cancer 2017;5:43. https://doi.org/10.1186/s40425-017-0242-5; https://www.malignanttumors.org/jour/article/view/1286
-
3Academic Journal
المؤلفون: Д. Л. Строяковский, Н. Х. Абдулоева, Л. В. Демидов, Н. В. Жукова, А. В. Новик, К. В. Орлова, С. А. Проценко, И. В. Самойленко, Г. Ю. Харкевич, А. Н. Юрченков
المصدر: Malignant tumours; Том 13, № 3s2-1 (2023); 291-310 ; Злокачественные опухоли; Том 13, № 3s2-1 (2023); 291-310 ; 2587-6813 ; 2224-5057
مصطلحات موضوعية: анти-CTLA4, мутация в гене BRAF, иммунотерапия, анти-PD1
وصف الملف: application/pdf
Relation: https://www.malignanttumors.org/jour/article/view/1217/851; https://www.malignanttumors.org/jour/article/view/1217
-
4Academic Journal
المؤلفون: Н. Н. Петенко, А. О. Кузьменко, И. В. Самойленко
المصدر: Malignant tumours; Том 13, № 3 (2023); 5-7 ; Злокачественные опухоли; Том 13, № 3 (2023); 5-7 ; 2587-6813 ; 2224-5057
وصف الملف: application/pdf
Relation: https://www.malignanttumors.org/jour/article/view/1162/805; MacCormack MA, Cohen LM, Rogers GS : Local melanoma recurrence : a clarification of terminology. Dermatol Surg 2004, 30 (12 Pt 2) : 1533–1538.; Heenan PJ, Ghaznawie M : The pathogenesis of local recurrence of melanoma at the primary excision site. Br J Plast Surg 1999, 52 (3) : 209–213.; Kelly JW, Sagebiel RW, Calderon W, Murillo L, Dakin RL, Blois MS : The frequency of local recurrence and microsatellites as a guide to reexcision margins for cutaneous malignant melanoma. Ann Surg 1984, 200 (6) : 759–763.; Bittar PG, Bittar JM, Etzkorn JR, Brewer JD, Aizman L, Shin TM, Sobanko JF, Higgins HW, Giordano CN, Cohen JV et al : Systematic review and meta-analysis of local recurrence rates of head and neck cutaneous melanomas after wide local excision, Mohs micrographic surgery, or staged excision. J Am Acad Dermatol 2021, 85 (3) : 681–692.; Барышников КА : Иссечение послеоперационных рубцов при меланоме кожи: можем ли мы отказаться от традиций?. In : Ежегодная конференция Ассоциации специалистов по проблемам меланомы «МЕЛАНОМА И ОПУХОЛИ КОЖИ 2023» 2013; Москва : НО «Ассоциации специалистов по проблемам меланомы»; 2013.; Balch CM, Soong SJ, Gershenwald JE, Thompson JF, Reintgen DS, Cascinelli N, Urist M, McMasters KM, Ross MI, Kirkwood JM et al : Prognostic factors analysis of 17,600 melanoma patients : validation of the American Joint Committee on Cancer melanoma staging system. J Clin Oncol 2001, 19 (16) : 3622–3634.; Ascierto PA, Khattak MA, Merino LdlC, Vecchio MD, Rutkowski P, Spagnolo F, Mackiewicz J, Chiarion-Sileni V, Kirkwood JMM, Robert C et al : Pembrolizumab versus placebo as adjuvant therapy in stage IIB or IIC melanoma : Final analysis of distant metastasis-free survival in the phase 3 KEYNOTE-716 study. Journal of Clinical Oncology 2023, 41 (17_suppl) : LBA9505-LBA9505.; Ackerman AB : Mythology and numerology in the sphere of melanoma. Cancer 2000, 88 (3) : 491–496.; Gastman BR, Gerami P, Kurley SJ, Cook RW, Leachman S, Vetto JT : Identification of patients at risk of metastasis using a prognostic 31-gene expression profile in subpopulations of melanoma patients with favorable outcomes by standard criteria. J Am Acad Dermatol 2019, 80 (1) : 149–157 e144.; https://www.malignanttumors.org/jour/article/view/1162
-
5Academic Journal
المؤلفون: M. G. Filippova, D. S. Mikhaylenko, I. V. Samoylenko, Yu. S. Sergeev, N. A. Kozlov, I. A. Fainstein, E. A. Alekseeva, М. Г. Филиппова, Д. С. Михайленко, И. В. Самойленко, Ю. С. Сергеев, Н. А. Козлов, И. А. Файнштейн, Е. А. Алексеева
المصدر: Cancer Urology; Том 18, № 2 (2022); 211-216 ; Онкоурология; Том 18, № 2 (2022); 211-216 ; 1996-1812 ; 1726-9776
مصطلحات موضوعية: медико-генетическое консультирование, germline mutation, sequencing, clinical heterogeneity, medical genetic counseling, герминальная мутация, секвенирование, клиническая гетерогенность
وصف الملف: application/pdf
Relation: https://oncourology.abvpress.ru/oncur/article/view/1550/1381; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1550/1108; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1550/1109; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1550/1110; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1550/1112; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1550/1113; Bray F., Ferlay J., Soerjomataram I. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68(6):394–24. DOI:10.3322/caac.21492; Gaur S., Turkbey B., Choyke P. Hereditary renal tumor syndromes: update on diagnosis and management. Semin Ultrasound CT MR 2017;38(1):59–71. DOI:10.1053/j.sult.2016.10.002; Maher E.R. Hereditary renal cell carcinoma syndromes: diagnosis, surveillance and management. World J Urol 2018;36(12):1891–8. DOI:10.1007/s00345-018-2288-5; Carlo M.I., Hakimi A.A., Stewart G.D. et al. Familial kidney cancer: implications of new syndromes and molecular insights. Eur Urol 2019;76(6):754–64. DOI:10.1016/j.eururo.2019.06.015; Ball M.W., Ricketts C.J. Complexities in estimating the true risk of hereditary leiomyomatosis and renal cell carcinoma and the development of kidney cancer. Cancer 2020;126(16):3617–9. DOI:10.1002/cncr.32915; Forde C., Lim D.H.K., Alwan Y. et al. Hereditary leiomyomatosis and renal cell cancer: clinical, molecular, and screening features in a cohort of 185 affected individuals. Eur Urol Oncol 2020;3(6):764–72. DOI:10.1016/j.euo.2019.11.002; Hansen A.W., Chayed Z., Pallesen K. et al. Hereditary leiomyomatosis and renal cell cancer. Acta Derm Venereol 2020;100(1):adv00012. DOI:10.2340/00015555-3366; Ooi A. Advances in hereditary leiomyomatosis and renal cell carcinoma (HLRCC) research. Semin Cancer Biol 2020;61:158–66. DOI:10.1016/j.semcancer.2019.10.016; Martinez-Mir A., Glaser B., Chuang G.S. et al. Germline fumarate hydratase mutations in families with multiple cutaneous and uterine leiomyomata. J Invest Dermatol 2003;121(4):741–4. DOI:10.1046/j.1523-1747.2003.12499.x; Stenson P.D., Ball E.V., Mort M. et al. Human Gene Mutation Database (HGMD): 2003 update. Hum Mutat 2003;21(6):577–81. DOI:10.1002/humu.10212; Landrum M.J., Lee J.M., Benson M. et al. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res 2018;46(D1):D1062–7. DOI:10.1093/nar/gkx1153; Tate J.G., Bamford S., Jubb H.C. et al. COSMIC: the Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Res 2019;47(D1):D941–7. DOI:10.1093/nar/gky1015; Zehir A., Benayed R., Shah R.H. et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat Med 2017;23(6):703–13. DOI:10.1038/nm.4333; Motzer R.J., Jonasch E., Agarwal N. et al. Kidney Cancer, Version 3.2022, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2022;20(1):71–90. DOI:10.6004/jnccn.2022.0001; Seo J.Y., Ahn J.Y., Keam B. et al. Genotypic and phenotypic characteristics of hereditary leiomyomatosis and renal cell cancer syndrome in Korean patients. Ann Lab Med 2021;41(2):207–13. DOI:10.3343/alm.2021.41.2.207; Sanchez-Heras A.B., Castillejo A., Garcia-Diaz J.D. et al. Hereditary leiomyomatosis and renal cell cancer syndrome in Spain: clinical and genetic characterization. Cancers (Basel) 2020;12(11):3277. DOI:10.3390/cancers12113277; Furuya M., Iribe Y., Nagashima Y. et al. Clinicopathological and molecular features of hereditary leiomyomatosis and renal cell cancer-associated renal cell carcinomas. J Clin Pathol 2020;73(12):819–25. DOI:10.1136/jclinpath-2020-206548; Iribe Y., Furuya M., Shibata Y. et al. Complete response of hereditary leiomyomatosis and renal cell cancer (HLRCC)-associated renal cell carcinoma to nivolumab and ipilimumab combination immunotherapy by: a case report. Fam Cancer 2021;20(1):75–80. DOI:10.1007/s10689-020-00195-0; Feng D., Yang Y., Han P. et al. The preliminary outcome of the combination of immunotherapy and targeted therapy after recurrence and metastasis for hereditary leiomyomatosis and renal cell cancer – a case report. Transl Androl Urol 2020;9(2):789–93. DOI:10.21037/tau.2019.12.37; Yonese I., Ito M., Takemura K. et al. A case of metastatic hereditary leiomyomatosis and renal cell cancer syndromeassociated renal cell carcinoma treated with a sequence of axitinib and nivolumab following cytoreductive nephrectomy. J Kidney Cancer VHL 2020;7(2):6–10. DOI:10.15586/jkcvhl.2020.148; https://oncourology.abvpress.ru/oncur/article/view/1550
-
6Academic Journal
المؤلفون: M. V. Kiselevsky, I. V. Samoylenko, O. V. Zharkova, N. V. Ziganshina, A. A. Petkevich, S. M. Sitdikova, A. M. Suleymanova, G. B. Sagoyan, M. M. Efimova, K. I. Kirgizov, S. R. Varfolomeeva, М. В. Киселевский, И. В. Самойленко, О. В. Жаркова, Н. В. Зиганшина, А. А. Петкевич, С. М. Ситдикова, А. М. Сулейманова, Г. Б. Сагоян, М. М. Ефимова, К. И. Киргизов, С. Р. Варфоломеева
المساهمون: The study was carried out at the expense of the federal budget within the framework of the state task for the implementation of an experimental scientific development “Development of a method of immune profiling of a tumor to determine the prognosis of the course of the disease and response to drug therapy in patients with certain forms of malignant neoplasms” state registration No. AAAA-A18-118022890094-4., Исследование проведено за счет средств федерального бюджета в рамках государственного задания на выполнение экспериментальной научной разработки «Разработка метода иммунного профилирования опухоли для определения прогноза течения заболевания и ответа на лекарственную терапию у пациентов с отдельными формами злокачественных новообразований» № госрегистрации AAAA-A18-118022890094-4.
