يعرض 1 - 14 نتائج من 14 نتيجة بحث عن '"И. В. Запороцкова"', وقت الاستعلام: 0.69s تنقيح النتائج
  1. 1
    Academic Journal

    المساهمون: Работа выполнена в рамках государственного задания Минобрнауки России, номер темы FSFF-2023-0008.

    المصدر: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 27, № 3 (2024) ; Известия высших учебных заведений. Материалы электронной техники; Том 27, № 3 (2024) ; 2413-6387 ; 1609-3577

    Relation: Козадеров О. А. Современные химические источники тока / Учебное пособие 2-е изд., стер. Санкт-Петербург: Лань, 2017.; Ji Ung Choi, Natalia Voronina. Recent Progress and Perspective of Advanced High-Energy Co-Less Ni-Rich Cathodes for Li-Ion Batteries: Yesterday, Today, and Tomorrow // Adv. Energy Mater. 10, 2002027. 2020; Кицюк Е.П. Исследование и разработка процессовформирования наноструктурированных электродов электрохимических устройств накопления энергии // Дис. к-та тех. Наук: 05.27.06. Москва. 2017.; Reitz C., Breitung B., Schneider A., Wang D., Von L.M., Leichtwei T.,. Janek J, Hahn H., Brezesinski T. Hierarchical carbon with high nitrogen doping level: a versatile anode and cathode host material for long-life lithium-ion and lithium-sulfur batteries // ACS Appl. Mater. Interfaces. 2016 г.; Feiyang Zhan, Huayu Wang, Qingqing He, Weili Xu. Metal–organic frameworks and their derivatives for metal-ion (Li, Na, K and Zn) hybrid capacitors. Chem. Sci., 2022,13, 11981-12015; Hiroyuki Itoi, Miku Matsuura, Yuichiro Tanabe. High utilization efficiencies of alkylbenzokynones hybridized inside the pores of activated carbon for electrochemical capacitor electrodes. RSC Adv., 2023,13, 2587-2599; Shuai Wang, Cao Yang, Xiaomeng Li, Hanyu Jia. Polymer-based dielectrics with high permittivity and low dielectric loss for flexible electronics. J. Mater. Chem. C, 2022,10, 6196-6221; Xintong Ren, Nan Meng, Leonardo Ventura, Stergios Goutianos. Ultra-high energy density integrated polymer dielectric capacitors. J. Mater. Chem. A, 2022,10, 10171-10180; Kai Yang,a Lei Hu, Yi Wang, Jianxing Xia, Mengxuan Sun. Redox-active sodium 3,4-dihydroxy anthraquinone-2-sulfonate anchored on reduced graphene oxide for high-performance Zn-ion hybrid capacitors. J. Mater. Chem. A, 2022,10, 12532-12543; Корнилов Д. Ю. Оксид графена – новый электродный наноматериал для химических источников тока // Дис. д-ра тех. наук: 05.16.08, Москва 2020 г.; Громов, Д.Г., Галперин, В.А., Лебедев, Е.А., Кицюк, Е.П. Развитие электрохимических накопителей электрической энергии на основе наноструктур // Нанотехнологии в электронике. Москва : Техносфера, 2015.; Hui Shao, Yih-Chyng Wu. Nanoporous carbon for electrochemical capacitive energy storage // Chem. Soc. Rev. 2020,49, 3005-3039; Andres Velasco, Yu Kyoung Ryu. Recent trends in graphene supercapacitors: from large area to microsupercapacitors // Sustainable Energy Fuels, 5, p.1235-1254. 2021; Elinson V.M., Shchur P. A. Antiadhesion fluorocarbon coatings with induced surface charge for protection against biodegradation // High Temperature Material Processes: An International Quarterly of High-Techno Processes. – 2023. – Т. 27. – №. 4. – С. 33-38.; Thomas K. M. Adsorption and desorption of hydrogen on metal–organic framework materials for storage applications: comparison with other nanoporous materials //Dalton transactions. – 2009. – №. 9. – С. 1487-1505.; Al-Thabaiti S. A. et al. Synthesis of copper/chromium metal organic frameworks-Derivatives as an advanced electrode material for high-performance supercapacitors //Ceramics International. – 2023. – Т. 49. – №. 3. – С. 5119-5129.; Ryu U. J. et al. Recent advances in process engineering and upcoming applications of metal–organic frameworks //Coordination Chemistry Reviews. – 2021. – Т. 426. – С. 213544.; Lou W. et al. A facility synthesis of bismuth-iron bimetal MOF composite silver vanadate applied to visible light photocatalysis //Optical Materials. – 2022. – Т. 126. – С. 112168.; Sundriyal S. et al. Metal-organic frameworks and their composites as efficient electrodes for supercapacitor applications //Coordination Chemistry Reviews. – 2018. – Т. 369. – С. 15-38; Moghadam P. Z. et al. Targeted classification of metal–organic frameworks in the Cambridge structural database (CSD) // Chemical science. – 2020. – Т. 11. – №. 32. – С. 8373-8387.; Chhetri K. et al. Recent Research Trends on Zeolitic Imidazolate Framework-8 and Zeolitic Imidazolate Framework-67-Based Hybrid Nanocomposites for Supercapacitor Application //International Journal of Energy Research. – 2023. – Т. 2023.; Tan Y. X., Wang F., Zhang J. Design and synthesis of multifunctional metal–organic zeolites //Chemical Society Reviews. – 2018. – Т. 47. – №. 6. – С. 2130-2144.; Ding M. et al. Carbon capture and conversion using metal–organic frameworks and MOF-based materials //Chemical Society Reviews. – 2019. – Т. 48. – №. 10. – С. 2783-2828.; Phan A. et al. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. – 2009.; Banerjee R. et al. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture //Science. – 2008. – Т. 319. – №. 5865. – С. 939-943.; Yao Y. et al. Hierarchically porous metal–organic frameworks: synthetic strategies and applications //Small Structures. – 2023. – Т. 4. – №. 1. – С. 2200187.; Shi L. et al. Electrostatic self‐assembly of nanosized carbon nitride nanosheet onto a zirconium metal–organic framework for enhanced photocatalytic CO2 reduction //Advanced functional materials. – 2015. – Т. 25. – №. 33. – С. 5360-5367.; Qian J., Sun F., Qin L. Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals //Materials Letters. – 2012. – Т. 82. – С. 220-223.; Song G. et al. Recent Progress in MOF‐Derived Porous Materials as Electrodes for High‐Performance Lithium‐Ion Batteries //Advanced Functional Materials. – 2023. – С. 2303121.; Ramachandran R. et al. Morphology-dependent electrochemical properties of cobalt-based metal organic frameworks for supercapacitor electrode materials //Electrochimica Acta. – 2018. – Т. 267. – С. 170-180.; Zhang, H.; Wang, J.; Sun, Y.; Zhang, X.; Yang, H.; Lin, B. Wire spherical-shaped Co-MOF electrode materials for high-performance all-solid-state flexible asymmetric supercapacitor device. J. Alloys Compd. 2021, 879, 160423.; Wang C. et al. Solvent regulation strategy of Co-MOF-74 microflower for supercapacitors //Chinese Chemical Letters. – 2021. – Т. 32. – №. 9. – С. 2909-2913.; Jiao Y. et al. Layered nickel metal–organic framework for high performance alkaline battery-supercapacitor hybrid devices //Journal of Materials Chemistry A. – 2016. – Т. 4. – №. 34. – С. 13344-13351.; Yan Y. et al. Facile synthesis of an accordion-like Ni-MOF superstructure for high-performance flexible supercapacitors //Journal of Materials Chemistry A. – 2016. – Т. 4. – №. 48. – С. 19078-19085.; Du P. et al. Fabrication of hierarchical porous nickel based metal-organic framework (Ni-MOF) constructed with nanosheets as novel pseudo-capacitive material for asymmetric supercapacitor //Journal of colloid and interface science. – 2018. – Т. 518. – С. 57-68.; Shen W., Guo X., Pang H. Effect of Solvothermal Temperature on Morphology and Supercapacitor Performance of Ni-MOF //Molecules. – 2022. – Т. 27. – №. 23. – С. 8226.; Xu X. et al. Nitrate precursor driven high performance Ni/Co-MOF nanosheets for supercapacitors //ACS Applied Nano Materials. – 2022. – Т. 5. – №. 6. – С. 8382-8392.; Lu X. F. et al. Metal–organic frameworks based electrocatalysts for the oxygen reduction reaction //Angewandte Chemie. – 2020. – Т. 132. – №. 12. – С. 4662-4678.; Yang B., Li B., Xiang Z. Advanced MOF-based electrode materials for supercapacitors and electrocatalytic oxygen reduction //Nano Research. – 2023. – Т. 16. – №. 1. – С. 1338-1361.; Hosseinian A. et al. Nanocomposite of ZIF-67 metal–organic framework with reduced graphene oxide nanosheets for high-performance supercapacitor applications //Journal of Materials Science: Materials in Electronics. – 2017. – Т. 28. – С. 18040-18048.; Ramachandran, R.; Xuan, W.L.; Zhao, C.H.; Leng, X.H.; Sun, D.Z.; Luo, D.; Wang, F. Enhanced electrochemical properties of cerium metal-organic framework based composite electrodes for high-performance supercapacitor application. RSC Adv. 2018, 8, 3462–3469.; Ibrahim I. et al. Hierarchical nickel-based metal-organic framework/graphene oxide incorporated graphene nanoplatelet electrode with exceptional cycling stability for coin cell and pouch cell supercapacitors //Journal of Energy Storage. – 2021. – Т. 43. – С. 103304.; Chen T. et al. In Situ Synthesis of Ni-BTC Metal–Organic Framework@ Graphene Oxide Composites for High-Performance Supercapacitor Electrodes //ACS omega. – 2023. – Т. 8. – №. 12. – С. 10888-10898.; Shao L. et al. A high-capacitance flexible solid-state supercapacitor based on polyaniline and Metal-Organic Framework (UiO-66) composites //Journal of Power Sources. – 2018. – Т. 379. – С. 350-361.; Ramandi S., Entezari M. H. Design of new, efficient, and suitable electrode material through interconnection of ZIF-67 by polyaniline nanotube on graphene flakes for supercapacitors //Journal of Power Sources. – 2022. – Т. 538. – С. 231588.; Hussain I. et al. Zn–Co-MOF on solution-free CuO nanowires for flexible hybrid energy storage devices //Materials Today Physics. – 2022. – Т. 23. – С. 100655.; Wang, L.; Jia, D.; Yue, L.; Zheng, K.; Zhang, A.; Jia, Q.; Liu, J. In Situ Fabrication of a Uniform Co-MOF Shell Coordinated with CoNiO2 to Enhance the Energy Storage Capability of NiCo-LDH via Vapor-Phase Growth. ACS Appl. Mater. Interfaces 2020, 12, 47526–47538.; Shi X., Deng T., Zhu G. Vertically oriented Ni-MOF@ Co (OH) 2 flakes towards enhanced hybrid supercapacitior performance //Journal of Colloid and Interface Science. – 2021. – Т. 593. – С. 214-221.; Lu J. et al. Directional growth of conductive metal–organic framework nanoarrays along [001] on metal hydroxides for aqueous asymmetric supercapacitors //ACS Applied Materials & Interfaces. – 2022. – Т. 14. – №. 22. – С. 25878-25885.; Tang X., Li N., Pang H. Metal–organic frameworks-derived metal phosphides for electrochemistry application //Green Energy & Environment. – 2022. – Т. 7. – №. 4. – С. 636-661.; Zhao J. et al. Nitrogen-modified spherical porous carbon derived from aluminum-based metal-organic frameworks as activation-free materials for supercapacitors //Journal of Energy Storage. – 2023. – Т. 73. – С. 109070.; Dai, Y.Y.; Liu, C.L.; Bai, Y.; Kong, Q.Q.; Pang, H. Framework materials for supercapacitors. Nanotechnol. Rev. 2022, 11, 1005–1046.; Xu, S.J.; Dong, A.R.; Hu, Y.; Yang, Z.; Huang, S.M.; Qian, J.J. Multidimensional MOF-derived carbon nanomaterials for multifunctional applications. J. Mater. Chem. A 2023, 11, 9721–9747.; Cao Z. et al. Metal–organic framework materials for electrochemical supercapacitors //Nano-Micro Letters. – 2022. – Т. 14. – №. 1. – С. 181.; Kim M. et al. MOF-derived nanoporous carbons with diverse tunable nanoarchitectures //Nature protocols. – 2022. – Т. 17. – №. 12. – С. 2990-3027.; Zhang, L.Y.; Wang, R.; Chai, W.C.; Ma, M.Y.; Li, L.K. Controllable Preparation of a N-Doped Hierarchical Porous Carbon Framework Derived from ZIF-8 for Highly Efficient Capacitive Deionization. ACS Appl. Mater. Interfaces 2023, 15, 48800–48809.; Marpaung F. et al. Metal–organic framework (MOF)‐derived nanoporous carbon materials //Chemistry–An Asian Journal. – 2019. – Т. 14. – №. 9. – С. 1331-1343.; Salunkhe R. R. et al. Nanoarchitectures for metal–organic framework-derived nanoporous carbons toward supercapacitor applications //Accounts of chemical research. – 2016. – Т. 49. – №. 12. – С. 2796-2806.; Rajak R. et al. Recent highlights and future prospects on mixed-metal MOFs as emerging supercapacitor candidates //Dalton Transactions. – 2020. – Т. 49. – №. 34. – С. 11792-11818.; Kumar, N.; Wani, T.A.; Pathak, P.K.; Bera, A.; Salunkhe, R.R. Multifunctional nanoarchitectured porous carbon for solar steam generation and supercapacitor applications. Sustain. Energy Fuels 2022, 6, 1762–1769.; Li Q. et al. Fabrication of ordered macro‐microporous single‐crystalline MOF and its derivative carbon material for supercapacitor //Advanced Energy Materials. – 2020. – Т. 10. – №. 33. – С. 1903750.; Huang J. et al. N-doped porous carbon sheets derived from ZIF-8: preparation and their electrochemical capacitive properties //Journal of Electroanalytical Chemistry. – 2018. – Т. 810. – С. 86-94.; Gu Y. et al. Highly N/O co-doped ultramicroporous carbons derived from nonporous metal-organic framework for high performance supercapacitors //Chinese Chemical Letters. – 2021. – Т. 32. – №. 4. – С. 1491-1496.; Li H. et al. Fluorophore molecule loaded in Tb-MOF for dual-channel fluorescence chemosensor for consecutive visual detection of bacterial spores and dichromate anion //Journal of Alloys and Compounds. – 2023. – Т. 944. – С. 169138.; Liu J. et al. Applications of metal–organic frameworks in heterogeneous supramolecular catalysis //Chemical Society Reviews. – 2014. – Т. 43. – №. 16. – С. 6011-6061.; Hu C. et al. Core-shell structured ZIF-7@ ZIF-67 with high electrochemical performance for all-solid-state asymmetric supercapacitor //International Journal of Hydrogen Energy. – 2021. – Т. 46. – №. 63. – С. 32149-32160.; Ma J. et al. Direct growth of flake-like metal-organic framework on textile carbon cloth as high-performance supercapacitor electrode //Journal of Power Sources. – 2019. – Т. 428. – С. 124-130.; Guan C. et al. Cobalt oxide and N-doped carbon nanosheets derived from a single two-dimensional metal–organic framework precursor and their application in flexible asymmetric supercapacitors //Nanoscale Horizons. – 2017. – Т. 2. – №. 2. – С. 99-105.; Kozhitov L. V. et al. Formation of FeNi3/C Nanocomposite from Fe and Ni Salts and Polyacrylonitrile Under IR-Heating //Journal of nanoelectronics and optoelectronics. – 2012. – Т. 7. – №. 4. – С. 419-422.; Zaporotskova I. et al. Nanocomposites Based on Pyrolyzed Polyacrylonitrile Doped with FeCoCr/C Transition Metal Alloy Nanoparticles: Synthesis, Structure, and Electromagnetic Properties //Polymers. – 2023. – Т. 15. – №. 17. – С. 3596.; Lee H. C., Kim Y. A., Kim B. H. Electrochemical activity of triple-layered boron-containing carbon nanofibers with hollow channels in supercapacitors //Carbon. – 2022. – Т. 196. – С. 78-84.; Muratov D. G. et al. Synthesis, structure and electromagnetic properties of FeCoAl/C nanocomposites //Modern Electronic Materials. – 2021. – Т. 7. – №. 3. – С. 99-108.; Muratov D. G. et al. Synthesis, structure and electromagnetic properties of nanocomposites with three-component FeCoNi nanoparticles //Russian Physics Journal. – 2019. – Т. 61. – С. 1788-1797.; Chang C. et al. A novel fabrication strategy for doped hierarchical porous biomass-derived carbon with high microporosity for ultrahigh-capacitance supercapacitors //Journal of Materials Chemistry A. – 2019. – Т. 7. – №. 34. – С. 19939-19949.; Yue Z. et al. Synthesis of a very high specific surface area active carbon and its electrical double-layer capacitor properties in organic electrolytes //ChemEngineering. – 2020. – Т. 4. – №. 3. – С. 43.; Muratov D. G. et al. Synthesis, structure and electromagnetic properties of FeCoCu/C nanocomposites //Modern Electronic Materials. – 2023. – Т. 9. – №. 1. – С. 15-24.; Das S. K. et al. A new electrochemically responsive 2D π-conjugated covalent organic framework as a high performance supercapacitor //Microporous and Mesoporous Materials. – 2018. – Т. 266. – С. 109-116.; Roy A. et al. Benzimidazole linked arylimide based covalent organic framework as gas adsorbing and electrode materials for supercapacitor application //European Polymer Journal. – 2017. – Т. 93. – С. 448-457.; Das S. K. et al. Polymer derived honeycomb-like carbon nanostructures for high capacitive supercapacitor application //Carbon. – 2023. – Т. 201. – С. 49-59.; Khan I. A. et al. Soft-template carbonization approach of MOF-5 to mesoporous carbon nanospheres as excellent electrode materials for supercapacitor //Microporous and Mesoporous Materials. – 2017. – Т. 253. – С. 169-176.; Zhao Y. et al. Preparation of Si-doped and cross linked carbon nanofibers via electrospinning and their supercapacitive properties //Progress in Natural Science: Materials International. – 2018. – Т. 28. – №. 3. – С. 337-344.; Bhosale R. et al. Design and development of a porous nanorod-based nickel-metal–organic framework (Ni-MOF) for high-performance supercapacitor application //New Journal of Chemistry. – 2023. – Т. 47. – №. 14. – С. 6749-6758.; Xue B. et al. Construction of zeolitic imidazolate frameworks-derived NixCo3− xO4/reduced graphene oxides/Ni foam for enhanced energy storage performance //Journal of colloid and interface science. – 2019. – Т. 557. – С. 112-123.; Iqbal R. et al. The Different Roles of Cobalt and Manganese in Metal‐Organic Frameworks for Supercapacitors //Advanced Materials Technologies. – 2021. – Т. 6. – №. 3. – С. 2000941.; Uke S. J. et al. Recent advancements in the cobalt oxides, manganese oxides, and their composite as an electrode material for supercapacitor: a review //Frontiers in Materials. – 2017. – Т. 4. – С. 21.; Слепцов В. В., Гоффман В. Г., Дителева А. О., Ревенок Т. В., Дителева Е. О. Физическая модель электродного материала для гибридных конденсаторов // Физикохимия поверхности и защита материалов, 2023, том 59, № 2, с. 1–6. DOI:10.31857/S0044185623700171; Гоффман В.Г., Слепцов В.В., Гороховский А.В., Горшков Н.В., Ковынёва Н.Н., Севрюгин А.В., Викулова М.А., Байняшев А.М., Макарова А.Д., Ч. Зо Лвин. Накопители энергии с бусофитовыми электродами, модифицированными титаном // Электрохимическая энергетика, 2020. Т.20, №1, С.20-32. DOI:10.18500/1608-4039-2020-20-1-20-32; Sleptsov V.V., Diteleva A.O., Kukushkin D.Yu., Tsyrkov R.A., Diteleva E.O. Vacuum as a continuum medium forming energy inhomogeneities with a high energy density in the liquid phase. odern Electronic Materials. 2022. Т. 8. № 2. С. 73-78.; Установка для электроимпульсного управляемого получения наночастиц токопроводящих материалов: RU 2756189 C1 Рос. Федерация: Дителева Анна Олеговна, Кукушкин Дмитрий Юрьевич, Савкин Алексей Владимирович, Слепцов Владимир Владимирович. 2021; Diteleva A., Sleptsov V., Savilkin S., Matsykin S., Granko A. Hybrid capacitor based on carbon matrix for intelligent electric energy storage and transportation system. Journal of Physics: Conference Series. 19. Сер. "19th International Conference "Aviation and Cosmonautics", AviaSpace 2020" 2021. С. 012083.; Слепцов В.В., Кукушкин Д.Ю., Куликов С.Н., Дителева А.О., Цырков Р.А. Тонкопленочные технологии в создании электродных материалов для перспективных источников тока. Вестник машиностроения. 2021. № 9. С. 63-66.; Химический источник тока с тонкопленочным токосборником: RU 191063 U1 Рос. Федерация. Слепцов Владимир Владимирович, Кукушкин Дмитрий Юрьевич, Дителева Анна Олеговна, Щур Павел Александрович. 2019; Способ изготовления электродов химического источника тока: RU 2696479 C1: Слепцов Владимир Владимирович, Кукушкин Дмитрий Юрьевич, Дителева Анна Олеговна, Щур Павел Александрович.2019; Устройство для модификации поверхности материалов наночастицами металлов: RU 209747 U1: Кукушкин Дмитрий Юрьевич, Цырков Роман Александрович, Слепцов Владимир Владимирович, Дителева Анна Олеговна, Осипов Владислав Вадимович, Савилкин Сергей Борисович. 2022; https://met.misis.ru/jour/article/view/582

  2. 2
    Academic Journal

    المساهمون: Работа выполнена в рамках государственного задания Министерства науки и высшего образования РФ (тема «FZUU-2023-0001»).

