-
1Academic Journal
المؤلفون: A. A. Kashintsev, A. A. Zavrajnov, N. Yu. Kokhanenko, V. Yu. Proutski, I. A. Solovyev, A. A. Nadeeva, M. V. Antipova, E. L. Belyaeva, O. V. Zaitsev, M. A. Ilyina, A. V. Koshkina, V. Yu. Podshivalov, M. A. Protchenkov, Yu. V. Radionov, D. B. Rusanov, Yu. A. Pakhmutova, A. M. Spirina, A. Yu. Boyarko, G. G. Nakopia, D. V. Shankin, O. G. Vavilova, А. А. Кашинцев, А. А. Завражнов, Н. Ю. Коханенко, В. Ю. Пруцкий, И. А. Соловьев, А. А. Надеева, М. В. Антипова, Е. Л. Беляева, О. В. Зайцев, М. А. Ильина, А. В. Кошкина, В. Ю. Подшивалов, М. А. Протченков, Ю. В. Радионов, Д. С. Русанов, Ю. А. Пахмутова, А. М. Спирина, А. Ю. Боярко, Г. Г. Накопия, Д. В. Щанкин, О. Г. Вавилова
المساهمون: Financial support of trial by PanDx (Skolkovo residency)., Клиническое исследование проводилось за счет финансирования ООО «Пандэкс» (участник Сколково).
المصدر: Russian Sklifosovsky Journal "Emergency Medical Care"; Том 13, № 3 (2024); 365-374 ; Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь»; Том 13, № 3 (2024); 365-374 ; 2541-8017 ; 2223-9022
مصطلحات موضوعية: энтеральное питание, infectious complications, enteral feeding, панкреонекроз
وصف الملف: application/pdf
Relation: https://www.jnmp.ru/jour/article/view/1921/1479; Peery AF, Crockett SD, Barritt AS, Dellon ES, Eluri S, Gangarosa LM, et al. Burden of Gastrointestinal, Liver, and Pancreatic Diseases in the United States. Gastroenterology. 2015;149(7):1731–1741.e3. PMID: 26327134 http://doi.org/10.1053/j.gastro.2015.08.045; Fagenholz PJ, Fernández-del Castillo C, Harris NS, Pelletier AJ, Camargo CA Jr. Direct medical costs of acute pancreatitis hospitalizations in the United States. Pancreas. 2007;35(4):302–307. PMID: 18090234 http://doi.org/10.1097/MPA.0b013e3180cac24b; Fagenholz PJ, Castillo CF, Harris NS, Pelletier AJ, Camargo CA Jr. Increasing United States hospital admissions for acute pancreatitis, 1988-2003. Ann Epidemiol. 2007;17(7):491–497. PMID: 17448682 http://doi.org/10.1016/j.annepidem.2007.02.002; Cho J, Petrov MS. Pancreatitis, pancreatic cancer, and their metabolic sequelae: projected burden to 2050. Clin Transl Gastroenterol. 2020;11(11):e00251. PMID: 33259158 http://doi.org/10.14309/ctg.0000000000000251; Ревишвили А.Ш., Оловянный В.Е., Сажин В.П., Нечаев О.И., Захарова М.А., Шелина Н.В., и др. Хирургическая помощь в Российской Федерации: информационно-аналитический сборник. Москва: ФГБУ НМИЦ хирургии им. А.В. Вишневского; 2019.; Затевахин И.И., Цициашвили М.Ш., БудуроваМ. Д., Алтунин А.И. Панкреонекроз (диагностика, прогнозирование и лечение). Москва; 2007.; Márta K, Szabó AN, Pécsi D, Varjú P, Bajor J, Gódi S, et al. High versus low energy administration in the early phase of acute pancreatitis (GOULASH trial): protocol of a multicenter randomised double-blind clinical trial. BMJ Open. 2017;7(9):e015874. PMID: 28912191 http://doi.org/10.1136/bmjopen-2017-015874; Leppäniemi A, Tolonen M, Tarasconi A, Segovia-Lohse H, Gamberini E, Kirkpatrick AW, et al. 2019 WSES guidelines for the management of severe acute pancreatitis. World J Emerg Surg. 2019;14:27. PMID: 31210778 http://doi.org/10.1186/s13017-019-0247-0; Boxhoorn L, Voermans RP, Bouwense SA, Bruno MJ, Verdonk RC, Boermeester MA, et al. Acute pancreatitis. Lancet. 2020;396(10252):726–734. PMID: 32891214 http://doi.org/10.1016/S0140-6736(20)31310-6; Schmidt J, Rattner DW, Lewandrowski K, Compton CC, Mandavilli U, Knoefel WT, et al. A better model of acute pancreatitis for evaluating therapy. Ann Surg. 1992;215(1):44–56. PMID: 1731649 http://doi.org/10.1097/00000658-199201000-00007; Van Felius ID, Akkermans LM, Bosscha K, Verheem A, Harmsen W, Visser MR, et al. Interdigestive small bowel motility and duodenal bacterial overgrowth in experimental acute pancreatitis. Neurogastroenterol Motil. 2003;15(3):267–276. PMID: 12787336 http://doi.org/10.1046/j.1365–2982.2003.00410.x; Párniczky A, Kui B, Szentesi A, Balázs A, Szűcs Á, Mosztbacher D, et al. Prospective, Multicentre, Nationwide Clinical Data from 600 Cases of Acute Pancreatitis. PLoS One. 2016;11(10):e0165309. PMID: 27798670 http://doi.org/10.1371/journal.pone.0165309; Al-Omran M, Albalawi ZH, Tashkandi MF, Al-Ansary LA. Enteral versus parenteral nutrition for acute pancreatitis. Cochrane Database Syst Rev. 2010;2010(1):CD002837. PMID: 20091534 http://doi.org/10.1002/14651858.CD002837.pub2; Yi F, Ge L, Zhao J, Lei Y, Zhou F, Chen Z, et al. Meta-analysis: total parenteral nutrition versus total enteral nutrition in predicted severe acute pancreatitis. Intern Med. 2012;51(6):523–530. PMID: 22449657 http://doi.org/10.2169/internalmedicine.51.6685; Dervenis C, Smailis D, Hatzitheoklitos E. Bacterial translocation and its prevention in acute pancreatitis. J Hepatobiliary Pancreat Surg. 2003;10(6):415–418. PMID: 14714160 http://doi.org/10.1007/s00534-002-0727-5; Bakker OJ, van Santvoort HC, van Brunschot S, Ahmed Ali U, Besselink MG, Boermeester MA, et al. Pancreatitis, very early compared with normal start of enteral feeding (PYTHON trial): design and rationale of a randomised controlled multicenter trial. Trials. 