يعرض 1 - 6 نتائج من 6 نتيجة بحث عن '"И. В. Белозерцева"', وقت الاستعلام: 0.47s تنقيح النتائج
  1. 1
    Academic Journal

    المساهمون: The study was supported by a grant from the Russian Science Foundation (Project № 23-25-00158)., Исследование выполнено при поддержке гранта Российского научного фонда (Проект № 23-25-00158).

    المصدر: The Scientific Notes of the Pavlov University; Том 30, № 4 (2023); 32-42 ; Учёные записки Первого Санкт-Петербургского государственного медицинского университета имени академика И. П. Павлова; Том 30, № 4 (2023); 32-42 ; 2541-8807 ; 1607-4181 ; 10.24884/1607-4181-2023-30-4

    وصف الملف: application/pdf

    Relation: https://www.sci-notes.ru/jour/article/view/1014/pdf_342; Bateup, H.S., Svenningsson, P., Kuroiwa, M., Gong, S., Nishi, A., Heintz, N., Greengard, P., 2008. Cell type-specific regulation of DARPP-32 phosphorylation by psychostimulant and antipsychotic drugs. Nat. Neurosci. 11, 932–939. https://doi.org/10.1038/nn.2153; Gerfen, C.R., Surmeier, D.J., 2011. Modulation of striatal projection systems by dopamine. Annu. Rev. Neurosci. 34, 441–66. https://doi.org/10.1146/annurev-neuro-061010-113641; Heiman, M., Schaefer, A., Gong, S., Peterson, J.D., Day, M., Ramsey, K.E., Suárez-Fariñas, M., Schwarz, C., Stephan, D.A., Surmeier, D.J., Greengard, P., Heintz, N., 2008. A translational profiling approach for the molecular characterization of CNS cell types. Cell 135, 738–48. https://doi.org/10.1016/j.cell.2008.10.028; Tritsch, N.X., Sabatini, B.L., 2012. Dopaminergic modulation of synaptic transmission in cortex and striatum. Neuron 76, 33–50. https://doi.org/10.1016/j.neuron.2012.09.023; Valjent, E., Bertran-Gonzalez, J., Hervé, D., Fisone, G., Girault, J.A., 2009. Looking BAC at striatal signaling: cell-specific analysis in new transgenic mice. Trends Neurosci. 32, 538–547. https://doi.org/10.1016/j.tins.2009.06.005; Calabresi, P., Picconi, B., Tozzi, A., Ghiglieri, V., Di Filippo, M., 2014. Direct and indirect pathways of basal ganglia: A critical reappraisal. Nat. Neurosci. 17, 1022–1030. https://doi.org/10.1038/nn.3743; Cui, G., Jun, S.B., Jin, X., Pham, M.D., Vogel, S.S., Lovinger, D.M., Costa, R.M., 2013. Concurrent activation of striatal direct and indirect pathways during action initiation. Nature 494, 238–242. https://doi.org/10.1038/nature11846; Friend, D.M., Kravitz, A. V., 2014. Working together: Basal ganglia pathways in action selection. Trends Neurosci. 37, 301–303. https://doi.org/10.1016/j.tins.2014.04.004; Jin, X., Tecuapetla, F., Costa, R.M., 2014. Basal ganglia subcircuits distinctively encode the parsing and concatenation of action sequences. Nat. Neurosci. 17, 423–430. https://doi.org/10.1038/nn.3632; Gerfen, C.R., Engber, T.M., Mahan, L.C., Susel, Z., Chase, T.N., Monsma, F.J., Sibley, D.R., 1990. D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250, 1429–1432. https://doi.org/10.1126/science.2147780; Bolger, G.B., 2021. The PDE-Opathies: Diverse Phenotypes Produced by a Functionally Related Multigene Family. Trends Genet. 37, 669–681. https://doi.org/10.1016/j.tig.2021.03.002; Baillie, G.S., Tejeda, G.S., Kelly, M.P., 2019. Therapeutic targeting of 3′,5′-cyclic nucleotide phosphodiesterases: inhibition and beyond. Nat. Rev. Drug Discov. 18, 770–796. https://doi.org/10.1038/s41573-019-0033-4; Coskran, T.M., Morton, D., Menniti, F.S., Adamowicz, W.O., Kleiman, R.J., Ryan, A.M., Strick, C.A., Schmidt, C.J., Stephenson, D.T., 2006. Immunohistochemical localization of phosphodiesterase 10A in multiple mammalian species. J. Histochem. Cytochem. 54, 1205–1213. https://doi.org/10.1369/jhc.6A6930.2006; Kelly, M.P., Adamowicz, W., Bove, S., Hartman, A.J., Mariga, A., Pathak, G., Reinhart, V., Romegialli, A., Kleiman, R.J., 2014. Select 3’,5’-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. Cell. Signal. 26, 383–397. https://doi.org/10.1016/j.cellsig.2013.10.007; Lakics, V., Karran, E.H., Boess, F.G., 2010. Quantitative comparison of phosphodiesterase mRNA distribution in human brain and peripheral tissues. Neuropharmacology 59, 367–374. https://doi.org/10.1016/j.neuropharm.2010.05.004; Seeger, T.F., Bartlett, B., Coskran, T.M., Culp, J.S., James, L.C., Krull, D.L., Lanfear, J., Ryan, A.M., Schmidt, C.J., Strick, C.A., Varghese, A.H., Williams, R.D., Wylie, P.G., Menniti, F.S., 2003. Immunohistochemical localization of PDE10A in the rat brain. Brain Res. 985, 113–126. https://doi.org/10.1016/S0006-8993(03)02754-9; Xie, Z., Adamowicz, W.O., Eldred, W.D., Jakowski, A.B., Kleiman, R.J., Morton, D.G., Stephenson, D.T., Strick, C.A., Williams, R.D., Menniti, F.S., 2006. Cellular and subcellular localization of PDE10A, a striatum-enriched phosphodiesterase. Neuroscience 139, 597–607. https://doi.org/10.1016/j.neuroscience.2005.12.042; García, A.M., Redondo, M., Martinez, A., Gil, C., 2014. Phosphodiesterase 10 inhibitors: New disease modifying drugs for Parkinson’s disease? Curr. Med. Chem. 21, 1171–1187. https://doi.org/10.2174/0929867321666131228221749; DeMartinis, N., Lopez, R.N., Pickering, E.H., Schmidt, C.J., Gertsik, L., Walling, D.P., Ogden, A., 2019. A proof-of-concept study evaluating the phosphodiesterase 10A Inhibitor PF-02545920 in the adjunctive treatment of suboptimally controlled symptoms of schizophrenia. J. Clin. Psychopharmacol. 39, 318–328. https://doi.org/10.1097/JCP.0000000000001047; Kehler, J., Nielsen, J., 2011. PDE10A inhibitors: Novel therapeutic drugs for schizophrenia. Curr. Pharm. Des. 17, 137–150. https://doi.org/10.2174/138161211795049624; Macek, T.A., McCue, M., Dong, X., Hanson, E., Goldsmith, P., Affinito, J., Mahableshwarkar, A.R., 2019. A phase 2, randomized, placebo-controlled study of the efficacy and safety of TAK-063 in subjects with an acute exacerbation of schizophrenia. Schizophr. Res. 204, 289–294. https://doi.org/10.1016/j.schres.2018.08.028; Schmidt, C.J., Chapin, D.S., Cianfrogna, J., Corman, M.L., Hajos, M., Harms, J.F., Hoffman, W.E., Lebel, L.A., McCarthy, S.A., Nelson, F.R., Proulx-LaFrance, C., Majchrzak, M.J., Ramirez, A.D., Schmidt, K., Seymour, P.A., Siuciak, J.A., Tingley, F.D., Williams, R.D., Verhoest, P.R., Menniti, F.S., 2008. Preclinical characterization of selective phosphodiesterase 10A inhibitors: A new therapeutic approach to the treatment of schizophrenia. J. Pharmacol. Exp. Ther. 325, 681–690. https://doi.org/10.1124/jpet.107.132910; Siuciak, J.A., Chapin, D.S., Harms, J.F., Lebel, L.A., McCarthy, S.A., Chambers, L., Shrikhande, A., Wong, S., Menniti, F.S., Schmidt, C.J., 2006. Inhibition of the striatum-enriched phosphodiesterase PDE10A: A novel approach to the treatment of psychosis. Neuropharmacology 51, 386–396. https://doi.org/10.1016/j.neuropharm.2006.04.013; Megens, A.A.H.P., Hendrickx, H.M.R., Mahieu, M.M.A., Wellens, A.L.Y., de Boer, P., Vanhoof, G., 2014b. PDE10A inhibitors stimulate or suppress motor behavior dependent on the relative activation state of the direct and indirect striatal output pathways. Pharmacol. Res. Perspect. 