    المصدر: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 27, № 1 (2024) ; Известия высших учебных заведений. Материалы электронной техники; Том 27, № 1 (2024) ; 2413-6387 ; 1609-3577

    Relation: Thomas K.M. Adsorption and desorption of hydrogen on metal-organic framework materials for storage applications: comparison with other nanoporous materials. Dalton Transactions. 2009; 9(9): 1487–1505. https://doi.org/10.1039/b815583f; He T., Kong X.J., Li J.R. Chemically stable metal-organic frameworks: rational construction and application expansion. Accounts of Chemical Research. 2021; 54(15): 3083–3094. https://doi.org/10.1021/acs.accounts.1c00280; He Y. Zhou W., Qian G., Chen B. Methane storage in metal-organic frameworks. Chemical Society Reviews. 2014; 43(16): 5657–5678. https://doi.org/10.1039/c4cs00032c; Jiang Z., Xue W., Huang H., Zhu H., Sun Y., Zhong Ch. Mechanochemistry-assisted linker exchange of metal-organic framework for efficient kinetic separation of propene and propane. Chemical Engineering Journal. 2023; 454(37): 140093. https://doi.org/10.1016/j.cej.2022.140093; Zhao D.L. Feng F., Shen L., Huang Zh., Zhao Q., Lin H., Chung T.-Sh. Engineering metal-organic frameworks (MOFs) based thin-film nanocomposite (TFN) membranes for molecular separation. Chemical Engineering Journal. 2022; 454(6191): 140447. https://doi.org/10.1016/j.cej.2022.140447; Gao Q. F., Jiang T.-L., Li W.-Zh., Tan D.-F., Zhang X.-H., Pang J.-Y., Zhang Sh.-H. Porous and stable Zn-series metal-organic frameworks as efficient catalysts for grafting wood nanofibers with polycaprolactone via a copolymerization approach. Inorganic Chemistry. 2023; 62(8): 3464–3473. https://doi.org/10.1021/acs.inorgchem.2c03721; Mukoyoshi M., Kitagawa H. Nanoparticle/metal-organic framework hybrid catalysts: elucidating the role of the MOF. Chemical Communications. 2022; 58(77): 10757–10767. https://doi.org/10.1039/D2CC03233C; Kreno L.E., Leong K., Farha O.K., Allendorf M., Van Duyne R.P., Hupp J.T. Metal-organic framework materials as chemical sensors. Chemical Reviews. 2012; 112(2): 1105–1125. https://doi.org/10.1021/cr200324t; Xuan X., Wang M., Manickam S., Boczkaj Gr., Yoon J.-Y., Sun X. Metal-organic frameworks-based sensors for the detection of toxins in food: a critical mini-review on the applications and mechanisms. Frontiers in Bioengineering and Biotechnology. 2022; 10: 906374. https://doi.org/10.3389/fbioe.2022.906374; Horcajada P., Chalati T., Serre Ch., Gillet B., Sebrie C., Baati T., Eubank J.F., Heurtaux D., Clayette P., Kreuz Ch., Chang J.-S., Kyu H.Y., Marsaud V., Bories Ph.-Nh., Cynober L., Gil S., Férey G., Couvreur P., Gref R. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nature Materials. 2010; 9(2): 172–178. https://doi.org/10.1038/nmat2608; Xu Z., Zhen W., McCleary C., Luo T., Jiang X., Peng Ch., Weichselbaum R.R., Lin W. Nanoscale metal-organic framework with an X-ray triggerable prodrug for synergistic radiotherapy and chemotherapy. Journal of the American Chemical Society. 2023; 145(34): 18698–18704. https://doi.org/10.1021/jacs.3c04602; Mu J., Guo Z., Zhao Y., Che H., Yang H., Zhang Zh., Zhang X., Wang Y., Mu J. ZIF-67/rGO/NiPc composite electrode material for high-performance asymmetric supercapacitors. Journal of Materials Science: Materials in Electronics. 2022; 33(22): 17733–17744. https://doi.org/10.1007/s10854-022-08636-5; Ahmed F.M., Ateia E.E., El-Dek S., Abd El-Kader Sh.M., Samy A. Silver-substituted cobalt zeolite imidazole framework on reduced graphene oxide nanosheets as a novel electrode for supercapacitors. Journal of Energy Storage. 2022; 55(5): 105443. https://doi.org/10.1016/j.est.2022.105443; Ramandi S., Entezari M.H. Design of new, efficient, and suitable electrode material through interconnection of ZIF-67 by polyaniline nanotube on graphene flakes for supercapacitors. Journal of Power Sources. 2022; 538: 231588. https://doi.org/10.1016/j.jpowsour.2022.231588; Ramesh S., Karuppasamy K., Vikraman Dh., Yadav H.M., Kim H.-S., Sivasamy A., Kim H.S. Fabrication of NiCo2S4 accumulated on metal organic framework nanostructured with multiwalled carbon nanotubes composite material for supercapacitor application. Ceramics International. 2022; 48(19): 29102–29110. https://doi.org/10.1016/j.ceramint.2022.05.048; Sharma S., Chand P. Zeolitic imidazolate framework-8 and redox-additive electrolyte based asymmetric supercapacitor: A synergetic combination for ultrahigh energy and power density. Journal of Energy Storage. 2023; 73(Pt B): 108961. https://doi.org/10.1016/j.est.2023.108961; Chettiannan B., Kumar A., Arumugam G., Shajahan Sh., Abu Haija M., Rajendran R. Incorporation of α-MnO2 nanoflowers into zinc-terephthalate metal-organic frameworks for high-performance asymmetric supercapacitors. ACS Omega. 2023; 8(7): 6982–6993. https://doi.org/10.1021/acsomega.2c07808; Gurav S.R., Sawant S.A., Chodankar G.R., Shembade U.V., Moholkar A.V., Sonkawade R.G. Exploration of aqueous electrolyte on the interconnected petal-like structure of Co-MOFs for high-performance paper-soaked supercapacitors. Electrochimica Acta. 2023; 467: 143027. https://doi.org/10.1016/j.electacta.2023.143027; Ensafi A.A., Fazel R., Rezaei B., Hu J.-S. Electrochemical properties of modified poly (4-aminothiophenol)-Zn-Ni MOF-reduced graphene oxide nanocomposite for high-performance supercapacitors. Fuel. 2022; 324(7482): 124724. https://doi.org/10.1016/j.fuel.2022.124724; Zeng Q. Wang L., Li X., You W., Zhang J., Liú X., Wang M., Che R. Double ligand MOF-derived pomegranate-like Ni@ C microspheres as high-performance microwave absorber. Applied Surface Science. 2021; 538(27): 148051. https://doi.org/10.1016/j.apsusc.2020.148051; Li X., Huang Ch., Wang Z., Zhen X., Lu W. Enhanced electromagnetic wave absorption of layered FeCo@ carbon nanocomposites with a low filler loading. Journal of Alloys and Compounds. 2021; 879: 160465. https://doi.org/10.1016/j.jallcom.2021.160465; Huang K., Wang B., Guo S., Li K. Micropatterned ultrathin MOF membranes with enhanced molecular sieving property. Angewandte Chemie International Edition. 2018; 130(42): 13892–13896. https://doi.org/10.1002/ange.201809872; Moghadam P.Z., Li A., Liu X.-W., Bueno-Perez R., Wang Sh.-D., Wiggin S., Wood P.A., Fairen-Jimenez D. Targeted classification of metal–organic frameworks in the Cambridge structural database (CSD). Chemical Science. 2020; 11(32): 8373–8387. https://doi.org/10.1039/D0SC01297A; Tan Y.X., Wang F., Zhang J. Design and synthesis of multifunctional metal-organic zeolites. Chemical Society Reviews. 2018; 47(6): 2130–2144. https://doi.org/10.1039/C7CS00782E; Ding M., Flaig R.W., Jiang H.-L., Yaghi O.M. Carbon capture and conversion using metal-organic frameworks and MOF-based materials. Chemical Society Reviews. 2019; 48(10): 2783–2828. https://doi.org/10.1039/C8CS00829A; Phan A., Doonan Ch.J., Uribe-Romo F.J., Knobler C.B., O'Keeffe M., Yaghi O.M. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Accounts of Chemical Research. 2009; 43(1): 58–67. https://doi.org/10.1021/ar900116g; Pan Y., Liu , Zeng G., Zhao L., Lai Zh. Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. Chemical Communications. 2011; 47(7): 2071–2073. https://doi.org/10.1039/c0cc05002d; Mahdavi H., Eden N.T., Doherty C.M., Acharya D., Smith S.J.D., Mulet X., Hill M.R. Underlying polar and nonpolar modification MOF-based factors that influence permanent porosity in porous liquids. ACS Applied Materials & Interfaces. 2022; 14(20): 23392–23399. https://doi.org/10.1021/acsami.2c03082; Li M., Yuan G., Zeng Y., Peng H., Yang Y., Liao J., Yang J., Liu N. Efficient removal of Co (II) from aqueous solution by flexible metal-organic framework membranes. Journal of Molecular Liquids. 2021; 324(2017): 114718. https://doi.org/10.1016/j.molliq.2020.114718; Banerjee R., Phan A., Wang B., Knobler C., Furukawa H., O'Keeffe M., Yagh O.M. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science. 2008; 319(5865): 939–943. https://doi.org/10.1126/science.1152516; Yao Y., Zhao X., Chang G., Yang X., Chen B. Hierarchically porous metal-organic frameworks: synthetic strategies and applications. Small Structures. 2022; 4(1): 2200187. https://doi.org/10.1002/sstr.202200187; Shi L., Wang T., Huabin Zh., Chang K., Ye J. Electrostatic self-assembly of nanosized carbon nitride nanosheet onto a zirconium metal-organic framework for enhanced photocatalytic CO2 reduction. Advanced Functional Materials. 2015; 25(33): 5360–5367. https://doi.org/10.1002/adfm.201502253; Qian J., Sun F., Qin L. Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals. Materials Letters. 2012; 82: 220–223. https://doi.org/10.1016/j.matlet.2012.05.077; Dang S., Zhu Q.-L., Xu Q. Nanomaterials derived from metal-organic frameworks. Nature Reviews Materials. 2017; 3(1): 17075. https://doi.org/10.1038/natrevmats.2017.75; Cao X., Tan Ch., Sindoro M., Zhang H. Hybrid micro-/nano-structures derived from metal-organic frameworks: preparation and applications in energy storage and conversion. Chemical Society Reviews. 2017; 46(10): 2660–2677. https://doi.org/10.1039/C6CS00426A; Du Y., Xu Y., Zhou W., Yu Y., Ma X., Liu F., Xu J., Zhu Y. MOF-derived zinc manganese oxide nanosheets with valence-controllable composition for high-performance Li storage. Green Energy & Environment. 2021; 6(5): 703–714. https://doi.org/10.1016/j.gee.2020.06.010; Feng D., Lei T., Lukatskaya M.R., Park J., Huang Zh., Lee M., Shaw L., Chen Sh., Yakovenko A.A., Kulkarni A., Xiao J., Fredrickson K., Tok J.B., Zou X., Cui Y., Bao Zh. Robust and conductive two-dimensional metal-organic frameworks with exceptionally high volumetric and areal capacitance. Nature Energy. 2018; 3(1): 30–36. https://doi.org/10.1038/s41560-017-0044-5; Guo W., Yu Ch., Li Sh., Song X., Huang H., Han X., Wang Zh., Liu Zh., Yu J., Tan X., Qiu J.Sh. A universal converse voltage process for triggering transition metal hybrids in situ phase restruction toward ultrahigh-rate supercapacitors. Advanced Materials. 2019; 31(28): 1901241. https://doi.org/10.1002/adma.201901241; Yaqoob L., Tayyaba N., Iqbal N. An overview of supercapacitors electrode materials based on metal organic frameworks and future perspectives. International Journal of Energy Research. 2022; 46(4): 3939–3982. https://doi.org/10.1002/er.7491; Hosseinian A., Amjad A.H., Hosseinzadeh-Khanmiri R., Ghorbani-Kalhor E., Babazadeh M., Vessally E. Nanocomposite of ZIF-67 metal-organic framework with reduced graphene oxide nanosheets for high-performance supercapacitor applications. Journal of Materials Science: Materials in Electronics. 2017; 28: 18040–18048. https://doi.org/10.1007/s10854-017-7747-z; Li X., Ding S., Xiao X., Shao J., Wei J., Pang H., Yu Y. N, S co-doped 3D mesoporous carbon-Co3Si2O5(OH)4 architectures for high-performance flexible pseudo-solid-state supercapacitors. Journal of Materials Chemistry A. 2017; 5(25): 12774–12781. https://doi.org/10.1039/C7TA03004E; Zhang Y.Z., Wang Y., Xie Y.-L., Cheng T., Lai W., Pang H., Huang W. Porous hollow Co3O4 with rhombic dodecahedral structures for high-performance supercapacitors. Nanoscale. 2014; 6(23): 14354–14359. https://doi.org/10.1039/c4nr04782f; Zhang Sh., Hu R., Dai P., Yu X., Ding Z. Synthesis of rambutan-like MoS2/mesoporous carbon spheres nanocomposites with excellent performance for supercapacitors. Applied Surface Science. 2016; 396: 994–999. https://doi.org/10.1016/j.apsusc.2016.11.074; An C., Zhang Y., Guo H., Wang Y. Metal oxide-based supercapacitors: progress and prospectives. Nanoscale Advances. 2019; 1(12): 4644–4658. https://doi.org/10.1039/C9NA00543A; Chen X., Cheng M., Chen D., Wang R. Shape-controlled synthesis of Co2P nanostructures and their application in supercapacitors. ACS Applied Materials & Interfaces. 2016; 8(6): 3892–3900. https://doi.org/10.1021/acsami.5b10785; Слепцов В.В., Кукушкин Д.Ю., Куликов С.Н., Дителева А.О. Тонкопленочные нанотехнологии для создания источников энергоснабжения. Вестник машиностроения. 2021; (2): 65–67. https://doi.org/10.36652/0042-4633-2021-2-65-67; Zhou L., Zhuang Z., Zhao H., Lin M., Zhao D., Mai L. Intricate hollow structures: controlled synthesis and applications in energy storage and conversion. Advanced Materials. 2017; 29(20): 1602914. https://doi.org/10.1002/adma.201602914; Zhao Y., Liu J., Horn M., Motta N., Hu M., Li Y. Recent advancements in metal organic framework based electrodes for supercapacitors. Science China Materials. 2018; 61(2): 159–184. https://doi.org/10.1007/s40843-017-9153-x; Shi X., Zheng Sh., Wu Zh.-Sh., Bao X. Recent advances of graphene-based materials for high-performance and new-concept supercapacitors. Journal of Energy Chemistry. 2018; 27(1): 25–42. https://doi.org/10.1016/j.jechem.2017.09.034; Sundriyal S., Kaur H., Bhardwaj S., Mishra S., Kim K.-H., Deep A. Metal-organic frameworks and their composites as efficient electrodes for supercapacitor applications. Coordination Chemistry Reviews. 2018; 369(2011): 15–38. https://doi.org/10.1016/j.ccr.2018.04.018; Zhong C., Yida D., Hu W., Qiao J., Zhang L., Zhang J. A review of electrolyte materials and compositions for electrochemical supercapacitors. Chemical Society Reviews. 2015; 44(21): 7484–7539. https://doi.org/10.1039/c5cs00303b; Ghadimi A.M., Ghasemi Sh., Omrani A., Mousavi F. Nickel cobalt LDH/graphene film on nickel-foam-supported ternary transition metal oxides for supercapacitor applications. Energy & Fuels. 2023; 37(4): 3121–3133. https://doi.org/10.1021/acs.energyfuels.2c03040; Akinwolemiwa B., Peng C., Chen G.Z. Redox electrolytes in supercapacitors. Journal of the Electrochemical Society. 2015; 162(5): A5054–А5059. https://doi.org/10.1149/2.0111505JES; Sharma S., Chand P. Zeolitic imidazolate framework-8 and redox-additive electrolyte based asymmetric supercapacitor: A synergetic combination for ultrahigh energy and power density. Journal of Energy Storage. 2023; 73(B): 108961. https://doi.org/10.1016/j.est.2023.108961; Zhang L.L., Zhao X.S. Carbon-based materials as supercapacitor electrodes. Chemical Society Reviews. 2009; 38(9): 2520–2531. https://doi.org/10.1039/b813846j; Tarascon J.M., Armand M. Issues and challenges facing rechargeable lithium batteries. Nature. 2001; 414(6861): 359–367. https://doi.org/10.1038/35104644; Conway B.E. Electrochemical supercapacitors: scientific fundamentals and technological applications. Springer Science & Business Media; 2013. 698 p.; Sundriyal S., Shrivastav V., Kaur H., Mishra S., Deep A. High-performance symmetrical supercapacitor with a combination of a ZIF-67/rGO composite electrode and a redox additive electrolyte. ACS Omega. 2018; 3(12): 17348–17358. https://doi.org/10.1021/acsomega.8b02065; Brousse T., Bélanger D., Long J.W. To be or not to be pseudocapacitive? Journal of the Electrochemical Society. 2015; 162(5): A5185–А5189. https://doi.org/10.1149/2.0201505jes; Liang C., Wang Sh., Sha Sh., Lv S., Wang G., Wang B., Li Q., Yu J., Xu X., Zhang L. Novel semiconductor materials for advanced supercapacitors. Journal of Materials Chemistry C. 2023; 11(13): 4288–4317. https://doi.org/10.1039/D2TC04816G; Isaeva V.I., Tarasov A.L., Tkachenko O.P., Kapustin G.I., Mishin I.V., Solov’eva S.E., Kustov L. 1, 3-Cyclohexadiene hydrogenation in the presence of a palladium-containing catalytic system based on an MOF-5/calixarene composite. Kinetics and Catalysis. 2011; 52(1): 94–97. https://doi.org/10.1134/S0023158411010058; Kitagawa S., Kitaura R., Noro S. Functional porous coordination polymers. Angewandte Chemie International Edition. 2004; 43(18): 2334–2375. https://doi.org/10.1002/anie.200300610; Исаева В.И., Тарасов А.Л., Ямпольский Ю.П., Елисеев О.Л., Казанцев Р.В., Кустов Л.М. Синтез в СВЧ-поле нанокристаллов металлорганических каркасов MIL. В: Труды IV Всерос. конф. по органической химии, 22–27 ноября 2015. Тезисы устного доклада. М.: ФГБУ Институт органической химии им. Н.Д. Зелинского РАН; 2015. 309 с.; Monni N., Baldoví J.J., García Lopez V., Oggianu M., Cadoni E., Quochi F., Clemente M., Mercuri M.L., Coronado E. Reversible tuning of luminescence and magnetism in a structurally flexible erbium-anilato MOF. Chemical Science. 2022; 13(25): 7419–7428. https://doi.org/10.1039/D2SC00769J; Papaefstathiou G.S., MacGillivray L.R. Inverted metal-organic frameworks: solid-state hosts with modular functionality. Coordination Chemistry Reviews. 2003; 246(1-2): 169–184. https://doi.org/10.1016/S0010-8545(03)00122-X; Kole G.K., Vittal J.J. Isomerization of cyclobutane ligands in the solid state and solution. Journal of the Indian Chemical Society. 2022; 99(9): 100630. https://doi.org/10.1016/j.jics.2022.100630; Xu Q., Chen J., Wang Y., Wang D., Xu X., Xia J., Zhang K.-L., Zhou X., Fan W., Wang Z., Hou Ch., Sun D. Guest-stimulated nonplanar porphyrins in flexible metal-organic frameworks. Small. 2023; 19(44): е2304771. https://doi.org/10.1002/smll.202304771; Yaghi O.M., O'Keeffe M., Ockwig N.W., Chae H.K., Eddaoudi M., Kim J. Reticular synthesis and the design of new materials. Nature. 2003; 423(6941): 705–714. https://doi.org/10.1038/nature01650; Tranchemontagne D.J., Mendoza-Cortés J.L., O’Keeffe M., Yaghi O.M. Secondary building units, nets and bonding in the chemistry of metal-organic frameworks. Chemical Society Reviews. 2009; 38(5): 1257–1283. https://doi.org/10.1039/b817735j; Hagrman P.J., Hagrman D., Zubieta J. Organic-inorganic hybrid materials: From “simple” coordination polymers to organodiamine-templated molybdenum oxides. Angewandte Chemie International Edition. 1999; 38(18): 2638–2684. https://doi.org/10.1002/(sici)1521-3773(19990917)38:183.0.co;2-4; Lu Y., Zhong H., Jian L., Dominic A.M., Hu Y., Gao Zh., Jiao Y., Wu M., Qi H., Huang Ch., Wayment L.J., Kaiser U., Spiecker E., Weidinger I.M., Zhang W., Feng X., Dong R. sp-carbon incorporated conductive metal-organic framework as photocathode for photoelectrochemical hydrogen generation. Angewandte Chemie International Edition. 2022; 61(39): e202208163. https://doi.org/10.1002/anie.202208163; Liu Q., Wang N., Caro J., Huang A. Bio-inspired polydopamine: a versatile and powerful platform for covalent synthesis of molecular sieve membranes. Journal of the American Chemical Society. 2013; 135(47): 17679–17682. https://doi.org/10.1021/ja4080562; Tong P., Liang J., Jiang X., Li J. Research progress on metal-organic framework composites in chemical sensors. Critical Reviews in Analytical Chemistry. 2020; 50(4): 376–392. https://doi.org/1010.1080/10408347.2019.1642732; Zhang X., Wang N., Li H., Wang Zh., Wang H. IRMOF-3 nanosheet-filled glass fiber membranes for efficient separation of hydrogen and carbon dioxide. Separation and Purification Technology. 2023; 318: 123908. https://doi.org/10.1016/j.seppur.2023.123908; Tong P., Liang J., Jiang X., Li J. Research progress on metal-organic framework composites in chemical sensors. Critical Reviews in Analytical Chemistry. 2020; 50(4): 376–392. https://doi.org/10.1080/10408347.2019.1642732; Mohtasham H., Rostami M., Gholipour B., Sorouri A.M., Ehrlich H., Ganjali M.R., Rostamnia S., Rahimi-Nasrabadi M., Salimi A., Luque R. Nano-architecture of MOF (ZIF-67)-based Co3O4 NPs@ N-doped porous carbon polyhedral nanocomposites for oxidative degradation of antibiotic sulfamethoxazole from wastewater. Chemosphere. 