2011;12:73. PMID: 21392395 http://doi.org/10.1186/1745-6215-12-73; Ioannidis O, Lavrentieva A, Botsios D. Nutrition support in acute pancreatitis. JOP. 2008;9(4):375-390. PMID: 18648127; Petrov MS, Correia MI, Windsor JA. Nasogastric tube feeding in predicted severe acute pancreatitis. A systematic review of the literature to determine safety and tolerance. JOP. 2008;9(4):440-448. PMID: 18648135; Saluja AK, Bhagat L, Lee HS, Bhatia M, Frossard JL, Steer ML. Secretagogue-induced digestive enzyme activation and cell injury in rat pancreatic acini. Am J Physiol. 1999;276(4):G835–842. PMID: 10198325 http://doi.org/10.1152/ajpgi.1999.276.4.G835; Yamamoto M, Reeve JR Jr, Green GM. Supramaximal CCK-58 does not induce pancreatitis in the rat: role of pancreatic water secretion. Am J Physiol Gastrointest Liver Physiol. 2007;292(4):G964–974. PMID: 17158258 http://doi.org/10.1152/ajpgi.00338.2004; Banks PA, Bollen TL, Dervenis C, Gooszen HG, Johnson CD, Sarr MG, et al. Classification of acute pancreatitis-2012: revision of the Atlanta classification and definitions by international consensus. Gut. 2013;62(1):102–111. PMID: 23100216 http://doi.org/10.1136/gutjnl-2012-302779; Острый панкреатит. Клинические рекомендации. Версия от 09 октября 2020 г. URL: http://общество-хирургов.рф/stranica-pravlenija/klinicheskie-rekomendaci/urgentnaja-abdominalnaja-hirurgija/ostryi-pankreatit-versija-sentjabr-2020.html [Дата обращения 20 августа 2024 г.]; Киселев В.В., Петриков С.С., Жигалова М.С., Новиков С.В., Шаврина Н.В., Ярцев П.А. Восстановление пропульсивной функции кишечника у пациентов с тяжелым острым панкреатитом в условиях отделения реанимации и интенсивной терапии. Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь». 2023;12(2):210–216. https://doi.org/10.23934/2223-9022-2023-12-2-210-216; https://www.jnmp.ru/jour/article/view/1921
-
2Academic Journal
المؤلفون: V. G. Grebenkov, I. A. Solov’ev, I. P. Kostyuk, D. A. Surov, M. S. Korzhuk, R. V. Eselevich, O. V. Balura, V. N. Rumyantsev, S. S. Krestyaninov, В. Г. Гребеньков, И. А. Соловьев, И. П. Костюк, Д. А. Суров, М. С. Коржук, Р. В. Еселевич, О. В. Балюра, В. Н. Румянцев, С. С. Крестьянинов
المصدر: Surgery and Oncology; Том 13, № 4 (2023); 38-49 ; Хирургия и онкология; Том 13, № 4 (2023); 38-49 ; 2949-5857
مصطلحات موضوعية: эвисцерация малого таза, tumor recurrence, locally advanced tumors, surgical treatment, pelvic tumors, rectal cancer, uterine body cancer, ovarian cancer, cervical cancer, pelvic cavity evisceration, рецидив опухоли, местно-распространенные опухоли, хирургическое лечение, опухоли органов малого таза, рак прямой кишки, рак тела матки, рак яичников, рак шейки матки
وصف الملف: application/pdf
Relation: https://www.onco-surgery.info/jour/article/view/655/444; Пу Т., Расулов А.О., Тамразов Р.И. и др. Рецидивы рака прямой кишки после хирургического и комбинированного лечения: факторы риска, диагностика и; Майстренко Н.А., Хватов А.А., Учваткин Г.В. и др. Экзентерация малого таза в лечении местно-распространенных опухолей. Вестник хирургии им. И.И. Грекова 2014;173(6):37–42.; Brunschwig A. Complete excision of pelvic viscera in the male for advanced carcinoma of the Sigmoid Invading the Urinary Bladder. Ann Surg 1949;129(4):499–504. DOI:10.1097/00000658-194904000-00008; Bendifallah S., de Foucher T., Bricou A. et al. Cervical cancer recurrence: proposal for a classification based on anatomical dissemination pathways and prognosis. Surg Oncol 2019;30:40–6. DOI:10.1016/j.suronc.2019.05.004; Костюк И.П., Васильев Л.А., Крестьянинов С.С. Классификация местно-распространенных новообразований малого таза и вторичного опухолевого поражения мочевого пузыря. Онкоурология 2014;1:39–43.; Зубарев П.Н., Соловьев И.А., Резванцев М.