المصدر: Russian Journal of Pediatric Hematology and Oncology; Том 8, № 2 (2021); 73-83 ; Российский журнал детской гематологии и онкологии (РЖДГиО); Том 8, № 2 (2021); 73-83 ; 2413-5496 ; 2311-1267
مصطلحات موضوعية: предикция, biomarkers, prediction, биомаркеры
وصف الملف: application/pdf
Relation: https://journal.nodgo.org/jour/article/view/723/662; Larkin J., Chiarion-Sileni V., Gonzales R., Grob J.J., Cowey C.L., Lao C.D., Schadendorf D., Dummer R., Smylie M., Rutkowski P., Ferrucci P.F., Hill A., Wagstaff J., Carlino M.S., Haanen J.B., Maio M., Marquez-Rodas I., McArthur G.A., Ascierto P.A., Long G.V., Callahan M.K., Postow M.A., Grossmann K., Sznol M., Dreno B., Bastholt L., Yang A., Rollin L.M., Horak C., Hodi F.S., Wolchok J.D. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 2015;373:23-34. doi:10.1056/NEJMoa1504030.; Capalbo C., Scafetta G., Filetti M., Marchetti P., Bartolazzi A. Predictive Biomarkers for Checkpoint Inhibitor-Based Immunotherapy: The Galectin-3 Signature in NSCLCs. Int J Mol Sci 2019;20(7):E1607. doi:10.3390/ijms20071607.; Dunn G.P., Bruce A.T., Ikeda H., Old L.J., Schreiber R.D. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 2002;3(11):991-8. doi:10.1038/ni1102-991.; Schreiber R.D., Old L.J., Smyth M.J. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science 2011;331(6024):1565-70. doi:10.1126/science.1203486.; Pardoll D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Canc 2012;12(4):252-64. doi:10.1126/science.1203486.; Leach D.R., Krummel M.F., Allison J.P. Enhancement of antitumor immunity by CTLA-4 blockade. Science 1996;271(5256):1734-6. doi:10.1126/science.271.5256.1734.; Curran M.A., Montalvo W., Yagita H., Allison J.P. PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc Natl Acad Sci USA 2010;107(9):4275-80. doi:10.1073/pnas.0915174107.; Shi L.Z., Fu T., Guan B. Interdependent IL-7 and IFN-gamma signalling in T-cell controls tumour eradication by combined alpha-CTLA-4+alpha-PD-1 therapy. Nat Commun 2016;7:12335. doi:10.1038/ncomms12335.; Hodi F.S., O'Day S.J., McDermott D. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010;363(8):711-23. doi:10.1056/NEJMoa1003466; Ma W., Gilligan B.M, Yuan J., Li T. Current status and perspectives in translational biomarker research for PD-1/PD-L1 immune checkpoint blockade therapy. J Hematol Oncol 2016;9:47. doi:10.1186/s13045-016-0277-y.; Sharma P., Hu-Lieskovan S., Wargo J.A., Ribas A. Primary, Adaptive, and Acquired Resistance to Cancer Immunotherapy. Cell 2017;168:707-23. doi:10.1016/j.cell.2017.01.017.; Thorsson V., Gibbs D.L., Brown S.D. The Immune Landscape of Cancer. Immunity 2018;48:812-30. doi:10.1016/j.immuni.2018.03.023.; Weber S., D'Angelo S.P., Minor D., Hodi F.S., Gutzmer R., Neyns B., Hoeller C., Khushalani N.I., Miller W.H. Jr, Lao C.D., Linette G.P., Thomas L., Lorigan P., Grossmann K.F., Hassel J.C., Maio M., Sznol M., Ascierto P.A., Mohr P., Chmielowski B., Bryce A., Svane I.M., Grob J.-J., Krackhardt A.M., Horak C., Lambert A., Yang A.S., Larkin J. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): A randomised, controlled, open-label, phase 3 trial. Lancet Oncol 2015;16:375. doi:10.1016/S1470-2045(15)70076-8.; Wolchok J.D., Kluger H., Callahan M.K. Postow M.A., Rizvi N.A., Lesokhin A.M., Segal N.H., Ariyan C.E., Gordon R.A., Reed K., Burke M.M., Caldwell A., Kronenberg S.A., Agunwamba B.U., Zhang X., Lowy I., Inzunza H.D., Feely W., Horak C.E., Hong Q., Korman A.J., Wigginton J.M., Gupta A., Sznol M. Nivolumab plus Ipilimumab in Advanced Melanoma. N Engl Med 2013;369:122-33. doi:10.1056/NEJMoa1302369.; Pons-Tostivint E., Latouche A., Vaflard P., Ricci F., Loirat D., Hescot S., Sablin M.-P., Rouzier R., Kamal M., Morel C., Lecerf C., Servois V., Paoletti X., Le Tourneau C. Comparative analysis of durable responses on immune checkpoint inhibitors versus other systemic therapies: a pooled analysis of phase III trials. JCO Precis Oncol 2019;3:1-10. doi:10.1200/po.18.0011415.; Maibach F., Sadozai H., Seyed Jafari S.M., Hunger R.E., Schenk M. Tumor-Infiltrating Lymphocytes and Their Prognostic Value in Cutaneous Melanoma. Front Immunol 2020;11:2105. doi:10.3389/fimmu.2020.0210.; Nelson M.A., Ngamcherdtrakul W., Luoh S.W., Yantasee W. Prognostic and therapeutic role of tumor-infiltrating lymphocyte subtypes in breast cancer. Cancer Metastasis Rev 2021. doi:10.1007/s10555-021-09968-0.; Geng Y., Shao Y., He W., Hu W., Xu Y., Chen J., Wu C., Jiang J. Prognostic Role of Tumor-Infiltrating Lymphocytes in Lung Cancer: a Meta-Analysis. Cell Physiol Biochem 2015;37(4):1560-71. doi:10.1159/00043852.; Nosho K., Baba Y., Tanaka N., Shima K., Hayashi M., Meyerhardt J.A., Giovannucci E., Dranoff G., Fuchs C.S, Ogino S. Tumour-infiltrating T-cell subsets, molecular changes in colorectal cancer, and prognosis: cohort study and literature review. J Pathol 2010;222(4):350-66. doi:10.1002/path.2774.; Schirosi L., Saponaro C., Giotta F., Popescu O., Pastena M.I., Scarpi E., Mangia A. Tumor Infiltrating Lymphocytes and NHERF1 Impact on Prognosis of Breast Cancer Patients. Transl Oncol 2020;13(2):186-92. doi:10.1016/j.tranon.2019.10.020.; Dieci M.V., Radosevic-Robin N., Fineberg S., van den Eynden G., Ternes N., Penault-Llorca F., Pruneri G., D'Alfonso T.M., Demaria S., Castaneda C., Sanchez J., Badve S., Michiels S., Bossuyt V., Rojo F., Singh B., Nielsen T., Viale G., Kim S.R., Hewitt S., Wienert S., Loibl S., Rimm D., Symmans F., Denkert C., Adams S., Loi S., Salgado R. Update on tumor-infiltrating lymphocytes (TILs) in breast cancer, including recommendations to assess TILs in residual disease after neoadjuvant therapy and in carcinoma in situ: A report of the International ImmunoOncology Biomarker Working Group on Breast Cancer. Semin Cancer Biol 2018;52(Pt 2):16-25. doi:10.1016/j.semcancer.2017.10.003.; Liu S., Foulkes W.D., Leung S., Lau S., Kos Z., Nielsen T.O. Prognostic significance of FOXP3+ tumor infiltrating lymphocytes in breast cancer depends on estrogen receptor and human epidermal growth factor receptor-2 expression status and concurrent cytotoxic T-cell infiltration. Breast Cancer Res 2014;16(5):432. doi:10.1186/s13058-014-0432-8.; Barnes T.A., Amir E. HYPE or HOPE: the prognostic value of infiltrating immune cells in cancer. Br J Cancer 2017;117:451-60. doi:10.1038/bjc.2017.220.; Teschendorff A.E., Gomez S., Arenas A., El-Ashry D., Schmidt M., Gehrmann M., Caldas C. Improved prognostic classification of breast cancer defined by antagonistic activation patterns of immune response pathway modules BMC. Cancer 2010;10:604. doi:10.1186/1471-2407-10-604.; Denkert C., Loibl S., Noske A., Roller M., Muller B.M., Komor M., Budczies J., Darb-Esfahani S., Kronenwett R., Hanusch C., von Torne C., Weichert W., Engels K., Solbach C., Schrader I., Dietel M., von Minckwitz G. Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. J Clin Oncol 2010;28:105-13. doi:10.1200/JCO.2009.23.7370.; Qi W., Huang X., Wang J. Correlation between Th17 cells and tumor microenvironment. Cell Immunol 2013;285:18-22. doi:10.1016/j.cellimm.2013.06.001.; Mahmoud S.M., Lee A.H., Paish E.C., Macmillan R.D., Ellis I.O., Green A.R. The prognostic significance of B lymphocytes in invasive carcinoma of the breast. Breast Cancer Res Treat 2012;132:545-53. doi:10.1007/s10549-011-1620-1.; Mansfield A.S., Murphy S.J., Peikert T., Yi E.S., Vasmatzis G., Wigle D.A., Aubry M.C. Heterogeneity of programmed cell death ligand 1 expression in multifocal lung cancer. Clin Cancer Res 2016;22:2177-82. doi:10.1158/1078-0432.CCR-15-2246.; Pages F., Berger A., Camus M., Sanchez-Cabo F., Costes A., Molidor R., Mlecnik B., Kirilovsky A., Nilsson M., Damotte D., Meatchi T., Bruneval P., Cugnenc P.H., Trajanoski Z., Fridman W.H., Galon J. Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med 2005;353:2654-66. doi:10.1056/NEJMoa051424.; Davis A.A., Patel V.G. The role of PD-L1 expression as a predictive biomarker: an analysis of all US Food and Drug Administration (FDA) approvals of immune checkpoint inhibitors. J Immunother Cancer 2019;7:278 doi:10.1186/s40425-019-0768-9.; Reck M., Rodriguez-Abreu D., Robinson A.G., Hui R., Csoszi T., Fulop A. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung Cancer. N Engl J Med 2016;375(19):1823-33. doi:10.1056/NEJMoa1606774.; Herbst R.S., Baas P., Kim D.W., Felip E., Perez-Gracia J.L., Han J.Y., Molina J., Kim J.H., Arvis C.D., Ahn M.J., Majem M., Fidler M.J., de Castro G. Jr, Garrido M., Lubiniecki G.M., Shentu Y., Im E., Dolled-Filhart M., Garon E.B. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet 2016;387(10027):1540-50. doi:10.1016/S0140-6736(15)01281-7.; Rizk E.M., Gartrell R.D., Barker L.W., Esancy C.L., Finkel G.G., Bordbar D.D., Saenger Y.M. Prognostic and Predictive Immunohistochemistry-Based Biomarkers in Cancer and Immunotherapy. Hematol Oncol Clin North Am 2019;33(2):291-9. doi:10.1016/j.hoc.2018.12.005.; Lança T., Silva-Santos B. The split nature of tumor-infi ltrating leukocytes: Implications for cancer surveillance and immunotherapy. Oncoimmunol 2012;1(5):717–25. doi:10.4161/onci.20068.; Yatim N., Jusforgues-Saklani H., Orozco S., Schulz O., Barreira da Silva R., Reis e Sousa C., Green D.R., Oberst A., Albert M.L. RIPK1 and NF-kB signaling in dying cells determines cross-priming of CD8+ T cells. Science 2015;350:328-34. doi:10.1126/science.aad0395.; Fehrenbacher L., Spira A., Ballinger M., Hida T., Gandara D.R, Cortinovis D.L., Barlesi F., Yu W., Matheny C., Ballinger M., Park K. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. Lancet 3716;387:1837-46. doi:10.1016/S0140-6736(16)00587-0.; Rosenberg J.E., Hoffman-Censits J., Powles T., Balar A.V., Necchi A., Dawson N., O'Donnell P.H., Balmanoukian A., Loriot Y., Srinivas S., Retz M.M., Grivas P., Joseph R.W., Galsky M.D., Fleming M.T., Petrylak D.P., Perez-Gracia J.L., Burris H.A., Castellano D., Canil C., Bellmunt J., Bajorin D., Nickles D., Bourgon R., Frampton G.M., Cui N., Mariathasan S., Abidoye O., Fine G.D., Dreicer R. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet 2016;387:1909-20. doi:10.1016/S0140-6736(16)00561-4.; Hegde P.S., Karanikas V., Evers S. The where, the when, and the how of immune monitoring for cancer immunotherapies in the era of checkpoint inhibition. Clin Cancer Res 2016;22:1865-74. doi:10.1158/1078-0432.CCR-15-1507.; Herbst R.S., Soria J.C., Kowanetz M., Fine G.D., Hamid O., Gordon M.S., Sosman J.A., McDermott D.F., Powderly J.D., Gettinger S.N., Kohrt H.E, Horn L., Lawrence D.P., Rost S., Leabman M., Xiao Y., Mokatrin A., Koeppen H., Hegde P.S., Mellman I., Chen D.S., Hodi F.S. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. A compilation of biomarker results from a series of people with cancer who were treated with the anti-PD-L1 antibody atezolizumab; this was the first study to clearly document that the expression of PD-L1 in tumours enriches for people who will respond to therapy, and that responders exhibit an influx of canonically activated T cells. Nature 2014;515:563-7. doi:10.1038/nature14011.; Hamid O., Schmidt H., Nissan A., Ridolfi L., Aamdal S., Hansson J., Guida M., Hyams D.M., Gomez H., Bastholt L., Chasalow S.D., Berman D. A prospective phase II trial exploring the association between tumor microenvironment biomarkers and clinical activity of ipilimumab in advanced melanoma. J Transl Med 2011;9:204. doi:10.1186/1479-5876-9-204.; Tumeh P.C., Harview C.L., Yearley J.H., Shintaku I.P., Taylor E.J., Robert L., Chmielowski B., Spasic M., Henry G., Ciobanu V., West A.N., Carmona M., Kivork C., Seja E., Cherry G., Gutierrez A.J., Grogan T.R., Mateus C., Tomasic G., Glaspy J.A., Emerson R.O, Robins H., Pierce R.H., Elashoff D.A., Robert C., Ribas A. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 2014;515:568-71. doi:10.1038/nature13954.; Wistuba-Hamprecht K., Martens A., Heubach F., Romano E., Geukes Foppen M., Yuan J., Postow M., Wong P., Mallardo D., Schilling B., Di Giacomo A.M., Khammari A., Dreno B., Maio M., Schadendorf D., Ascierto P.A., Wolchok J.D., Blank C.U., Garbe C., Pawelec G., Weide B. Peripheral CD8 effector memory type 1 T-cells correlate with outcome in ipilimumab-treated stage IV melanoma patients. Eur J Cancer 2017;73:61-70. doi:10.1016/j.ejca.2016.12.011.; Chen P.L., Roh W., Reuben A., Spencer C.N., Prieto P.A., Miller J.P., Bassett R.L., Gopalakrishnan V., Wani K., De Macedo M.P., Austin-Breneman J.L., Jiang H., Chang Q., Reddy S.M., Chen W.S., Tetzlaff M.T., Broaddus R.J., Davies M.A., Gershenwald J.E., Haydu L., Lazar A.J., Patel S.P., Hwu P., Hwu W.J., Diab A., Glitza I.C., Woodman S.E., Vence L.M., Wistuba I.I., Amaria R.N., Kwong L.N., Prieto V., Davis R.E., Ma W., Overwijk W.W., Sharpe A.H., Hu J., Futreal P.A., Blando J., Sharma P., Allison J.P., Chin L., Wargo J.A. Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade. Cancer Discov 2016;6:827-37. doi:10.1158/2159-8290.CD-15-1545.; Darvin P., Toor S.M., Sasidharan Nair V., Elkord E. Immune checkpoint inhibitors: recent progress and potential biomarkers. Exp Mol Med 2018;50(12):1-11. doi:10.1038/s12276-018-0191-1.; Balatoni T., Mohos A., Papp E., Sebestyen T., Liszkay G., Olah J., Varga A., Lengyel Z., Emri G., Gaudi I., Ladanyi A. Tumor-infiltrating immune cells as potential biomarkers predicting response to treatment and survival in patients with metastatic melanoma receiving ipilimumab therapy. Cancer Immunol Immunother 2018;67:141-51. doi:10.1007/s00262-017-2072-1.; Zappasodi R., Budhu S., Hellmann M.D., Postow M.A., Senbabaoglu Y., Manne S., Gasmi B., Liu C., Zhong H., Li Y., Huang A.C., Hirschhorn-Cymerman D., Panageas K.S., Wherry E.J., Merghoub T., Wolchok J.D. Non-conventional inhibitory CD4+Foxp3-PD-1hi T cells as a biomarker of immune checkpoint blockade activity. Cancer Cell 2018;33(6):1017-32. doi:10.1016/j.ccell.2018.05.009.; Geng Y., Shao Y., He W., Xu Y., Chen J., Wu C., Jiang J. Prognostic role of tumor-infiltrating lymphocytes in lung cancer: A meta-analysis. Cell Physiol Biochem 2015;37:1560-71. doi:10.1159/000438523.; Schmid P., Cruz C., Braiteh F.S., Eder J.P., Tolaney S., Kuter I., Nanda R., Chung C., Cassier P., Delord J.-P., Gordon M., Li Y., Liu B., O'Hear C., Fasso M., Molinero L., Emens L.A. Atezolizumab in metastatic TNBC (mTNBC): Long-term clinical outcomes and biomarker analyses. Cancer Res 2017;77(13):2986. doi:10.1158/1538-7445.AM2017-2986.; Loi S., Schmid P., Adams S., Cortes J., Cescon D.W., Winer E.P., Toppmeyer D.L., Rugo H.S., De Laurentiis M., Nanda R., Iwata H., Awada A., Tan1 A., Wang A., Aktan G., Karantza V., Salgado R. LBA13 relationship between tumor infiltrating lymphocyte (TIL) levels and response to pembrolizumab (pembro) in metastatic triple-negative breast cancer (mTNBC): Results from KEYNOTE-086. Ann Oncol 2017;28(Suppl. 5). doi:10.1093/annonc/mdx440.005.; Borghaei H., Paz-Ares L., Horn L., Spigel D.R., Steins M., Ready N.E., Chow L.Q., Vokes E.E., Felip E., Holgado E., Barlesi F., Kohlhaufl M., Arrieta O., Burgio M.A., Fayette J., Lena H., Poddubskaya E., Gerber D.E., Gettinger S.N., Rudin C.M., Rizvi N., Crino L., Blumenschein G.R. Jr, Antonia S.J., Dorange C., Harbison C.T., Graf Finckenstein F., Brahmer J.R. Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer. N Engl J Med 2015;373(17):1627-39. doi:10.1056/NEJMoa1507643.; Gibney G.T., Weiner L.M., Atkins M.B. Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol 2016;17(12):e542-e551. doi:10.1016/S1470-2045(16)30406-5.; Tokito T., Azuma K., Kawahara A., Ishii H., Yamada K., Matsuo N., Kinoshita T., Mizukami N., Ono H., Kage M., Hoshino T. Predictive relevance of PD-L1 expression combined with CD8+ TIL density in stage III non-small cell lung cancer patients receiving concurrent chemoradiotherapy. Eur J Cancer 2016;55:7-14. doi:10.1016/j.ejca.2015.11.020.; Di Caro G., Bergomas F., Grizzi F., Doni A., Bianchi P., Malesci A., Laghi L., Allavena P., Mantovani A., Marchesi F. Occurrence of tertiary lymphoid tissue is associated to T-cell infiltration and predicts better prognosis in early-stage colorectal cancers. Clin Cancer Res 2014;20:2147-58. doi:10.1158/1078-0432.CCR-13-2590.; Dong H., Strome S.E., Salomao D.R., Tamura H., Hirano F., Flies D.B., Roche P.C., Lu J., Zhu G., Tamada K., Lennon V.A., Celis E., Chen L. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 2002;8:793-800. doi:10.1038/nm730.; Taube J.M., Young G.D., McMiller T.L., Salas J.T., Pritchard T.S., Xu H., Meeker A.K., Fan J., Cheadle C., Berger A.E., Pardoll D.M., Topalian S.L. Differential expression of immune-regulatory genes associated with PD-L1 display in melanoma: implications for PD-1 pathway blockade. Clin Cancer Res 2015;21:3969-76. doi:10.1158/1078-0432.CCR-15-0244.; Simeone E., Gentilcore G., Giannarelli D., Chen S., Salas J.T., Pritchard T.S., Xu H., Meeker A.K., Fan J., Cheadle C., Berger A.E., Pardoll D.M., Topalian S.L. Immunological and biological changes during ipilimumab treatment and their potential correlation with clinical response and survival in patients with advanced melanoma. Cancer Immunol Immunother 2014;63:675-83. doi:10.1007/s00262-014-1545-8.; Martens A., Wistuba-Hamprecht K., Yuan J., Postow M.A., Wong P., Capone M., Madonna G., Khammari A., Schilling B., Sucker A., Schadendorf D., Martus P., Dreno B., Ascierto P.A., Wolchok J.D., Pawelec G., Garbe C., Weide B. Increases in Absolute Lymphocytes and Circulating CD4+ and CD8+ T Cells Are Associated with Positive Clinical Outcome of Melanoma Patients Treated with Ipilimumab. Clin Cancer Res 2016;22(19):4848-58. doi:10.1158/1078-0432.CCR-16-0249.; Manola J., Atkins M., Ibrahim J., Kirkwood J. Prognostic factors in metastatic melanoma: A pooled analysis of eastern cooperative oncology group trials. J Clin Oncol 2000;18:3782-93. doi:10.1200/JCO.2000.18.22.3782.; Wang W., Yu D., Sarnaik A.A., Hall M., Morelli D., Zhang Y., Zhao X., Weber J.S. Biomarkers on melanoma patient T cells associated with ipilimumab treatment. J Transl Med 2012;10:146. doi:10.1186/1479-5876-10-146.; Ng Tang D., Shen Y., Sun J., Wen S., Wolchok J.D., Yuan J., Allison J.P., Sharma P. Increased frequency of ICOS+CD4 T cells as a pharmacodynamic biomarker for anti-CTLA-4 therapy. Cancer Immunol Res 2013;1:229-34. doi:10.1158/2326-6066.CIR-13-0020.; Bendall S.C., Simonds E.F., Qiu P., Amir El-Ad., Krutzik P.O., Finck R., Bruggner R.V., Melamed R., Trejo A., Ornatsky O.I., Balderas R.S., Plevritis S.K., Sachs K., Pe'er D., Tanner S.D., Nolan G.P. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 2011;332(6030):687-96. doi:10.1126/science.1198704.; Subrahmanyam P.B., Dong Z., Gusenleitner D., Giobbie-Hurder A., Severgnini M., Zhou J., Manos M., Eastman L.M., Maecker H.T., Hodi F.S. Distinct predictive biomarker candidates for response to anti-CTLA-4 and anti-PD-1 immunotherapy in melanoma patients. J Immunother Cancer 2018;6(1):18. doi:10.1186/s40425-018-0328-8.; de Coana Y.P., Wolodarski M., Poschke I., Yoshimoto Y., Yang Y., Nystrom M., Edback U., Eghyazi Brage S., Lundqvist A., Masucci G.V., Hansson J., Kiessling R. Ipilimumab treatment decreases monocytic MDSCs and increases CD8 effector memory T cells in long-term survivors with advanced melanoma. Oncotarget 2017;8:21539-53. doi:10.18632/oncotarget.15368.; Park J.A., Cheung N.V. Limitations and opportunities for immune checkpoint inhibitors in pediatric malignancies. Cancer Treat Rev 2017;58:22-33. doi:10.1016/j.ctrv.2017.05.006.; van Dam L.S., de Zwart V.M., Meyer-Wentrup F.A. The role of programmed cell death-1 (PD-1) and its ligands in pediatric cancer. Pediatr Blood Cancer 2015;62(2):190-7. doi:10.1002/pbc.25284.; Lussier D.M., O'Neill L., Nieves L.M., McAfee M.S., Holechek S.A., Collins A.W., Dickman P., Jacobsen J., Hingorani P., Blattman J.N. Enhanced T-cell immunity to osteosarcoma through antibody blockade of PD1/PD-L1 interactions. J Immunother 2015;38(3):96-106. doi:10.1097/CJI.0000000000000065.; Karim L.A., Wang P., de Guzman J., Higgins B., Chahine J., Sheehan C., Kallakury B., Ross J.S. PDL1 protein expression and tumor mutation burden in hematologic malignancies: correlation with Hodgkin and high grade lymphoma. Cancer Res 2017;77(13 Suppl):3724.; Shi L., Chen S., Yang L., Li Y. The role of PD-1 and PD-L1 in T-cell immune suppression in patients with hematological malignancies. J Hematol Oncol 2013;6(1):74. doi:10.1186/1756-8722-6-74.; Andorsky D.J., Yamada R.E., Said J., Pinkus G.S., Betting D.J., Timmerman J.M. Programmed death ligand 1 is expressed by nonHodgkin lymphomas and inhibits the activity of tumorassociated T cells. Clin Cancer Res 2011;17(13):4232-44. doi:10.1158/1078-0432.CCR-10-2660.; Yao Y., Tao R., Wang X., Wang Y., Mao Y., Zhou L.F. B7-H1 is correlated with malignancy-grade gliomas but is not expressed exclusively on tumor stem-like cells. Neuro Oncol 2009;11(6):757-66. doi:10.1215/15228517-2009-014.; Wintterle S., Schreiner B., Mitsdoerffer M., Schneider D., Chen L., Meyermann R., Weller M., Wiendl H. Expression of the B7-related molecule B7-H1 by glioma cells: a potential mechanism of immune paralysis. Cancer Res 2003;63(21):7462-7. PMID: 14612546.; Pinto N., Park J.R., Murphy E., Yearley J., McClanahan T., Annamalai L., Hawkins D.S., Rudzinski E.R. Patterns of PD-1, PD-L1, and PD-L2 expression in pediatric solid tumors. Pediatr Blood Cancer 2017;64(11). doi:10.1002/pbc.26613.; Routh J.C., Ashley R.A., Sebo T.J., Lohse C.M., Husmann D.A., Kramer S.A., Kwon E.D. B7-H1 expression in Wilms tumor: correlation with tumor biology and disease recurrence. J Urol 2008;179:1954-9. doi:10.1016/j.juro.2008.01.056.; Bertolini G., Bergamaschi