2023; 310: 136625. https://doi.org/10.1016/j.chemosphere.2022.136625; Kesanli B., Lin W. Chiral porous coordination networks: rational design and applications in enantioselective processes. Coordination Chemistry Reviews. 2003; 246(1-2): 305–326. https://doi.org/10.1016/j.cct.2003.08.004; Zorainy M.Y., Alalm M.G., Kaliaguine S., Boffito D.C. Revisiting the MIL-101 metal-organic framework: design, synthesis, modifications, advances, and recent applications. Journal of Materials Chemistry A. 2021; 9(39): 22159–22217. https://doi.org/10.1039/D1TA06238G; Behera N., Duan J., Jin W., Kitagawa S. The chemistry and applications of flexible porous coordination polymers. EnergyChem. 2021; 3(6): 100067. https://doi.org/10.1016/j.enchem.2021.100067; Ahmadijokani F., Molavi H., Rezakazemi M., Tajahmadi Sh., Bahi A., Ko F., Aminabhavi T.M., Li J.-R., Arjmand M. UiO-66 metal-organic frameworks in water treatment: A critical review. Progress in Materials Science. 2022; 125(22): 100904. https://doi.org/10.1016/j.pmatsci.2021.100904; Liu J., Li Y., Lou Z. Recent advancements in MOF/biomass and Bio-MOF multifunctional materials: a review. Sustainability. 2022; 14(10): 5768. https://doi.org/10.3390/su14105768; Moghadam P.Z., Li A., Liu X.-W., Bueno-Perez R., Wang Sh.-D., Wiggin S., Wood P.A., Fairen-Jimenez D. Targeted classification of metal-organic frameworks in the Cambridge structural database (CSD). Chemical Science. 2020; 11(32): 8373–8387. https://doi.org/10.1039/D0SC01297A; Corma A., Garcia H.I., Llabrés i Xamena F.X. Engineering metal organic frameworks for heterogeneous catalysis. Chemical Reviews. 2010; 110(8): 4606–4655. https://doi.org/10.1021/cr9003924; Wang Z., Cohen S.M. Postsynthetic modification of metal–organic frameworks. Chemical Society Reviews. 2009; 38(5): 1315–1329. https://doi.org/10.1039/b802258p; Li H., Xu X., Liu Y., Hao Y., Xu Zh. Fluorophore molecule loaded in Tb-MOF for dual-channel fluorescence chemosensor for consecutive visual detection of bacterial spores and dichromate anion. Journal of Alloys and Compounds. 2023; 944(19): 169138. https://doi.org/10.1016/j.jallcom.2023.169138; Liu J., Chen L., Cui H., Zhang J., Zhang L., Su Ch.-Y. Applications of metal-organic frameworks in heterogeneous supramolecular catalysis. Chemical Society Reviews. 2014; 43(16): 6011–6061. https://doi.org/10.1039/c4cs00094c; Matsuda R., Kitaura R., Kitagawa S., Kubota Y., Belosludov R.V., Kobayashi T.C., Sakamoto H., Chiba T., Takata M., Kawazoe Y., Mita Y. Highly controlled acetylene accommodation in a metal-organic microporous material. Nature. 2005; 436(7048): 238–241. https://doi.org/10.1038/nature03852; Zhou H.C., Long J.R., Yaghi O.M. Introduction to metal-organic frameworks. Chemical Reviews. 2012; 112(2): 673–674. https://doi.org/10.1021/cr300014x; Sağlam S., Türk F.N., Arslanoğlu H. Use and applications of metal-organic frameworks (MOF) in dye adsorption. Journal of Environmental Chemical Engineering. 2023; 11(5): 110568. https://doi.org/10.1016/j.jece.2023.110568; Berijani K., Morsali A., Garcia H. Synthetic strategies to obtain MOFs and related solids with multimodal pores. Microporous and Mesoporous Materials. 2023; 349: 112410. https://doi.org/10.1016/j.micromeso.2022.112410; Rosen A.S., Fung V., Huck P., O’Donnell C.T., Horton M.K., Truhlar D., Persson K.A., Notestein J.M., Snurr R.Q. High-throughput predictions of metal-organic framework electronic properties: theoretical challenges, graph neural networks, and data exploration. Npj Computational Materials. 2022; 8(1): 112. https://doi.org/10.1038/s41524-022-00796-6; Hermes S., Schröter M.-K., Schmid R., Khodeir L., Muhler M., Tissler A., Fischer R.W., Fischer R.A. Metal@ MOF: loading of highly porous coordination polymers host lattices by metal organic chemical vapor deposition. Angewandte Chemie International Edition. 2005; 44(38): 6237–6241. https://doi.org/10.1002/anie.200462515; Qin J., Dou Y., Wu F., Yao Y., Andersen H.R., Helix-Nielsen C., Lim S.Y., Zhang W. In-situ formation of Ag2O in metal-organic framework for light-driven upcycling of microplastics coupled with hydrogen production. Applied Catalysis B: Environmental. 2022; 319: 121940. https://doi.org/10.1016/j.apcatb.2022.121940; Juan-Alcañiz J., Gascon J., Kapteijn F. Metal-organic frameworks as scaffolds for the encapsulation of active species: state of the art and future perspectives. Journal of Materials Chemistry. 2012; 22(20): 10102–10118. https://doi.org/10.1039/C2JM15563J; Mohseni M.M., Jouyandeh M., Sajadi S.M., Hejna A., Habibzadeh S., Mohaddespour Ah., Rabiee N., Daneshgar H., Akhavan O., Asadnia M., Rabiee M., Ramakrishna S., Luque R., Paran S.M.R. Metal-organic frameworks (MOF) based heat transfer: A comprehensive review. Chemical Engineering Journal. 2022; 449(6518): 137700. https://doi.org/10.1016/j.cej.2022.137700; Marshall C.R., Staudhammer S.A., Brozek C.K. Size control over metal-organic framework porous nanocrystals. Chemical Science. 2019; 10(41): 9396–9408. https://doi.org/10.1039/C9SC03802G; Fonseca J., Gong T. Fabrication of metal-organic framework architectures with macroscopic size: A review. Coordination Chemistry Reviews. 2022; 462(2013): 214520. https://doi.org/10.1016/j.ccr.2022.214520; Zacher D., Shekhah O., Abdullah K., Wöll Ch., Fischer R.A. Thin films of metal-organic frameworks. Chemical Society Reviews. 2009; 38(5): 1418–1429. https://doi.org/10.1039/b805038b; Sharma U., Pandey R., Basu S., Saravanan P. Facile monomer interlayered MOF based thin film nanocomposite for efficient arsenic separation. Chemosphere. 2022; 309(Pt 1): 136634. https://doi.org/10.1016/j.chemosphere.2022.136634; Stock N., Biswas S. Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chemical Reviews. 2012; 112(2): 933–969. https://doi.org/10.1021/cr200304e; Liu J., Chen L., Cui H., Zhang J., Zhang L., Su C.-Y. Applications of metal-organic frameworks in heterogeneous supramolecular catalysis. Chemical Society Reviews. 2014; 43(16): 6011–6061. https://doi.org/10.1039/c4cs00094c; Li Z., Chaemchuen S. Recent progress on the synthesis and modified strategies of zeolitic-imidazole Framework-67 towards electrocatalytic oxygen evolution reaction. The Chemical Record. 2023: e202300142. https://doi.org/1010.1002/tcr.202300142; Ethiraj J., Palla S., Reinsch H. Insights into high pressure gas adsorption properties of ZIF-67: Experimental and theoretical studies. Microporous and Mesoporous Materials. 2020; 294(1): 109867. https://doi.org/10.1016/j.micromeso.2020.110439; Qin J., Wang S., Wang X. Visible-light reduction CO2 with dodecahedral zeolitic imidazolate framework ZIF-67 as an efficient co-catalyst. Applied Catalysis B: Environmental. 2017; 209: 476–482. https://doi.org/10.1016/j.apcatb.2017.03.018; Wenping Y., Xinyue Sh., Yan L., Pang H. Manganese-doped cobalt zeolitic imidazolate framework with highly enhanced performance for supercapacitor. Journal of Energy Storage. 2019; 26: 101018. https://doi.org/10.1016/j.est.2019.101018; Jian M., Liu B., Liu R., Qu J., Wang H., Zhang X. Water-based synthesis of zeolitic imidazolate framework-8 with high morphology level at room temperature. RSC Advances. 2015; 5(60): 48433–48441. https://doi.org/10.1039/C5RA04033G; Cravillon J., Münzer S., Lohmeier S.-J., Feldhoff A., Huber K., Wiebcke M. Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework. Chemistry of Materials. 2009; 21(8): 1410–1412. https://doi.org/10.1021/cm900166h; Park K.S., Ni Zh., Côté A.P., Choi J.Y., Huang R., Uribe-Romo F., Chae H.K., O'Keeffe M., Yaghi O.M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences. 2006; 103(27): 10186–10191. https://doi.org/10.1073/pnas.0602439103; Zhang J., Zhang T., Yu D., Xiao K., Hong Y. Transition from ZIF-L-Co to ZIF-67: a new insight into the structural evolution of zeolitic imidazolate frameworks (ZIFs) in aqueous systems. CrystEngComm. 2015; 17(43): 8212–8215. https://doi.org/10.1039/C5CE01531F; Sundriyal S., Shrivastav V., Mishra S., Deep A. Enhanced electrochemical performance of nickel intercalated ZIF-67/OG composite electrode for solid-state supercapacitors. International Journal of Hydrogen Energy. 2020; 45(55): 30859–30869. https://doi.org/10.1016/j.ijhydene.2020.08.075; Bradshaw D., El-Hankari S., Lupica-Spagnolo L. Supramolecular templating of hierarchically porous metal-organic frameworks. Chemical Society Reviews. 2014; 43(16): 5431–5443. https://doi.org/10.1039/c4cs00127c; Duan C., Zhang Y., Li J., Kang L., Xie Y., Qiao W., Zhu Ch., Luo H. Rapid room-temperature preparation of hierarchically porous metal–organic frameworks for efficient uranium removal from aqueous solutions. Nanomaterials. 2020; 10(8): 1539. https://doi.org/10.3390/nano10081539; Sarawade P., Tan H., Polshettiwar V. Shape-and morphology-controlled Sustainable synthesis of Cu, Co, and in metal organic frameworks with high CO2 capture capacity. ACS Sustainable Chemistry & Engineering. 2013; 1(1): 66–74. https://doi.org/10.1021/sc300036p; Hsu S.-H., Li Ch.-T., Chien H.-T., Salunkhe R.R., Suzuki N., Yamauchi Y., Ho K.-Ch., Wu K. C.-W. Platinum-free counter electrode comprised of metal-organic-framework (MOF)-derived cobalt sulfide nanoparticles for efficient dye-sensitized solar cells (DSSCs). Scientific Reports. 2014; 4(1): 6983. https://doi.org/10.1038/srep06983; Li W., Wang K., Yang X., Zhan F., Wang Y., Liu M., Qiu X., Jie L., Zhan J., Li Q., Liu Y. Surfactant-assisted controlled synthesis of a metal-organic framework on Fe2O3 nanorod for boosted photoelectrochemical water oxidation. Chemical Engineering Journal. 2020; 379: 122256. https://doi.org/10.1016/j.cej.2019.122256; Lan T., Wang Q., Lu Ch., Li J., Li J., Chen Y., Li L., Yang J., Li J. Construction of hierarchically porous metal-organic framework particle by a facile MOF-template strategy. Particuology. 2023; 74(49): 9–17. https://doi.org/10.1016/j.partic.2022.05.004; Guillerm V., Kim D., Eubank J.F., Luebke R., Liu X., Adil K., Lah M.S., Eddaoudi M. A supermolecular building approach for the design and construction of metal-organic frameworks. Chemical Society Reviews. 2014; 43(16): 6141–6172. https://doi.org/10.1039/C4CS00135D; Duan C., Huo J., Li F., Yang M., Xi H. Ultrafast room-temperature synthesis of hierarchically porous metal-organic frameworks by a versatile cooperative template strategy. Journal of Materials Science. 2018; 53(24): 16276–16287. https://doi.org/10.1007/s10853-018-2793-3; Duan C., Li F., Yang M., Zhang H., Wu Y., X H. Rapid synthesis of hierarchically structured multifunctional metal-organic zeolites with enhanced volatile organic compounds adsorption capacity. Industrial & Engineering Chemistry Research. 2018; 57(45): 15385–15394. https://doi.org/10.1021/acs.iecr.8b04028; Du W., Bai Y., Yang Zh., Li R., Zhang D., Ma Zh., Yuan A., Xu J. A conductive anionic Co-MOF cage with zeolite framework for supercapacitors. Chinese Chemical Letters. 2020; 31(9): 2309–2313. https://doi.org/10.1016/j.cclet.2020.04.017; Sumida K., Liang K., Reboul J., Ibarra I.A., Furukawa Sh., Falcaro P. Sol-gel processing of metal-organic frameworks. Chemistry of Materials. 2017; 29(7): 2626–2645. https://doi.org/10.1021/acs.chemmater.6b03934; Marquez A.G., Horcajada P., Grosso D., Férey G., Serre Ch., Sanchez C., Boissiere C. Green scalable aerosol synthesis of porous metal-organic frameworks. Chemical Communications. 2013; 49(37): 3848–3850. https://doi.org/10.1039/c3cc39191d; Du X.D., Wang Ch.-Ch., Liu J.-G., Zhao X.-D., Zhong J., Li Y.-X., Li J., Wang P. Extensive and selective adsorption of ZIF-67 towards organic dyes: Performance and mechanism. Journal of Colloid and Interface Science. 2017; 506: 437–441. https://doi.org/10.1016/j.jcis.2017.07.073; Sun W., Zhai X., Zhao L. Synthesis of ZIF-8 and ZIF-67 nanocrystals with well-controllable size distribution through reverse microemulsions. Chemical Engineering Journal. 2016; 289: 59–64. https://doi.org/10.1016/j.cej.2015.12.076; Dhakshinamoorthy A., Alvaro M., Garcia H. Commercial metal–organic frameworks as heterogeneous catalysts. Chemical Communications. 2012; 48(92): 11275–11288. https://doi.org/10.1039/c2cc34329k; Tu N.T.T., Sy Ph.Ch., Tran V.Th., Toan T.Th.T., Phong N.H., Long H.Th., Khieu D.Q. Microwave-assisted synthesis and simultaneous electrochemical determination of dopamine and paracetamol using ZIF-67-modified electrode. Journal of Materials Science. 2019; 54(17): 11654–11670. https://doi.org/10.1007/s10853-019-03709-z; Julien P.A., Mottillo C., Friščić T. Metal-organic frameworks meet scalable and sustainable synthesis. Green Chemistry. 2017; 19(12): 2729–2747. https://doi.org/10.1039/C7GC01078H; Phan P.T., Hong J., Tran N., Le Th.H. The properties of microwave-assisted synthesis of metal-organic frameworks and their applications. Nanomaterials. 2023; 13(2): 352. https://doi.org/10.3390/nano13020352; Mansar A., Serier-Brault H. Microwave-assisted synthesis to prepare metal-organic framework for luminescence thermometry. Journal of Solid State Chemistry. 2022; 312: 123183. https://doi.org/10.1016/j.jssc.2022.123183; Carne A., Carbonell C., Imaz I., Maspoc D. Nanoscale metal-organic materials. Chemical Society Reviews. 2011; 40(1): 291–305. https://doi.org/10.1039/c0cs00042f; Wang M., Feng Y., Zhang Y., Li Sh., Wu M., Xue L., Zhao J., Zhang W., Ge M., Lai Y., Mi J. Ion regulation of hollow nickel cobalt layered double hydroxide nanocages derived from ZIF-67 for high-performance supercapacitors. Applied Surface Science. 2022; 596(19): 153582. https://doi.org/10.1016/j.apsusc.2022.153582; Chalati T., Horcajada P., Gref R., Couvreur P., Serre Ch. Optimisation of the synthesis of MOF nanoparticles made of flexible porous iron fumarate MIL-88A. Journal of Materials Chemistry. 2011; 21(7): 2220–2227. https://doi.org/10.1039/C0JM03563G; Abdi J., Sisi A.J., Hadipoor M., Khataee A. State of the art on the ultrasonic-assisted removal of environmental pollutants using metal-organic frameworks. Journal of Hazardous Materials. 2022; 424(Pt C): 127558. https://doi.org/10.1016/j.jhazmat.2021.127558; Fouad O.A., Ali A., Mohamed G.G., Mahmoud N.F. Ultrasonic aided synthesis of a novel mesoporous cobalt-based metal-organic framework and its application in Cr (III) ion determination in centrum multivitamin and real water samples. Microchemical Journal. 2022; 175(1-3): 107228. https://doi.org/10.1016/j.microc.2022.107228; Chu R., Weng L., Guan L., Liu J., Zhang X., Wu Z. Preparation and properties comparison of ZIF-67/PVDF and SiCNWs/PVDF composites for energy storage. Journal of Materials Science: Materials in Electronics. 2023; 34(5): 347. https://doi.org/10.1007/s10854-022-09630-7; Férey G. Hybrid porous solids: past, present, future. Chemical Society Reviews. 2008; 37(1): 191–214. https://doi.org/10.1039/b618320b; Gong H., Bie Sh., Zhang J., Ke X., Wang X., Liang J., Wu N., Zhang Q., Luo Ch., Jia Y. In situ construction of ZIF-67-derived hybrid tricobalt tetraoxide@ carbon for supercapacitor. Nanomaterials. 2022; 12(9): 1571. https://doi.org/10.3390/nano12091571; Lu Y., Zhan W., He Y., Wang Y., Kong X.-J., Kuang Q., Xie Zh., Zheng L.-S. MOF-templated synthesis of porous Co3O4 concave nanocubes with high specific surface area and their gas sensing properties. ACS Applied Materials & Interfaces. 2014; 6(6): 4186–4195. https://doi.org/10.1021/am405858v; Chen T.Y., Lina L.-Y., Gengc D.-Sh., Lee P.-Y. Systematic synthesis of ZIF-67 derived Co3O4 and N-doped carbon composite for supercapacitors via successive oxidation and carbonization. Electrochimica Acta. 2021; 376: 137986. https://doi.org/10.1016/j.electacta.2021.137986; Ma F., Jin Sh., Li Y., Feng Y., Tong Y. Pyrolysis-derived materials of Mn-doped ZIF-67 for the electrochemical detection of o-nitrophenol. Journal of Electroanalytical Chemistry. 2022; 904: 115932. https://doi.org/10.1016/j.jelechem.2021.115932; Torad N.L., Salunkhe R.R., Li Y., Hamoudi H., Imura M., Sakka Y., Hu Ch.-Ch., Yamauchi Y. Electric double-layer capacitors based on highly graphitized nanoporous carbons derived from ZIF-67. Chemistry-A European Journal. 2014; 20(26): 7895–7900. https://doi.org/10.1002/chem.201400089; Wei F., Li X., Yang J., Chen Ch., Sui Y. Embedding cobalt into ZIF-67 to obtain cobalt-nanoporous carbon composites as electrode materials for supercapacitor. Journal of Nanoscience and Nanotechnology. 2017; 17(5): 3504–3508. https://doi.org/10.1166/jnn.2017.13036; Пат. (РФ) № 2593145, МПК B82B3/00, C08F20/44, H01F1/42. Кожитов Л.В., Муратов Д.Г., Костишин В.Г., Якушко Е.В., Савиенко А.Г., Щетинин И.В., Попкова А.В. Способ получения нанокомпозита FeNi3/С в промышленных масштабах. Заявл.: 20.03.2015; опубл.: 27.07.2016. URL: https://www.freepatent.ru/patents/2593145; Пат. (РФ) № 2455225, МПК B82B3/00, C08F20/44, H01F1/42. Кожитов Л.В., Костикова А.В., Козлов В.В. Способ получения нанокомпозита FeNi3/пиролизованный полиакрилонитрил. Заявл.: 14.06.2011; опубл.: 10.07.2012. URL: https://www.freepatent.ru/patents/2455225; Kozhitov L.V., Muratov D.G., Kostishyn V.G., Suslyaev V.I., Korovin E.Yu., Popkova A.V. FeCo/C nanocomposites: Synthesis, magnetic and electromagnetic properties. Russian Journal of Inorganic Chemistry. 2017; 62(11): 1499–1507. https://doi.org/10.1134/S0036023617110110; Muratov D.G., Kozhitov L.V., Kazaryan T.M., Vasil’ev A.A., Popkova A.V., Korovin E.Yu. Synthesis and electromagnetic properties of FeCoNi/C nanocomposites based on polyvinyl alcohol. Russian Microelectronics. 2021; 50(8): 657–664. https://doi.org/10.1134/S1063739721080072; Yakushko E.V., Kozhitov L.V., Muratov D.G., Kostishyn V.G. NiCo/C nanocomposites: Synthesis and magnetic properties. Russian Journal of Inorganic Chemistry. 2016; 61(12): 1591–1595. https://doi.org/10.1134/S0036023616120202; Muratov D.G., Kozhitov L.V., Yakushko E.V., Vasilev A.A., Popkova A.V., Tarala V.A., Korovin Ev.Yu. Synthesis, structure and electromagnetic properties of FeCoAl/C nanocomposites. Modern Electronic Materials. 2021; 7(3): 99–108. https://doi.org/10.3897/j.moem.7.3.77105; Muratov D.G., Kozhitov L.V., Zaporotskova I.V., Popkova A.V., Tarala V.A., Korovin Ev.Yu., Zorin A.V. Synthesis, structure and electromagnetic properties of FeCoCu/C nanocomposites. Modern Electronic Materials. 2023; 9(1): 15–24. https://doi.org/10.3897/j.moem.9.1.104721; Gromov A.A., Yakushko E.V., Muratov D.G., Kozitov L.V., Lomov A.A., Nalivaiko A.Yu., Ozherelkov D., Pelevin I., Marinich S.B. Ni–Co–Cu/carbon nanocomposites: synthesis, characterization and magnetic properties. Nano. 2023; 18(03): 2350015. https://doi.org/10.1142/S1793292023500157; Zaporotskova I., Muratov D., Kozhitov L., Popkova A., Boroznina N., Boroznin S., Vasiliev A., Tarala V., Korovin Ev. Nanocomposites based on pyrolyzed polyacrylonitrile doped with FeCoCr/C transition metal alloy nanoparticles: synthesis, structure, and electromagnetic properties. Polymers. 2023; 15(17): 3596. https://doi.org/10.3390/polym15173596; https://met.misis.ru/jour/article/view/557