В. и др. Математическая модель прогнозирования развития рецидива рака прямой кишки у радикально оперированных больных. Вестник Российской военно-медицинской академии 2010;2(30):19–25.; Suzuki K., Gunderson L., Devine R. et al. Intraoperative irradiation after palliative surgery for locally recurrent rectal cancer. Cancer 1995;75:939–52. DOI:10.1002/1097-0142(19950215)75:43.0.co;2-e; Wanebo H., Antoniuk P., Koness R. et al. Pelvic resection of recurrent rectal cancer: technical considerations and outcomes. Dis Colon Rectum 1999;42:1438–48. DOI:10.1007/BF02235044; Hahnloser D., Nelson H., Gunderson L.L. et al. Curative potential of multimodality therapy for locally recurrent rectal cancer. Ann Surg 2003;237(4):502–8. DOI:10.1097/01.SLA.0000059972.90598.5F; Peiretti M., Zapardiel I., Zanagnolo V. et al. Management of Recurrent Cervical Cancer: A Review of the Literature. Surg Oncol 2012;21(2):e59–66. DOI:10.1016/j.suronc.2011.12.008; Yamada K., Ishizawa T., Niwa K. et. al. Patterns of pelvic invasion are prognostic in the treatment of locally recurrent rectal cancer. Br J Surg 2001;88(7):988–93. DOI:10.1046/j.0007-1323.2001.01811.x; Georgiou P., Tekkis P., Constantinides V. et. al. Diagnostic accuracy and value of magnetic resonance imaging (MRI) in planning exenterative pelvic surgery for advanced colorectal cancer. Eur J Cancer 2013;49(1):72–81. DOI:10.1016/j.ejca.2012.06.025; Belli F., Sorrentino L., Gallino G. et al. A proposal of an updated classification for pelvic relapses of rectal cancer to guide surgical decision-making. J Surg Oncol 2020;122(2):350–9. DOI:10.1002/jso.25938; Kobayashi R., Yamashita H., Okuma K. et al. Details of Recurrence Sites after Definitive Radiation Therapy for Cervical Cancer. J Gynecol Oncol 2016;27(2):e16. DOI:10.3802/jgo.2016.27.e16; Sasidharan A., Mahantshetty U., Gurram L. et al. Patterns of First Relapse and Outcome in Patients with Locally Advanced Cervical Cancer After Radiochemotherapy: A Single Institutional Experience. Indian J Gynecol Oncol 2020;18(4):3–8. DOI:10.1007/s40944-019-0345-7; Moore H.G., Shoup M., Riedel E. et al. Colorectal cancer pelvic recurrences: determinants of resectability. Dis Colon Rectum 2004;47(10):1599–606. DOI:10.1007/s10350-004-0677-x; Мусаев Э.Р., Полыновский А.В., Расулов А.О. и др. Возможности лечения рецидива рака прямой кишки с инвазией в крестец (с комментарием). Хирургия. Журнал им. Н.И. Пирогова 2017;3:24–35. DOI:10.17116/hirurgia2017324-35; Гребеньков В.Г., Румянцев В.Н., Иванов В.М. и др. Периоперационное применение технологии дополненной реальности в хирургическом лечении больного местно-распространенным локорегионарным рецидивом рака прямой кишки. Хирургия. Журнал им. Н.И. Пирогова 2022;(12-2):44–53. DOI:10.17116/hirurgia202212244; Соловьев И.А., Суров Д.А., Васильченко М.В. и др. Непосредственные результаты расширенных и комбинированных операций у больных с местно-распространенным раком органов малого таза. Военно-медицинский журнал 2021;342(3):37–45.; Pilipshen S., Heilweil M., Quan S. et al. Patterns of pelvic recurrence following definitive resections of rectal cancer. Cancer 1984;53(6):1354–62. DOI:10.1002/1097-0142(19840315)53: 63.0.co;2-j; Guillem J., Ruo L. Strategies in operative therapy for locally recurrent rectal cancer. Semin Colon Rectal Surg 1998;9:259–68.; Burger I., Vargas H., Donati O. et al. The value of 18F-FDG PET/CT in recurrent gynecologic malignancies prior to pelvic exenteration. Gynecol Oncol 2013;129(3):586–92. DOI:10.1016/j.ygyno.2013.01.017; Martinez A., Filleron T., Rouanet P. et al. Prospective assessment of first-year guality of life after pelvic exenteration for gynecologic malignancy: a french multicentric study. Ann Surg Oncol 2018;25(2):535–41. DOI:10.1245/s10434-017-6120-z; Bricker E. Bladder substitution after pelvic evisceration. Surg Clin North Am 1950;30(5):1511–21. DOI:10.1016/s0039-6109(16)33147-4; Chew M., Brown W., Masya L. et al. Clinical, MRI, and PET-CT criteria used by surgeons to determine suitability for pelvic exenteration surgery for recurrent rectal cancers: a Delphi study. Dis Colon Rectum 2013;56(6):717–25. DOI:10.1097/DCR.0b013e3182812bec; Хватов А.А., Майстренко Н.А., Сазонов А.А. и др. Реконструкция органов малого таза и подвздошных сосудов у больной с местно-распространенным рецидивом рака яичников. Вестник хирургии им. И.И. Грекова 2018;177(3):61–4. DOI:10.24884/0042-4625-2018-177-3-61-64; https://www.onco-surgery.info/jour/article/view/655
-
3Academic Journal
المؤلفون: D. A. Rudakov, D. A. Surov, I. A. Soloviev, O. V. Balura, B. B. Bromberg, N. A. Sizonenko, I. L. Esayan, V. T. Nguyen, Д. А. Рудаков, Д. А. Суров, И. А. Соловьев, О. В. Балюра, Б. Б. Бромберг, Н. А. Сизоненко, И. Л. Есаян, В. Т. Нгуен