2, 1–21. https://doi.org/10.1002/prp2.57; Sukhanov, I., Dorotenko, A., Fesenko, Z., Savchenko, A., Efimova, E. V., Mor, M.S., Belozertseva, I. V., Sotnikova, T.D., Gainetdinov, R.R., 2022a. Inhibition of PDE10A in a new rat model of severe dopamine depletion suggests new approach to non‐dopamine Parkinson’s disease therapy. Biomolecules 13, 9. https://doi.org/10.3390/biom13010009; Arakawa, K., Maehara, S., Yuge, N., Ishikawa, M., Miyazaki, Y., Naba, H., Kato, Y., Nakao, K., 2016. Pharmacological characterization of a novel potent, selective, and orally active phosphodiesterase 10A inhibitor, PDM-042 [(E)-4-(2-(2-(5,8-dimethyl-[1,2,4]triazolo[1,5-a]pyrazin-2-yl)vinyl)-6-(pyrrolidin-1-yl)pyrimidin-4-yl)morpholine] in rats: potential. Pharmacol. Res. Perspect. 4, 1–12. https://doi.org/10.1002/prp2.241; Suzuki, K., Harada, A., Suzuki, H., Capuani, C., Ugolini, A., Corsi, M., Kimura, H., 2018. Combined treatment with a selective PDE10A inhibitor TAK-063 and either haloperidol or olanzapine at subeffective doses produces potent antipsychotic-like effects without affecting plasma prolactin levels and cataleptic responses in rodents. Pharmacol. Res. Perspect. 6, e00372. https://doi.org/10.1002/prp2.372; Langen, B., Dost, R., Egerland, U., Stange, H., Hoefgen, N., 2012. Effect of PDE10A inhibitors on MK-801-induced immobility in the forced swim test. Psychopharmacology (Berl). 221, 249–259. https://doi.org/10.1007/s00213-011-2567-y; Megens, A.A.H.P., Hendrickx, H.M.R., Hens, K.A., Fonteyn, I., Langlois, X., Lenaerts, I., Somers, M.V.F., De Boer, P., Vanhoof, G., 2014a. Pharmacology of JNJ-42314415, a centrally active phosphodiesterase 10A (PDE10A) inhibitor: A comparison of PDE10A inhibitors with D2 receptor blockers as potential antipsychotic drugs. J. Pharmacol. Exp. Ther. 349, 138–154. https://doi.org/10.1124/jpet.113.211904; Mango, D., Bonito-Oliva, A., Ledonne, A., Nisticò, R., Castelli, V., Giorgi, M., Sancesario, G., Fisone, G., Berretta, N., Mercuri, N.B., 2014. Phosphodiesterase 10A controls D1-mediated facilitation of GABA release from striato-nigral projections under normal and dopamine-depleted conditions. Neuropharmacology 76, 127–136. https://doi.org/10.1016/j.neuropharm.2013.08.010; Threlfell, S., Sammut, S., Menniti, F.S., Schmidt, C.J., West, A.R., 2009. Inhibition of phosphodiesterase 10A increases the responsiveness of striatal projection neurons to cortical stimulation. J. Pharmacol. Exp. Ther. 328, 785–795. https://doi.org/10.1124/jpet.108.146332; Lee, S.J., Lodder, B., Chen, Y., Patriarchi, T., Tian, L., Sabatini, B.L. 2021. Cell-Type-Specific Asynchronous Modulation of PKA by Dopamine in Learning. Nature 590, 451–456. https://doi.org/10.1038/s41586-020-03050-5; Martel, J.C., Gatti McArthur, S., 2020. Dopamine Receptor Subtypes, Physiology and Pharmacology: New Ligands and Concepts in Schizophrenia. Front. Pharmacol. 11, 1003. https://doi.org/10.3389/fphar.2020.01003; Sukhanov, I., Dorotenko, A., Savchenko, A., Dravolina, O.A., 2022b. Tolerance to a paradoxical increase in motor activity induced by PDE10A inhibition under hypodopaminergic conditions [WWW Document]. Authorea. https://doi.org/10.22541/au.166024983.30383141/v1; Hornykiewicz, O., 2017. L-DOPA. J. Parkinsons. Dis. 7, S3–S10. https://doi.org/10.3233/JPD-179004; Gancher, S.T., Woodward, W.R., Nutt, J.G., 1996. Apomorphine tolerance in Parkinson’s disease: Lack of a dose effect. Clin. Neuropharmacol. 19, 59–64. https://doi.org/10.1097/00002826-199619010-00004; Nutt, J.G., Carter, J.H., Woodward, W.R., 1994. Effect of brief levodopa holidays on the short-duration response to levodopa: Evidence for tolerance to the antiparkinsonian effects. Neurology 44, 1617–1617. https://doi.org/10.1212/WNL.44.9.1617; Lewis, M.M., Huang, X., Nichols, D.E., Mailman, R.B., 2008. D1 and functionally selective dopamine agonists as neuroprotective agents in Parkinsons disease. CNS Neurol. Disord. - Drug Targets 5, 345–353. https://doi.org/10.2174/187152706777452245; Mailman, R., Huang, X., Nichols, D.E., 2001. Parkinson’s disease and D1 dopamine receptors. Curr. Opin. Investig. Drugs 2, 1582–1591; Zhang, J., Xiong, B., Zhen, X., Zhang, A., 2009. Dopamine D1 receptor ligands: where are we now and where are we going. Med. Res. Rev. 29, 272–294. https://doi.org/10.1002/med.20130; Lewis, M.M. Van Scoy Sol De Jesus, L.J., Hakun, J.G., Eslinger, P.J., Fernandez-Mendoza, J., Yang Yang, L. K., Snyder, B.L., Loktionova, N., Duvvuri, S., Gray, D.L., Huang, X., Mailman, R.B. 2023. Dopamine D1 Agonists: First Potential Treatment for Late-Stage Parkinson’s Disease. Biomolecules. - 13. 829. https://doi.org/10.3390/biom13050829; Threlfell, S., West, A.R., 2013. Modulation of striatal neuron activity by cyclic nucleotide signalling and phosphodiesterase inhibition. Basal Ganglia 3, 137–146. https://doi.org/10.1016/j.baga.2013.08.001; Hufgard, J.R., Williams, M.T., Skelton, M.R., Grubisha, O., Ferreira, F.M., Sanger, H., Wright, M.E., Reed-Kessler, T.M., Rasmussen, K., Duman, R.S., Vorhees, C. V., 2017. Phosphodiesterase-1b (Pde1b) knockout mice are resistant to forced swim and tail suspension induced immobility and show upregulation of Pde10a. Psychopharmacology (Berl). 234, 1803–1813. https://doi.org/10.1007/s00213-017-4587-8; https://www.sci-notes.ru/jour/article/view/1014