  3. 3
    Academic Journal

    المساهمون: The work was carried out within the framework of the state assignment of the Ministry of Science and Higher Education of the Russian Federation (topic FZUU-2023-0001)., Работа выполнена в рамках государственного задания Министерства науки и высшего образования РФ (тема FZUU-2023-0001).

    المصدر: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 26, № 4 (2023); 300-308 ; Известия высших учебных заведений. Материалы электронной техники; Том 26, № 4 (2023); 300-308 ; 2413-6387 ; 1609-3577

    Relation: Кербер М.Л., Виноградов В.М., Головкин Г.С., Горбаткина Ю.А., Крыжановский В.К., Куперман А.М., Симонов-Емельянов И.Д., Халиулин В.И., Бунаков В.А. Под ред. А.А. Берлина. Полимерные композиционные материалы: структура, свойства, технология. СПб.: Профессия; 2008. 560 с.; Патент (РФ) № 1721634 SU11, МПК H01B 1/04, H01B 1/18, H01B 1/20, H01B 1/22. Зализная Н.Ф., Земцов Л.М., Карпачева Г.П., Давыдов Б.Э., Козлов Ю.Г., Хрекин А.В., Щекин И.А. Способ получения проводящих покрытий. Заявл.: 01.11.1989; опубл. 23.03.1992. URL: https://yandex.ru/patents/doc/SU1721634A1_19920323; Берлин А.А., Гейдерих М.А., Давыдов Б.Э., Каргин В.А., Карпачева Г.П., Кренцель Б.А., Хутарева Г.В. Химия полисопряженных систем. М.: Химия; 1972. 272 с.; Давыдов Б.Э. Некоторые химические особенности и полупроводниковые свойства полисопряженных систем. Дисс. … д-ра хим. наук. М.; 1965. 487 с.; Ghorpade R.V., Cho D.W., Hong S.C. Effect of controlled tacticity of polyacrylonitrile (co)polymers on their thermal oxidative stabilization behaviors and the properties of resulting carbon films. Carbon. 2017; 121: 502—511. https://doi.org/10.1016/j.carbon.2017.06.015; Obraztsov A.N., Volkov A.P., Petrushenko Y.V., Satanovskaya O.P. Application of nanocarbon cold cathodes in lighting elements. Surface and Interface Analysis. 2004; 36(5-6): 470—473. https://doi.org/10.1002/sia.1711; Han Q., Wang F., Wang Z., Yi Z., Na Z., Wang X., Wang L. PAN-based carbon fiber@SnO2 for highly reversible structural lithium-ion battery anode. Ionics. 2018; 24(4): 1049—1055. https://doi.org/10.1007/s11581-017-2261-0; Han Q., Shi M., Han Z., Zhang W., Li Y., Zhang X., Sheng Y. Synthesis of one-dimensional PAN-based carbon fiber/NiO composite as an anode material for structural lithium-ion batteries. Ionics. 2020; 26(12): 5935—5940. https://doi.org/10.1007/s11581-020-03762-8; Кожитов Л.В., Емельянов С.Г., Косушкин В.Г., Стрельченко С.С., Пархоменко Ю.Н., Козлов В.В., Кожитов С.Л. Технология материалов микро- и наноэлектроники. Курск: Юго-Западный государственный университет; 2012. 862 c.; Радченко Д.П., Запороцкова И.В., Кожитов Л.В. Радиопоглощающие свойства пиролизованного полиакрилонитрила: модель в диапазоне от 1 до 3 ГГц. Сб. трудов Междунар. науч. конф. «Актуальные проблемы прикладной математики, информатики и механики». Воронеж, 13–15 декабря 2021 г. Воронеж: ООО «Вэлборн»; 2022. С. 701—706.; Запороцкова И.В., Кожитов Л.В., Аникеев Н.А., Давлетова О.А., Муратов Д.Г., Попкова А.В., Якушко Е.В. Синтез, свойства и моделирование металлоуглеродных нанокомпозитов. Волгоград: Из-во ВолГУ; 2019. 534 с.; Zaporotskova I.V., Kozhitov L.V., Boroznina N.P., Kakorina O.A., Boroznin S.V., Radchenko D.P., Belonenko M.B. New radar-absorbing metal composites based on pyrolyzed polyacrylonitrile containing atoms of transition metals Ni and Co. Bulletin of the Russian Academy of Sciences: Physics. 2021; 85(12): 1348—1353. https://doi.org/10.3103/S1062873821120376; https://met.misis.ru/jour/article/view/566

  4. 4
    Academic Journal

    المصدر: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 26, № 2 (2023); 110-121 ; Известия высших учебных заведений. Материалы электронной техники; Том 26, № 2 (2023); 110-121 ; 2413-6387 ; 1609-3577 ; 10.17073/1609-3577-2023-2

    وصف الملف: application/pdf

    Relation: https://met.misis.ru/jour/article/view/520/421; Lu A.-H., Salabas Е.L., Schüth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angewandte Chemie International Edition. 2007; 46(8): 1222—1244. https://doi.org/10.1002/anie.200602866; Gubin S.P., Spichkin Y.I., Yurkov G.Yu., Tishin A.M. Nanomaterial for high-density magnetic data storage. Russian Journal of Inorganic Chemistry. 2002; 47(1): S32—S67.; Xu Y.H., Bai J., Wang J.-P. High-magnetic-moment multifunctional nanoparticles for nanomedicine applications. Journal of Magnetism and Magnetic Materials. 2007; 311(1): 131—134. https://doi.org/10.1016/j.jmmm.2006.11.174; Khadzhiev S.N., Kulikova M.V., Ivantsov M.I., Zemtsov L.M., Karpacheva G.P., Muratov D.G., Bondarenko G.N., Oknina N.V. Fischer-Tropsch synthesis in the presence of nanosized iron-polymer catalysts in a fixed-bed reactor. Petroleum Chemistry. 2016; 56: 522—528. https://doi.org/10.1134/S0965544116060049; Qiu F., Dai Y., Li Li, Xu Ch., Huang Y., Chen Ch., Wang Y., Jiao L., Yuan H. Synthesis of Cu@FeCo core-shellnanoparticles for the catalytic hydrolysis of ammonia borane. International Jornal of Hydrogen Energy. 2014; 39(1): 436—441.; Xu M.H., Zhong W., Qi X.S., Au C.T., Deng Y., Du Y.W. Highly stable Fe-Ni alloy nanoparticles encapsulated in carbon nanotubes: Synthesis, structure and magnetic properties. Journal of Alloys and Compounds. 2010; 495(1): 200—204. https://doi.org/10.1016/j.jallcom.2010.01.121; Bahgat M., Paek M.-K., Pak J.-J. Comparative synthesize of nanocrystalline Fe-Ni and Fe-Ni-Co alloys during hydrogen reduction of NixCo1-xFe2O4. Journal of Alloys and Compounds. 2008; 466(1-2): 59—66. https://doi.org/10.1016/j.jallcom.2008.01.147; Azizi A., Yoozbashizadeh H., Sadrnezhaad S.K. Effect of hydrogen reduction on microstructure and magnetic properties of mechanochemically synthesized Fe-16.5Ni-16.5Co nano-powder. Journal of Magnetism and Magnetic Materials. 2009; 321(18): 2729—2732. https://doi.org/10.1016/j.jmmm.2009.03.085; Li X., Takahashi S. Synthesis and magnetic properties of Fe-Co-Ni nanoparticles by hydrogen plasma-metal reaction. Journal of Magnetism and Magnetic Materials. 2000; 214(3): 195—203. https://doi.org/10.1016/S0304-8853(00)00081-0; Dalavi S.B., Theerthagiri J., Raja M.M., Panda R.N. Synthesis, characterization and magnetic properties of nanocrystalline FexNi80-xCo20 ternary alloys. Journal of Magnetism and Magnetic Materials. 2013; 344: 30—34. https://doi.org/10.1016/j.jmmm.2013.05.026; Prasad N.Kr., Kumar V. Microstructure and magnetic properties of equiatomic FeNiCo alloy synthesized by mechanical alloying. Journal of Materials Science: Materials in Electronics. 2015; 26(12): 10109—10118. https://doi.org/10.1007/s10854-015-3695-7; Zehani K., Bez R., Boutahar A., Hlil E.K., Lassri H., Moscovici J., Mliki N., Bessais L. Structural, magnetic, and electronic properties of high moment FeCo nanoparticlesJ. Journal of Alloys and Compounds. 2014; 591: 58—64. https://doi.org/10.1016/j.jallcom.2013.11.208; Yang Y., Xu C., Xia Y., Wang T., Li F. Synthesis and microwave absorption properties of FECO nanoplates. Journal of Alloys and Compounds. 2010; 493(1-2): 549—552. https://doi.org/10.1016/j.jallcom.2009.12.153; Liu X.G., Ou Z.Q., Geng D.Y., Han Z., Jiang J.J., Liu W., Zhang Z.D. Influence of a graphite shell on the thermal and electromagnetic characteristics of FeNi nanoparticles. Carbon. 2010; 48(3): 891—897. https://doi.org/10.1016/j.carbon.2009.11.011; Li X., Takahashi S. Synthesis and magnetic properties of Fe-Co-Ni nanoparticles by hydrogen plasma-metal reaction. Journal of Magnetism and Magnetic Materials. 2000; 214(3): 195—203.; Muratov D.G., Kozhitov L.V., Kazaryan T.M., Vasil’ev A.A., Popkova A.V., Korovin E.Yu. Synthesis and electromagnetic properties of FeCoNi/C nanocomposites based on polyvinyl alcohol. Russian Microelectronics. 2021; 50(8): 657—664. https://doi.org/10.1134/S1063739721080072; Muratov D.G., Kozhitov L.V., Korovushkin V.V., Korovin E.Yu., Popkova A.V., Novotortsev V.M. Synthesis, structure and electromagnetic properties of nanocomposites with threecomponent FeCoNi nanoparticles. Russian Physics Journal. 2019; 61(10): 1788—1797. https://doi.org/10.1007/s11182-019-01602-5; Muratov D.G., Kozhitov L.V., Yakushko E.V., Vasilev A.A., Popkova A.V., Tarala V.A., Korovin E.Yu. Synthesis, structure and electromagnetic properties of FeCoAl/C nanocomposites. Modern Electronic Materials. 2021; 7(3): 99—108. https://doi.org/10.3897/j.moem.7.3.77105; Mondal B.N., Basumallick A., Nath D.N., Cnattopaahyuy P.P. Phase evolution and magnetic, behavior of Сu-Ni-Co-Fe quaternary alloys synthesized by ball milling. Material Chemistry and Physics. 2009; 116(2): 358—362. https://doi.org/10.1016/j.matchemphys.2009.03.036; Васильев А.А., Дзидзигури Э.Л., Ефимов М.Н., Муратов Д.Г., Карпачева Г.П. Формирование металл-углеродных нанокомпозитов на основе наночастиц сплава Cu-Fe и карбонизированного полиакрилонитрила. Физика и химия обработки материалов. 2021; (1): 58—66. https://doi.org/10.30791/0015-3214-2021-1-58-66; Ferrari A.C., Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon. Physical Review B. 2000; 61(20): 14095—14107. https://doi.org/10.1103/physrevb.61.14095; Ferrari A.C. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Communications. 2007; 143(1-2): 47—57. https://doi.org/10.1016/j.ssc.2007.03.052; Afghahi S.S., Shokuhfar A. Two stepsinthesis, electromagnetic and microwave absorbing properties of FeCo@C core-shell nanostructure. Journal of Magnetism and Magnetic Materials. 2014; 370: 37—44. https://doi.org/10.1016/j.jmmm.2014.06.040; Родионов В.В. Механизмы взаимодействия СВЧ-излучения с наноструктурированными углеродсодержащими материалами. Дисс. … канд. физ.-мат. наук. Курск; 2015. 169 с.; https://met.misis.ru/jour/article/view/520

  5. 5
    Academic Journal

    المصدر: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 25, № 4 (2022); 261-270 ; Известия высших учебных заведений. Материалы электронной техники; Том 25, № 4 (2022); 261-270 ; 2413-6387 ; 1609-3577 ; 10.17073/1609-3577-2022-4

    وصف الملف: application/pdf

    Relation: https://met.misis.ru/jour/article/view/503/390; Hauptmann P., Puttmer A., Henning B. Ultrasonic sensors for process monitoring and chemical analysis: state-of-the-art and trends. Sensors and Actuators A-physical. 1998; 67(1-3): 32—48. https://doi.org/10.1016/S0924-4247(97)01725-1; Thundat T, Oden P.I, Warmack R.J. Microcantilever sensors. Microscale Thermophysical Engineering. 1997; 1(3): 185—199.; Ilic B., Czaplewski D., Craighead H.G., Neuzil P., Campagnolo C., Batt C. Mechanical resonant immunospecific biological detector. Applied Physics Letters. 2000; 77: 450—452. https://doi.org/10.1063/1.127006; Chopra N.G., Zettl A. Measurement of the elastic modulus of a multi-wall boron nitride nanotube. Solid State Communications. 1998; 105(5): 297—300. https://doi.org/10.1016/S0038-1098(97)10125-9; Ghorbanpour A.A, Roudbari M.A., Amir S. Nonlocal vibration of SWBNNT embedded in bundle of CNTs under a moving nanoparticle. Physica B: Condensed Matter. 2012; 407(17): 3646—3653. https://doi.org/10.1016/j.physb.2012.05.043; Ghorbanpour A.A., Roudbari M.A. Nonlocal piezoelastic surface effect on the vibration of visco-Pasternak coupled boron nitride nanotube system under a moving nanoparticle. Thin Solid Films. 2013; 542: 232—241. https://doi.org/10.1016/j.tsf.2013.06.025; Ghorbanpour A.A., Hafizi B.A., Ravandi K.A., Roudbari M.A., Amir S., Azizkhani M.B. Induced nonlocal electric wave propagation of boron nitride nanotubes. Journal of Mechanical Science and Technology. 2013; 27: 3063—3071. https://doi.org/10.1007/s12206-013-0705-7; Ghorbanpour A.A., Roudbari M.A. Surface stress, initial stress and Knudsen-dependent flow velocity effects on the electro-thermo nonlocal wave propagation of SWBNNTs. Physica B: Condensed Matter. 2014; 452: 159—165. https://doi.org/10.1016/j.physb.2014.07.017; Ghorbanpour A.A., Jalilvand A., Ghaffari M., Talebi M.M., Kolahchi R, Roudbari M.A., Amir S. Nonlinear pull-in instability of boron nitride nano-switches considering electrostatic and Casimir forces. Scientia Iranica. 2014; 21(3): 1183—1196.; Ghorbanpour A.A., Karamali R.A., Roudbari M.A., Azizkhani M.B., Bidgoli A. Axial and transverse vibration of SWBNNT system coupled Pasternak foundation under a moving nanoparticle using Timoshenko beam theory. Journal of Solid Mechanics. 2015; 7(3): 239—254.; Ansari R., Rouhi S., Mirnezhad M., Aryayi M. Stability characteristics of single-walled boron nitride nanotubes. Archives of Civil and Mechanical Engineering. 2015; 15: 162—170. https://doi.org/10.1016/J.ACME.2014.01.008; Ciofani G., Danti S., D’Alessandro D., Moscato S., Menciassi A. Assessing cytotoxicity of boron nitride nanotubes: interference with the MTT assay. Biochemical and Biophysical Research Communications. 2010; 394(2): 405—411. https://doi.org/10.1016/j.bbrc.2010.03.035; Chowdhury R., Wang C.Y., Adhikari S., Scarpa F. Vibration and symmetry-breaking of boron nitride nanotubes. Nanotechnology. 2010; 21(36): 365702—365703 https://doi.org/10.1088/0957-4484/21/36/365702; Chowdhury R., Adhikari S. Boron-nitride nanotubes as zeptogram-scale bionanosensors: theoretical investigations. IEEE Transactions on Nanotechnology. 2011; 10(4): 659—667. https://doi.org/10.1109/TNANO.2010.2060492; Panchal M.B., Upadhyay S.H., Harsha S.P. Mass detection using single walled boron nitride nanotube as a nanomechanical resonator. Nano Brief Reports and Reviews. 2012; 7(4): 1250029—1250030. https://doi.org/10.1142/S1793292012500294; Panchal M.B., Upadhyay S.H., Harsha S.P. Vibrational analysis of boron nitride nanotube based nanoresonators. Journal of Nanotechnology in Engineering and Medicine. 2012; 3(3): 031004—031009. https://doi.org/10.1115/1.4007696; Panchal M.B., Upadhyay S.H. Cantilevered single walled boron nitride nanotube based nanomechanical resonators of zigzag and armchair forms. Physica E Low-dimensional Systems and Nanostructures. 2013; 50: 73—82. https://doi.org/10.1016/j.physe.2013.02.018; Panchal M.B., Upadhyay S.H. Boron nitride nanotube-based biosensing of various bacterium/viruses: Continuum modelling-based simulation approach. IET Nanobiotechnology. 2014; 8(3): 143—148. https://doi.org/10.1049/iet-nbt.2013.0020; Panchal M.B., Upadhyay S.H. Boron nitride nanotube-based mass sensing of zeptogram scale. Spectroscopy Letters. 2014; 47(5): 17—21. https://doi.org/10.1080/00387010.2013.850437; Adhikari S. Boron nitride nanotubes in nanomedicine. In: A volume in micro and nano technologies. NY: Elsevier Inc; 2016. P. 149—164.; Борознин С.В. Исследование роли примесных атомов бора в металлизации углеродных нанотрубок. Известия Юго-Западного государственного университета. Серия: Техника и технологии. 2022; 12(1): 159—173. https://doi.org/10.21869/2223-1528-2022-12-1-159-173; Zaporotskova I.V., Boroznina N.P., Boroznin S.V. Nanotechnology: contribution to inclusive growth in Russia. In: Inshakova E.I., Inshakova A.O., eds. Smart Innovation, Systems and Technologies. Singapore: Springer; 2022. P. 137—149. https://doi.org/10.1007/978-981-16-9804-0_12; Boroznin S.V. Сarbon nanostructures containing boron impurity atoms: synthesis, physicochemical properties and potential applications. Modern Electronic Materials. 2022; 8(1): 23—42. https://doi.org/10.3897/j.moem.8.1.84317; https://elibrary.ru/wawpmy; Zaporotskova I.V., Dryuchkov E.S., Boroznina N.P., Kozhitov L.V., Popkova A.V. Surface-modified boron-carbon BC5 nanotube with amine group as a sensor device element: Theoretical research. Russian Microelectronics. 2021; 50(8): 644—648. https://doi.org/10.1134/S1063739721080096; Boroznina N.P., Boroznin S.V., Zaporotskova I.V., Zaporotskov P.A. Comparative analysis of the effectiveness of the sensory properties of carbon nanotubes when modifying their surface with boron atoms. In: Popkova E.G., Sergi B.S., eds. "Smart technologies" for society, state and economy. ISC 2020. Lecture Notes in Networks and Systems. Springer, Cham.; 2021. Vol. 155. P. 28—296. https://doi.org/10.1007/978-3-030-59126-7_32; Boroznina N., Zaporotskova I., Boroznin S., Dryuchkov E.S. Sensors based on amino group surface-modified CNTs. Chemosensors. 2019; 7(1): 11—19. https://doi.org/10.3390/CHEMOSENSORS7010011; https://met.misis.ru/jour/article/view/503