المساهمون: The authors gratefully acknowledge Viktoria A. Ilyina, Head of the Anatomic Pathology Department, Dr. Sci. (Med.), Chief Researcher, Dzhanelidze Saint-Petersburg Research Institute of Emergency Medicine., Авторы благодарят за помощь заведующую патолого-анатомическим отделением, доктора медицинских наук, главного научного сотрудника СПб НИИ скорой помощи им. И.И. Джанелидзе Ильину Викторию Анатольевну
المصدر: Creative surgery and oncology; Том 14, № 2 (2024); 186-193 ; Креативная хирургия и онкология; Том 14, № 2 (2024); 186-193 ; 2076-3093 ; 2307-0501
مصطلحات موضوعية: внутрибрюшная гипертермическая химиоперфузия, carcinomatosis of peritoneum, photodynamic therapy, fluorescence diagnostics, cytoreductive surgery, phototheranostics, intraabdominal hyperthermic chemoperfusion, канцероматоз брюшины, фотодинамическая терапия, флуоресцентная диагностика, циторедуктивная хирургия, фототераностика
وصف الملف: application/pdf
Relation: https://www.surgonco.ru/jour/article/view/957/608; Ганцев Ш.Х., Ганцев К.Ш., Кзыргалин Ш.Р., Ишмуратова К.Р. Перитонеальный канцероматоз при злокачественных новообразованиях различных локализаций. Достижения и перспективы. Креативная хирургия и онкология. 2021;11(2):149– 56. DOI:10.24060/2076-3093-2021-11-2-149-156; Ren K., Xie X., Min T., Sun T., Wang H., Zhang Y., et al. Development of the peritoneal metastasis: a review of back-grounds, mechanisms, treatments and prospects. J Clin Med. 2022;12(1):103. DOI:10.3390/jcm12010103; Almerie M.Q., Gossedge G., Wright K.E., Jayne D.G. Treatment of peritoneal carcinomatosis with photodynamic therapy: Systematic review of current evidence. Photodiagnosis Photodyn Ther. 2017;20:276–86. DOI:10.1016/j.pdpdt.2017.10.021; Ганцев Ш.Х., Забелин М.В., Ганцев К.Ш., Измайлов А.А., Кзыргалин Ш.Р. Перитонеальный канцероматоз: мировые научные школы и современное состояние вопроса. Креативная хирургия и онкология. 2021;11(1):85–91. DOI:10.24060/2076-3093-2021-11-1-85-91; Azaïs H., Mordon S., Collinet P. Traitement des mйtastases pйritonйales des cancers йpithйliaux de l’ovaire par thйrapie photodynamique. Limites et perspectives. Gynecol Obstet Fertil Senolog. 2017;45(4):249–56. DOI:10.1016/j.gofs.2017.02.005; Kim H.I., Wilson B.C. Photodynamic diagnosis and therapy for peritoneal carcinomatosis from gastrointestinal cancers: Status, opportunities, and challenges. J Gastric Cancer. 2020;20(4):355–75. DOI:10.5230/jgc.2020.20.e39; Olszowy M., Nowak-Perlak M., Woźniak M. Current strategies in photodynamic therapy (PDT) and photodynamic diagnostics (PDD) and the future potential of nanotechnology in cancer treatment. Pharmaceutics. 2023;15(6):1712. DOI:10.3390/pharmaceutics15061712; Просветов В.А., Суров Д.А., Гайворонский И.В., Нгуен В.Т. Инновационная технология тотальной париетальной перитонэктомии при карциноматозе брюшины. Известия Российской Военно-медицинской академии. 2022;41(2):143–9. DOI:10.17816/rmmar104695; Kyang L.S., Dewhurst S.L., See V.A., Alzahrani N.A., Morris D.L. Outcomes and prognostic factors of cytoreductive surgery and perioperative intraperitoneal chemotherapy in high-volume peritoneal carcinomatosis. Int J Hyperthermia. 2022;39(1):1106–14. DOI:10.1080/02656736.2022.2112625; Somashekhar S.P., Ashwin K.R., Yethadka R., Zaveri S.S., Ahuja V.K., Rauthan A., et al. Impact of extent of parietal peritonectomy on oncological outcome after cytoreductive surgery and HIPEC. Pleura Peritoneum. 2019;4(4):20190015. DOI:10.1515/pp-2019-0015; Mercier F., Mohamed F., Cazauran J.B., Kepenekian V., Vaudoyer D., Cotte E., et al. An update of peritonectomy procedures used in cytoreductive surgery for peritoneal malignancy. Int J Hyperthermia. 2019;36(1):744–52. DOI:10.1080/02656736.2019.1635717; Sugarbaker P.H. Prevention and treatment of peritoneal metastases: a comprehensive review. Indian J Surg Oncol. 2019;10(1):3–23. DOI:10.1007/s13193-018-0856-1; Liu Y., Endo Y., Fujita T., Ishibashi H., Nishioka T., Canbay E., et al. Cytoreductive surgery under aminolevulinic acid-mediated photodynamic diagnosis plus hyperthermic intraperitoneal chemotherapy in patients with peritoneal carcinomatosis from ovarian cancer and primary peritoneal carcinoma: results of a phase I trial. Ann Surg Oncol. 2014;21(13):4256–62. DOI:10.1245/s10434-014-3901-5; Нгуен В.Т., Просветов В.А., Бромберг Б.Б., Дымников Д.А., Логинов В.А., Демко А.Е. и др. Пути повышения эффективности циторедутивных оперативных вмешательств у больных, страдающих осложненными диссеминированными опухолями брюшной полости и малого таза. Вестник Российской военно-медицинской академии. 