  2. 2
    Academic Journal

    المصدر: The Scientific Notes of the Pavlov University; Том 29, № 3 (2022); 31-39 ; Учёные записки Первого Санкт-Петербургского государственного медицинского университета имени академика И. П. Павлова; Том 29, № 3 (2022); 31-39 ; 2541-8807 ; 1607-4181 ; 10.24884/1607-4181-2022-29-3

    وصف الملف: application/pdf

    Relation: https://www.sci-notes.ru/jour/article/view/911/pdf_285; Stuchlik A., Sumiyoshi T. Cognitive deficits in schizophrenia and other neuropsychiatric disorders: Convergence of preclinical and clinical evidence // Front Behav. Neurosci. – 2014. – Vol. 8. – P. 444. Doi:10.3389/fnbeh.2014.00444.; Xu N., Huggon B., Saunders K. E. A. Cognitive impairment in patients with bipolar disorder: Impact of pharmacological treatment // CNS Drugs. – 2020. – Vol. 34. – P. 29–46. Doi:10.1007/s40263-019-00688-2.; van der Meulen J. A., Bilbija L., Joosten R. N. et al. The NMDA-receptor antagonist MK-801 selectively disrupts reversal learning in rats // Neuroreport. – 2003. – Vol. 14. – P. 2225–2228. Doi:10.1097/00001756-200312020-00018.; LaCrosse A. L., Burrows B. T., Angulo R. M. et al. mGluR5 positive allosteric modulation and its effects on MK-801 induced set-shifting impairments in a rat operant delayed matching/non-matching-to-sample task // Psychopharmacology (Berl). – 2015. – Vol. 232. – P. 251–258. Doi:10.1007/s00213-014-3653-8.; Egerton A., Reid L., McKerchar C. E. et al. Impairment in perceptual attentional set-shifting following PCP administration: a rodent model of set-shifting deficits in schizophrenia // Psychopharmacology (Berl). – 2005. – Vol. 179. – P. 77–84. Doi:10.1007/s00213-004-2109-y.; Egerton A., Reid L., McGregor S. et al. Subchronic and chronic PCP treatment produces temporally distinct deficits in attentional set shifting and prepulse inhibition in rats // Psychopharmacology (Berl). – 2008. – Vol. 198. – P. 37–49. Doi:10.1007/s00213-008-1071-5.; The effects of NMDA receptor antagonists on attentional set-shifting task performance in mice /T. Kos,A. Nikiforuk, D. Rafa, P. Popik // Psychopharmacology (Berl). – 2011. – Vol. 214. – P. 911–921. Doi:10.1007/s00213-010-2102-6.; Novel reinforcement learning paradigm based on response patterning under interval schedules of reinforcement / C. Schifani, I. Sukhanov, M. Dorofeikova, A. Bespalov // Behav Brain Res. – 2017. – Vol. 331. – P. 276–281. Doi:10.1016/j.bbr.2017.04.043.; Динамика эффектов неконкурентного антагониста NMDA-рецепторов MK-801 в тесте распознавания зрительного стимула / И. М. Суханов, О. А. Драволина, Э. Э. Звартау, А. Ю. Беспалов // Эксперимента. и клин. фармакология. – 2021. – Т. 84. – С. 71–75. Doi:10.30906/0869-2092-2021-84-2-71-75.; Glutamate antagonists have different effects on spontaneous locomotor activity in rats / W. Danysz, U. Essmann, I. Bresink, R. Wilke // Pharmacol Biochem Behav. – 1994. – Vol. 48. – P. 111–118. Doi:10.1016/0091-3057(94)90506-1.; Ford L. M., Norman A. B., Sanberg P. R. The topography of MK-801-induced locomotor patterns in rats // Physiol Behav. – 1989. – Vol. 46. – P. 755–758. Doi:10.1016/0031-9384(89)90363-6.; Gleason S. D., Shannon H. E. Blockade of phencyclidine-induced hyperlocomotion by olanzapine, clozapine and serotonin receptor subtype selective antagonists in mice // Psychopharmacology (Berl). – 1997. – Vol. 129. – P. 79–84. Doi:10.1007/s002130050165.; Jeevakumar V., Driskill C., Paine A. et al. Ketamine administration during the second postnatal week induces enduring schizophrenia-like behavioral symptoms and reduces parvalbumin expression in the medial prefrontal cortex of adult mice // Behav Brain Res. – 2015. – Vol. 282. – P. 165– 175. Doi:10.1016/j.bbr.2015.01.010.; Down regulation of Npas4 in parvalbumin interneurons and cognitive deficits after neonatal NMDA receptor blockade: relevance for schizophrenia / R. Shepard, K. Heslin, P. Hagerdorn, L. Coutellier // Transl Psychiatry. – 2019. – Vol. 9. – A. 99. Doi:10.1038/s41398-019-0436-3.; Plataki M. E., Diskos K., Sougklakos C. et al. Effect of neonatal treatment with the NMDA receptor antagonist, MK-801, during different temporal windows of postnatal period in adult prefrontal cortical and hippocampal function // Front Behav Neurosci. – 2021. – Vol. 15. – A. 689193. Doi:10.3389/fnbeh.2021.689193.; Wangen K., Myhrer T., Moldstad J. N. et al. Modulatory treatment of NMDA receptorsin neonatalrats affects cognitive behavior in adult age // Brain Res. Dev. Brain Res. – 1997. – Vol. 99. – P. 126–130. Doi:10.1016/s0165-3806(96)00204-0.; Sircar R., Rudy J. W. Repeated neonatal phencyclidine treatment impairs performance of a spatial task in juvenile rats // Ann N Y Acad Sci. – 1998. – Vol. 844. – P. 303-309. Doi:10.1111/j.1749-6632.1998.tb08244.x.; Ghotbi Ravandi S., Shabani M., Bashiri H., Saeedi Goraghani M., Khodamoradi M., Nozari M. Ameliorating effects of berberine on MK-801-induced cognitive and motor impairments in a neonatal rat model of schizophrenia // Neurosci Lett. – 2019. – Vol. 706. – P. 151–157. Doi:10.1016/j.neulet.2019.05.029.; Moghadam A. A., Vose L. R., Miry O. et al. Pairing of neonatal phencyclidine exposure and acute adolescent stress in male rats as a novel developmental model of schizophrenia // Behav Brain Res. – 2021. – Vol. 409. –A. 113308. Doi:10.1016/j.bbr.2021.113308.; Белозерцева И. В., Беспалов А. Ю., Большаков О. П. и др. Руководство по использованию лабораторных животных для научных и учебных целей в СПбГМУ им. И. П. Павлова / под ред. Э. Э. Звартау. – СПб.: Изд-во СПбГМУ, 2003. – 57 c.; Kapur S. Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia //Am J Psychiatry. – 2003. – Vol. 160. – P. 13–23. Doi:10.1176/appi.ajp.160.1.13.; The hyperfocusing hypothesis: A new account of cognitive dysfunction in schizophrenia / S. J. Luck, B. Hahn, C. J. Leonard, J. M. Gold // Schizophr Bull. – 2019. – Vol. 45. – P. 991–1000. Doi:10.1093/schbul/sbz063.; Quednow B. B., Frommann I., Berning J. et al. Impaired sensorimotor gating of the acoustic startle response in the prodrome of schizophrenia // Biol. Psychiatry. – 2008. – Vol. 64. – P. 766–773. Doi:10.1016/j.biopsych.2008.04.019.; Barch D. M., Moore H., Nee D. E. et al. CNTRICS imaging biomarkers selection: working memory // Schizophr Bull. – 2012. – Vol. 38. – P. 43–52. Doi:10.1093/schbul/sbr160.; Johnson M. K., McMahon R. P., Robinson B. M. et al. The relationship between working memory capacity and broad measures of cognitive ability in healthy adults and people with schizophrenia // Neuropsychology. – 2013. – Vol. 27. – P. 220–229. Doi:10.1037/a0032060.; Lee J., Park S. Working memory impairments in schizophrenia: a meta-analysis // J. Abnorm, Psychol. – 2005. – Vol. 114. – P. 599–611. Doi:10.1037/0021-843X.114.4.599.; Tregellas J. R., Ellis J., Shatti S. et al. Increased hippocampal, thalamic, and prefrontal hemodynamic response to an urban noise stimulus in schizophrenia // Am. J. Psychiatry. – 2009. – Vol. 166. – P. 354–360. Doi:10.1176/appi.ajp.2008.08030411.; https://www.sci-notes.ru/jour/article/view/911