  6. 6
    Academic Journal

    المصدر: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 25, № 2 (2022); 137-145 ; Известия высших учебных заведений. Материалы электронной техники; Том 25, № 2 (2022); 137-145 ; 2413-6387 ; 1609-3577 ; 10.17073/1609-3577-2022-2

    وصف الملف: application/pdf

    Relation: https://met.misis.ru/jour/article/view/468/373; Boroznin S.V., Zaporotskova I.V., Boroznina E.V., Polikarpov D.I., Polikarpova N.P. Hydrogenation of boron-carbon nanotubes. Nanoscience and Nanotechnology Letters. 2013; 5(11): 1195—1200. https://doi.org/10.1166/nnl.2013.1694; Iwai Y., Hirose M., Kano R., Kawasaki S., Hattori Y., Takahashi K. Synthesis and structural characterization of alkali-metal intercalated single-walled carbon nanotubes. Journal of Physics and Chemistry of Solids. 2008; 69 (5-6): 1199—1202. https://doi.org/10.1016/j.jpcs.2007.10.035; Zhang C., Yan Y., Sheng Zhao Y., Yao J. Synthesis and applications of organic nanorods, nanowires and nanotubes. Annual Reports on the Progress of Chemistry – Section C. 2013; 109: 211—239. https://doi.org/10.1039/c3pc90002a; Dasgupta N.P., Sun J., Liu C., Brittman S., Andrews S.C., Lim J., Yang P. 25th anniversary article: Semiconductor nanowires — synthesis, characterization, and applications. Advanced Materials. 2014; 26 (14): 2137—2184. https://doi.org/10.1002/adma.201305929; Velea A., Opsomer K., Devulder W., Dumortier J., Fan J., Detavernier C., Govoreanu B. Te-based chalcogenide materials for selector applications. Scientific Reports. 2017; 7(1): 8103. https://doi.org/10.1038/s41598-017-08251-z; Matthews P.D., McNaughter P.D., Lewis D.J., O’Brien P. Shining a light on transition metal chalcogenides for sustainable photovoltaics. Chemical Science. 2017; 8(6): 4177—4187. https://doi.org/10.1039/c7sc00642j; Jing Y., Liu B., Zhu X., Ouyang F., Sun J., Zhou Y. Tunable electronic structure of two-dimensional transition metal chalcogenides for optoelectronic applications. Nanophotonics. 2020; 9(7): 1675—1694. https://doi.org/10.1515/nanoph-2019-0574; Jia T., Feng Z., Guo S., Zhang X., Zhang Y. Screening promising thermoelectric materials in binary chalcogenides through high-throughput computations. ACS Applied Materials and Interfaces. 2020; 12(10): 11852—11864. https://doi.org/10.1021/acsami.9b23297; Gao M., Xu Y., Jiang J., Yu S. Nanostructured metal chalcogenides: Synthesis, modification, and applications in energy conversion and storage devices. Chemical Society Reviews. 2013; 42(7): 2986—3017. https://doi.org/10.1039/c2cs35310e; Запороцкова И.В. Нанотубулярные структуры: строение, свойства и перспективы. Нано- и микросистемная техника. 2005; (10): 7—18. https://www.elibrary.ru/hevcbn; Dul S., Gutierrez B.J.A., Pegoretti A., Alvarez-Quintana J., Fambri L. 3D printing of ABS nanocomposites. comparison of processing and effects of multi-wall and single-wall carbon nanotubes on thermal, mechanical and electrical properties. Journal of Materials Science and Technology. 2022; 121: 52—66. https://doi.org/10.1016/j.jmst.2021.11.064; Xia F., Xia T., Xiang L., Liu F., Jia W., Liang X., Hu Y. High-performance carbon nanotube-based transient complementary electronics. ACS Applied Materials and Interfaces. 2022; 14(10): 12515—12522. https://doi.org/10.1021/acsami.1c23134; Faulques E., Kalashnyk N., Slade C.A., Sanchez A.M., Sloan J., Ivanov V.G. Vibrational and electronic structures of tin selenide nanowires confined inside carbon nanotubes. Synthetic Metals. 2022; 284: 116968. https://doi.org/10.1016/j.synthmet.2021.116968; Nagata M., Shukla S., Nakanishi Y., Liu Z., Lin Y., Shiga T., Shinohara H. Isolation of single-wired transition-metal monochalcogenides by carbon nanotubes. Nano Letters. 2019; 19(8): 4845—4851. https://doi.org/10.1021/acs.nanolett.8b05074; Sawant S.V., Patwardhan A.W., Joshi J.B., Dasgupta K. Boron doped carbon nanotubes: Synthesis, characterization and emerging applications – A review. Chemical Engineering Journal. 2022; 427. https://doi.org/10.1016/j.cej.2021.131616; Dyachkov P.N., Kutlubaev D.Z., Makaev D.V. Electronic structure of carbon nanotubes with point impurity. Journal of Inorganic Chemistry. 2011; 56(8): 1371—1375. https://doi.org/10.1134/S0036023611080146; D’yachkov P.N., Kutlubaev D.Z., Makaev D.V. Linear augmented cylindrical wave Green’s function method for electronic structure of nanotubes with substitutional impurities. Physical Review B. 2010; 82: 035426. https://doi.org/10.1103/physrevb.82.035426; Zaporotskova I.V., Dryuchkov E.S., Boroznina N.P., Kozhitov L.V., Popkova A.V. Surface-modified boron-carbon BC5 nanotube with amine group as a sensor device element: Theoretical research. Russian Microelectronics. 2021; 50(8): 644—648. https://doi.org/10.1134/S1063739721080096; Zaporotskova I.V., Dryuchkov E.S., Vilkeeva D.E. Surface carboxylation of a boron-carbon bc5 nanotube in the development of sensor devices. Key Engineering Materials. 2021; 887: 23—27. https://doi.org/10.4028/www.scientific.net/KEM.887.23; Запороцкова И.В., Прокофьева Е.В., Запороцкова Н.П., Прокофьева О.Ю., Борознин С.В. Нанопровода на основе интеркалированных атомами легких и переходных металлов углеродных нанотрубок. Физика волновых процессов и радиотехнические системы. 2010; 13(4): 87—95. https://www.elibrary.ru/ncvhkv; Борознин С.В., Перевалова Е.В., Запороцкова И.В., Поликарпов Д.И. Электронное строение и характеристики некоторых видов борсодержащих нанотруб. Вестник Волгоградского государственного университета. Серия 10: Инновационная деятельность. 2012; (6): 81—86. https://www.elibrary.ru/peuepl; Boroznin S.V., Streltsova D.V., Zaporotskova I.V. Investigation of BC5 nanotube interaction with alkaline metal atoms. AIP Conference Proceedings. 2019; 2174: 020011. https://doi.org/10.1063/1.5134162; https://met.misis.ru/jour/article/view/468

  7. 7
    Academic Journal

    المصدر: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 23, № 4 (2020); 253-259 ; Известия высших учебных заведений. Материалы электронной техники; Том 23, № 4 (2020); 253-259 ; 2413-6387 ; 1609-3577 ; 10.17073/1609-3577-2020-4

    وصف الملف: application/pdf

    Relation: https://met.misis.ru/jour/article/view/415/418; Dresselhaus M. S., Dresselhaus G., Eklund P. C. Science of Fullerenes and Carbon Nanotubes. London: Academic Press, Inc., 1996. 965 p.; Saito R., Dresselhaus M. S., Dresselhaus G. Physical properties of carbon nanotubes. London: Imperial College Press, 1998. 262 p.; Запороцкова И. В. Углеродные и неуглеродные наноматериалы и композитные структуры на их основе: строение и электронные свойства. Волгоград: ВолГУ, 2009. 490 с.; Mohamed A. E.-M. A., Mohamed M. A. Carbon nanotubes: Synthesis, characterization, and applications. In: Carbon Nanomaterials for Agri-food and Environmental Applications. Elsevier Inc., 2019. P. 21—32. DOI:10.1016/B978-0-12-819786-8.00002-5; Arunkumar T., Karthikeyan R., Ram Subramani R., Viswanathan K., Anish M. Synthesis and characterisation of multi-walled carbon nanotubes (MWCNTs) // International Journal of Ambient Energy. 2020. V. 41, N 4. P. 452—456. DOI:10.1080/01430750.2018.1472657; Tomilin O. B., Rodionova E. V., Rodin E. A., Poroshina M. D., Frolov AS. The effect of carbon nanotube modifications on their emission properties // Fullerenes Nanotubes and Carbon Nanostructures. 2020. V. 28, N 2. P. 123—128. DOI:10.1080/1536383X.2019.1680978; Savin A. V., Savina O. I. An effect of chemical modification of surface of carbon nanotubes on their thermal conductivity // Physics of the Solid State. 2019. V. 61, N 2. P. 279—284. DOI:10.1134/S1063783419020252; Dresselhaus M. S., Dresselhaus G., Avouris P. Сarbon nanotubes: synthesis, structure, properties, and application. Berlin: Springer-Verlag, 2000. 464 p.; Дьячков П. Н. Электронные свойства и применение нанотрубок. М.: БИНОМ. Лаборатория знаний, 2010. 488 с.; Wojtkiewicz J., Brzostowski B., Pilch M. Electronic and optical properties of carbon nanotubes directed to their applications in solar cells // PRAM 2019: Parallel Processing and Applied Mathematics. Poland, 2020. P. 341—349. DOI:10.1007/978-3-030-43222-5_30; Suhito I. R., Koo K.-M., Kim T. H. Recent advances in electrochemical sensors for the detection of biomolecules and whole cells // Biomedicines. 2021. V. 9, N 1. P. 1—20. DOI:10.3390/biomedicines9010015; Park S. H., Bai S.-J., Song, Y. S. Improved performance of carbon nanotubes embedded photomicrobial solar cell // Nanotechnology. 2020. V. 31, N 11. P. 115401. DOI:10.1088/1361-6528/ab5b2a; Liu H., Li Y. Modified carbon nanotubes for hydrogen storage at moderate pressure and room temperature // Fullerenes Nanotubes and Carbon Nanostructures. 2020. V. 28, N 8. P. 663—670. DOI:10.1080/1536383X.2020.1738396; Manut A., Zoolfakar A. S., Mamat M. H., Ab Ghani N. S., Zolkapli M. Characterization of titanium dioxide (TiO2) nanotubes for resistive-type humidity sensor // IEEE International Conference on Semiconductor Electronics, Proceedings (ICSE). Vietnam, 2020. P. 104—107. DOI:10.1109/ICSE49846.2020.9166854; Aydın M. T. A., Hoşgün H. L. Hydrothermal synthesis and characterization of vanadium-doped titanium dioxide nanotubes // Journal of the Australian Ceramic Society. 2020. V. 56, N 2. P. 645—651. DOI:10.1007/s41779-019-00382-y; Hussain R. A., Hussain I. Metal telluride nanotubes: Synthesis, and applications // Materials Chemistry and Physics. 2020. V. 256. P. 123691. DOI:10.1016/j.matchemphys.2020.123691; Fujisawa K., Hayashi T., Endo M., Terrones M., Kim J. H., Kim Y.A. Effect of boron doping on the electrical conductivity of metallicity-separated single walled carbon nanotubes // Nanoscale. 2018. V. 10, N 26. P. 12723—12733. DOI:10.1039/c8nr02323a; Liu Y., Khavrus V., Lehmann T., Yang H.-L., Stepien L., Greifzu M., Oswald S., Gemming T., Bezugly V., Cuniberti G. Boron-doped single-walled carbon nanotubes with enhanced thermoelectric power factor for flexible thermoelectric devices // ACS Applied Energy Materials. 2020. V. 3, N 3. P. 2556—2564. DOI:10.1021/acsaem.9b02243; Fakhrabadi M. M. S., Allahverdizadeh A., Norouzifard V., Dadashzadeh B. Effects of boron doping on mechanical properties and thermal conductivities of carbon nanotubes // Solid State Communications. 2012. V. 152, N 21. P. 1973—1979. DOI:10.1016/j.ssc.2012.08.003; Rubio A. Formation and electronic properties of BC3 single-wall nanotubes upon boron substitution of carbon nanotubes // Physics Revier Series B. Condenced Matter. 2004. V. 69. P. 245403. DOI:10.1103/PhysRevB.69.245403; Debnarayan J., Sun C.-L., Chen L.-C., Chen K.-H. Effect of chemical doping of boron and nitrogen on the electronic, optical, and electrochemical properties of carbon nanotubes // Progress in Materials Science. 2013. V. 58. P. 565. DOI:10.1016/j.pmatsci.2013.01.003; Boroznina N. P., Boroznin S. V., Zaporotskova I. V., Kozhitov L. V., Popkova A. V. On the practicability of sensors based on surface carboxylated boron-carbon nanotubes // Russian Journal of Inorganic Chemistry. 2019. V. 64, N 1. P. 74—78. DOI:10.1134/S0036023619010029; Boroznina N. P., Zaporotskova I. V., Boroznin S. V., Dryuchkov E. S. Sensors based on amino group surface-modified CNTs // Chemosensors. 2019. V. 7, N 1. P. 11. DOI:10.3390/CHEMOSENSORS7010011; Koch W., Holthausen M. C. A Chemist's Guide to Density Functional Theory. Weinheim: Wiley-VCH, 2001. 294 p.; Rassolov V. A., Ratner M. A., Pople J. A., Redfern P. C., Curtiss L. A. J. 6-31G* basis set for third-row atoms // Journal of Computational Chemistry. 2001. V. 22, N 9. P. 976—984. DOI:10.1002/jcc.1058; https://met.misis.ru/jour/article/view/415

  8. 8
    Academic Journal

    المساهمون: The study was carried out with the financial support of the Russian Foundation for Basic Research and the Administration of the Volgograd Region within the framework of scientific project No. 19-43-340005 r_a and the grant of the President of the Russian Federation MK-2483.2019.3., Исследование выполнено при финансовой поддержке РФФИ и Администрации Волгоградской области в рамках научного проекта № 19-43-340005 р_а и гранта Президента РФ МК-2483.2019.3.

    المصدر: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 23, № 3 (2020); 196-202 ; Известия высших учебных заведений. Материалы электронной техники; Том 23, № 3 (2020); 196-202 ; 2413-6387 ; 1609-3577 ; 10.17073/1609-3577-2020-3