2023;25(1):23–32. DOI:10.17816/brmma120006; Нгуен В.Т., Бромберг Б.Б., Новикова М.В., Просветов В.А., Коржук М.С., Демко А.Е. и др. Двухэтапная циторедуктивная хирургия при осложненном прогрессирующем раке тонкой кишки. Вестник Национального медико-хирургического центра им. Н.И. Пирогова. 2022;17(3):142–7. DOI:10.25881/20728255_2022_17_3_142; Панкратов А.А., Сулейманов Э.А., Лукьянец Е.А., Венедиктова Ю.Б., Плютинская А.Д. Экспериментальное обоснование выбора режимов облучения для интраперитонеальной фотодинамической терапии с фотосенсибилизаторами на основе порфиринов и фталоцианинов. Biomedical Photonics. 2017;6(2):12– 20. DOI:10.24931/2413-9432-2017-6-2-12-20; https://www.surgonco.ru/jour/article/view/957
-
4Academic Journal
المؤلفون: B. G. Guliev, I. A. Soloviev, E. O. Stetsik, A. A. Andriyanov, Б. Г. Гулиев, И. А. Соловьев, Е. О. Стецик, А. А. Андриянов
المصدر: Urology Herald; Том 11, № 4 (2023); 151-157 ; Вестник урологии; Том 11, № 4 (2023); 151-157 ; 2308-6424 ; 10.21886/2308-6424-2023-11-4
مصطلحات موضوعية: клинический случай, inguinal hernia, sliding bladder hernia, hernioplasty, clinical case, скользящая грыжа мочевого пузыря, паховая грыжа, грыжесечение
وصف الملف: application/pdf
Relation: https://www.urovest.ru/jour/article/view/795/518; Levine B. Scrotal cystocele. J Am Med Assoc. 1951;147(15):1439-41. DOI:10.1001/jama.1951.73670320003013a; Branchu B, Renard Y, Larre S, Leon P. Diagnosis and treatment of inguinal hernia of the bladder: a systematic review of the past 10 years. Turk J Urol. 2018;44(5):384-8. DOI:10.5152/tud.2018.46417; Khan K, Chaudhry A, Feinman MB. Inguinoscrotal hernia containing the urinary bladder. BMJ Case Rep. 2016;2016:bcr2016217408. DOI:10.1136/bcr-2016-217408; De Angelis M, Mantovani G, Di Lecce F, Boccia L. Inguinal bladder and ureter hernia permagna: definition of a rare clinical entity and case report. Case Rep Surg. 2018;2018:9705728. DOI:10.1155/2018/9705728; Komorowski AL, Moran-Rodriguez J, Kazi R, Wysocki WM. Sliding inguinal hernias. Int J Surg. 2012;10(4):206-8. DOI:10.1016/j.ijsu.2012.03.002; Dawson J, Koo V. Upper and lower urinary tract obstruction secondary to inguinoscrotal hernia containing bladder and prostate gland. Urol Case Rep. 2021;37:101606. DOI:10.1016/j.eucr.2021.101606; Allameh F, Faraji S, Garousi M, Hojjati SA. Inguinoscrotal herniation of bladder and ureter: A case report. Urol Case Rep. 2021; 39:101821. DOI:10.1016/j.eucr.2021.101821; Moufid K, Touiti D, Mohamed L. Inguinal bladder hernia: four case analyses. Rev Urol. 2013;15(1):32-6. PMID: 23671403; Bisharat M, O'Donnell ME, Thompson T, MacKenzie N, Kirkpatrick D, Spence RA, Lee J. Complications of inguino-scrotal bladder hernias: a case series. Hernia. 2009;13(1):81-4. DOI:10.1007/s10029-008-0389-6; Regis L, Lozano F, Planas J, Morote J. Bladder cancer in an inguino-scrotal vesical hernia. Case Rep Oncol Med. 2012;2012:142351. DOI:10.1155/2012/142351; Inage K, Mizusawa H, Mimura Y, Shimizu F. Patient with inguinal hernia containing the urinary bladder complicated by bladder stones. IJU Case Rep. 2019;2(5):276-278. DOI:10.1002/iju5.12100; Khan A, Beckley I, Dobbins B, Rogawski KM. Laparoscopic repair of massive inguinal hernia containing the urinary bladder. Urol Ann. 2014;6(2):159-62. DOI:10.4103/0974-7796.130654; Mejri R, Chaker K, Mokhtar B, Rhouma SB, Nouira Y. Inguinal bladder hernia: a case report. J Surg Case Rep. 2021;2021(9):rjab386. DOI:10.1093/jscr/rjab386; Pasquale MD, Shabahang M, Evans SR. Obstructive uropathy secondary to massive inguinoscrotal bladder herniation. J Urol. 1993;150 (6):1906-8. DOI:10.1016/s0022-5347(17)35931-1; Mahadevappa B, Suresh SC, Natarajan K, Thomas J. Cystogram with dumbbell shaped urinary Mahadevappa bladder in a sliding inguinal hernia. J Radiol Case Rep. 2009;3(2):7-9. DOI:10.3941/jrcr.v3i2.91; Bjurlin MA, Delaurentis DA, Jordan MD, Richter HM 3rd. Clinical and radiographic findings of a sliding inguinoscrotal hernia containing the urinary bladder. Hernia. 2010;14(6):635-8. DOI:10.1007/s10029-009-0597-8; Kraft KH, Sweeney S, Fink AS, Ritenour CW, Issa MM. Inguinoscrotal bladder hernias: report of a series and review of the literature. Can Urol Assoc J. 2008;2(6):619-23. DOI:10.5489/cuaj.980; Wagner AA, Arcand P, Bamberger MH. Acute renal failure resulting from huge inguinal bladder hernia. Urology. 