  3. 3
    Academic Journal

    المساهمون: The authors are grateful to R.R. Gainetdinov (the director of the Institute of Translational Biomedicine, St. Petersburg State University) for the kindly provided DAT-KO animals for the start of colony in Pavlov University as well as to the staff of the Department of Psychopharmacology of the Institute of Pharmacology: A.M. Gavrilova, A.V. Ivanov, S.V. Ivanov, M.G. Semina, M.A. Tur, Yu.I. Shevchuk for technical assistance and animal care., Авторы благодарны директору Института трансляционной биомедицины СПбГУ (Санкт-Петербург) Р.Р. Гайнетдинову за любезно предоставленных DAT-KO-животных для создания колонии в ПСПбГМУ им. И.П. Павлова, а также сотрудникам отдела психофармакологии Института фармакологии А.М. Гавриловой, А.В. Иванову, С.В. Иванову, М.Г. Семиной, М.А. Тур, Ю.И. Шевчук за техническую помощь и уход за животными.

    المصدر: The Scientific Notes of the Pavlov University; Том 29, № 1 (2022); 18-27 ; Учёные записки Первого Санкт-Петербургского государственного медицинского университета имени академика И. П. Павлова; Том 29, № 1 (2022); 18-27 ; 2541-8807 ; 1607-4181 ; 10.24884/1607-4181-2022-29-1