    وصف الملف: application/pdf

    Relation: https://met.misis.ru/jour/article/view/398/320; Кожитов Л. В., Козлов В. В., Костикова А. В., Попкова А. В. Новые металлоуглеродные нанокомпозиты и углеродный нанокристаллический материал с перспективными свойствами для развития электроники // Известия вузов: Материалы электронной техники. 2012. № 3. С. 59—67. DOI:10.17073/1609-3577-2012-3-59-67; Муратов Д. Г., Якушко Е. В., Кожитов Л. В., Попкова А. В., Пушкарев М. А. Формирование нанокомпозитов Ni/C на основе полиакрилонитрила под действием ИК-излучения // Известия высших учебных заведений. Материалы электронной техники. 2013. № 1. С. 61—65. DOI:10.17073/1609-3577-2013-1-61-65; Запороцкова И. В., Аникеев Н. А., Кожитов Л. В., Попкова А. В. Исследование процесса гидрогенизации однослойного и двухслойного пиролизованного полиакрилонитрила // Известия вузов. Материалы электронной техники. 2013. № 3. С. 34—38. DOI:10.17073/1609-3577-2013-3-34-38; Kozhitov L. V., Kozlov V. V., Kostikova A. V., Popkova A. V. Novel metal carbon nanocomposites and carbon nanocrystalline material with promising properties for the development of electronics // Russian Microelectronics. 2013. V. 42, N 8. P. 498—507. DOI:10.1134/S1063739713080088; Bulatov M. F., Kozitov L. V., Muratov D. G., Karpacheva G. P., Popkova A. V. The magnetic properties of nanocomposites Fe-Co/C based on polyacrylonitrile // J. Nanoelectron. Optoelectron. 2015. V. 9, N 6. P. 828—833. DOI:10.1166/jno.2014.1682; Alonso F., Riente P., Rodríguez-Reinoso F., Ruiz-Martínez J., Sepúlveda-Escribano A., Yus M. A highly reusable carbon-supported platinum catalyst for the hydrogen-transfer reduction of ketones // ChemCatChem. 2009. V. 1, Iss. 1. P. 75—77. DOI:10.1002/cctc.200900045; Ряшенцева М. А. Егорова Е. В., Трусов А. И., Нугманов Е. Р., Антонюк С. Н. Применение металлоуглеродных катализаторов в процессах превращения низших алифатических спиртов // Успехи химии, 2006, Т. 75, № 11. С. 1119—1132.; Ефимов М. Н., Земцов Л. М., Карпачева Г. П., Ермилова М. М., Орехова Н. В., Терещенко Г. Ф., Дзидзигури Э. Л., Сидорова Е. Н. Получение и структура каталитических нанокомпозитных углеродных материалов, содержащих металлы платиновой группы // Вестн. МИТХТ им. М. В. Ломоносова. 2008. Т. 3, № 1. С. 68—71.; Лыньков Л. М., Борботько Т. В., Криштопова Е. А. Радиопоглощающие свойства никельсодержащего порошкообразного шунгита // Письма в ЖТФ. 2009. Т. 35, № 9. С. 44—48. URL: https://journals.ioffe.ru/articles/viewPDF/12219; Zhou Jianhua, He Jianping, Wang Fao, Li Guoxian, Guo lunxm, Zhao Jianging, Ma Yiou. Design of mesostrucred -Fe2O3/carbon nanocomposites for electromagnetic wave absorption applications // J. Alloys and Compounds. 2011. V. 509, Iss. 32. P. 8211—8214. DOI:10.1016/j.jallcom.2011.05.042; Yong Yang, Cailing Xu, Yongxin Xia, Tao Wang, Fashen Li. Synthesis and microwave absorption properties of FeCo nanoplates // J. Alloys and Compounds. 2010. V. 493, Iss. 1–2. P. 549—552. DOI:10.1016/j.jallcom.2009.12.153; Patent WO9610901A1 (US). Metal filaments for electro-magnetic interference shielding / CHUNG, Deborah, Duen, Ling, 1996.; Основы физики магнитных явлений в кристаллах: учебное пособие. Киев: НТУУ «КПИ», 2004. 227 с.; Vázquez E., Prato M. Carbon nanotubes and microwaves: interactions, responses, and applications // Acs Nano. 2009. V. 3, N 12. P. 3819—3824. DOI:10.1021/nn901604j; Moradi A. Microwave response of magnetized hydrogen plasma in carbon nanotubes: multiple reflection effects // Appl. Opt. 2010. V. 49, N 10. P. 1728—1733. DOI:10.1364/AO.49.001728; Kawabata A., Kubo R. Electronic properties of fine metallic particles. II. Plasma resonance absorption // J. Phys. Soc. Jpn. 1966. V. 21, N 9. P. 1765—1772. DOI:10.1143/JPSJ.21.1765; Hong Zhu, Lan Zhang, Lizi Zhang, Yuan Song, Yi Huang, Yongming Zhang. Electromagnetic absorption properties of Sn-filled multi-walled carbon nanotubes synthesized by pyrolyzing // Materials Lett. 2010. V. 64, Iss. 3. P. 227—230. DOI:10.1016/j.matlet.2009.07.023; Ануфриева С. И., Ожигина Е. Г., Рогожин А. А. Минералого-технические особенности шунгитового сырья, определяющие выбор эффективных направлений создания новых материалов // Материалы Всероссийского минералогического семинара с международным участием «Геоматериалы для высоких технологий, алмазы, благородные металлы, самоцветы Тимано-Североуральского региона» Сыктывкар: Геопринт, 2010. C. 31—32.; Buseck P. R. Geological fullerenes: review and analysis // Earth and Planetary Science Letters. 2002. V. 203, N 3–4. P. 781—792. DOI:10.1016/S0012-821X(02)00819-1; Mossman D., Eigendorf G., Tokaryk D., Gauthier-Lafaye F., Guckert K. D., Melezhik V., Farrow C. E. Testing for fullerenes in geologic materials: Oklo carbonaceous substances, Karelian shungites, Sudbury Black Tuff // Geology. 2003. V. 31, N 3. P. 255—258. DOI:10.1130/0091-7613(2003)0312.0.CO;2; Третьяков Ю. Д., Гудилин Е. А. Основные направления фундаментальных и ориентированных исследований в области наноматериалов // Успехи химии. 2009. T. 78, № 9. С. 867—888.; Bahl O. P., Manocha L. M. Characterization of oxidized PAN fibers // Carbon. 1974. V. 12, Iss. 4. P. 417—423. DOI:10.1016/0008-6223(74)90007-4; Zaporotskova I. V., Anikeev N. A., Kojitov L. V., Davletova O. A., Popkova A. V. Theoretical studies of the structure of the metal-carbon composites on the base of acryle-nitrile nanopolimer // J. Nano- Electron. Phys. 2014. V. 6, N 3. P. 03035-1—03035-3. URI http://essuir.sumdu.edu.ua/handle/123456789/36281; Wangxi Z, Jie L, Gang W. Evolution of structure and properties of PAN precursors during their conversion to carbon fibers // Carbon. 2003. V. 41, Iss. 14. P. 2805—2812. DOI:10.1016/S0008-6223(03)00391-9; Sanchez-Soto P. J., Aviles M. A., del Rio J. C., Gines J. M., Pascual J., Perez- Rodriguez J. L. Thermal study of the effect of several solvents on polymerization of acrylonitrile and their subsequent pyrolysis // J. Anal. Appl. Pyrolysis. 2001. V. 58–59. P. 155—172. DOI:10.1016/S0165-2370(00)00203-5; Запороцкова И. В. Пиролизованный полиакрилонитрил и некоторые композиты на его основе: особенности получения, структуры и свойств. Волгоград: Изд-во Волгогр. гос. ун-та, 2016. 220 с.; Муратов Д. Г., Кожитов Л. В., Запороцкова И. В., Сонькин В. С., Борознина Н. П., Подкова А. В., Борознин С. В., Шадринов А. В. Синтез и свойства наночастиц, сплавов и композиционных наноматериалов на основе переходных металлов. Волгоград: Изд-во Волгогр. гос. ун-та, 2017. 650 с.; Запороцкова И. В., Кожитов Л. В., Аникеев Н. А., Давлетова О. А., Муратов Д. Г., Попкова А. В., Якушко Е. В. Металлоуглеродные нанокомпозиты на основе пиролизованного полиакрилонитрила // Известия вузов. Материалы электронной техники. 2014. Т. 17, № 2. С. 134—142. DOI:10.17073/1609-3577-2014-2-134-142; Матренин С. В., Овечкин Б. Б. Наноструктурные материалы в машиностроении: учебное пособие. Томск: Изд-во Томского политех. ун-та, 2009. 186 с.; Basis Sets. URL: http://gaussian.com/basissets/ (дата обращения: 23.09.2020).; Радченко Р. Д., Запороцкова И. В., Кожитов Л. В., Борознина Н. П. Теоретические исследования металлокомпозита на основе монослоя пиролизованного полиакрилнитрила, содержащего парные атомы металлов Cu-Co, Cu-Ni, Ni-Co, Fe-Ni // Сборник трудов по материалам VI Международной конференции и молодежной школы «Информационные технологии и нанотехнологии (ИТНТ-2020)». В 4-х томах / под ред. В. А. Соболева. Самара: Изд-во Самар. ун-та, 2020. Т. 3. C. 559—564.; Ditchfield R., Hehre W. J., Pople J. A. Self-consistent molecular orbital methods. IX. Extended Gaussian-type basis for molecular-orbital studies of organic molecules // J. Chem. Phys. 1971. V. 54, Iss. 2. P. 724. DOI:10.1063/1.1674902; Rassolov V. A., Ratner M. A., Pople J. A., Redfern P. C., Curtiss L. A. 6-31G* basis set for third-row atoms // J. Comp. Chem. 2001. V. 22, Iss. 9. P. 976—984. DOI:10.1002/jcc.1058; Ackerbauer S., Krendelsberger N., Weitzer F., Hiebl K., Schuster J. C. The constitution of the ternary system Fe–Ni–Si // Intermetallics. 2009. V. 17, Iss. 6. P. 414—420. DOI:10.1016/j.intermet.2008.11.016; Cioslowski J. A new population analysis based on atomic polar tensors // J. Am. Chem. Soc. 1989. V. 111, N 22. P. 8333—8336. DOI:10.1021/ja00204a001; https://met.misis.ru/jour/article/view/398

  9. 9
    Academic Journal

    المصدر: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 19, № 3 (2016); 204-209 ; Известия высших учебных заведений. Материалы электронной техники; Том 19, № 3 (2016); 204-209 ; 2413-6387 ; 1609-3577 ; 10.17073/1609-3577-2016-3

    وصف الملف: application/pdf

    Relation: https://met.misis.ru/jour/article/view/239/204; Дьячков, П. Н. Электронные свойства и применение нанотрубок / П. Н. Дьячков. − М. : Бином. Лаборатория знаний, 2014. − 488 с.; Запороцкова, И. В. Строение, свойства и перспективы использования нанотубулярных материалов / И. В. Запороцкова // Нанотехника. − 2005. − № 4. − С. 42—54.; Елецкий, А. В. Сорбционные свойства углеродных наноструктур / А .В. Елецкий // УФН. − 2004. −Т. 174, № 11. − С. 1191— 1231. DOI:10.3367/UFNr.0174.200411c.1191; Ахмадишина, К. Ф. Гибкие биологические сенсоры на основе пленок углеродных нанотрубок / К. Ф. Ахмадишина, И. И. Бобринецкий, И. А. Комаров, А. М. Маловичко, В. К. Неволин, В. А. Петухов, А. В. Головин, А. О. Залевский // Российские нанотехнологии. − 2013. − Т. 8, № 11–12. − С. 35—39.; Sun, G. Electrochemical chlorine sensor with multi−walled carbon nanotubes as electrocatalysts / Gengzhi Sun, Shiwei Liu, Kaifeng Hua, Xiangyu Lv, Li Huang, Yujiang Wang // Electrochemistry Communications. − 2007. − V. 9, iss. 9. − P. 2436—2440. DOI:10.1016/j.elecom.2007.07.015.; Piloto, C. Room temperature gas sensing properties of ultrathin carbon nanotube films by surfactant−free dip coating / C. Piloto, F. Mirri, E. A. Bengio, M. Notarianni, B. Gupta, M. Shafiei, M. Pasquali, N. Motta // Sensors and Actuators B: Chemical. − 2016. − V. 227. − P. 128—134. DOI:10.1016/j.snb.2015.12.051; Chopra, S. Carbon−nanotube−based resonant−circuit sensor for ammonia / S. Chopra, A. Pham, J. Gaillard, A. Parker, A. M. Rao // Appl. Phys. Lett. − 2002. − V. 80, iss. 24. − P. 4632—4634. DOI:10.1063/1.1486481; Ghosh, S. Carbon nanotube flow sensors / S. Ghosh, A. K. Sood, N. Kumar // Science. − 2003. − V. 299, iss. 5609. − P. 1042— 1044. DOI:10.1126/science.1079080; Kim, S. N. Carbon nanotubes for electronic and electrochemical detection of biomolecules / S. N. Kim, J. F. Rusling, F. Papadimi trakopoulos // Adv. Mater. − 2007. − V. 19, iss. 20. − P. 3214—3228. DOI:10.1002/adma.200700665; Cao, Q. Ultrathin films of single−walled carbon nanotubes for electronics and sensors: a review of fundamental and applied aspects / Q. Cao, J. A. Rogers // Adv. Mater. − 2009. − V. 21, iss. 1. − P. 29—53. DOI:10.1002/adma.200801995; Hsu, H.−L. The synthesis, characterization of oxidized multi−walled carbon nanotubes, and application to surface acoustic wave quartz crystal gas sensor / H.−L. Hsu, J.−M. Jehng, Y. Sung, L.−C. Wang, S.−R. Yang // Materials Chemistry and Physics. − 2008. − V. 109, iss. 1. − P. 148—155. DOI:10.1016/j.matchemphys.2007.11.006; Wong, S. S. Covalently functionalized nanotubes as nanometer−sized probes in chemistry and biology / S. S. Wong, E. Joselevich, A. T. Woolley, C. L. Cheung, C. M. Lieber // Nature. − 1998. − V. 394. − P. 52—55. DOI:10.1038/27873; Tran, T. H. The gas sensing properties of single−walled carbon nanotubes deposited on an aminosilane monolayer / T. H. Tran, J.−W. Lee, K. Lee, Y. D. Lee, B.−K. Ju // Sensors and Actuators B: Chemical. − 2008. − V. 129, iss. 1. − P. 67—71. DOI:10.1016/j.snb.2007.07.104; Zaporotskova, I. V. Sensor activity of carbon nanotubes with a boundary functional group / I. V. Zaporotskova, N. P. Polikarpova, D. E. Vil’keeva // Nanoscience and Nanotechnology Lett. − 2013. − V. 5, N 11. − P. 1169—1173. DOI:10.1166/nnl.2013.1704; Polikarpova, N. P. About using carbon nanotubes with amino group modification as sensors / N. P. Polikarpova, I. V. Zaporotskova, S. V. Boroznin, P. A. Zaporotskov // Ж. нано− электрон. физ. − 2015. − Т. 7, № 4. − C. 04089–1—04089–3. URL: http://essuir.sumdu.edu.ua/handle/123456789/44562; Dewar, M. J. S. Ground states of molecules. 38. The MNDO method. Approximations and parameters / M. J. S. Dewar, W. Thiel // J. Amer. Chem. Soc. − 1977. − V. 99, N 15. − P. 4899—4907. DOI:10.1021/ja00457a004; Dewar, M. J. S. A semiempirical model for the two−center repulsion integrals in the NDDO approximation / M. J. S. Dewar, W. Thiel // Theoret. Chim. Acta. − 1977. − V. 46, N 2. − P. 89—104. DOI:10.1007/BF00548085; Kohn, W. Nobel lecture: Electronic structure of matter− wave functions and density functionals / W. Kohn // Rev. Mod. Phys. − 1999. − V. 71, iss. 5. − P. 1253—1266. DOI:10.1103/RevModPhys.71.1253; Burke, K. Time−dependent density functional theory: past, present, and future / K. Burke, J. Werschnik, E. K. U. Gross // J. Chem. Phys. − 2005. − V. 123, iss. 6. − P. 062206—062214. DOI:10.1063/1.1904586; Jones, R. O. The density functional formalism, its applications and prospects / R. O. Jones, O. Gunnarsson // Rev. Mod. Phys. − 1989. − V. 61, iss. 3. − P. 689—746. DOI:10.1103/RevModPhys.61.689; https://met.misis.ru/jour/article/view/239

  10. 10
    Academic Journal

    المصدر: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 20, № 1 (2017); 5-21 ; Известия высших учебных заведений. Материалы электронной техники; Том 20, № 1 (2017); 5-21 ; 2413-6387 ; 1609-3577 ; 10.17073/1609-3577-2017-1