L., Ferrari A., Renne S.L, Collini P., Gardelli C., Barisella M., Centonze G., Chiaravalli S., Paolino C., Milione M., Massimino M., Casanova M., Gasparini P. PD-L1 assessment in pediatric rhabdomyosarcoma: a pilot study. BMC Cancer 2018;18(1):652. doi:10.1186/s12885-018-4554-8.; Davis K.L., Fox E., Merchant M.S., Reid J.M., Kudgus R.A., Liu X., Minard C.G., Voss S., Berg S.L., Weigel B.J., Mackal C.L. Nivolumab in children and young adults with relapsed or refractory solid tumours or lymphoma (ADVL1412): A multicentre, open-label, single-arm, phase 1-2 trial. Lancet Oncol 2020;21:541-50. doi:10.1016/S1470-2045(20)30023-1.; Dondero A., Pastorino F., Della Chiesa M., Corrias M.V., Morandi F., Pistoia V., Olive D., Bellora F., Locatelli F., Castellano A., Moretta L., Bottino C., Castriconi R. PD-L1 expression in metastatic neuroblastoma as an additional mechanism for limiting immune surveillance. Oncoimmunol 2016;5:e1064578. doi:10.1080/2162402X.2015.1064578.; Siebert N., Zumpe M., Juttner M., Troschke-Meurer S., Lode H. PD-1 blockade augments anti-neuroblastoma immune response induced by anti-GD2 antibody ch14.18/CHO. Oncoimmunol 2017;6:e1343775. doi:10.1080/2162402X.2017.1343775.; Ehlert K., Hansjuergens I., Zinke A., Otto S., Siebert N., Henze G., Lode H. Nivolumab and dinutuximab beta in two patients with refractory neuroblastoma. J Immunother Cancer 2020;8(1):e000540. doi:10.1136/jitc-2020-000540.; Lucchesi M., Sardi I., Puppo G., Chella A., Favre C. The dawn of “immune-revolution” in children: early experiences with checkpoint inhibitors in childhood malignancies. Cancer Chemother Pharmacol 2017;80(6):1047-53. doi:10.1007/s00280-017-3450-2.; Merchant M.S., Wright M., Baird K., Wexler L.H., Rodriguez-Galindo C., Bernstein D., Delbrook C., Lodish M., Bishop R., Wolchok J.D., Streicher H., Mackall C.L. Phase I clinical trial of ipilimumab in pediatric patients with advanced solid tumors. Clin Cancer Res 2016;22(6):1364-70. doi:10.1158/1078-0432.CCR-15-0491.; van der Woude L.L., Gorris M.A.J., Halilovic A., Figdor C.G., de Vries I.J.M. Migrating into the tumor: a roadmap for T cells. Trends Cancer 2017;3:797-808. doi:10.1016/j.trecan.2017.09.006.; Awad R.M., de Vlaeminck Y., Maebe J., Goyvaerts C., Breckpot K. Turn back the TIMe: targeting tumor infiltrating myeloid cells to revert cancer progression. Front Immunol 2018;9:1977. doi:10.3389/fimmu.2018.01977.; https://journal.nodgo.org/jour/article/view/723
-
7Academic Journal
المؤلفون: I. O. Chikileva, I. Zh. Shubina, I. V. Samoylenko, A. V. Karaulov, M. V. Kiselevsky, И. О. Чикилева, И. Ж. Шубина, И. В. Самойленко, А. В. Караулов, М. В. Киселевский
المصدر: Medical Immunology (Russia); Том 21, № 1 (2019); 59-68 ; Медицинская иммунология; Том 21, № 1 (2019); 59-68 ; 2313-741X ; 1563-0625 ; 10.15789/1563-0625-2019-1
مصطلحات موضوعية: иммунотерапия опухолей, inhibitory immune receptors, CTLA-4, PD-1, ipilimumab, nivolumab, cancer immunotherapy, ингибиторные иммунные рецепторы, ипилимумаб, ниволумаб
وصف الملف: application/pdf
Relation: https://www.mimmun.ru/mimmun/article/view/1699/1100; Bally A.P., Austin J.W., Boss J.M. Genetic and epigenetic regulation of PD-1 expression. J. Immunol., 2016, Vol. 196, no. 6, pp. 2431-2437.; Beldi-Ferchiou A., Lambert M., Dogniaux S., Vély F., Vivier E., Olive D., Dupuy S., Levasseur F., Zucman D., Lebbé C., Sène D., Hivroz C., Caillat-Zucman S. PD-1 mediates functional exhaustion of activated NK cells in patients with Kaposi sarcoma.Oncotarget, 2016, Vol. 7, no. 45, pp. 72961-72977.; Bjoern J., Juul Nitschke N., Zeeberg Iversen T., Schmidt H., Fode K., Svane I.M. Immunological correlates of treatment and response in stage IV malignant melanoma patients treated with Ipilimumab. Oncoimmunology, 2016, Vol. 5, no. 4, e1100788. doi:10.1080/2162402X.2015.1100788.; Buchbinder E., Hodi F.S. Cytotoxic T lymphocyte antigen-4 and immune checkpoint blockade. J. Clin. Invest., 2015, Vol. 125, pp. 3377-3383.; Chan D.V., Gibson H.M., Aufiero B.M., Wilson A.J., Hafner M.S., Mi Q.S., Wong H.K. Differential CTLA- 4 expression in human CD4 + versus CD8 + T cells is associated with increased NFAT1 and inhibition of CD4 + proliferation.Genes Immun., 2014, Vol. 15, no. 1, pp. 25-32.; Corse E., Allison J.P. Cutting edge: CTLA-4 on effector T cells inhibits in trans. J. Immunol., 2012, Vol. 189, pp. 1123-1127.; Das R., Verma R., Sznol M., Boddupalli C.S., Gettinger S.N., Kluger H., Callahan M., Wolchok J.D., Halaban R., Dhodapkar M.V., Dhodapkar K.M. Combination therapy with anti-CTLA4 and anti-PD1 leads to distinct immunologic changes in vivo. J. Immunol., 2015, Vol. 194, no. 3, pp. 950-959.; Fallarino F., Fields P.E., Gajewski T.F. B7-1 engagement of cytotoxic T lymphocyte antigen 4 inhibits T cell activation in the absence of CD28. J. Exp. Med., 1998, Vol. 188, no. 1, pp. 205-210.; Fife B.T., Guleria I., Gubbels Bupp M., Eagar T.N., Tang Q., Bour-Jordan H., Yagita H., Azuma M., Sayegh M.H., Bluestone J.A. Insulin-induced remission in new-onset NOD mice is maintained by the PD-1-PD-L1 pat hway.J. Exp. Med., 2006, Vol. 203, pp. 2737-2747.; Gibson H.M., Hedgcock C.J., Aufiero B.M., Wilson A.J., Hafner M.S., Tsokos G.C., Wong H.K. Induction of the CTLA-4 gene in human lymphocytes is dependent on NFAT binding the proximal promoter. J. Immunol., 2007, Vol. 179, no. 6, pp. 3831-3840.; Keir M.E., Butte M.J., Freeman G.J., Sharpe A.H. PD-1 and its ligands in tolerance and immunity. Annu. Rev. Immunol., 2008, Vol. 26, pp. 677-704.; Khattri R., Auger J.A., Griffin M.D., Sharpe A.H., Bluestone J.A. Lymphoproliferative disorder in CTLA- 4 knockout mice is characterized by CD28-regulated activation of Th2 responses. J. Immunol., 1999, Vol. 162, pp. 5784-5791.; Larkin J., Lao C.D., Urba W.J., McDermott D.F., Horak C., Jiang J., Wolchok J.D. Efficacy and safety of nivolumab in patients with BRAF V600Mutant and BRAF wild-type advanced melanomaa pooled analysis of 4 clinical trials. JAMA Oncol., 2015, Vol. 1, no. 4, pp. 433-440.; Larkin J., Chiarion-Sileni V., Gonzalez R., Grob J.J., Cowey C.L., Lao C.D., Schadendorf D., Dummer R., Smylie M., Rutkowski P., Ferrucci P.F., Hill A., Wagstaff J., Carlino M.S., Haanen J.B., Maio M., Marquez-Rodas I., McArthur G.A., Ascierto P.A., Long G.V., Callahan M.K., Postow M.A. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med., 2015, Vol. 373, no. 1, pp. 23-34.; Li X., Wang J., Yao Y., Yang L., Li Z., Yu C., Zhao P., Yu Y., Wang L. Comparative efficacy and safety of immune checkpoint inhibitor-related therapies for advanced melanoma: a Bayesian network analysis.Oncotarget, 2017, Vol. 8, no. 48, pp. 83637-83649.; Linsley P.S., Bradshaw J., Greene J., Peach R., Bennett K.L., Mittler R.S. Intracellular trafficking of CTLA-4 and focal localization towards sites of TCR engagement. Immunity, 1996, Vol. 4, no. 6, pp. 535-543.; Mahoney K.M., Freeman G.J., McDermott D.F. The next immune-checkpoint inhibitors: PD-1/PD-L1 blockade in melanoma. Clin. Ther., 2015, Vol. 37, pp. 764-782.; Niezgoda A., Niezgoda P., Czajkowski R. Novel approaches to treatment of advanced melanoma: a review on targeted therapy and immunotherapy.Biomed. Res. Int., 2015, Vol. 2015, 851387. doi:10.1155/2015/851387.; Okazaki T., Tanaka Y., Nishio R., Mitsuiye T., Mizoguchi A., Wang J., Ishida M., Hiai H., Matsumori A., Minato N., Honjo T. Autoantibodies against cardiac troponin I are responsible for dilated cardiomyopathy in PD-1-deficient mice. Nat. Med., 2003, Vol. 9, pp. 1477-1483.; Pentcheva-Hoang T., Chen L., Pardoll D.M., Allison J.P. Programmed death-1 concentration at the immunological synapse is determined by ligand affinity and availability. PNAS, 2007, Vol. 104, no. 45, pp. 17765- 17770.; Pianko M.J., Funt S.A. , Page D.B., Cattry D., Scott E.C., Ansel S.M.l, Borrello I.M., Gutierrez M., Lendvai N., Hassoun H., Landgren C.O., Lesokhin A.M. Efficacy and toxicity of therapy immediately after treatment with nivolumab in relapsed multiple myeloma. Leuk. Lymphoma, 2018, Vol. 59, no. 1, pp. 221-224.; Poh S.L., Linn Y.C. Immune checkpoint inhibitors enhance cytotoxicity of cytokine-induced killer cells against human myeloid leukaemic blasts. Cancer Immunol. Immunother., 2016, Vol. 65, no. 5, pp. 525-536.; Qureshi O.S., Zheng Y., Nakamura K., Attridge K., Manzotti C., Schmidt E.M., Baker J., Jeffery L.E., Kaur S., Briggs Z., Hou T.Z., Futter C.E., Anderson G., Walker L.S., Sansom D.M. Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4.Science, 2011, Vol. 332, no. 6029, pp. 600-603.; Riley J.L., June C.H. The CD28 family: a T-cell rheostat for therapeutic control of T-cell activation. Blood, 2005, Vol. 105, no. 1, pp. 13-21.; Salama A.D., Chitnis T., Imitola J., Ansari M. J., Akiba H., Tushima F., Azuma M., Yagita H., Sayegh M.H., Khoury S.J. Critical role of the programmed death-1 (PD-1) pathway in regulation of experimental autoimmune encephalomyelitis.J. Exp. Med., 2003, Vol. 198, pp. 71-78.; Stojanovic A., Fiegler N., Brunner-Weinzierl M., Cerwenka A. CTLA-4 is expressed by activated mouse NK cells and inhibits NK Cell IFN-γproduction in response to mature dendritic cells.J. Immunol., 2014, Vol. 192, no. 9, pp. 4184-4191.; Tivol E.A., Borriello F., Schweitzer A.N., Lynch W.P., Bluestone J.A., Sharpe A.H. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity, 1995, Vol. 3, pp. 541-547.; Walker L.S.K., Sansom D.M. Confusing signals: Recent progress in CTLA-4 biology. Trends Immunol., 2015, Vol. 36, no. 2, pp. 63-70.; Walunas T.L., Lenschow D.J., Bakker C.Y., Linsley P.S., Freeman G.J., Green J.M., Thompson C.B., Bluestone J.A. CTLA-4 can function as a negative regulator of T cell activation.Immunity, 1994, Vol. 1, no. 5, pp. 405-413.; Wang C.J., Kenefeck R., Wardzinski L., Attridge K., Manzotti C., Schmidt E.M., Qureshi O.S., Sansom D.M., Walker L.S.K. Cutting edge: cell extrinsic immune regulation by CTLA-4 expressed on conventional T cells. J. Immunol., 2012, Vol. 189, pp. 1118-1120.; Weber J., Mandala M., del Vecchio M., Gogas H.J., Arance A.M., Cowey C.L., Dalle S., Schenker M., Chiarion-Sileni V., Marquez-Rodas I., Grob J.J., Butler M.O., Middleton M.R., Maio M., Atkinson V., Queirolo P., Gonzalez R., Kudchadkar R.R., Smylie M., Meyer N. Adjuvant nivolumab versus ipilimumab in resected stage III or IV melanoma. N. Engl. J. Med., 2017, Vol. 377, no. 19, pp. 1824-1835.; Wolchok J.D., Kluger H., Callahan M.K., Postow M.A., Rizvi N.A., Lesokhin A.M., Segal N.H., Ariyan C.E., Gordon R-A., Reed K., Burke M. M., Caldwell A., Kronenberg S.A., Agunwamba B.U., Zhang X., Lowy I., Inzunza H.D, Feely W., Horak C.E. Nivolumab plus ipilimumab in advanced melanoma. N. Engl. J. Med., 2013, Vol. 369, no. 2, pp. 122-133.; https://www.mimmun.ru/mimmun/article/view/1699
-
8Academic Journal