    وصف الملف: application/pdf

    Relation: https://www.sci-notes.ru/jour/article/view/869/pdf_264; Hegarty S. V., Sullivan A. M., O’Keeffe G. W. Midbrain dopaminergic neurons: A review of the molecular circuitry that regulates their development // Dev Biol. - 2013. -Vol. 379. - P 123-138. Doi:10.1016/j.ydbio.2013.04.014.; German D. C., Schlusselberg D. S., Woodward D. J. Three-dimensional computer reconstruction of midbrain dopaminergic neuronal populations: From mouse to man // J Neural Transm. - 1983. - Vol. 57. - P. 243-254. Doi:10.1007/BF01248996.; Pakkenberg B., Moller A., Gundersen H. J. G. et al. The absolute number of nerve cells in substantia nigra in normal subjects and in patients with Parkinson's disease estimated with an unbiased stereological method // J. Neurol. Neuro-surg. Psychiatry. - 1991. - № 54. - Р. 30-33. Doi:10.1136/jnnp.54.1.30.; Beaulieu J. M., Gainetdinov R. R. The physiology, signaling, and pharmacology of dopamine receptors // Pharmacol Rev. - 2011. - Vol. 63. - P. 182-217. Doi:10.1124/pr.110.002642.; Klein M. O., Battagello D. S., Cardoso A. R. et al. Dopamine: Functions, Signaling, and Association with Neurological Diseases // Cell. Mol. Neurobiol. - 2019. - Vol. 39. -P. 31-59. Doi:10.1007/s10571-018-0632-3.; Featherstone R. E., McDonald R. J. Dorsal striatum and stimulus-response learning: Lesions of the dorsolateral, but not dorsomedial, striatum impair acquisition of a simple discrimination task // Behav. Brain Res. - 2004. - Vol. 150. -P. 15-23. Doi:10.1016/S0166-4328(03)00218-3.; Sarinana J., Tonegawa S. Differentiation of forebrain and hippocampal dopamine 1-class receptors, D1R and D5R, in spatial learning and memory // Hippocampus. - 2016. -Vol. 26. - P. 76-86. Doi:10.1002/hipo.22492.; Gutierrez A., Regan S. L., Hoover C. S. et al. Effects of intrastriatal dopamine D1 or D2 antagonists on methamphetamine-induced egocentric and allocentric learning and memory deficits in Sprague - Dawley rats // Psychopharmacology (Berl). - 2019. - № 236. - P. 2243-2258. Doi:10.1007/s00213-019-05221-3.; Deficit in working memory and abnormal behavioral tactics in dopamine transporter knockout rats during training in the 8-arm maze / N. P. Kurzina, I. Y. Aristova, A. B. Volnova, R. R. Gainetdinov // Behav. Brain Res. - 2020. - P. 390. Doi:10.1016/j.bbr.2020.112642.; Roffman J. L., Tanner A. S., Eryilmaz H. et al. Dopamine D1 signaling organizes network dynamics underlying working memory // Sci Adv. - 2016. - P. 2. Doi:10.1126/sciadv.1501672.; Stefani M. R., Moghaddam B. Rule learning and reward contingency are associated with dissociable patterns of dopamine activation in the rat prefrontal cortex, nucleus accumbens, and dorsal striatum // J. Neurosci. 2006;(26):8810-8818. Doi:10.1523/JNEUROSCI.1656-06.2006.; Bach M. E., Simpson E. H., Kahn L. et al. Transient and selective overexpression of D2 receptors in the striatum causes persistent deficits in conditional associative learning // Proc Natl Acad Sci USA. - 2008. - Vol. 105. - P. 16027-16032. Doi:10.1073/pnas.0807746105.; Circuit Mechanisms of Sensorimotor Learning / H. Makino, E. J. Hwang, N. G. Hedrick, Komiyama T // Neuron. - 2016. - Vol. 92. - P. 705-721. Doi:10.1016/j.neuron.2016.10.029.; Schultz W. Reward functions of the basal ganglia // J/ Neural/ Transm. - 2016. - Vol. 123. - P. 679-693. Doi:10.1007/s00702-016-1510-0.; Bu M., Farrer M. J., Khoshbouei H. Dynamic control of the dopamine transporter in neurotransmission and homeostasis // Npj Park Dis. - 2021. - P. 7. Doi:10.1038/s41531-021-00161-2.; Purves-Tyson T. D., Owens S. J., Rothmond D. A. et al. Putative presynaptic dopamine dysregulation in schizophrenia is supported by molecular evidence from post-mortem human midbrain // Transl Psychiatry. - 2017. - P. 7. Doi:10.1038/tp.2016.257.; Dresel S., Krause J., Krause K. H. et al. Attention deficit hyperactivity disorder: Binding of 99mTc.TRODAT-1 to the dopamine transporter before and after methylphenidate treatment // Eur. J. Nucl. Med. - 2000. - № 27. - Р. 15181524. Doi:10.1007/s002590000330.; Palermo G., Ceravolo R. Molecular Imaging of the Dopamine Transporter // Cells. - 2019. - P. 8. Doi:10.3390/cells8080872.; Leo D., Sukhanov I., Zoratto F. et al. Pronounced hyperactivity, cognitive dysfunctions, and BDNF dysregu-lation in dopamine transporter knock-out rats // J Neurosci. -2018. - Vol. 38. - P. 1959-1972. Doi:10.1523/JNEUROS-CI.1931-17.2018.; Jones S. R., Gainetdinov R. R., Jaber M. et al. Profound neuronal plasticity in response to inactivation of the dopamine transporter // Proc. Natl. Acad. Sci USA. - 1998. -Vol. 95. - P. 4029-4034. Doi:10.1073/pnas.95.7.4029.; Giros B., Jaber M., Jones S. R. et al. Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter // Nature. - 1996. - № 379. -Р. 606-612. Doi:10.1038/379606a0.; Rats lacking dopamine transporter display increased vulnerability and aberrant autonomic response to acute stress / P. Illiano, G. E. Bigford, R. R. Gainetdinov, M. Pardo // Biomolecules. - 2020. - P. 10. Doi:10.3390/biom10060842.; A New Paradigm for Training Hyperactive Dopamine Transporter Knockout Rats: Influence of Novel Stimuli on Object Recognition / N. P. Kurzina, A. B. Volnova, I. Y. Aristova, R. R. Gainetdinov // Front Behav. Neurosci. - 2021. -P. 15. Doi:10.3389/fnbeh.2021.654469.; Белозерцева И. В., Драволина О. А., Тур М. А. Руководство по использованию лабораторных животных для научных и учебных целей в ПСПбГМУ им. И. П. Павлова / под ред. Э. Э. Звартау. - СПб.: Изд-во СПбГМУ, 2014. - С. 79.; Choi W. Y., Balsam P. D., Horvitz J. C. Extended habit training reduces dopamine mediation of appetitive response expression // J Neurosci. - 2005. - Vol. 25. - P. 6729-6733. Doi:10.1523/JNEUROSCI.1498-05.2005.; Bespalov A. Y., Harich S., Jongen-Relo A. L. et al. AMPA receptor antagonists reverse effects of extended habit training on signaled food approach responding in rats // Psychopharmacology (Berl). - 2007. - Vol. 195. - P. 11-18. Doi:10.1007/s00213-007-0875-z.; Effects of nimodipine on learning in normotensive and spontaneously hypertensive rats / A. Meneses, J. A. Terron, M. Ibarra, E. Hong // Behav. Brain Res. - 1997. - Vol. 85. -P. 121-5. Doi:10.1016/S0166-4328(97)87580-8.; Olausson P., Jentsch J. D., Taylor J. R. Repeated nicotine exposure enhances responding with conditioned reinforcement // Psychopharmacology (Berl). - 2004. -Vol. 173. - P. 98-104. Doi:10.1007/s00213-003-1702-9.; Yin H. H., Zhuang X., Balleine B. W. Instrumental learning in hyperdopaminergic mice // Neurobiol Learn Mem. - 2006. - Vol. 85. - P. 283-288. Doi:10.1016/j.nlm.2005.12.001.; Phillips G. D., Setzu E., Hitchcott P. K. Facilitation of appetitive pavlovian conditioning by d-amphetamine in the shell, but not the core, of the nucleus accumbens // Behav. Neurosci. - 2003. - Vol. 117. - P. 675-684. Doi:10.1037/0735-7044.117.4.675.; Meneses A. A pharmacological analysis of an associative learning task: 5-HT 1 to 5-HT7 receptor subtypes function on a Pavlovian/instrumental autoshaped memory // Learn Mem. - 2003. - Vol. 10. - P. 363-372. Doi:10.1101/lm.60503.; Flagel S. B., Clark J. J., Robinson T. E. et al. A selective role for dopamine in stimulus-reward learning // Nature. -2011. - Vol. 469. - P. 53-59. Doi:10.1038/nature09588.; Examining the role of dopamine D2 and D3 receptors in Pavlovian conditioned approach behaviors / K. M. Fraser, J. L. Haight, E. L. Gardner, S. B. Flagel // Behav. Brain Res. -2016. - Vol. 305. - P. 87-99. Doi:10.1016/j.bbr.2016.02.022.; https://www.sci-notes.ru/jour/article/view/869