    وصف الملف: application/pdf

    Relation: https://met.misis.ru/jour/article/view/241/208; Blank V. D., Seepujak A., Polyakov E. V., Batov D. V., Kulnitskiy B. A., Parkhomenko Yu. N., Skryleva E. A., Bangert U., Gutiérrez−Sosa A., Harvey A. J. Growth and characterisation of BNC nanostructures // Carbon. 2009. V. 47, N 14. P. 3167—3174. DOI:10.1016/j.carbon.2009.07.022; Shul'ga Yu. M., Vasilets V. N., Baskakov S. A., Muradyan V. E., Skryleva E. A., Parkhomenko Yu. N. Photoreduction of graphite oxide nanosheets with vacuum ultraviolet radiation // High Energy Chemistry. 2012. V. 46, Iss. 2. P. 117—121. DOI:10.1134/ S0018143912020099; Елисеев А. А., Лукашин А. В. Функциональные наноматериалы. − М.: Физматлит, 2010. − 456 с.; Ивановский А. Л. Квантовая химия в материаловедении. Нанотубулярные формы вещества. − Екатеринбург : УрОРАН, 1999. − 176 с.; Dresselhaus M. S., Dresselhaus G., Eklund P. C. Science of fullerenes and carbon nanotubes. − New York : Academic Press, Inc., 1996. − 965 p. (https://www.elsevier.com/books/science-of-fullerenes-and-carbon-nanotubes/dresselhaus/978-0-12-221820-0); Saito R., Dresselhaus M. S., Dresselhaus G. Physical properties of carbon nanotubes. − London : Imperial College Press, 1998. − 251 p.; Харрис П. Углеродные нанотрубы и родственные структуры. Новые материалы XXI века. − М. : Техносфера, 2003. − 336 с.; Запороцкова И. В. Углеродные и неуглеродные наноматериалы и композитные структуры на их основе: строение и электронные свойства. − Волгоград: Изд−во ВолГУ, 2009. − 490 с.; Dresselhaus M. S., Dresselhaus G., Avouris P. Сarbon nanotubes: synthesis, structure, properties, and application. − Springer− Verlag, 2000. − 464 p.; Дьячков П. Н. Электронные свойства и применение нанотрубок. − М. : БИНОМ. Лаборатория знаний, 2010. − 488 с.; Елецкий А. В. Сорбционные свойства углеродных наноструктур // Успехи физических наук. 2004. Т. 174, № 11. С. 1191— 1231. DOI:10.3367/UFNr.0174.200411c.1191; Ахмадишина К. Ф., Бобринецкий И. И., Комаров И. А., Маловичко А. М., Неволин В. К., Петухов В. А. Гибкие биологические сенсоры на основе пленок УНТ // Российские нанотехнологии. 2013. Т. 8, № 11–12. С. 35—40.; Zhang Wei−De, Zhang Wen−Hui. Carbon nanotubes as active components for gas sensors // J. Sensors. 2009. V. 2009. P. 160698. DOI:10.1155/2009/160698; Boyd A., Dube I., Fedorov G., Paranjape M., Barbara P. Gas sensing mechanism of carbon nanotubes: from single tubes to high− density networks // Carbon. 2014. V. 69. P. 417—423. DOI:10.1016/j. carbon.2013.12.044; Zhao J., Buldum A., Han J., Lu J. P. Gas molecule adsorption in carbon nanotubes and nanotube bundles // Nanotechnology. 2002. V. 13, N 2. Р. 195—200. DOI:10.1088/0957-4484/13/2/312; Li J., Lu Y., Ye Q., Cinke M., Han J., Meyyappan M. Carbon nanotube sensors for gas and organic vapor detection // Nano Lett. 2003. V. 3, N 7. P. 929—933. DOI:10.1021/nl034220x; Chen R. J., Franklin N. R., Kong J., Cao J., Tombler Th. W., Zhang Yu., Dai H. Molecular photodesorption from single−walled carbon nanotubes // Appl. Phys Lett. 2001. V. 79, N 14. P. 2258—2260. DOI:10.1063/1.1408274; Kong J., Franklin N. R., Zhou C., Chapline M. G., Peng S., Cho K., Dai H. Nanotube molecular wires as chemical sensors // Science. 2000. V. 287, N 5453. Р. 622—625. DOI:10.1126/science.287.5453.622; Zhang J., Boyd A., Tselev A., Paranjape M., Barbara P. Mechanism of NO2 detection in carbon nanotube field effect transistor chemical sensors // Appl. Phys. Lett. 2006. V. 88, N 12. P. 123112. DOI:10.1063/1.2187510; Helbling T., Pohle R., Durrer L., Stampferc C., Romana C., Jungena A., Fleischerb M., Hierolda C. Sensing NO2 with individual suspended single−walled carbon nanotubes // Sens. Actuators B: Chem. 2008. V. 132, N 2. P. 491—497. DOI:10.1016/j.snb.2007.11.036; Novak J. P., Snow E. S., Houser E. J., Park D., Stepnowski J. L., McGill R. A. Nerve agent detection using networks of single−walled carbon nanotubes // Appl. Phys. Lett. 2003. V. 83, N 19. P. 4026—4028. DOI:10.1063/1.1626265; Peng N., Zhang Q., Lee Y. C., Tan O. K., Marzari N. Gate modulation in carbon nanotube field effect transistors−based NH3 gas sensors // Sens. Actuators B: Chem. 2008. V. 132, N 1. P. 191—195. DOI:10.1016/j.snb.2008.01.025; Lucci M., Reale A., Di Carlo A., Orlanducci S., Tamburri E., Terranova M. L., Davoli I., Di Natale C., D’Amico A., Paolesse R. Optimization of a NOx gas sensor based on single walled carbon nanotubes // Sens. Actuators B: Chem. 2006. V. 118, N 1–2. P. 226—231. DOI:10.1016/j.snb.2006.04.027; Quang N. H., Van Trinh M., Lee B.−H., Huh J.−S. Effect of NH3 gas on the electrical properties of single−walled carbon nanotube bundles // Sens. Actuators B: Chem. 2006. V. 113, N 1. P. 341—346. DOI:10.1016/j.snb.2005.03.089; Nguyen H.−Q., Huh J.−S. Behavior of single−walled carbon nanotube−based gas sensors at various temperatures of treatment and operation // Sens. Actuators B: Chem. 2006. V. 117, N 2. P. 426—430. DOI:10.1016/j.snb.2005.11.056; Varghese O. K., Kichambre P. D., Gong D., Ong K. G., Dickey E. C., Grimes C. A. Gas sensing characteristics of multi− wall carbon nanotubes // Sens. Actuators B: Chem. 2001. V. 81, N 1. P. 32—41. DOI:10.1016/S0925-4005(01)00923-6; Nguyen L. H., Phi T. V., Phan P. Q., Vu H. N., Nguyen− Duc C., Fossard F. Synthesis of multi−walled carbon nanotubes for NH3 gas detection // Physica E. 2007. V. 37, N 1−2. P. 54—57. DOI:10.1016/j.physe.2006.12.006; Sun G., Liu S., Hua K., Lv X., Huang L., Wang Y. Electrochemical chlorine sensor with multi−walled carbon nanotubes as electrocatalysts // Electrochemistry Communications. 2007. V. 9, N 9. P. 2436—2440. DOI:10.1016/j.elecom.2007.07.015; Piloto C., Mirri F., Bengio E. A., Notarianni M., Gupta B., Shafiei M., Pasquali M., Motta N. Room temperature gas sensing properties of ultrathin carbon nanotube films by surfactant−free dip coating // Sens. Actuators B: Chem. 2016. V. 227. P. 128—134. DOI:10.1016/j.snb.2015.12.051; Valentini L., Cantalini C., Armentano I., Kenny J. M., Lozzi L., Santucci S. Highly sensitive and selective sensors based on carbon nanotubes thin films for molecular detection // Diamond and Related Materials. 2004. V. 13, N 4–8. P. 1301—1305. DOI:10.1016/j. diamond.2003.11.011; Hoa N. D., Van Quy N., Cho Y., Kim D. An ammonia gas sensor based on non−catalytically synthesized carbon nanotubes on an anodic aluminum oxide template // Sens. Actuators B: Chem. 2007. V. 127, N 2. P. 447—454. DOI:10.1016/j.snb.2007.04.041; Fu D., Lim H., Shi Y., Dong X., Mhaisalkar S. G., Chen Y., Moochhala S., Li L.−J. Differentiation of gas molecules using flexible and all−carbon nanotube devices // J. Phys. Chem. C. 2008. V. 112, N 3. P. 650—653. DOI:10.1021/jp710362r; Tran T. H., Lee J.−W., Lee K., Lee Y. D., Ju B.−K. The gas sensing properties of single−walled carbon nanotubes deposited on an aminosilane monolayer // Sens. Actuators B: Chem. 2008. V. 129, N 1. P. 67—71. DOI:10.1016/j.snb.2007.07.104; Zhou Y., Jiang Y., Xie G., Du X., Tai H. Gas sensors based on multiple−walled carbon nanotubes−polyethylene oxide films for toluene vapor detection // Sens. Actuators B: Chem. 2014. V. 191. P. 24—30. DOI:10.1016/j.snb.2013.09.079; Liu S. F., Lin S., Swager T. M. An organocobalt−carbon nanotube chemiresistive carbon monoxide detector // ACS Sens. 2016. V. 1. N 4. P. 354—357. DOI:10.1021/acssensors.6b00005; Qi P., Vermesh O., Grecu M., Javey A., Wang Q., Dai H., Peng S., Cho K. J. Toward large arrays of multiplex functionalized carbon nanotube sensors for highly sensitive and selective molecular detection // Nano Lett. 2003. V. 3, N 3. P. 347—351. DOI:10.1021/nl034010k; Bekyarova E., Davis M., Burch T., Itkis M. E., Zhao B., Sunshine S., Haddon R. C. Chemically functionalized single−walled carbon nanotubes as ammonia sensors // J. Phys. Chem. B. 2004. V. 108, N 51. P. 19717—19720. DOI:10.1021/jp0471857; Abraham J. K., Philip B., Witchurch A., Varadan V. K., Reddy C. C. A compact wireless gas sensor using a carbon nanotube/ PMMA thin film chemiresistor // Smart Materials and Structures. 2004. V. 13, N 5. P. 1045—1049. DOI:10.1088/0964-1726/13/5/010; Im J., Sterner E. S., Swager T. M. Integrated gas sensing system of swcnt and cellulose polymer concentrator for benzene, toluene, and xylenes // Sensors. 2016. V. 16, N 2. P. 183. DOI:10.3390/ s16020183; Abdelhalim A., Abdellah A., Scarpa G., Lugli P. Metallic nanoparticles functionalizing carbon nanotube networks for gas sensing applications // Nanotechnology. 2014. V. 25, N 5. P. 055208. DOI:10.1088/0957-4484/25/5/055208; Kong J., Chapline M. G., Dai H. J. Functionalized carbon nanotubes for molecular hydrogen sensors // Adv. Mater. 2001. V. 13, N 18. P. 1384—1386. DOI:10.1002/1521-4095(200109)13:183.0.CO;2-8; Sayago I., Terrado E., Aleixandre M., Horrillo M. C., Fernández M. J., Lozano J., Lafuente E., Maser W. K., Benito A. M., Martinez M. T., Gutiérrez J., Muñoz E. Novel selective sensors based on carbon nanotube films for hydrogen detection // Sens. Actuators B: Chem. 2007. V. 122, N 1. P. 75—80. DOI:10.1016/j.snb.2006.05.005; Mubeen S., Zhang T., Yoo B., Deshusses M. A., Myung N. V. Palladium nanoparticles decorated single−walled carbon nanotube hydrogen sensor // J. Phys. Chem. C. 2007. V. 111, N 17. P. 6321—6327. DOI:10.1021/jp067716m; Kumar M. K., Ramaprabhu S. Nanostructured Pt functionlized multiwalled carbon nanotube based hydrogen sensor // J. Phys. Chem. B. 2006. V. 110, N 23. P. 11291—11298. DOI:10.1021/jp0611525; Kumar M. K., Ramaprabhu S. Palladium dispersed multiwalled carbon nanotube based hydrogen sensor for fuel cell applications // Int. J. Hydrogen Energy. 2007. V. 32, N 13. P. 2518—2526. DOI:10.1016/j.ijhydene.2006.11.015; Seo S. M., Kang T. J., Cheon J. H., Kim Y. H., Park Y. J. Facile and scalable fabrication of chemiresistive sensor array for hydrogen detection based on gold−nanoparticle decorated SWCNT network // Sens. Actuators B: Chem. 2014. V. 204. P. 716—722. DOI:10.1016/j.snb.2014.07.119; Kamarchuk G. V., Kolobov I. G., Khotkevich A. V., Yanson I. K., Pospelov A. P., Levitsky I. A., Euler W. B. New chemical sensors based on point heterocontact between single wall carbon nanotubes and gold wires // Sens. Actuators B: Chem. 2008. V. 134, N 2. P. 1022—1026. DOI:10.1016/j.snb.2008.07.012; Star A., Joshi V., Skarupo S., Thomas D., Gabriel J.−C. P. Gas sensor array based on metal−decorated carbon nanotubes // J. Phys. Chem. B. 2006. V. 110, N 42. P. 21014—21020. DOI:10.1021/jp064371z; Kwona Y. J., Naa H. G., Kanga S. Y., Choib S.−W., Kimb S. S., Kima H. W. Selective detection of low concentration toluene gas using Pt−decorated carbon nanotubes sensors // Sens. Actuators B: Chem. 2016. V. 227. P. 157—168. DOI:10.1016/j.snb.2015.12.024; Hafaiedh I., Elleuch W., Clement P., Llobet E., Abdelghani A. Multi−walled carbon nanotubes for volatile organic compound detection // Sens. Actuators B: Chem. 2013. V. 182. P. 344—350. DOI:10.1016/j.snb.2013.03.020; Espinosa E. H., Ionescu R., Chambon B., Bedis G., Sotter E., Bittencourt C., Felten A., Pireaux J.−J., Correig X., Llobet E. Hybrid metal oxide and multiwall carbon nanotube films for low temperature gas sensing // Sens. Actuators B: Chem. 2007. V. 127, N 1. P. 137—142. DOI:10.1016/j.snb.2007.07.108; Chen Y., Zhu C., Wang T. The enhanced ethanol sensing properties of multi−walled carbon nanotubes/SnO2 core/shell nanostructures // Nanotechnology. 2006. V. 17, N 12. P. 3012—3017. DOI:10.1088/0957-4484/17/12/033; Wang J., Liu L., Cong S.−Y., Qi J.−Q., Xu B.−K. An enrichment method to detect low concentration formaldehyde // Sens. Actuators B: Chem. 2008. V. 134, N 2. P. 1010—1015. DOI:10.1016/j. snb.2008.07.010; Bittencourt C., Felten A., Espinosa E. H., Ionescu R., Llobet E., Correig X., Pireaux J.−J. WO3 films modified with functionalised multi−wall carbon nanotubes: morphological, compositional and gas response studies // Sens. Actuators B: Chem. 2006. V. 115, N 1. P. 33—41. DOI:10.1016/j.snb.2005.07.067; Wei B.−Y., Hsu M.−C., Su P.−G., Lin H.−M., Wu R.−J., Lai H.−J. A novel SnO2 gas sensor doped with carbon nanotubes operating at room temperature // Sens. Actuators B: Chem. 2004. V. 101, N 1−2. P. 81—89. DOI:10.1016/j.snb.2004.02.028; Hoa N. D., Quy N. V., Cho Y. S., Kim D. Nanocomposite of SWCNTs and SnO2 fabricated by soldering process for ammonia gas sensor application // Phys. Status Solidi A. 2007. V. 204, N 6. P. 1820—1824. DOI:10.1002/pssa.200675318; Liu Y.−L., Yang H.−F., Yang Y., Liu Z.−M., Shen G.−L., Yu R.−Q. Gas sensing properties of tin dioxide coated onto multiwalled carbon nanotubes // Thin Solid Films. 2006. V. 497, N 1–2. P. 355—360. DOI:10.1016/j.tsf.2005.11.018; van Hieu N., Thuy L. T. B., Chien N. D. Highly sensitive thin film NH3 gas sensor operating at room temperature based on SnO2/ MWCNTs composite // Sens. Actuators B: Chem. 2008. V. 129, N 2. P. 888—895. DOI:10.1016/j.snb.2007.09.088; Sánchez M., Guirado R., Rincón M. E. Multiwalled carbon nanotubes embedded in sol−gel derived TiO2 matrices and their use as room temperature gas sensors // J. Mater. Sci.: Mater. Electron. 2007. V. 18, N 11. P. 1131—1136. DOI:10.1007/s10854-007-9144-5; Van Duy N., van Hieu N., Huy P. T., Chien N. D., Thamilselvan M., Yi J. Mixed SnO2/TiO2 included with carbon nanotubes for gas−sensing application // Physica E. 2008. V. 41, N 2. P. 258—263. DOI:10.1016/j.physe.2008.07.007; Dragoman M., Grenier K., Dubuc D., Bary L., Plana R., Fourn E., Flahaut E. Millimeter wave carbon nanotube gas sensor // J. Appl. Phys. 2007. V. 101, N 10. P. 106103. DOI:10.1063/1.2734873; Adjizian J.−J., Leghrib R., Koos A. A., Suarez−Martinez I., Crossley A., Wagner Ph., Grobert N., Llobet E., Ewels Ch. P. Boron− and nitrogen−doped multi−wall carbon nanotubes for gas detection // Carbon. 2014. V. 66. P. 662—673. DOI:10.1016/j.carbon.2013.09.064; Kim J., Choi S.−W., Lee J.−H., Chung Y., Byun Y. T. Gas sensing properties of defect−induced single−walled carbon nanotubes // Sens. Actuators B: Chem. 2016. V. 228. P. 688—692. DOI:10.1016/j.snb.2016.01.094; Hou Z., Xu D., Cai B. Ionization gas sensing in a microelectrode system with carbon nanotubes // Appl. Phys Lett. 2006. V. 89, N 21. P. 213502. DOI:10.1063/1.2392994; De Heer W. A., Châtelain A., Ugarte D. A carbon nanotube field−emission electron source // Science. 1995. V. 270, N 5239. P. 1179—1180. DOI:10.1126/science.270.5239.1179; de Jonge N., Lamy Y., Schoots K., Oosterkamp T. H. High brightness electron beam from a multi−walled carbon nanotube // Nature. 2002. V. 420, N 6914. P. 393—395. DOI:10.1038/nature01233; Yeow J. T. W., She J. P. M. Carbon nanotube−enhanced capillary condensation for a capacitive humidity sensor // Nanotechnology. 2006. V. 17, N 21. P. 5441—5448. DOI:10.1088/09574484/17/21/026; Snow E. S., Perkins F. K., Houser E. J., Badescu S. C., Reinecke T. L. Chemical detection with a single−walled carbon nanotube capacitor // Science. 2005. V. 307, N 5717. P. 1942—1945. DOI:10.1126/science.1109128; Chopra S., Pham A., Gaillard J., Parker A., Rao A. M. Carbon−nanotube−based resonant−circuit sensor for ammonia // Appl. Phys Lett. 2002. V. 80, N 24. P. 4632—4636. DOI:10.1063/1.1486481; Chopra S., McGuire K., Gothard N., Rao A. M., Pham A. Selective gas detection using a carbon nanotube sensor // Appl. Phys Lett. 2003. V. 83, N 11. P. 2280—2282. DOI:10.1063/1.1610251; Бузановский В. А. Электрохимические сенсоры с углеродными нанотрубьками и их использование в биомедицинских исследованиях // Биомедицинская химия. 2011. Т. 57, вып. 6. С. 12—31. DOI:10.18097/pbmc20125801012.; Barsan M. M., Ghica M. E., Brett C. M. A. Electrochemical sensors and biosensors based on redox polymer/carbon nanotube modified electrodes // Analytica Chimica Acta. 2015. V. 881. P. 1—23. DOI:10.1016/j.aca.2015.02.059; Chen A., Chatterjee S. Nanomaterials based electrochemical sensors for biomedical applications // Chem. Soc. Rev. 2013. V. 42, N 12. P. 5425—5438. DOI:10.1039/C3CS35518G; Pauliukaite R., Ghica M. E., Barsan M. M., Brett C. M. A. Phenazines and polyphenazines in electrochemical sensors and biosensors // Anal. Lett. 2010. V. 43, N 10–11. P. 1588—1608. DOI:10.1080/00032711003653791; Liu H.−J., Yang D.−W., Liu H.−H. A hydrogen peroxide sensor based on the nanocomposites of poly(brilliant cresyl blue) and single walled−carbon nanotubes // Anal. Methods. 2012. V. 4, N 5. P. 1421—1426. DOI:10.1039/C2AY05881B; Ghica M. E., Wintersteller Y., Brett C. M. A. Poly(brilliant green)/carbon nanotube−modified carbon film electrodes and application as sensors // J. Solid State Electrochem. 2013. V. 17, N 6. P. 1571—1580. DOI:10.1007/s10008-013-2040-4; Pifferi V., Barsan M. M., Ghica M. E., Falciola L., Brett C. M. A. Synthesis characterization and influence of poly(brilliant green) on the performance of different electrode architectures based on carbon nanotubes and poly(3,4−ethylenedioxythiophene) // Electrochim. Acta. 2013. V. 98. P. 199—207. DOI:10.1016/j.electacta.2013.03.048; Ghica M. E., Brett C. M. A. Poly(brilliant green) and poly(thionine) modified carbon nanotube coated carbon film electrodes for glucose and uric acid biosensors // Talanta. 2014. V. 130. P. 198—206. DOI:10.1016/j.talanta.2014.06.068; Lin Y., Lu F., Tu Y., Ren Z. Glucose biosensors based on carbon nanotube nanoelectrode ensembles // Nano Lett. 2004. V. 4, N 2. P. 191—195. DOI:10.1021/nl0347233; Rubianes M. D., Rivas G. A. Carbon nanotubes paste electrode // Electrochem. Commun. 2003. V. 5, N 8. P. 689—694. DOI:10.1016/S1388-2481(03)00168-1; Koehne J. E., Chen H., Cassell A. M., Ye Q., Han J., Meyyappan M., Li J. Miniaturized multiplex label−free electronic chip for rapid nucleic acid analysis based on carbon nanotube nanoelectrode arrays // Clin. Chem. 2004. V. 50, N 10. P. 1886—1893. DOI:10.1373/clinchem.2004.036285; Pedano M. L., Rivas G. A. Adsorption and electrooxidation of nucleic acids at carbon nanotubes paste electrodes // Electrochem. Commun. 2004. V. 6, N 1. P. 10—16. DOI:10.1016/j.elecom.2003.10.008; Wong S. S., Josevlevich E., Wooley A. T., Cheung C. L., Lieber C. M. Covalently functionalized nanotubes as nanometer−sized probes in chemistry and biology // Nature. 1998. V. 394. P. 52—55. DOI:10.1038/27873; Mäklin J., Mustonen T., Kordás K., Saukko S., Tóth G., Vähäkangas J. Nitric oxide gas sensors with functionalized carbon nanotubes // Phys. Status Solidi B. 2007. V. 244, N 11. P. 4298—4302. DOI:10.1002/pssb.200776118; Kozhitov L. V., V׳et N. Kh., Kostikova A. V., Zaporotskova I. V., Kozlov V. V. The simulation of carbon material structure based on polyacrylonitrile obtained under IR heating // Modern Electronic Materials. 2016. V. 2, N 1. P. 13—17. DOI:10.1016/j.moem.2016.08.003; Zaporotskova I. V., Polikarpova N. P., Vil’keeva D. E. Sensor activity of carbon nanotubes with a boundary functional group // Nanoscience and Nanotechnology Lett. 2013. V. 5, N 11. P. 1169—1173. DOI:10.1166/nnl.2013.1704; Dewar M. J. S., Thiel W. Ground states of molecules. The MNDO method. approximations and parameters // J. Amer. Chem. Soc. 1977. V. 99, N 15. P. 4899—4907. DOI:10.1021/ja00457a004; Войтюк А. А. Применение метода MNDO для исследования свойств и реакционной способности молекул // Журн. структурной химии. 1988. Т. 29, № 1. С. 138—162.; Koch W., Holthausen M. A chemist’s guide to density functional theory. − Weinheim : Wiley−VCH, 2001. − 313 p. http://eu.wiley.com/WileyCDA/WileyTitle/productCd-3527303723.html; Polikarpova N. P., Zaporotskova I. V., Vilkeeva D. E., Polikarpov D. I. Sensor properties of carboxyl−modifies carbon nanotubes // Nanosystems: Phys. Chem. Math. 2014. V. 5, N 1. P. 101—106. http://nanojournal.ifmo.ru/en/wp-content/uploads/2014/02/NPCM51_P101-106.pdf; Polikarpova N. P., Zaporotskova I. V., Boroznin S. V., Zaporotskov P. A. About using carbon nanotubes with amino group modification as sensors // J. Nano− Electron. Phys. 2015. V. 7, N 4. P. 04089 (3 pp). http://essuir.sumdu.edu.ua/bitstream/123456789/44562/1/Polikarpova_Carbon_nanotube.pdf; https://met.misis.ru/jour/article/view/241

  11. 11
    Academic Journal

    المساهمون: President of the Russian Federation, Президент РФ

    المصدر: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 19, № 4 (2016); 249-253 ; Известия высших учебных заведений. Материалы электронной техники; Том 19, № 4 (2016); 249-253 ; 2413-6387 ; 1609-3577 ; 10.17073/1609-3577-2016-4

    وصف الملف: application/pdf

    Relation: https://met.misis.ru/jour/article/view/293/235; Kumar, P. P. Ionic conduction in the solid state / P. P. Kumar, S. Yashonath // J. Chem. Sci. − 2006. − V. 118, iss. 1. − P. 135—154. DOI:10.1007/BF02708775; Запороцкова, И. В. Углеродные и неуглеродные наноматериалы и композитные структуры на их основе: строение и электронные свойства / И. В. Запороцкова. − Волгоград : Изд−во ВолГУ, 2009. − 490 с.; Xue, Yafang. Excellent electrical conductivity of the exfoliated and fluorinated hexagonal boron nitride nanosheets / Yafang Xue, Qian Liu, Guanjie He, Kaibing Xu, Lin Jiang, Xianghua Hu, Junqing Hu // Nanoscale Research Letters. − 2013. − V. 8. − Art. no. 49(1−7). DOI:10.1186/1556-276X-8-49; Islam, M. M. The ionic conductivity in lithium−boron oxide materials and its relation to structural, electronic and defect properties: insights from theory / M. M. Islam, T. Bredow, P. Heitjans // J. Phys.: Condens. Matter. − 2012. − V. 24, N 20. − P. 203201. DOI:10.1088/0953-8984/24/20/203201; Roll, M. F. Ionic borohydride clusters for the next generation of boron thin−films: Nano−building blocks for electrochemical and refractory materials / M. F. Roll // J. Mater. Res. − 2016. − V. 31, iss. 18. − P. 2736—2748. DOI:10.1557/jmr.2016.261; Maier, J. Nanoionics: ion transport and electrochemical storage in confined systems / J. Maier // Nature Materials. − 2005. − V. 4. − P. 805—815. DOI:10.1038/nmat1513; Cohen, M . L . The physics of boron nitride nanotubes / M. L. Cohen, A. Zettl // Physics Today. − 2010. − V. 63, iss. 11. − P. 34—38. DOI:10.1063/1.3518210; Bezugly, V. Highly conductive boron nanotubes: Transport properties, work functions, and structural stabilities / V. Bezugly, J. Kunstmann, B. Grundkötter−Stock, T. Frauenheim, T. Niehaus, G. Cuniberti // ACS Nano. − 2011. − V. 5, iss. 6. − P. 4997—5005. DOI:10.1021/nn201099a; Fuentes, G. G. Formation and electronic properties of BC3 single−wall nanotubes upon boron substitution of carbon nanotubes / G. G. Fuentes, E. Borowiak−Palen, M. Knupfer, T. Pichler, J. Fink, L. Wirtz, A. Rubio // Phys. Rev. B. − 2004. − V. 69, iss. 24. − P. 245403. DOI:10.1103/PhysRevB.69.245403; Miyamoto, Y. Electronic properties of tubule forms of hexagonal BC3 / Y. Miyamoto, A. Rubio, S. G. Louie, M. L. Cohen // Phys. Rev. B. − 1994. − V. 50, iss. 24. − P. 18360—18366. DOI:10.1103/PhysRevB.50.18360; Jana, D. Effect of chemical doping of boron and nitrogen on the electronic, optical, and electrochemical properties of carbon nanotubes / D. Jana, C.−L. Sun, L.− C. Chen, K.−H. Chen // Prog. Mater. Sci. − 2013. − V. 58, iss. 5. − P. 565—635. DOI:10.1016/j.pmatsci.2013.01.003; Wang, R. Boron−doped carbon nanotubes serving as a novel chemical sensor for formaldehyde / R. Wang, D. Zhang, Y. Zhang, Ch. Liu // J. Phys. Chem. B. − 2006. − V. 110, iss. 37. − P. 18267—18271. DOI:10.1021/jp061766+; Li, Y.−T. Effect of B/N co−doping on the stability and electronic structure of single−walled carbon nanotubes by first−principles theory / Y.−T. Li, T.−Ch. Chen // Nanotechnology. − 2009. − V. 20, N 37. − P. 375705. DOI:10.1088/0957-4484/20/37/375705; Zeng, Haibo. «White graphenes»: Boron nitride nanoribbons via boron nitride nanotube unwrapping / Haibo Zeng, Chunyi Zhi, Zhuhua Zhang, Xianlong Wei, Xuebin Wang, Wanlin Guo, Yoshio Bando, D. Golberg // Nano Lett. − 2010. − V. 10, iss. 12. − P. 5049—5055. DOI:10.1021/nl103251m; Dewar, M. J. S. Ground states of molecules. 38. The MNDO method. Approximations and parameters / M. J. S. Dewar, W. Thiel // J. Amer. Chem . Soc. − 1977. − V. 99, N 15. − P. 4899 — 4907. DOI:10.1021/ja00457a004; Борознин, С. В. Электронное строение и характеристики некоторых видов борсодержащих нанотруб / С. В. Борознин, Е. В. Перевалова, И. В. Запороцкова, Д. И. Поликарпов // Вестник ВолГУ. Сер. 10. Инновационная деятельность. − 2012. − Вып. 6. − С. 81—86.; Павлов , П. В. Физика твердого тела / П. В. Павлов, Хохлов А. Ф. − М.: Высшая школа, 2000. − 494 c.; Ивановский, А. Л. Квантовая химия в материаловедении: Нанотубулярные формы вещества / А. Л. Ивановский . − Екатеринбург: Ин−тхимии твердого тела УрОРАН, 1999. − 176 с.; https://met.misis.ru/jour/article/view/293