2004;64(1):156-7. DOI:10.1016/j.urology.2004.03.040; Laniewski PJ, Watters GR, Tomlinson P. Herniation of the bladder trigone into an inguinal hernia causing acute urinary obstruction and acute renal failure. J Urol. 1996;156(4):1438-9. PMID: 8808894; Papatheofani V, Beaumont K, Nuessler NC. Inguinal hernia with complete urinary bladder herniation: a case report and review of the literature. J Surg Case Rep. 2020;2020(1):rjz321. DOI:10.1093/jscr/rjz321; Helleman JN, Willemsen P, Vanderveken M, Cortvriend J, Van Erps P. Incarcerated vesico-inguinal hernia: a case report. Acta Chir Belg. 2009;109(6):815-7. DOI:10.1080/00015458.2009; Valdivia Uría JG, Valle Gerhold J. Preperitoneal laparoscopic bladder hernia repair. J Urol. 1995;154(3):1127-8. DOI:10.1016/s0022-5347(01)66996-9; Charuzi I, Mogutin B, Alis M, Kyzer S. Laparoscopic repair of inguinoscrotal hernia with complete herniation of the urinary bladder. Hernia. 2000;4(3):167-9. DOI:10.1007/bf01207598; Sung ER, Park SY, Ham WS, Jeong W, Lee WJ, Rha KH. Robotic repair of scrotal bladder hernia during robotic prostatectomy. J Robot Surg. 2008;2(3):209-11. DOI:10.1007/s11701-008-0108-4; Kania P, Marczuk P, Biedrzycki J. A giant inguinoscrotal hernia containing urinary bladder repaired with use of robotic-assisted laparoscopy: a case report. Cent European J Urol. 2023;76(1):64-67. DOI:10.5173/ceju.2023.211; https://www.urovest.ru/jour/article/view/795
-
5Academic Journal
المؤلفون: K. S. Shulenin, D. V. Cherkashin, I. A. Soloviev, R. D. Kuchev, К. С. Шуленин, Д. В. Черкашин, И. А. Соловьёв, Р. Д. Кучев
المصدر: Marine Medicine; Том 8, № 4 (2022); 7-17 ; Морская медицина; Том 8, № 4 (2022); 7-17 ; 2587-7828 ; 2413-5747
مصطلحات موضوعية: индексы риска, surgery, extracardiac surgical interventions, perioperative complications, cardiovascular risk, mortality, functional state, risk index, хирургия, внесердечные хирургические вмешательства, периоперационные осложнения, кардиоваскулярный риск, смертность, функциональное состояние
وصف الملف: application/pdf
Relation: https://seamed.bmoc-spb.ru/jour/article/view/594/539; Devereaux P., Sessler D. Cardiac complications in patients undergoing major noncardiac surgery // New England Journal of Medicine. 2015. Vol. 373, No. 23. Р. 2258–2269. doi:10.1056/nejmra1502824.; Котвицкая З.Т., Колотова Г.Б., Руднов В.А. и др. Интраоперационные факторы риска развития инфаркта миокарда при некардиохирургических вмешательствах // Вестник анестезиологии и реаниматологии. 2018. Т. 15, № 2. С. 32–37. doi:10.21292/2078-5658-2018-15-2-32-37.; Kristensen S., Knuuti J., Saraste A. et al. 2014 ESC/ESA Guidelines on non-cardiac surgery: cardiovascular assessment and management // European Heart Journal. 2014. No 35. Р. 2383–2431. doi:10.1093/eurheartj/ehu282.; The Vascular Events in Noncardiac Surgery Patients Cohort Evaluation (VISION) Study Investigators. Association between complications and death within 30 days after noncardiac surgery // Canadian Medical Association Journal. 2019. Vol. 191, No. 30. Р. E830-E837. doi:10.1503/cmaj.190221.; International Surgical Outcomes Study group. Global patient outcomes after elective surgery: prospective cohort study in 27 low-, middle- and high-income countries // British Journal of Anaesthesia. 2016. Vol. 117, No. 5. Р. 601–609. doi:10.1093/bja/aew316.; Малкова М.И., Булашова О.В., Хазова Е.В. Персонифицированный подход к оценке периоперационного риска у пациентов с сердечно-сосудистой патологией в клинике неотложной помощи // Вестник современной клинической медицины. 2018. Т. 11, № 5. С. 62–68. doi:10.20969/vskm.2018.11(5).62-68.; Джиоева О.Н., Драпкина О.М. Послеоперационная фибрилляция предсердий как фактор риска сердечно-сосудистых осложнений при внесердечных хирургических вмешательствах // Кардиоваскулярная терапия и профилактика. 2020. Т. 19, № 4. С. 112–118. doi:10.15829/1728-8800-2020-2540.; Сумин А.Н. Подготовка пациента с сердечно-сосудистыми заболеваниями к плановым хирургическим вмешательствам при онкопатологии // Комплексные проблемы сердечно-сосудистых заболеваний. 2019. Т. 8, № 1. С. 123–133. doi:10.17802/2306-1278-2019-8-1-123-133.; Козлов И.А, Овезов А.М., Пивоварова А.А. Снижение риска периоперационных осложнений при кардиальной коморбидности // Вестник анестезиологии и реаниматологии. 2020. Т. 17, № 2. С. 38–48. doi:10.21292/2078-5658-2020-17-2-38-48.; Заболотских И.Б., Трембач Н.В. Пациенты высокого периоперационного риска: два подхода к стратификации // Вестник интенсивной терапии им. А. И. Салтанова. 2019. № 4. С. 34–46. doi:10.21320/1818-474X-2019-4-34-46.; Abeeleh M., Tareef T., Hani A. et al. Reasons for operation cancellations at a teaching hospital: prioritizing areas of improvement // Annals of Surgical Treatment and Research. 