  4. 4
    Academic Journal

    المصدر: Messenger of ANESTHESIOLOGY AND RESUSCITATION; Том 14, № 2 (2017); 55-63 ; Вестник анестезиологии и реаниматологии; Том 14, № 2 (2017); 55-63 ; 2541-8653 ; 2078-5658

    وصف الملف: application/pdf

    Relation: https://www.vair-journal.com/jour/article/view/150/188; Белозерцева И. В. Экспериментальная фармакология полового поведения // Фармакология поведения: Хрестоматия / под ред. А. Ю. Беспалова, Э. Э. Звартау, П. Бирдсли, Дж. Катца. – СПб.: СПбГМУ, 2013. – С. 105–137.; Белозерцева И. В., Драволина О. А., Кривов В. О. и др. Экспериментальное моделирование послеоперационных когнитивных расстройств у крыс // Вестн. анестезиол. и реаниматол. – 2016. – Т. 13. – № 5. – С. 37–49.; Белозерцева И. В., Драволина О. А., Тур М. В. Руководство по использованию лабораторных животных для научных и учебных целей в ПСПбГМУ им. И. П. Павлова / под ред. Э. Э. Звартау. – СПб.: СПбГМУ, 2014. – 79 с.; Abel E. L., Bilitzke P. J. A possible alarm substance in the forced swimming test // Physiol. Behav. – 1990. – Vol. 48. – P. 233–239.; Gauthier A., Bradbury C. Chapter 5. Anesthetic drugs and the developing fetal brain // In: Controversies in Obstetric Аnesthesia and Analgesia (Ed.: I. McConachie) – 2011. – P. 72–85.; Haseneder R., Starker L., Berkmann J. et al. Sevoflurane anesthesia improves cognitive performance in mice, but does not influence in vitro long-term potentation in hippocampus CA1 stratum radiatum // PLoS ONE. – 2013. – Vol. 8, № 5. – Р. e64732.; Hovens I. B., Schoemaker R. G., van der Zee E. A. et al. Surgery-induced behavioral changes in aged rats // Exp. Gerontol. – 2013. – Vol. 48, № 11. – P. 1204–1211.; Hovens I. B., Schoemaker R. G., van der Zee E. A. et al. Thinking through postoperative cognitive dysfunction: How to bridge the gap between clinical and pre-clinical perspectives // Brain. Behav. Immun. – 2012. – Vol. 26. – Р. 1169–1179.; Ozer M., Baris S., Karakaya D. et al. Behavioural effects of chronic exposure to subanesthetic concentrations of halothane, sevoflurane and desflurane in rats [Effets comportementaux d’une exposition chronique а des concentrations sous-anesthеsiques d’halothane, de sеvoflurane et de desflurane chez les rats] // Can. J. Anesth. – 2006. – Vol. 53, № 7. – P. 653–658.; Papaleo F., Crawley J. N., Song J. et al. Genetic dissection of the role of catechol-O-methyltransferase in cognition and stress reactivity in mice // J. Neurosci. – 2008. – Vol. 28. – P. 8709–8723.; Porsolt R. D., Le Pichon M., Jalfre M. Depression: a new animal model sensitive to antidepressant treatments // Nature. – 1977. – Vol. 266. – P. 730–732.; Rowland D. L., Thornton J. A. Testing and analytical procedures for laboratory studies involving nonresponders during a limited observation period: An illustration using male sexual behavior in rats // Pharmacol. Biochem. Behav. – 2001. – Vol. 68. – P. 403–409.; Satomoto M., Satoh Y., Terui K. et al. Neonatal exposure to sevoflurane induces abnormal social behaviors and deficits in fear conditioning in mice // Anesthesiology. – 2009. – Vol. 110. – P. 628–637.; Stratmann G. Neurotoxicity of anesthetic drugs in the developing brain // Anesth. Analg. – 2011. – Vol. 113. – P. 1170–1179.; Xie H., She G.-M., Wang C. et al. The gender difference in effect of sevoflurane exposure on cognitive function and hippocampus neuronal apoptosis in rats // Eur. Rev. Med. Pharmacol. Sci. – 2015. – Vol. 19. – P. 647–657.; https://www.vair-journal.com/jour/article/view/150

  5. 5
    Academic Journal

    المصدر: Messenger of ANESTHESIOLOGY AND RESUSCITATION; Том 14, № 6 (2017); 65-72 ; Вестник анестезиологии и реаниматологии; Том 14, № 6 (2017); 65-72 ; 2541-8653 ; 2078-5658