المؤلفون: I. V. Samoylenko, Ya. I. Zhulikov, G. Yu. Kharkevich, N. N. Petenko, L. V. Demidov, И. В. Самойленко, Я. А. Жуликов, Г. Ю. Харкевич, Н. H. Петенко, Л. В. Демидов
المصدر: Malignant tumours; Том 8, № 3 (2018); 78-85 ; Злокачественные опухоли; Том 8, № 3 (2018); 78-85 ; 2587-6813 ; 2224-5057
مصطلحات موضوعية: иммунотерапия, nivolumab, anti-PD-1, immunotherapy, ниволумаб, анти-PD-1
وصف الملف: application/pdf
Relation: https://www.malignanttumors.org/jour/article/view/565/401; Robert C., Thomas L., Bondarenko I., O’Day S., Weber J., Garbe C. et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N. Engl. J. Med. 2011. Vol. 364 (26). P. 2517–2526. PMID: 1639810. DOI:10.1056/NEJMoa1104621.; Mellman I., Coukos G., Dranoff G. Cancer immunotherapy comes of age. Nature. 2011. Vol. 480 (7378). P. 480–489. PMID: 22193102. DOI:10.1038/nature10673.; Kaufman H. L., Kirkwood J. M., Hodi F. S., Agarwala S., Amatruda T., Bines S. D. et al. The Society for Immunotherapy of Cancer consensus statement on tumour immunotherapy for the treatment of cutaneous melanoma. Nat. Rev. Clin. Oncol. 2013. Vol. 10 (10). P. 588–598. PMID: 23982524. DOI:10.1038/nrclinonc.2013.153.; Hodi F. S., O’Day S. J., McDermott D. F., Weber R. W., Sosman J. A., Haanen J. B. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 2010. Vol. 363 (8). P. 711–723. PMID: 20525992. DOI:10.1056/NEJMoa1003466.; Schadendorf D., Hodi F. S., Robert C., Weber J. C., Margolin K., Hamid O. et al. Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. J. Clin. Oncol. 2015. Vol. 33. P. 1889–1894. PMID: 25667295. DOI:10.1200/JCO.2014.56.2736.; Wolchok J. D., Chiarion-Sileni V., Gonzalez R., Rutkowski P., Grob J. J., Cowey C. L. et al. Overall Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. N. Engl. J. Med. 2017. Vol. 377 (14). P. 1345–1356. PMID: 28889792. DOI:10.1056/NEJMoa1709684.; Larkin J., Minor D., D’Angelo S., Neyns B., Smylie M., Miller W. H. et al. Overall Survival in Patients With Advanced Melanoma Who Received Nivolumab Versus Investigator’s Choice Chemotherapy in CheckMate 037: A Randomized, Controlled, Open-Label Phase III Trial. J. Clin. Oncol. 2018. Vol. 36 (4). P. 383–390. PMID: 28671856. DOI:10.1200/JCO.2016.71.8023.; Weber J. S, D’Angelo S. P., Minor D., Hodi F. S., Gutzmer R., Neyns B. et al. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2015. Vol. 16 (4). P. 375–384. PMID: 25795410. DOI:10.1016/S1470–2045(15)70076‑8.; Ribas A., Hamid O., Daud A., Hodi F. S., Wolchok J. D., Kefford R. et al. Association of Pembrolizumab With Tumor Response and Survival Among Patients With Advanced Melanoma. JAMA. 2016. Vol. 315 (15). P. 1600–1609. PMID: 27092830. DOI:10.1001/jama.2016.4059.; Specenier P. Nivolumab in melanoma. Expert Rev. Anticancer Ther. 2016. Vol. 16 (12). P. 1247–1261. PMID: 27776441. DOI:10.1080/14737140.2016.1249856.; https://www.malignanttumors.org/jour/article/view/565
-
9Academic Journal
المؤلفون: I. V. SAMOILENKO, G. Y. KHARKEVICH, L. V. DEMIDOV, И. В. САМОЙЛЕНКО, Г. Ю. ХАРКЕВИЧ, Л. В. ДЕМИДОВ
المصدر: Meditsinskiy sovet = Medical Council; № 10 (2016); 84-92 ; Медицинский Совет; № 10 (2016); 84-92 ; 2658-5790 ; 2079-701X ; 10.21518/2079-701X-2016-10
مصطلحات موضوعية: ипилимумаб, immunooncology, anti-CTLA4, ipilimumab, иммуноонкология
وصف الملف: application/pdf
Relation: https://www.med-sovet.pro/jour/article/view/1409/1367; Coley WB. The Treatment of Inoperable Sarcoma by Bacterial Toxins (the Mixed Toxins of the Streptococcus erysipelas and the Bacillus prodigiosus). Proc R Soc Med, 1910, 3(Surg Sect): 1-48.; Burnet FM. The concept of immunological surveillance. Prog Exp Tumor Res, 1970, 13: 1- 27.; Tirelli U, Carbone A, Monfardini S, Lazzarin A, Alessi E, Pileri S. Malignant tumors in patients with human immunodeficiency virus infection: a report of 580 cases. Journal of clinical oncology: official journal of the American Society of Clinical Oncology, 1989, 7(10): 1582-1583.; Varan A, Buyukpamukcu M, Ersoy F, Sanal O, Akyuz C, Kutluk T, Yalcin B. Malignant solid tumors associated with congenital immunodeficiency disorders. Pediatr Hematol Oncol, 2004, 21(5): 441-451.; Nagorsen D, Scheibenbogen C, Marincola FM, Letsch A, Keilholz U. Natural T cell immunity against cancer. Clinical cancer research: an official journal of the American Association for Cancer Research, 2003, 9(12): 4296-4303.; Clemente CG, Mihm MC, Jr., Bufalino R, Zurrida S, Collini P, Cascinelli N. Prognostic value of tumor infiltrating lymphocytes in the vertical growth phase of primary cutaneous melanoma. Cancer, 1996, 77(7): 1303-1310.; Самойленко И.В., Харкевич Г.Ю., Демидов Л.В. Преодоление иммунной толерантности как способ лечения злокачественных опухолей: новые перспективы. Современная онкология, 2014, 16(1): 42-47./Samoilenko I.V., Kharkevich G.Y., Demidov L.V. Overcoming of immune tolerance as a method to treat malignant tumours: new prospects. Sovremennaya Onkologia, 2014, 16 (1): 42-47.; Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A, Carter SL, Stewart C, Mermel CH, Roberts SA et al. Mutational heterogeneity in cancer and the search for new cancer- associated genes. Nature, 2013, 499(7457): 214-218.; Ott PA, Hodi FS, Robert C. CTLA-4 and PD-1/ PD-L1 blockade: new immunotherapeutic modalities with durable clinical benefit in melanoma patients. Clinical cancer research: an official journal of the American Association for Cancer Research, 2013, 19(19): 5300-5309.; van Wijk F, Nierkens S, de Jong W, Wehrens EJ, Boon L, van Kooten P, Knippels LM, Pieters R. The CD28/CTLA-4-B7 signaling pathway is involved in both allergic sensitization and tolerance induction to orally administered peanut proteins. J Immunol, 2007, 178(11): 6894-6900.; Suntharalingam G, Perry MR, Ward S, Brett SJ, Castello-Cortes A, Brunner MD, Panoskaltsis N. Cytokine storm in a phase 1 trial of the anti- CD28 monoclonal antibody TGN1412. The New England journal of medicine, 2006, 355(10): 1018-1028.; Patnaik A, Kang SP, Rasco D, Papadopoulos KP, Elassaiss-Schaap J, Beeram M, Drengler R, Chen C, Smith L, Espino G et al. Phase I Study of Pembrolizumab (MK-3475; Anti-PD-1 Monoclonal Antibody) in Patients with Advanced Solid Tumors. Clinical cancer research: an official journal of the American Association for Cancer Research, 2015, 21(19): 4286-4293.; Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC et al. Improved survival with ipilimumab in patients with metastatic melanoma. The New England journal of medicine, 2010, 363(8): 711-723.; Robert C, Thomas L, Bondarenko I, O’Day S, M DJ, Garbe C, Lebbe C, Baurain JF, Testori A, Grob JJ et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med, 2011, 364(26): 2517-2526.; Wolchok JD, Hoos A, O’Day S, Weber JS, Hamid O, Lebbe C, Maio M, Binder M, Bohnsack O, Nichol G et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clinical cancer research: an official journal of the American Association for Cancer Research, 2009, 15(23): 7412-7420.; McDermott D, Haanen J, Chen TT, Lorigan P, O’Day S, Investigators MDX. Efficacy and safety of ipilimumab in metastatic melanoma patients surviving more than 2 years following treatment in a phase III trial (MDX010-20). Annals of oncology: official journal of the European Society for Medical Oncology / ESMO, 2013, 24(10): 2694-2698.; Maio M. Survival amalysis with 5 years of follow up in phase III study of ipilimumab and dacarbazine in metastatic melanoma: ESMO oral presentation 3704. Eur J Cancer, 2013.; Schadendorf D, Hodi FS, Robert C, Weber JS, Margolin K, Hamid O, Patt D, Chen TT, Berman DM, Wolchok JD. Pooled Analysis of Long-Term Survival Data From Phase II and Phase III Trials of Ipilimumab in Unresectable or Metastatic Melanoma. Journal of clinical oncology: official journal of the American Society of Clinical Oncology, 2015, 33(17): 1889- 1894.; Sherrill B, Wang J, Kotapati S, Chin K. Q-TWiST analysis comparing pilimumab/dacarbazine vs placebo/dacarbazine for patients with stage III/IV melanoma. Br J Cancer 2013, 109(1):8-13.; Самойленко И.В., Харкевич Г.Ю., Демидов Л.В. Применение блокатора рецепторов CTLA4 в лечении больных метастатической мела номой. РМЖ, 2015, 21(1): 4- ./Samoilenko I.V., Kharkevich G.Y., Demidov L.V. Application of CTLA4 receptor blockers in therapy of metastatic melanoma patients. RMZ, 2015, 21 (1): 4-9.; Gilardi L, Colandrea M, Vassallo S, Travaini LL, Paganelli G. Ipilimumab-Induced Immunomedia ted Adverse Events: Possible Pitfalls in18F-FDG PET/CT Interpretation. Clinical nuclear medicine, 2013.; Diem S, Kasenda B, Martin-Liberal J, Lee A, Chauhan D, Gore M, Larkin J. Prognostic score for patients with advanced melanoma treated with ipilimumab. Eur J Cancer, 2015, 51(18): 2785-2791.; Weber JS, Dummer R, de Pril V, Lebbe C, Hodi FS, Investigators MDX. Patterns of onset and resolution of immune-related adverse events of special interest with ipilimumab: detailed safety analysis from a phase 3 trial in patients with advanced melanoma. Cancer, 2013, 119(9): 1675-1682.; Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, Schadendorf D, Dummer R, Smylie M, Rutkowski P et al. Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma. The New England journal of medicine, 2015, 373(1): 23-34.; Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L, Daud A, Carlino MS, McNeil C, Lotem M et al. Pembrolizumab versus Ipilimumab in Advanced Melanoma. The New England journal of medicine, 2015, 372(26): 2521-2532.; Wolchok JD, Chiarion-Sileni V, Gonzalez R, Rutkowski P, Grob JJ, Cowey CL, Lao C, Schadendorf D, Ferrucci PF, Smylie M et al. Updated results from a phase III trial of nivolumab (NIVO) combined with ipilimumab (IPI) in treatment-naive patients (pts) with advanced melanoma (MEL) (CheckMate 067).Journal of clinical oncology: official journal of the American Society of Clinical Oncology 2016, 34(suppl; abstr 9505).; Wolchok JD, Chiarion-Sileni V, Gonzalez R, Rutkowski P, Grob JJ, Cowey CL, Lao CD, Schadendorf D, Ferrucci PF, Smylie M et al.Efficacy and safety results from a phase III trial of nivolumab (NIVO) alone or combined with ipilimumab (IPI) versus IPI alone in treatmentnaive patients (pts) with advanced melanoma (MEL) (CheckMate 067). Journal of clinical oncology: official journal of the American Society ofClinical Oncology 2015, 33(suppl; abstr LBA1).; Atkins MB, Choueiri TK, Hodi FS, Thompson JA, Hwu W-J, McDermott DF, Brookes M, Tosolini A, Ebbinghaus S, Yang Z et al. Pembrolizumab (MK-3475) plus low-dose ipilimumab (IPI) in patients (pts) with advanced melanoma (MEL) or renal cell carcinoma (RCC): Data from the KEYNOTE-029 phase 1 study. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 2015, 33(suppl; abstr 3009).; Weber JS, Gibney G, Sullivan RJ, Sosman JA, Slingluff CL, Jr., Lawrence DP, Logan TF, Schuchter LM, Nair S, Fecher L et al. Sequential administration of nivolumab and ipilimumab with a planned switch in patients with advanced melanoma (CheckMate 064): an open-label, randomised, phase 2 trial. The Lancet Oncology 2016, 17(7): 943-955.; Balch CM, Soong SJ, Gershenwald JE, Thompson JF, Reintgen DS, Cascinelli N, Urist M, McMasters KM, Ross MI, Kirkwood JM et al. Prognostic factors analysis of 17,600 melanoma patients: validation of the American Joint Committee on Cancer melanoma staging system. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 2001, 19(16): 3622-3634.; https://www.med-sovet.pro/jour/article/view/1409