2017. Vol. 93, No. 2. P. 65–69. doi:10.4174/astr.2017.93.2.65.; Liew L., Teo W., Seet E. et al. Factors predicting one-year post-surgical mortality amongst older Asian patients undergoing moderate to major non-cardiac surgery — a retrospective cohort study // BMC Surgery. 2020. Vol. 20, No. 11. Р. 1–10. doi:10.1186/s12893-019-0654-x.; Spence J., LeManach Y., Chan M. et al. Association between complications and death within 30 days after noncardiac surgery // Canadian Medical Association Journal. 2019. Vol. 191, No. 30. P. E830-E837. doi:10.1503/cmaj.190221.; Glance L.G., Lustik S.J., Hannan E.L. et al. The surgical mortality probability model // Annals of Surgery. 2012. Vol. 255, No. 4. Р. 696–702. doi:10.1097/sla.0b013e31824b45af.; Koo C., Hyder J., Wanderer J., Eikermann M. et al. A meta-analysis of the predictive accuracy of postoperative mortality using the American Society of Anesthesiologists’ Physical Status Classification System // World Journal of Surgery. 2014. Vol. 39, Nо. 1. P. 88–103. doi:10.1007/s00268-014-2783-9.; Copeland G., Jones D., Walters M. POSSUM: A scoring system for surgical audit // British Journal of Surgery. 1991. Vol. 78, No. 3. P. 355–360. doi:10.1002/bjs.1800780327.; Le Manach Y., Collins G., Rodseth R. et al. Preoperative score to predict postoperative mortality (POSPOM) // Anesthesiology. 2016. Vol. 124, No. 3. P. 570–579. doi:10.1097/aln.0000000000000972; Froehner M., Koch R., Hubler M. et al. Validation of the preoperative score to predict postoperative mortality in patients undergoing radical cystectomy // European Urology Focus. 2019. Vol. 5, No. 2. P. 197–200. doi:10.1016/j.euf.2017.05.003.; Bilimoria K., Liu Y., Paruch J. et al. Development and evaluation of the universal ACS NSQIP Surgical Risk Calculator: a decision aid and informed consent tool for patients and surgeons // Journal of the American College of Surgeons. 2013. Vol. 217, No. 5. Р. 833–842.e3. doi:10.1016/j.jamcollsurg.2013.07.385; Котова Д.П., Котов С.В., Гиляров М.Ю. и др. Использование прогностических шкал в оценке периоперационных осложнений в практике врача-терапевта // Кардиоваскулярная терапия и профилактика. 2018. Т. 17, № 2. С. 75– 80. doi:10.15829/1728-8800-2018-2-75-80.; Mureddu G. Current multivariate risk scores in patients undergoing non-cardiac surgery // Monaldi Archives for Chest Disease. 2017. Vol. 87, No. 2. Р. 16–20. doi:10.4081/monaldi.2017.848.; Dilaver N., Gwilym B., Preece R. et al. Systematic review and narrative synthesis of surgeons’ perception of postoperative outcomes and risk // BJS Open. 2020. Vol. 4, No. 1. Р. 16–26. doi:10.1002/bjs5.50233.; Goldman L., Caldera D.L., Nussbaum S.R. et al. Multifactorial Index of Cardiac Risk in Noncardiac Surgical Procedures // New England Journal of Medicine. 1977. Vol. 297, No. 16. Р. 845–850. doi:10.1056/nejm197710202971601.; Detsky A.S., Abrams H.B., McLaughlin J.R. et al. Predicting cardiac complications in patients undergoing non-cardiac surgery // Journal of General Internal Medicine. 1986. Vol. 1, No. 4. Р. 211–219. doi:10.1007/bf02596184.; Lee T., Marcantonio E., Mangione C. et al. Derivation and prospective validation of a simple index for prediction of cardiac risk of major noncardiac surgery // Circulation. 1999. Vol. 100, No. 10. Р. 1043–1049. doi:10.1161/01.cir.100.10.1043.; Davis C., Tait G., Carroll J. et al. The Revised Cardiac Risk Index in the new millennium: a single-centre prospective cohort re-evaluation of the original variables in 9,519 consecutive elective surgical patients // Canadian Journal of Anesthesia. 2013. Vol. 60, No. 9. Р. 855–863. doi:10.1007/s12630-013-9988-5.; Gupta P., Gupta H., Sundaram A. et al. Development and validation of a risk calculator for prediction of cardiac risk after surgery // Circulation. 2011. Vol. 124, No. 4. Р. 381–387. doi:10.1161/circulationaha.110.015701.; Cohn S., Fernandez Ros N. Comparison of 4 cardiac risk calculators in predicting postoperative cardiac complications after noncardiac operations // The American Journal of Cardiology. 2018. Vol. 121, No. 1. Р. 125–130. doi:10.1016/j.amjcard.2017.09.031.; Fronczek J., Polok K., Devereaux P.J. et al. External validation of the Revised Cardiac Risk Index and National Surgical Quality Improvement Program Myocardial Infarction and Cardiac Arrest calculator in noncardiac vascular surgery // British Journal of Anaesthesia. 