    وصف الملف: application/pdf

    Relation: https://www.vair-journal.com/jour/article/view/196/234; Белова А. Н., Прусакова Ж. Б., Загреков В. И., Ежевская А. А. Болезнь Альцгеймера и анестезия // Успехи современного естествознания. – 2015. – № 8. – С. 7–13.; Белозерцева И. В., Драволина О. А., Кривов В. О., Тур М. А., Мус Л. В., Полушин Ю. С. Послеоперационные изменения поведения крыс, получавших анестезию севофлураном // Вестн. анестезиологии и реаниматологии. – 2017. – Т. 1, № 2. – С. 55–62.; Белозерцева И. В., Драволина О. А., Тур М. А. Руководство по использованию лабораторных животных для научных и учебных целей в ПСПбГМУ им. И. П. Павлова / под ред. Э. Э. Звартау. – 2-е изд. – СПб.: Изд-во СПбГМУ, 2014. – 79 с.; Козловский С. А. Роль областей цингулярной коры в функционировании памяти человека // Экспериментальная психология. – 2012. – Т. 5, № 1. – С. 12–22.; Лобзин В. Ю. Сосудисто-нейродегенеративные когнитивные нарушения (патогенез, клинические проявления, ранняя и дифференциальная диагностика): Дис. … д-ра мед. наук. – ВМедА, 2016. – 44 с.; Лобов М. А., Овезов А. М., Пантелеева М. В. и др. Патофизиологические и морфологические основы церебропротекции в периоперационном периоде // Сб. материалов научно-практической конференции «Современные аспекты лечения заболеваний нервной системы». – Тверь, 2010. – С. 28–34.; Овезов А. М. Послеоперационная когнитивная дисфункция и принципы церебропротекции в современной анестезиологии: Учебное пособие для врачей / под ред. А. М. Овезова. – М.: Тактик-Студио, 2013. – 56 с.; Овезов А. М., Князев А. В., Пантелеева М. В. и др. Послеоперационная энцефалопатия: патофизиологические и морфологические основы профилактики при общем обезболивании // Неврология, нейропсихиатрия, психосоматика. – 2015. – Т. 7, № 2. – С. 61–66.; Овезов А. М., Пантелеева М. В., Князев А. и др. Нейротоксичность общих анестетиков: современный взгляд на проблему // Неврология, нейропсихиатрия, психосоматика. – 2015. –Т. 7, № 4. – С. 78–82.; Поваров И. С. Пептидергическая модуляция синаптической передачи в гиппокампе: Дис. … канд. биол. наук. – М., 2015. – 145 с.; Bianchi S. L., Tran Т., Liu C. et al. Brain and behavior changes in 12-month-old Tg2576 and nontransgenic mice exposed to anesthetics // Neurobiol. Aging. – 2007. – № 29. – P. 1002–1010.; Brambrink A. М., Evers A. S., Avidan M. S. et al. Isoflurane-induced Neuroapoptosis in the Neonatal Rhesus Macaque Brain // Anesthesiology. – 2010. – № 112. – P. 834–841.; Dietrich J., Monje M., Wefel J. et al. Clinical patterns and biological correlates of cognitive dysfunction associated with cancer therapy // Oncologist. – 2008. – № 13. – P. 1285–1295.; Gauthier S. et al. Management of behavioral problems in Alzheimer’s disease // Int. psychogeriatr. – 2010. – № 22. – P. 346–372.; Gutierrez A. N. et al. Whole brain radiotherapy with hippocampal avoidance and simultaneously integrated brain metastases boost: a planning study // Int. J. Radiat. Oncol. Biol. Phys. – 2007. – Vol. 69 (2). – P. 589–597.; Hofacer R. D., Deng M., Ward C. G. et al. Cell age-specific vulnerability of neurons to anesthetic toxicity // Ann. Neurol. – 2013. – № 73 (6). – Р. 695–704. doi:10.1002/ana.23892.; Hovens I. B., van Leeuwen B. L., Nyakas C. et al. Postoperative cognitive dysfunction and microglial activation in associated brain regions in old rats // Neurobiol. Learn. Mem. – 2015. – № 118. – Р. 74–79. doi:10.1016/j.nlm.2014.11.009.; Jevtovic-Todorovic V., Hartman R. E., Izumi Y. et al. Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits// Neurosci. – 2003. – № 23. – P. 876–882.; Johnson S. A., Young C., Olney J. W. Isoflurane-induced neuroapoptosis in the developing brain of non-hypoglycemic mice // J. Neurosurg. Anesth. – 2008. – № 20. – P. 21–28.; Kawano T., Eguchi S., Iwata H. et al. Impact of preoperative environmental enrichment on prevention of development of cognitive impairment following abdominal surgery in a rat model // Anesthesiology. – 2015. – Vol. 123 (1). – P. 160–170.; Krzisch M., Sultan S., Sandell J. et al. Propofol anesthesia impairs the maturation and survival of adult-born hippocampal neurons// Anesthesiology. – 2013. – Vol. 118 (3). – P. 602–610.; Lin E. P., Soriano S. G., Loepke A. W. Anesthetic neurotoxicity // Anesthesiol Clin. – 2014. – Vol. 32 (1). – Р. 133–155. doi:10.1016/j.anclin.2013.10.003.; Monk T. G., Weldon В. C., Garvan C. W. et al. Predictors of cognitive dysfunction after major noncardiac surgery // Anesthesiology. – 2008. – № 108. – P. 18–30.; Motulsky H. J. Common misconceptions about data analysis and statistics // Naunyn-Schmiedeberg's Arch Pharmacol. – 2014. – № 387. – Р. 1017–1023. doi 10.1007/s00210-014-1037-6.; Paxinos G., Watson C. The rat Brain in Stereotaxic Coordinates – 6thedition. – Academic Press. – 2007. – № 6. – Р. 456.; Perry A., Schmidt R. E. Cancer therapy-associated CNS neuropathology: An update and review of the literature // Acta Neuropathol. – 2006. – № 111. – P. 197–212.; Soussain C., Ricard D., Fike J. R. et al. CNS complications of radiotherapy and chemotherapy // Lancet. – 2009. – Vol. 7, 374 (9701). – P. 1639–1651.; Tangpong J., Cole M. P., Sultana R. et al. Adriamycin-mediated nitration of manganese superoxide dismutase in the central nervous system: insight into the mechanism of chemobrain // J. Neurochem. – 2007. – Vol. 100 (1). – P. 191–201.; Van De Werd H. J. J. M., Rajkowska G., Evers P., Harry B. M. Uylings. Cytoarchitectonic and chemoarchitectonic characterization of the prefrontal cortical areas in the mouse // Brain Structure and Function. – 2010. – P. 339–353.; Xie H., She G.-M., Wang C., Zhang L.-Y., Liu C.-F. The gender difference in effect of sevoflurane exposure on cognitive function and hippocampus neuronal apoptosis in rats // European Review for Medical and Pharmacological Sciences. – 2015. – № 19. – P. 647–657.; Xie W., Yang Y., Gu X., Zheng Y., Sun Y. et al. Senegenin attenuates hepatic ischemia-reperfusion induced cognitive dysfunction by increasing hippocampal NR2B expression in rats // PLoS ONE. – 2012. – Vol. 7 (9). – P. 45575.; Zhao C., Deng W., Gage F. H. Mechanisms and functional implications of adult neurogenesis. // Cell. – 2008. – Vol. 132. – P. 645–660.; Zou X., Patterson T. A., Divine R. L. et al. Prolonged exposure to ketamine increases neurodegeneration in the developing monkey brain // Int. J. Dev. Neurosci. – 2009. – Vol. 27. – P. 727–731.; https://www.vair-journal.com/jour/article/view/196

  6. 6
    Academic Journal

    المصدر: Messenger of ANESTHESIOLOGY AND RESUSCITATION; Том 13, № 5 (2016); 37-49 ; Вестник анестезиологии и реаниматологии; Том 13, № 5 (2016); 37-49 ; 2541-8653 ; 2078-5658