-
10Academic Journal
المؤلفون: D. R. Naskhletashvili, V. A. Gorbunova, A. H. Bekyashev, L. V. Demidov, G. Yu. Kharkevich, S. M. Banov, I. V. Samoylenko, K. А. Baryshnikov, K. V. Orlova, I. А. Utyashev, N. N. Petenko, I. G. Markina, E. A. Moskvina, S. V. Medvedev, Д. Р. Насхлеташвили, В. А. Горбунова, А. Х. Бекяшев, Л. В. Демидов, Г. Ю. Харкевич, С. М. Банов, И. В. Самойленко, К. А. Барышников, К. В. Орлова, И. А. Утяшев, Н. В. Петенко, И. Г. Маркина, Е. А. Москвина, С. В. Медведев
المصدر: Malignant tumours; № 4s1 (2016); 67-73 ; Злокачественные опухоли; № 4s1 (2016); 67-73 ; 2587-6813 ; 2224-5057
مصطلحات موضوعية: лучевая терапия, таргетная терапия
وصف الملف: application/pdf
Relation: https://www.malignanttumors.org/jour/article/view/290/260; Schouten LJ, Rutten J, Huveneers HA et al. Incidence of brain colon, kidney, and lung and melanoma. Cancer 2002;94:2698-2705.; Tabouret E, Chinot O, Metellus P, et al. Recent trends in epidemiology of brain metastases: an overview. Anticancer Res. 2012; 32: 4655-4662.; Bezjak A, Adam J, Barton R et al. Symptom response after palliative radiotherapy for patients with brain metastases. Eur J Cancer 2002; 38: 487-496.; Khuntia D, Brown P, Li J et al. Whole-brain radiotherapy in the management of brain metastasis. J Clin Oncol 2006; 24: 1295-1304.; Tsao MN, Lloyd N, Wong R et al. Whole brain radiotherapy for theRev 2006;3: CD003869.; Antonadou D, Paraskevaidis M, Sarris G et al. Phase II randomized trial of temozolomide and concurrent radiotherapy in patients with brain metastases. J Clin Oncol 2002;20:3644-3650.; D'Antonio C, Passaro A, Gori B, et al. Bone and brain metastasis in lung cancer: recent advances in therapeutic strategies. Ther Adv Med Oncol. 2014; 6: 101-114.; Shigematsu H, Lin L, Takahashi T, et al. Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers. J Natl Cancer Inst. 2005; 97: 339-346.; Lynch TJ, Bell DW, Sordella R, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small cell lung cancer to gefitinib. N Engl J Med. 2004; 350: 2129–2139.; Eichler AF, Kahle KT, Wang DL, et al. EGFR mutation status and survival after diagnosis of brain metastasis in nonsmall cell lung cancer. Neuro Oncol. 2010; 12: 1193–1199.; Tan CS, Cho BC, Soo RA. Next-generation epidermal growth factor receptor tyrosine kinase inhibitors in epidermal growth factor receptor – mutant non-small cell lung cancer. Lung Cancer. 2016; 93: 59–68.; Iuchi T, Shingyoji M, Sakaida T, et al. Phase II trial of gefitinib alone without radiation therapy for Japanese patients with brain metastases from EGFR-mutant lung adenocarcinoma. Lung Cancer. 2013; 82: 282–287.; Kim JE, Lee DH, Choi Y, et al. Epidermal growth factor receptor tyrosine kinase inhibitors as a first-line therapy for never- smokers with adenocarcinoma of the lung having asymptomatic synchronous brain metastasis. Lung Cancer. 2009; 65: 351–354.; Naskhletashvili D. R., Gorbounova V. Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) erlotinib and gefitinib in the treatment of patients with brain metastases (BM) from non-small cell lung cancer (NSCLC). 37th ESMO Congress, Austria, Vienna, 28 September – 02 October 2012, abstract 1330.; Насхлеташвили Д. Р., Горбунова В. А., Бычков М. Б., Бекяшев А. Х., Карахан В. Б., Алешин В. А., Белов Д. М., Москвина Е. А. Гефитиниб («Иресса») в лечении метастазов немелкоклеточного рака легкого в головном мозге. Опухоли головы и шеи, № 3, 2012 год, стр. 63–65.; Hoffknecht P, Tufman A, Wehler T, et al. Efficacy of their reversible ErbB family blocker afatinib in epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI)-pretreated non-small-cell lung cancer patients with brain metastases or leptomeningeal disease. J Thorac Oncol. 2015; 10: 156–163.; Cross DA, Ashton SE, Ghiorghiu S, et al. AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer Discov. 2014; 4: 1046–1061.; Sequist LV, Soria JC, Goldman JW, et al. Rociletinib in EGFR- mutated non-small-cell lung cancer. N Engl J Med. 2015; 372: 1700–1709.; Sakagami H, Konagai S, Yamamoto H, et al. ASP8273, a novel mutantselective irreversible EGFR inhibitor, inhibits growth of non-small cell lung cancer (NSCLC) cells with EGFR activating and T790M resistance mutations. Cancer Res. 2014; 74 (suppl; abstr 1728).; Lee KO, Cha MY, Kim M, et al. Discovery of HM61713 as an orally available and mutant EGFR selective inhibitor. Cancer Res. 2014;74 (suppl; abstr LB-100).; Zeng Q, Wang J, Cheng Z, et al. Discovery and evaluation of clinical candidate AZD3759, a potent, oral active, central nervous system-penetrant, epidermal growth factor receptor tyrosine kinase inhibitor. J Med Chem. 2015; 58: 8200–8215.; Bohn JP, Pall G, Stockhammer G, et al. Targeted therapies for the treatment of brain metastases in solid tumors. Target Oncol. Epub 2016 Jan 29.; Costa DB, Shaw AT, Ou SH, et al. Clinical experience with crizotinib in patients with advanced ALKS-rearranged non-small- cell lung cancer and brain metastases. J Clin Oncol. 2015; 33: 1881–1888.; Johung KL, Yeh N, Desai NB, et al. Extended survival and prognostic factors for patients with ALK-rearranged non-small- cell lung cancer and brain metastasis. J Clin Oncol. 2016; 34: 123–129.; Costa DB, Kobayashi S, Pandya SS, et al. CSF concentration of the anaplastic lymphoma kinase inhibitor crizotinib. J Clin Oncol. 2011; 29: e443-e445.; Shaw AT, Kim DW, Mehra R, et al. Ceritinibin ALK-rearranged non-small cell lung cancer. New Engl J Med. 2014; 370: 1189–1197.; Seto T, Kiura K, Nishio M, et al. CH5424802 (RO5424802) for patients with ALK-rearranged advanced non-small-cell lung cancer (AF-001JP study): a single-arm, open-label, phase 1–2 study. Lancet Oncol. 2013; 14: 590–598.; Shaw A, Mehra R, Tan DSW, et al. BM-32 Ceritinib (LDK378) for treatment of patients with ALK-rearranged (ALK+) non-small cell lung cancer (NSCLC) and brain metastases (BM) in the ASCEND-1 trial. Neuro Oncol. 2014; 16: v39.; Kodama T, Hasegawa M, Takanashi K, et al. Antitumor activity of the selective ALK inhibitor alectinib in models of intracranial metastases. Cancer Chemother Pharmacol. 2014; 74: 1023–1028.; Gadgeel SM, Gandhi L, Riely GJ, et al. Safety and activity of alectinib against systemic disease and brain metastases in patients with crizotinib resistant ALK-rearranged non- small-cell lung cancer (AF-002JG): results from the dose- finding portion of a phase 1/2 study. Lancet Oncol. 2014; 15: 1119–1128.; Camidge DR, Bazhenova L, Salgia R, et al. Safety and efficacy of brigatinib (AP26113) in advanced malignancies, including ALK+ non-small cell lung cancer (NSCLC). J Clin Oncol. 2015; 33 (suppl; abstr 8062).; Kerstein D, Gettinger S, Gold K, et al. LBA4: evaluation of anaplastic lymphoma kinase (ALK) inhibitor brigatinib [AP26113] in patients with ALK+ non-small cell lung cancer (NSCLC) and brain metastases. Ann Oncol. 2015; 26: i60-i61.; Dawood S, Lei X, Litton JK, et al. Incidence of brain metastases as a first site of recurrence among women with triple receptor- negative breast cancer. Cancer. 2012; 118: 4652–4659.; Lin NU, Claus E, Sohl J, et al. Sites of distant recurrence and clinical outcome sin patients with metastatic triple-negative breast cancer: high incidence of central nervous system metastases. Cancer. 2008; 113: 2638–2645.; Brufsky AM, Mayer M, Rugo HS, et al. Central nervous system metastases in patients with HER2-positive metastatic breast cancer: incidence, treatment, and survival in patients from regist HER. Clin Cancer Res. 2011; 17: 4834–4843.; Olson EM, Abdel-Rasoul M, Maly J, et al. Incidence and risk of central nervous system metastases as site of first recurrence in patients with HER2-positive breast cancer treated with adjuvant trastuzumab. Ann Oncol. 2013; 24: 1526–1533.; Pestalozzi BC, Holmes E, de Azambuja E, et al. CNS relapses in patients with HER2-positive early breast cancer who have and have not received adjuvant trastuzumab: a retrospective substudy of the HERA trial (BIG 1–01). Lancet Oncol. 2013; 14: 244–248.; Stemmler HJ, Kahlert S, Siekiera W, et al. Characteristics of patients with brain metastases receiving trastuzumab for HER2 overexpressing metastatic breast cancer. Breast. 2006; 15: 219–225.; Dijkers EC, Oude Munnink TH, Kosterink JG, et al. Biodistribution of 89Zr-trastuzumab and PET imaging of HER2-positive lesions in patients with metastatic breast cancer. Clin Pharmacol Ther. 2010; 87: 586–592.; Tamura K, Kurihara H, Yonemori K, et al. 64Cu-DOTA- trastuzumab PET imaging in patients with HER2-positive breast cancer. J Nucl Med.2013; 54: 1869–1875.; Bartsch R, Rottenfusser A, Wenzel C, et al. Trastuzumab prolongs overall survival in patients with brain metastases from Her2 positive breast cancer. J Neurooncol. 2007; 85: 311–317.; Konecny GE, Pegram MD, Venkatesan N, et al. Activity of the dual kinase inhibitor lapatinib (GW572016) against HER-2- overexpressing and trastuzumab-treated breast cancer cells. Cancer Res. 2006; 66: 1630–1639.; Polli JW, Olson KL, Chism JP, et al. An unexpected synergist role of P-glycoprotein and breast cancer resistance protein on the central nervous system penetration of the tyrosine kinase inhibitor lapatinib (N-3-chloro-4-[(3-fluorobenzyl)oxy] phenyl-6-[5-([2-(methylsulfonyl) ethyl]aminomethyl)-2-furyl]- 4-quinazolinamine; GW572016). Drug Metab Dispos. 2009; 37: 439–442.; NU, Dieras V, Paul D, et al. Multicenter phase II study of lapatinib in patients with brain metastases from HER2-positive breast cancer. Clin Cancer Res. 2009; 15: 1452–1459.; Bachelot T, Romieu G, Campone M, et al. Lapatinib plus capecitabin ein patients with previously untreated brain metastases from HER2-positive metastatic breast cancer (LANDSCAPE): a single-group phase 2 study. Lancet Oncol. 2013; 14: 64–71.; Насхлеташвили Д. Р., Горбунова В. А., Москвина Е. А., Бекяшев А. Х., Карахан В. Б., Михина З. П., Медведев С. В. Лекарственная терапия больных раком молочной железы с метастатическим поражением головного мозга. Российское общество клинической онкологии, официальная газета общества, 2015 год, № 1, стр. 10–11.; Насхлеташвили Д. Р., Горбунова В. А., Москвина Е. А. Современные возможности таргетной терапии в лечении больных раком молочной железы с гиперэкспрессией Her-2/neu и с метастатическим поражением головного мозга. Вопросы онкологии, № 3, 2013 год, том 59, стр. 347–351.; Swain SM, Baselga J, Kim SB, et al; CLEOPATRA Study Group. Pertuzumab, trastuzumab, and docetaxel in HER2-positive metastatic breast cancer. N Engl J Med. 2015; 372: 724–734.; Bartsch R, Berghoff AS, Vogl U, et al. Activity of T-DM1 in Her2- positive breast cancer brain metastases. Clin Exp Metastasis. 