  12. 12
    Academic Journal

    المصدر: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; № 2 (2014); 134-142 ; Известия высших учебных заведений. Материалы электронной техники; № 2 (2014); 134-142 ; 2413-6387 ; 1609-3577 ; 10.17073/1609-3577-2014-2

    وصف الملف: application/pdf

    Relation: https://met.misis.ru/jour/article/view/134/127; Cavin, R. K. Semiconductor research needs in the nanoscale physical sciences: A semiconductor research corporation working paper / R. K. Cavin, J. C. Daniel, V. V. Zhirnov // J. Nanoparticle Res. − 2000. − V. 2. − P. 213.; Кожитов, Л. В. Технология материалов микро− и наноэлектроники / Л. В. Кожитов, В. Г. Косушкин, В. В. Крапухин, Ю. Н. Пархоменко − М. : МИСиС, 2007. − 544 с.; Kozhitov, L. V. The perspective technological and physicochemical properties carbon nanocrystalline substance and metal/ carbonnanocompositesforfabricatingnovelmaterials/L. V. Kozhitov, V. V. Krapukhin, G. P. Karpacheva, S. A. Pavlov, V. V. Kozlov, T. Ph. Limonova, Yu. P. Prazdnikov // Физика электронных материалов. Материалы 2−й Междунар. конф. − Калуга: КГПУ, 2005. − Т. 1. − С. 36—39.; Kozhitov, L. V. The perspective technological and physicochemical properties carbon nanocrystalline substance and metal/ carbonnanocompositesforfabricatingnovelmaterials./L. V. Kozhitov, V. V. Krapukhin, G. P. Karpacheva, S. A. Pavlov, V. V. Kozlov // Тр. III Российско−японского семинара «Оборудование и технология для производства компонентов твердотельной электроники и наноматериалов». − М. : Изд−во «Учеба», МИСиС, 2005. − Р. 217—234.; Kozlov, V. V. The effective method based IR annealing for manufacturing novel carbon nanocrystalline material and multifunctionalmetal−polymernanocomposites/V.V.Kozlov,L. V. Kozhitov // Перспективные материалы. Спец. вып. − 2007. − Т. 1. − С. 377— 384.; Козлов, В. В. Перспективные свойства нанокомпозита Cu/C,полученногоспомощьютехнологииИК−отжига/В. В. Козлов, Л. В. Кожитов, В. В. Крапухин, Г. П. Карпачева, Е. А. Скрылева // Изв. вузов. Материалы электрон. техники. − 2006. − No 4. − C. 43—46.; Kozitov, L. V. The FeNi3/C nanocomposite formation from the composite of fe and ni salts and polyacrylonitrile under IR−heating / L. V. Kozitov, A. V. Kostikova, V. V. Kozlov, M. Bulatov // J. Nanoelectronics and Optoelectronics. − 2012. − N 7. − P. 419—422.; Karpacheva, G. P. Co−Carbon nanocomposites based on ir− pyrolyzed polyacrylonitrile / G. P. Karpacheva, K. A. Bagdasarova, G. N. Bondarenko, L. M. Zemtsov, D. G. Muratov, N. S. Perov // Polymer Sci. А. − 2009. − V. 51, N 11−12. − P. 1297—1302.; Якушко, Е. В. Формирование нанокомпозитов Ni/C на основе полиакрилонитрила под действием ИК−излучения / Е. В. Якушко, Д. Г. Муратов, Л. В. Кожитов, А. В. Попкова, М. А. Пушкарев // Изв. вузов. Материалы электрон. техники. − 2013. − No 1. − С. 61—65.; Шешко, Т. Ф. Совместная гидрогенизация оксидов углерода на катализаторах, содержащих наночастицы железа и никеля / Т. Ф. Шешко, Ю. М. Серов. // Журн. физ. химии. − 2011. − Т. 85, No 1. − С. 57—60.; Михайлов, Ю. М. Паровая конверсия глицерина на композиционных материалах, содержащих наночастицы никеля / Ю. М. Михайлов, Л. М. Кустов, В. В. Алешин, А. Л. Тарасов, В. Н. Леонова // Катализ в промышленности. − 2011. − No 1. − С. 66—70.; Лыньков, Л. М. Радиопоглощающие свойства никельсодержащего порошкообразного шунгита / Л. М. Лыньков, Т. В. Борботько, Е. А. Криштопова // Письма в ЖТФ. − 2009. − Т. 35,No 9.−С.44—48.; Jianhua, Zhou. Design of mesostrucred γ−Fe2O3/carbon nanocomposites for electromagnetic wave absorption applications. / Zhou Jianhua, He Jianping, Wang Fao, Li Guoxian, Guo lunxm, Zhao Jianging, Ma Yiou // J. Alloys and Compounds. − 2011. − V. 509. − P. 8211—8214.; Yang, Yong Synthesis and microwave absorption properties of FeCo nanoplates /Yong Yang, Cailing Xu, Yongxin Xia, Tao Wang, Fashen Li // Ibid. − 2010. − V. 493. − P. 549—552.; Chung, D. Pat. WO9610901A1. Metal filaments for electromagnetic interference shielding. / D. Chung, X. Shui. 1996.; Hasegawa, D. / D. Hasegawa, H. Yang, T. Ogawa, M. Takahashi // J. Magnetism and Magnetic Materials. − 2009. − V. 321 −P. 746.; Yang, H. T. Achieving a noninteracting magnetic nanoparticle system through direct control of interparticle spacing / H. T. Yang, D. Hasegawa, M. Takahashi, T. Ogawa // Appl. Phys. Lett. − 2009. − V. 94. − P. 013103.; Choi, J. S. Self−confirming “AND” logic nanoparticles for fault−free MRI / J. S. Choi, J. H. Lee, T. H. Shin, H. T. Song, E. Y. Kim, J. Cheon // J. Am. Chem. Soc. − 2010. − V. 132. − P. 11015—11017.; Kline, T. L. Biocompatible high−moment FeCo−Au magnetic nanoparticles for magnetic hyperthermia treatment optimization / T. L. Kline, Yun−Hao Xu, Ying Jing, Jian−Ping Wang // J. Magn. and Magn. Mater. − 2009. − V. 321. − P. 1525—1528.; Obraztsov, A. N. Application of nano−carbon cold cathodes for lighting elements. / A. N. Obraztsov, A. P. Volkov, Yu. V. Petrushenko, O. P. Satanovskaya // Nanotech. − 2003. − V. 2. − P. 234.; Запороцкова, И. В. Протонная проводимость углеродных наноструктур на основе пиролизованного полиакрилонитрила и ее практическое применение / И. В. Запороцкова, О. А. Давлетова, В. В. Козлов, Л. В. Кожитов, В. В. Крапухин, Д. Г. Муратов // Изв. вузов. Материалы электрон. техники. − 2008. − No 1. − С. 59—65.; Земцов Л. М. Углеродные наноструктуры на основе ИК− пиролизованного полиакрилонитрила / Л. М. Земцов, Г. П. Карпачева, М. Н. Ефимов, Д. Г. Муратов, К. А. Багдасарова // Высокомолекулярные соединения. А. − 2006. − Т. 48, No 6. − С. 977—982.; Dreizler, R. M. Density Functional Theory / R. M. Dreizler, E. K. U. Gross. − Berlin; Heidelberg : Springer − Verlag, 1990. − 303 p.; Козлов, В. В. // Особенности образования системы полисопряженных связей полиакрилонитрила в условиях вакуума при термической обработке / В. В. Козлов, Г. П. Карпачева, В. С. Петров,Е.В.Лазовская//Высокомолекулярныесоединения. А. − 2001. − T. 43, No 1. − C. 20.; Кожитов, Л. В. Получение и свойства углеродных нанокристаллических материалов и многофункциональных металлополимерных нанокомпозитов / Л. В. Кожитов, В. В. Козлов, В. Г. Костишин, А. Т. Морченко, Д. Г. Муратов, А. В. Нуриев, Е. В. Якушко // Материалы 2−й Всеросс. науч.−техн. конф. «Нанотехнологии и наноматериалы: современное состояние и перспективы развития в условиях Волгоградской области». − Волгоград, 2009.; Козлов, В. В. О химических превращениях полиакрилонитрила при термической обработке в вакууме и атмосфере аммиака. / В. В. Козлов, Г. П. Карпачева, В. С. Петров, Е. В. Лазовская, С. А. Павлов. // Изв. вузов. Материалы электрон. техники. − 2004. − No 4. − C. 45—49.; Муратов, Д. Г. Исследование электропроводности и полупроводниковых свойств нового углеродного материала на основе ИК−пиролизованного полиакрилонитрила ((С3H3N)n) / Д. Г. Муратов, В. В. Козлов, В. В. Крапухин, Л. В. Кожитов, Л. М. Земцов, Г. П. Карпачева // Там же. − 2007. − No 3. − C. 26.; https://met.misis.ru/jour/article/view/134

  13. 13
    Academic Journal

    المصدر: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; № 3 (2013); 39-42 ; Известия высших учебных заведений. Материалы электронной техники; № 3 (2013); 39-42 ; 2413-6387 ; 1609-3577 ; 10.17073/1609-3577-2013-3

    وصف الملف: application/pdf

    Relation: https://met.misis.ru/jour/article/view/69/62; Kozhitov, L. V. Tehnologiya materialov mikro− i nanoelektroniki / L. V. Kozhitov, V. G. Kosushkin, V. V. Krapuhin, Yu. N. Parhomenko. − M. : MISiS, 2007. − 544 p.; Tehnologiya materialov mikro− i nanoelektroniki / L. V. Kozhitov, S. G. Emel'yanov, V. G. Kosushkin, S. S. Strel'chenko, Yu. N. Parhomenko, V. V. Kozlov. − Kursk : Yugo−Zap. gos. un−t, 2012. − 862 p.; Kozhitov, L.V. The FeNi3/C nanocomposite formation from the composite of Fe and Ni salts and polyacrylonitrile under IR−heating / L. V. Kozhitov, A. V. Kostikova, V. V. Kozlov, M. F. Bulatov // J. Nanoelectron. Optoelectron. − 2012. − N 7. − P. 419—422.; Sun, S. Size−controlled synthesis of magnetite nanoparticles / S. Sun, H. Zeng, J. Am // Chem. Soc. − 2002. − N 124. − P. 124—128.; Kozhitov, L. V. Novye metallouglerodnye nanokompozity i uglerodnyi nanokristallicheskii material s perspektivnymi svoistvami dlya razvitiya elektroniki / L. V. Kozhitov, V. V. Kozlov, A. V. Kostikova // Izvestiya vuzov. Materialy elektron. tehniki. − 2012. − N 3. − S. 60—68.; Kozlov, V. V. Protonnaya provodimost’ uglerodnyh nanostruktur na osnove pirolizovannogo poliakrilonitrila i ee prakticheskoe primenenie / V. V. Kozlov, L. V. Kozhitov, V. V. Krapuhin, I. V. Zaporockova, O. A. Davletova, D. G. Muratov // Izvestiya vuzov. Materialy elektron. tehniki. − 2008. − N 1. − C. 59—64.; Bac, L. N. Synthesis and characteristic of FeNi3 intermetallic compound obtained by electrical explosion of wire / L. N. Bac, Y. S. Kwon, J. S. Kim // Mater. Res. Bull. − 2009. − V. 45. − P. 352—354.; Xuegang, Lu. Synthesis and characterization of magnetic FeNi3 particles obtained by hydrazine reduction in aqueous solution / Xuegang Lu, Gongying Liang, Yumei Zhang // Mater. Sci. and Eng. B. − 2007. − V. 139. − P. 124—127.; Dewar, M. J. S. Ground states of molecules. The MNDO method. Approximations and parameters / M. J. S. Dewar, W. Thiel // J. Amer. Chem. Soc. − 1977. − V. 99. − P. 4899—4906.; Dewar, M. J. S. A semiempirical model for the two−center repulsion integrals in the NDDO approximation / M. J. S. Dewar, W. Thiel // Theoret. Chem. Acta. − 1977. − V. 46. − P. 89—104.; Kozlov, V. V. Strukturnye prevrasheniya kompozita na osnove poliakrilonitrila i fullerena S60 pod vozdeistviem IK−izlucheniya / V. V. Kozlov, Yu. M. Korolev, G. P. Karpacheva // Vysokomolek. soedineniya. − 1999. − T. 41, N 5. − P. 836.; Kozlov, V. V. O himicheskih prevrasheniyah poliakrilonitrila pri termicheskoi obrabotke v vakuume i atmosfere ammiaka / V. V. Kozlov, G. P. Karpacheva, V. S. Petrov, E. V. Lazovskaya, S. A. Pavlov // Izvestiya vuzov. Materialy elektron. tehniki. − 2004. − N 4. − P. 45—49.; https://met.misis.ru/jour/article/view/69

  14. 14
    Academic Journal

    المساهمون: Работа выполнена в рамках Федеральной целевой программы «Научные и научно−педагогические кадры инновационной России» на 2009—2013 гг. (Соглашение № 14.В37.21.0080)

    المصدر: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; № 3 (2013); 34-38 ; Известия высших учебных заведений. Материалы электронной техники; № 3 (2013); 34-38 ; 2413-6387 ; 1609-3577 ; 10.17073/1609-3577-2013-3

    وصف الملف: application/pdf

    Relation: https://met.misis.ru/jour/article/view/63/57; Zemcov, L. M. Himicheskie prevrasheniya poliakrilonitrila pod deistviem nekogerentnogo infrakrasnogo izlucheniya / L. M. Zemcov, G. P. Karpacheva // Vysokomolek. soed. Ser. A. − 1994. − T. 36, N 6. − P. 919.; Kozlov, V. V. O himicheskih prevrasheniyah poliakrilonitrila pri termicheskoi obrabotke v vakuume i atmosfere ammiaka / V. V. Kozlov, G. P. Karpacheva, V. S. Petrov, E. V. Lazovskaya, S. A. Pavlov // Izv. vuzov. Materialy elektron. tehniki. − 2004. − N 4. − P. 45—49.; Kozlov, V. V. Osobennosti obrazovaniya sistemy polisopryazhennyh svyazei poliakrilonitrila v usloviyah vakuuma pri termicheskoi obrabotke / V. V. Kozlov // Vysokomolek. soedineniya. − Seriya A. − 2001. − T. 43, N 1. − P. 3—26.; Kozhitov, L. V. Struktura i fiziko−himicheskie svoistva organicheskogo poluprovodnika na osnove poliakrilonitrila i ego kompozita s nanochasticami medi / L. V. Kozhitov, V. V. Krapuhin, G. P. Karpacheva, V. V. Kozlov // Izv. vuzov. Materialy elektron. tehniki. − 2004. − N 4. − P. 7—10; Kozhitov, L. V. Sozdanie dlya nanoelektroniki novyh materialov na osnove uglerodnogo nanokristallicheskogo materiala i metallopolimernyh nanokompozitov / L. V. Kozhitov, V. V. Kozlov, V. V. Krapuhin // Izv. vuzov. Materialy elektron. tehniki. − 2006. − N 4. − P. 4—10.; Shul’ga, Yu. M. Izuchenie pirolizovannyh plenok poliakrilonitrila metodami rentgenovskoi fotoelektronnoi spektroskopii, elektronnoi Ozhe−spektroskopii i spektroskopii poter’ energii ele-ktronov/ Yu. M. Shul’ga, V. I. Rubcov, O. N. Efimov, G.P. Karpacheva, L. M. Zemcov, V. V. Kozlov // Vysokomolekulyarnye soedineniya. Ser. A. − 1996. − T. 38, N 6. − P. 989—992.; Sazanov, Yu. N. Thermochemical reactions of polyacrylonitrile with fullerene C60 / Yu. N. Sazanov, M. V. Mokeev, A. V. Novoselova, V. L. Ugolkov, G. N. Fedorova, A. V. Gribanov, V. N. Zgonnik // Russ. J. Appl. Chem. − 2003. − V. 76, N 3. − P. 452—456.; Setnescu, R. IR and X−ray characterization of the ferromagnetic phase of pyrolysed polyacrylonitrile / R. Setnescu, S. Jipa, T. Setnescu, W. Kappel, S. Kobayashi, Z. Osawa // Carbon. − 1999. − V. 37, N. 1. − P. 1—6.; Kozlov, V. V. Strukturnye prevrasheniya kompozita na osnove poliakrilonitrila i fullerena S60 pod vozdeistviem IK−izlucheniya / V. V. Kozlov, Yu. M. Korolev, G. P. Karpacheva // Vysokomol. soed. Ser. A. − 1999. − T. 41, N 5. − P. 836.; Zaporockova, I. V. Protonnaya provodimost’ uglerodnyh nanostruktur na osnove pirolizovannogo poliakrilonitrila i ee prakticheskoe primenenie / I . V. Zaporockova, V. V. Kozlov, L. V. Kozhitov, V. V. Krapuhin, O. A. Davletova, D. G. Muratov // Izv. vuzov. Materialy elektron. tehniki. − 2008. − N 1. − P. 59—65.; Zaporockova, I. V. Uglerodnye i neuglerodnye nanomaterialy i kompozitnye struktury na ih osnove: stroenie i elektronnye svoistva / I. V. Zaporockova. − Volgograd : Izd−vo VolGU, 2009. − 490 s.; Davletova, O. A. Struktura i elektronnye harakteristiki pirolizovannogo poliakrilonitrila: diss. … kand. fiz.−mat. nauk / O. A. Davletova. − Volgograd : Volgogradskii gosudarstvennyi universitet, 2010.; Dewar, M. J. S. Ground states of molecules. The MNDO method. Approximations and Parameters / M. J. S. Dewar, W. Thiel // J. Amer. Chem. Soc. − 1977. − V. 99. − P. 4899—4906.; Dewar, M. J. S. A semiempirical model for the two−center repulsion integrals in the NDDO approximation / M. J. S. Dewar, W. Thiel // Theoret. Chem. Acta. − 1977. − V. 46. − P. 89—104.; Voityuk, A. A. Primenenie metoda MNDO dlya issledovaniya svoistv i reakcionnoi sposobnosti molekul / A. A. Voityuk // Zhurn. strukturnoi himii. − 1988. − T. 29, N 1. − P. 138—162.; Koch, W. A Chemist’s guide to density functional theory / W. Koch, M. Holthausen. − Weinheim : Wiley−VCH, 2002. − P. 19.; https://met.misis.ru/jour/article/view/63