    وصف الملف: application/pdf

    Relation: https://www.vair-journal.com/jour/article/view/117/155; Белозерцева И. В. Экспериментальная фармакология полового поведения // Фармакология поведения: Хрестоматия, под ред. А. Ю. Беспалова, Э. Э. Звартау, П. Бирдсли, Дж. Катца. – СПб.: Издательство СПбГМУ, 2013. – С. 105–137.; Белозерцева И. В., Драволина О. А., Тур М. В. Руководство по использованию лабораторных животных для научных и учебных целей в ПСПбГМУ им. И. П. Павлова / под ред. Э. Э. Звартау. – СПб.: Изд-во СПбГМУ, 2014. – 79 с.; Бондаренко Н. А. Индивидуальные различия поведения крыс в тесте «Экстраполяционное избавление»: возможность выявления «тревожного» фенотипа // Тез. Всероссийской конференции «Инновации в фармакологии: от теории к практике» – СПб., 2014. – C. 28–30.; Кузин А. П., Федерякин Д. В., Карташев В. Н. Послеоперационные когнитивные дисфункции у детей // Верхневолжский мед. журнал. – 2014. – Вып. 12, № 3. – С. 11–14.; Abel E. L., Bilitzke P.J. A possible alarm substance in the forced swimming test // Physiol. Behav. – 1990. – Vol. 48. – P. 233–239.; Alkire M. T., Gorski L. A. Relative amnesic potency of five inhalational anesthetics follows the meyer-overton rule // Anesthesiology. – 2004. – Vol. 101. – P. 417–429.; Alkire M. T., Nathan S. V., McReynolds J. R. Memory enhancing effect of low-dose sevoflurane does not occur in basolateral amygdala-lesioned RATS // Anesthesiology. –2005. – Vol. 103. – P. 1167–1173.; Bellido I., Bellido M. V., Gomez-Luqu F. Amnesia induced by sevoflurane and halothane anaesthesia coexists with a 5-HT1A receptor dysfunction in the rat brain // Proceedings of the British Pharmacological Society, BPS Winter Meeting 2012.; Boulant J. A. Hypothalamic neurons regulating body temperature // In: Fregly M. J., Blatteis C. M. eds. APS handbook of physiology, Section 4: environmental physiology -New York: Oxford Press, 1996. – P. 105–126.; Culley D. J., Yukhananov R. Y., Baxter M. G., Crosby G. The memory effects of general anesthesia persist for weeks in young and aged rats // Anesth. Analg. – 2003. – Vol. 96. – P. 1004 –1009.; Deng M., Loepke A. W. Anesthetic Neurotoxicity – Preclinical and Clinical Research // J. Perioper. Sci. – 2014. – Vol. 1, № 6. – P. 1–49.; Essman W. B. Some neurochemical correlates of altered memory consolidation // Trans. NY Acad. Sci. – 1970. – Vol. 32, № 8. – Р. 948–973.; Farber N., Schmidt J., Kampine J., Schmeling W. Halothane Modulates Thermosensitive Hypothalamic Neurons in Rat Brain Slices // Anesthesiology. – 1995. – Vol. 83, № 6. – P. 1241–1253.; Gauthier A., Bradbury C. Chapter 5. Anesthetic drugs and the developing fetal brain // In: Controversies in Obstetric Anesthesia and Analgesia (Ed.: I. McConachie) – 2011. – P. 72–85.; Hall C. S. Emotional behavior in the rat. I. Defecation and urination as measures of individual differences in emotionality // J. Comp. Psychol. – 1934. – Vol. 18. – P. 385–403.; Komatsu H., Nogaya J., Anabuki D. et al. Memory facilitation by posttraining exposure to halothane, enflurane, and isoflurane in ddN mice // Anesth. Analg. – 1993. – Vol. 76. – P. 609–612.; Komatsu H., Nogaya J., Kuratani N. et al. Repetitive post-training exposure to enflurane modifies spatial memory in mice // Anesthesiology. – 1998. – Vol. 89. – P. 1184–1190.; Motulsky H. J. Common misconceptions about data analysis and statistics // Naunyn Schmiedebergs Arch. Pharmacol. – 2014. – Vol. 387. – P. 1017–1023.; Oropeza-Hernandez L. F., Quintanilla-Vega B., Albores A. et al. Inhibitory action of halothane on rat masculine sexual behavior and sperm motility // Pharmacol. Biochem. Behav. – 2002. – Vol. 72. – P. 937– 942.; Ozer M., Baris S., Karakaya D. et al. Behavioural effects of chronic exposure to subanesthetic concentrations of halothane, sevoflurane and desflurane in rats [Effets comportementaux d’une exposition chronique à des concentrations sous-anesthésiques d’halothane, de sévoflurane et de desflurane chez les rats] // Can. J. Anesth. – 2006. – Vol. 53, № 7. – P. 653–658.; Papaleo F., Crawley J. N., Song J. et al. Genetic dissection of the role of catechol-O-methyltransferase in cognition and stress reactivity in mice // J. Neurosci. – 2008. – Vol. 28. – P. 8709–8723.; Porsolt R. D., Anton G., Blave N. et al. Behavioral despair in rats: a new model sensitive to antidepressant treatments // Eur. J. Pharmacol. – 1978. – Vol. 47. – P. 379–391.; Porsolt R. D., Le Pichon M., Jalfre M. Depression: a new animal model sensitive to antidepressant treatments // Nature. – 1977. – Vol. 266. – P. 730–732.; Porsolt R. D., Moser P. C., Castagne V. Behavioral indices in antipsychotic drug discovery // J. Pharmacol. Exp. Therapeutics. – 2010. – Vol. 333, № 3. – P. 632–636.; Pryor K. O., Veselis R. A., Reinsel R. A. et al. Enhanced visual memory effect for negative versus positive emotional content is potentiated at sub-anaesthetic concentrations of thiopental // Br. J. Anaesth. – 2004. –Vol. 93. – P. 348–355.; Rowland D. L., Thornton J. A. Testing and analytical procedures for laboratory studies involving nonresponders during a limited observation period: An illustration using male sexual behavior in rats // Pharmacol. Biochem. Behav. – 2001. – Vol. 68. – P. 403–409.; Satomoto M., Satoh Y., Terui K. et al. Neonatal exposure to sevoflurane induces abnormal social behaviors and deficits in fear conditioning in mice // Anesthesiology. – 2009. – Vol. 110. – P. 628–637.; Szmuk P., Olomuk P., Pop R. B. et al. General anesthetics and neurotoxicity in the developing brain: a review of current literature // J. Român de Anestezie Terapie Intensivã. – 2010. – Vol. 17, № 2. – P. 117–122.; Uemura E., Levin E. D., Bowman R. E. Effects of Halothane on Synaptogenesis and Learning Behavior in Rats // Exp. Neurol. – 1985. – Vol. 89. – P. 520–529.; Valzelli L. The exploratory behaviour in normal and aggressive mice // Psychopharmacologia. – 1969. – Vol. 15. – P. 232–235.; Valzelli L. The «Isolation Syndrome» in mice // Psychopharmacologia. – 1973. – Vol. 31. – P. 305–320.; https://www.vair-journal.com/jour/article/view/117