2015; 32: 729–737.; Long GV, Margolin KA. Multidisciplinary approach to brain metastasis from melanoma: the emerging role of systemic therapies. Am Soc Clin Oncol Educ Book. 2013; 33: 393–398.; Jakob JA, Bassett RL Jr, Ng CS, et al. NRAS mutation status is an independent prognostic factor in metastatic melanoma. Cancer. 2012; 118: 4014–4023.; Falchook GS, Long GV, Kurzrock R, et al. Dabrafenib in patients with melanoma, untreated brain metastases, and other solid tumours: a phase 1 dose-escalation trial. Lancet. 2012; 379: 1893–1901.; Long GV, Trefzer U, Davies MA, et al. Dabrafenib in patients with Val600Glu or Val600Lys BRAF-mutant melanoma metastatic to the brain (BREAK-MB): a multicentre, open-label, phase 2 trial. Lancet Oncol. 2012; 13: 1087–1095.; Dummer R, Goldinger SM, Turtschi CP, et al. Vemurafenib in patients with BRAF (V600) mutation-positive melanoma with symptomatic brain metastases: final results of an open-label pilot study. Eur J Cancer. 2014; 50: 611–621.; Kefford R, Malo M, Arance A, et al. Vemurafenib in metastatic melanoma patients with brain metastases: an open label, single arm, phase 2, multicenter study. Paper presented at: 2013 Society for Melanoma Research Congress; November 2013; Philadelphia, PA.; Berghoff AS, Preusser M. The future of targeted therapies for brain metastases. Future Oncol. 2015; 11: 2315–2327.; Vyshak A. Venur, MD, and Manmeet S. Ahluwalia. Targeted Therapy in Brain Metastases: Ready for Primetime? 2016 ASCO EDUCATIONAL BOOK, e123-e130.; https://www.malignanttumors.org/jour/article/view/290; undefined
-
11Academic Journal
المؤلفون: Yu. A. Khochenkova, G. Z. Chkadua, I. V. Samoylenko, T. F. Malivanova, I. N. Mikhailova, L. V. Demidov, E. V. Stepanova, Ю. А. Хоченкова, Г. З. Чкадуа, И. В. Самойленко, Т. Ф. Маливанова, И. Н. Михайлова, Л. В. Демидов, Е. В. Степанова
المصدر: Medical Immunology (Russia); Том 15, № 6 (2013); 563-570 ; Медицинская иммунология; Том 15, № 6 (2013); 563-570 ; 2313-741X ; 1563-0625 ; 10.15789/1563-0625-2013-6
مصطلحات موضوعية: метастатическая меланома, SNPs, dendritic cells, anticancer immunotherapy, metastatic melanoma, дендритные клетки, противоопухолевая иммунотерапия
وصف الملف: application/pdf
Relation: https://www.mimmun.ru/mimmun/article/view/671/674; Балдуева И.А., Новик А.В., Моисеенко В.М., Нехаева Т.Л., Данилова А.Б., Данилов А.О., Проценко С.А., Петрова Т.Ю., Улейская Г.И., Щекина Л.А., Семенова А.И., Михайличенко Т.Д., Телетаева Г.М., Жабина А.С., Волков Н.В., Комаров Ю.И. Клиническое исследование (II фаза) вакцины на основе аутологичных дендритных клеток с иммунологическим адъювантом у больных с меланомой кожи // Вопросы онкологии. – 2012. – Т. 58. – С. 212-221. Baldueva I.A., Novik A.V., Moiseenko V.M., Nekhaeva T.L., Danilova A.B., Danilov A.O., Protsenko S.A., Petrova T.Yu., Uleyskaya G.I., Shchekina L.A., Semenova A.I., Mikhaylichenko T.D., Teletaeva G.M., Zhabina A.S., Volkov N.V., Komarov Yu.I. Klinicheskoe issledovanie (II faza) vaktsiny na osnove autologichnykh dendritnykh kletok s immunologicheskim ad»yuvantom u bol`nykh s melanomoy kozhi [The results of second-phase clinical trial of autologous dendritic cells vaccine with immunologic adjuvant in cutaneous melanoma patients]. Voprosy onkologii – Questions of Oncology, 2012, vol. 58, pp. 212-221.; Демидов Л.B., Харкевич Г.Ю. Меланома кожи: стадирование, диагностика и лечение // Русский медицинский журнал. – 2003. – №. 1. – С. 112–117. Demidov L.B., Harkevich G.Yu. Melanoma kozhi: stadirovanie, diagnostika i lechenie [Skin Melanoma: staging, diagnostics and treatment]. Russkiy meditsinskiy zhurnal – Russian Medical Journal, 2003, no. 11, pp. 112-117.; Михайлова И.Н., Петенко Н.Н., Чкадуа Г.З., Вишнякова Л.Ю. Вакцинотерапия метастатической меланомы с использованием дендритных клеток: клиническое исследование I/II фазы // Российский биотерапевтический журнал. – 2007. – № 6. – С. 39-44. Mikhailova I.N., Petenko N.N., Chkadua G.Z., Vishnyakova L.Yu. Vaktsinoterapiya metastaticheskoy melanomy s ispol`zovaniem dendritnykh kletok: klinicheskoe issledovanie I/II fazy [Dendritic cell vaccine therapy of advanced melanoma: I/II phase clinical trial]. Rossiyskiy bioterapevticheskiy zhurnal – Russian Journal of Biotherapy, 2007, no. 6, pp. 39-44.; Чкадуа Г.З., Заботина Т.Н., Буркова А.А., Тамаева З.Э., Огородникова Е.В., Жорданиа К.И., Кадагидзе З.Г., Барышников А.Ю. Адаптирование методики культивирования дендритных клеток человека из моноцитов периферической крови для клинического применения // Российский биотерапевтический журнал. – 2002. – № 3. – С. 56-62. Chkadua G.Z., Zabotina T.N., Burkova A.A., Tamaeva Z.E., Ogorodnikova E.V., Zhordania K.I., Kadagidze Z.G., Baryshnikov A.Yu. Adaptirovanie metodiki kul`tivirovaniya dendritnykh kletok cheloveka iz monotsitov perifericheskoy krovi dlya klinicheskogo primeneniya [The adaptation of method of generating monocyte derived human dendritic cells for clinical practice]. Rossiyskiy bioterapevticheskiy zhurnal – Russian Journal of Biotherapy, 2002, no. 3, pp. 56-62.; Alfaro C., Suarez N., Gonzalez A., Solano S., Erro L., Dubrot J., Palazon A., Hervas-Stubbs S., Gurpide A., Lopez-Picazo J.M., Grande-Pulido E., Melero I., Perez-Gracia J.L. Influence of bevacizumab, sunitinib and sorafenib as single agents or in combination on the inhibitory effects of VEGF on human dendritic cell differentiation from monocytes. Br. J. Cancer, 2009, vol. 100, pp. 1111-1119.; Awata T., Kurihara S., Takata N., Neda T., Iizuka H., Ohkubo T., Osaki M., Watanabe M., Nakashima Y., Inukai K., Inoue I., Kawasaki I., Mori K., Yoneya S., Katayama S. Functional VEGF C-634G polymorphism is associated with development of diabetic macular edema and correlated with macular retinal thickness in type 2 diabetes. Biochem. Biophys. Res. Commun., 2005, vol. 333, pp. 679-685.; Dikov M.M., Ohm J.E., Ray N., Tchekneva E.E., Burlison J., Moghanaki D., Nadaf S., Carbone D.P. Differential roles of vascular endothelial growth factor receptors 1 and 2 in dendritic cell differentiation. J. Immunol., 2005, vol. 174, pp. 215-222.; Eubank T.D., Roberts R., Galloway M., Wang Y., Cohn D.E., Marsh C.B. GM-CSF induces expression of soluble VEGF receptor-1 from human monocytes and inhibits angiogenesis in mice. Immunity, 2004, vol. 21, pp. 831-842.; Ferrara N. VEGF and the quest for tumour angiogenesis factors. Nat. Rev. Cancer, 2002, vol. 2, pp. 795-803.; Hamai A., Benlalam H., Meslin F., Hasmim M., Carré T., Akalay I, Janji B., Berchem G., Noman M.Z., Chouaib S. Immune surveillance of human cancer: if the cytotoxic T-lymphocytes play the music, does the tumoral system call the tune? Tissue Antigens, 2010, vol. 75, pp. 1-8.; Han S.W., Kim G.W., Seo J.S., Kim S.J., Sa K.H., Park J.Y., Lee J., Kim S.Y., Goronzy J.J., Weyand C.M., Kang Y.M. VEGF gene polymorphisms and susceptibility to rheumatoid arthritis. Rheumatology, 2004, vol. 43, pp. 1173-1177.; Hayashi T., Hideshima T., Akiyama M., Raje N., Richardson P., Chauhan D., Anderson K.C. Ex vivo induction of multiple myeloma-specific cytotoxic T lymphocytes. Blood, 2003, vol. 102, pp. 1435-1442.; Mimura K., Kono K., Takahashi A., Kawaguchi Y., Fujii H. Vascular endothelial growth factor inhibits the function of human mature dendritic cells mediated by VEGF receptor-2. Cancer Immunol Immunother., 2007, vol. 56, pp. 761-770.; Nasr H.B., Chahed K., Bouaouina N., Chouchane L. Functional vascular endothelial growth factor −2578 C/A polymorphism in relation to nasopharyngeal carcinoma risk and tumor progression. Clinica Chimica Acta, 2008, vol. 395, pp. 124-129.; Renner W., Kotschan S., Hoffmann C., Obermayer-Pietsch B., Pilger E. A common 936 C/T mutation in the gene for vascular endothelial growth factor is associated with vascular endothelial growth factor plasma levels. J. Vasc. Res., 2000, vol. 37, no. 6, pp. 443-448.; Salven P., Heikkilä P., Joensuu H. Enhanced expression of vascular endothelial growth factor in metastatic melanoma. Br. J. Cancer, 1997, vol. 76, pp. 930-934.; Steffensen K.D., Waldstrom M., Brandslund I., Jakobsen A. The relationship of VEGF polymorphisms with serum VEGF levels and progression-free survival in patients with epithelial ovarian cancer. Gynecologic Oncology, 2010, vol. 117, pp. 109-116.; Steinman RM. Dendritic cells in vivo: a key target for a new vaccine science. Immunity, 2008. vol. 29, pp. 319-324.; Yang Z.F., Poon R.T., Luo Y., Cheung C.K., Ho D.W., Lo C.M., Fan S.T. Up-regulation of vascular endothelial growth factor (VEGF) in small-for-size liver grafts enhances macrophage activities through VEGF receptor 2-dependent pathway. J. Immunol, 2004, vol. 173, pp. 2507-2515.; https://www.mimmun.ru/mimmun/article/view/671
-
12Academic Journal
المؤلفون: N. G. Popova, E. I. Khabirova, E. I. Jabírova, Н. Г. Попова, Е. И. Хабирова
المساهمون: The authors express their gratitude to T. A. Loskutova (RASSEP), I. V. Samoilenko (StSAU), I. Schreiber and N. Emelianova (West Siberian Interregional Scientific Centre), E. L. Boguslavskaya (Institute for Philosophy and Law UB RAS), I. V. Otradnova (Presidium UB RAS), S. V. Mylnikov (Eco-Vector) for their consultations and providing statistical data. The authors are grateful to the anonymous reviewers, who provided valuable suggestions for improving the article., Los autores expresan su agradecimiento por las consultas y el suministro de datos estadísticos a T. A. Lóskutova (Asociación de Editoriales Independientes ANRI), I. V. Samóilenko (Universidad Agraria Estatal de San Petersburgo), I. Schreiber y N. Emelyanova (Centro de Investigación Interregional de Siberia Occidental), E. L. Boguslávskaya (Instituto de Física y Educación Física, Capítulo de los Urales de la Academia de Ciencias de Rusia), I. V. Otrádnova (Presidium del Capítulo de los Urales de la Academia de Ciencias de Rusia), S. V. Mýlnikov (Eco-Vector). Los autores expresan su agradecimiento a los revisores anónimos que hicieron valiosas recomendaciones para mejorar el artículo., Авторы выражают благодарность за консультации и предоставление статистических данных Т. А. Лоскутовой (АНРИ), И. В. Самойленко (СтГАУ), И. Шрайбер и Н. Емельяновой (Западно-Сибирский межрегиональный НОЦ), Е. Л. Богуславской (ИФиП УрО РАН), И. В. Отрадновой (Президиум УрО РАН), С. В. Мыльникову (Эко-Вектор). Авторы выражают признательность анонимным рецензентам, которые высказали ценные рекомендации по доработке статьи.
المصدر: The Education and science journal; Том 25, № 8 (2023); 80-114 ; EDUCACIÓN Y CIENCIA; Том 25, № 8 (2023); 80-114 ; Образование и наука; Том 25, № 8 (2023); 80-114 ; 2310-5828 ; 1994-5639
مصطلحات موضوعية: английский язык для научно-публикационных целей, publication activity, academic literacy, academic writing, scientific article, English for Research Publication Purposes, ERPP, actividad de publicación, el buenhacer académico, redacción académica, artículo científico, inglés con fines de publicación científica, публикационная активность, академическая грамотность, академическое письмо, научная статья
وصف الملف: application/pdf
Relation: https://www.edscience.ru/jour/article/view/3325/1178; Гохберг Л. М., Дитковский К. А., Коцемир М. Н. Индикаторы науки: 2022: статистический сборник; Нац. исслед. ун-т «Высшая школа экономики». Москва: НИУ ВШЭ, 2022. 400 с. Режим доступа: https://www.researchgate.net/publication/360018141_Indikatory_nauki_2022 (дата обращения: 10.02.2023).; Хохлов А. Н., Моргунова Г. В. Научные публикации – хорошие, плохие, за пригоршню долларов // Научный редактор и издатель. 2021. № 6 (1). С. 59–67. DOI:10.24069/2542-0267-2021-1-59-67; Гельман В. Я. Тенденции в развитии научно-публикационной активности // Экономика науки. 2021. № 7 (3). С. 188–194. DOI:10.22394/2410-132X-2021-7-3-188-194; Chekhovich Y. V., Khazov A. V. Analysis of duplicated publications in Russian journals // Journal of Informetrics. 2022. Vol. 16, № 1. P. 101246. DOI:10.1016/j.joi.2021.101246; Михайлов О. В. Феномен «мусорных» журналов как прямое следствие коммерциализации науки // Социология науки и технологий. 2018. Т. 9, № 2. С. 56–70. DOI:10.24411/2079-0910-2018-10004; Попова Н. Г. Проблемы научного руководства: взгляд co стороны аспиранта [Электрон. ресурс]// XXI Уральские социологические чтения. Социальное пространство и время региона: проблемы устойчивого развития: материалы Международной научно-практической конференции (Екатеринбург, 15–16 марта 2018 года). Екатеринбург: Гуманитарный университет, 2018. С. 144–147. Режим доступа: https://cyberleninka.ru/article/n/xxi-uralskie-sotsiologicheskie-chteniya-sotsialnoe-prostranstvo-i-vremya-regiona-problemy-ustoi-chivogo-razvitiya (дата обращения: 10.02.2023).; Попов Е. В., Попова Н. Г., Биричева Е. В., Кочетков Д. М. Целеориентированный подход к оценке деятельности научно-исследовательских коллективов. // Университетское управление: практика и анализ. 2017. № 21 (3). С. 6–18. DOI:10.15826/umpa.2017.03.033; Колесникова Н. И. Русский научный стиль vs академическое письмо // Общество. Коммуникация. Образование. 2022. Т. 13, № 1. С. 36–47. DOI:10.18721/JHSS.13104; Ефимова Г. З., Сорокин А. Н., Грибовский М. В. Идеальный педагог высшей школы: личностные качества и социально-профессиональные компетенции // Образование и наука. 2021. Т. 23, № 1. С. 202–230. DOI:10.17853/1994-5639-2021-1-202-230; Резник С. Д., Вдовина О. А. Профессиональные компетенции преподавателя современного университета: механизмы управления формированием и развитием // Вестник Московского университета. Серия 20. Педагогическое образование. 2017. № 1. C. 67–83. DOI:10.51314/2073-2635-2017-1-67-83; Хеннер Е. К. Профессиональные знания и профессиональные компетенции в высшем образовании // Образование и наука. 2018. Т. 20, № 2. С. 9–31. DOI:10.17853/1994-5639-2018-2-9-31; Pylväs L., Nokelainen P., Academics’ perceptions of intercultural competence and professional development after international mobility // International Journal of Intercultural Relations. 2021. Vol. 80. P. 336–348. DOI:10.1016/j.ijintrel.2020.10.004; Wilkins S., Hazzam J., Lean J. Doctoral publishing as professional development for an academic career in higher education // The International Journal of Management Education. 2021. Vol. 19. Issue 1. DOI:10.1016/j.ijme.2021.100459; Кириллова О. В., Парфенова С. Л., Гришакина Е. Г. и др. Методические рекомендации по подготовке и оформлению научных статей в журналах, индексируемых в международных наукометрических базах данных / Ассоциация научных редакторов и издателей; под общ. ред. О. В. Кирилловой. Москва, 2017. 1441 c. Режим доступа: https://pmi.spmi.ru/public/journals/9/documents/Kratkie_rekomendacii.pdf (дата обращения: 10.02.2023).; Крылова О. С., Крылов Д. А., Бахтина Е. С. Модель формирования публикационной компетентности у преподавателей вуза // Вестник Марийского государственного университета. 2020. Т. 14, № 3. С. 299−305. DOI:10.30914/2072-6783-2020-14-3-299-305; Chon Y. J. V., Shin D., Kim G. J. E. Comparing L2 learners’ writing against parallel machinetranslated texts: Raters’ assessment, linguistic complexity and errors // System. 2021. № 96. P. 102408. DOI:10.1016/j. system.2020.102408; Рью Д. А., Попова Н. Г. Проблемы машинного перевода научных публикаций // Научный редактор и издатель. 2021. № 6 (2). С. 104–112. DOI:10.24069/SEP-21-01; Flowerdew J. English for research publication purposes // The Handbook of English for Specific Purposes. Paltridge B., Starfield S. (Eds.). Boston: Wiley-Blackwell, 2013. P. 301–322. DOI:10.1002/9781118339855; Короткина И. Б. Английский язык для научно-публикационных целей как новое направление педагогических исследований [Электрон. ресурс] // Отечественная и зарубежная педагогика. 2018. Т. 1., № 4/52. С. 115–130. Режим доступа: https://cyberleninka.ru/article/n/angliyskiy-yazyk-dlya-nauchno-publikatsionnyh-tseley-kak-novoe-napravlenie-pedagogicheskih-issledovaniy (дата обращения: 10.02.2023).; Habibie P. To be native or not to be native: That is not the question // Habibie P., Hyland K. (Eds.). Novice Writers and Scholarly Publication. Cham: Palgrave Macmillan, 2019. DOI:10.1007/978-3-319-95333-5_3; Боголепова С. В. Обучение академическому письму на английском языке: подходы и продукты [Электрон. ресурс] // Высшее образование в России. 2016. № 1 (197). С. 87–94. Режим доступа: https://cyberleninka.ru/article/n/obuchenie-akademicheskomu-pismu-na-angliyskom-yazyke-podhody-i-produkty; Бакин Е. В., Смирнова Н. В. My first preprint online (опыт создания онлайн-курса по академическому письму) [Электрон. ресурс] // Высшее образование в России. 2016. № 3 (199). C. 61–66. Режим доступа: https://cyberleninka.ru/article/n/my-first-preprint-online-opyt-sozdaniya-onlayn-kursa-po-akademicheskomu-pismu (дата обращения: 10.02.2023).; Базанова Е. М., Соколова Е. Е. Массовые онлайн-курсы по академическому письму: управление мотивацией обучения студентов [Электрон. ресурс] // Высшее образование в России. 2017. № 2 (209). С. 99–109. Режим доступа: https://cyberleninka.ru/article/n/mook-po-akademicheskomu-pismu-upravlenie-motivatsiey-obucheniya-studentov (дата обращения: 10.02.2023).; Дугарцыренова В. А. Трудности обучения иноязычному академическому письму [Электрон. ресурс] // Высшее образование в России. 2016. № 6 (202). С. 106–112. Режим доступа: https://cyberleninka.ru/article/n/trudnosti-obucheniya-inoyazychnomu-akademicheskomu-pismu (дата обращения: 10.02.2023).; Чуйкова Э. С. Стратегические направления развития методической системы обучения академическому письму в России [Электрон. ресурс] // Балтийский гуманитарный журнал. 2018. Т. 7, № 3 (24). С. 327–330. Режим доступа: https://cyberleninka.ru/article/n/strategicheskie-napravleniya-razvitiya-metodicheskoy-sistemy-obucheniya-akademicheskomu-pismu-v-rossii (дата обращения: 10.02.2023).; Добрынина О. Л. Академическое письмо: обучение пруфридингу на заключительном этапе создания письменного иноязычного текста // Непрерывное образование: XXI век. 2021. Вып. 2 (34). DOI:10.15393/j5.art.2021.6930; Базанова Е. М., Старостенков Н. В. Национальный консорциум центров письма: панацея или плацебо для потерянного поколения российских учёных? [Электрон. ресурс] // Университетская книга. 2018. № 3. С. 27–35. Режим доступа: http://www.unkniga.ru/kultura/8446-nacionalniy-konsortsium-tsentrov-pisma-panatseya-iliplatseboo-1.html; Базанова Е. М., Короткина И. Б. Российский консорциум центров письма [Электрон. ресурс] // Высшее образование в России. 2017. № 4 (211). С. 50–57. Режим доступа: https://cyberleninka.ru/article/n/rossiyskiy-konsortsium-tsentrov-pisma (дата обращения: 10.02.2023).; Фальков В. Н., Толстиков А. В., Латышев А. С., Барабашев А. Г. О возможностях совершенствования оценки эффективности научно-образовательных центров (НОЦ): индикативный подход // Управление наукой: теория и практика. 2019. Т. 1, № 2. С. 15–37. DOI:10.19181/smtp.2019.1.2.1; Базанова Е. М. Научная публикация: писать на английском языке или переводить? // Научный редактор и издатель. 2016. № 1 (1–4). С. 17–24. DOI:10.24069/2542-0267-2016-1-4-50-68; Тихонова Е. В., Раицкая Л. К. Рецензирование как инструмент обеспечения эффективной научной коммуникации: традиции и инновации // Научный редактор и издатель. 2021. № 6 (1). С. 6–17. DOI:10.24069/2542-0267-2021-1-6-17; Бакин Е. В. Центр академического письма: опыт создания [Электрон. ресурс] // Высшее образование в России. 2013. № 8-9. С. 112–116. Режим доступа: https://vovr.elpub.ru/jour/article/view/3645 (дата обращения: 10.02.2023).; Добрынина О. Л. Академическое письмо для научно-публикационных целей // Непрерывное образование: XXI век. 2019. № 1 (25). С. 92–100. DOI:10.15393/j5.art.2019.4485; https://www.edscience.ru/jour/article/view/3325