2019. Vol. 123, No. 4. Р. 421–429. doi:10.1016/j.bja.2019.05.029.; Bertges D., Neal D., Schanzer A. et al. The Vascular Quality Initiative Cardiac Risk Index for prediction of myocardial infarction after vascular surgery // Journal of Vascular Surgery. 2016. Vol. 64, No. 5. Р. 1411–1421.e4. doi:10.1016/j.jvs.2016.04.045.; Eslami M., Rybin D., Doros G., Farber A. An externally validated robust risk predictive model of adverse outcomes after carotid endarterectomy // Journal of Vascular Surgery. 2016. Vol. 63, No. 2. Р. 345–354. doi:10.1016/j.jvs.2015.09.003.; Alrezk R., Jackson N., Al Rezk M. et al. Derivation and validation of a Geriatric‐Sensitive Perioperative Cardiac Risk Index // Journal of the American Heart Association: Cardiovascular and Cerebrovascular Disease. 2017. Vol. 6, No. 11. Р. 1–10. doi:10.1161/JAHA.117.006648.; Мурашко С.С., Пасечник И.Н., Бернс С.А. Миокардиальное повреждение при некардиальной хирургии: трудности диагностики // Комплексные проблемы сердечно-сосудистых заболеваний. 2020. Т. 9, № 3. С. 59–68. doi:10.17802/2306-1278-2020-9-3-59-68.; Duceppe E., Parlow J., MacDonald P. et al. Canadian cardiovascular society guidelines on perioperative cardiac risk assessment and management for patients who undergo noncardiac surgery // Canadian Journal of Cardiology. 2017. Vol. 33, No. 1, рр. 17–32. doi:10.1016/j.cjca.2016.09.008.; De Hert S., Staender S., Fritsch G. et al. Pre-operative evaluation of adults undergoing elective noncardiac surgery // European Journal of Anaesthesiology. 2018. Vol. 35, No. 6. Р. 407–465. doi:10.1097/eja.0000000000000817.; Smilowitz N., Berger J. Рerioperative cardiovascular risk assessment and management for noncardiac surgery // Journal of the American Medical Association. 2020. Vol. 324, No. 3. Р. 279–290. doi:10.1001/jama.2020.7840.; Halvorsen S., Mehilli J., Cassese S. et al. 2022 ESC Guidelines on cardiovascular assessment and management of patients undergoing non-cardiac surgery // European Heart Journal. 2022. Vol. 3, No. 39. P. 3826–3924. doi:10.1093/eurheartj/ehac270.; Самойленко В.В., Шевченко О.П. Эволюция представлений об оценке риска развития сердечно-сосудистых осложнений в периоперационном периоде // Терапевтический архив. 2014. Т. 86, № 4. С. 96–102.; Цыганков К.А., Щеголев А.В., Лахин Р.Е. Оценка функционального состояния пациента в предоперационном периоде с помощью кардиореспираторной нагрузочной пробы и опросника Дюка // Вестник Российской Военномедицинской академии. 2016. Т. 54, № 2. С. 34–37.; https://seamed.bmoc-spb.ru/jour/article/view/594
-
6Academic Journal
المؤلفون: И. А. Соловьёв, А. П. Уточкин, Н. А. Сизоненко, Г. Р. Джонджуа
المصدر: Marine Medicine; Том 7, № 5(S) (2021); 93 ; Морская медицина; Том 7, № 5(S) (2021); 93 ; 2587-7828 ; 2413-5747
وصف الملف: application/pdf
-
7Academic Journal
المؤلفون: И. А. Соловьев, А. П. Уточкин, Р. Д. Кучев
المصدر: Marine Medicine; Том 6, № 5(S) (2020); 128-129 ; Морская медицина; Том 6, № 5(S) (2020); 128-129 ; 2587-7828 ; 2413-5747 ; 10.22328/2413-5747-2017-0-4
وصف الملف: application/pdf
-
8Academic Journal
المؤلفون: И. А. Соловьев, А. П. Уточкин, Н. А. Сизоненко, Р. Д. Кучев
المصدر: Marine Medicine; Том 6, № 5(S) (2020); 126-127 ; Морская медицина; Том 6, № 5(S) (2020); 126-127 ; 2587-7828 ; 2413-5747 ; 10.22328/2413-5747-2017-0-4
وصف الملف: application/pdf
-
9Academic Journal
المؤلفون: I. A. Soloviev, V. K. Logunov, A. P. Utochkin, R. D. Kuchev, И. А. Соловьев, К. В. Логунов, А. П. Уточкин, Р. Д. Кучев
المصدر: Marine Medicine; Том 6, № 5(S) (2020); 109-113 ; Морская медицина; Том 6, № 5(S) (2020); 109-113 ; 2587-7828 ; 2413-5747 ; 10.22328/2413-5747-2017-0-4
مصطلحات موضوعية: школа военно-морских хирургов, Department of naval and hospital surgery, Nikolai Gurin, family medicine, school of naval surgeons, кафедра военно-морской и госпитальной хирургии, Гурин Николай Николаевич, семейная медицина
وصف الملف: application/pdf
Relation: https://seamed.bmoc-spb.ru/jour/article/view/408/382; Гурин Н.Н., Логунов К.В. Морская медицина на пороге нового тысячелетия. Исторический очерк. СПб: ООО «Издательство «Золотой век», 2002. 208 с.: ил.; Вовк В.И., Новицкий Л.В., Гурин Н.Н. Хирургическая помощь раненным в живот. СПб.: ООО «Издательско-полиграфическая компания «КОСТА», 2010. 232 с.; Логунов К.В., Гурин Н.Н. Выбор метода лечения язв желудка. СПб.: ИКФ «Фолиант», Изд-во СПбМАПО, 2001. 176 с.; Гурин Н.Н. Лечение ложных суставов, осложненных остеомиелитом. СПб., 2004. 272 с., ил.; Гурин Н.Н., Слободчук С.Ю. Диагностика и лечение острого аппендицита на судах в море. СПб.: ЛИК, 1994. 141 с.; https://seamed.bmoc-spb.ru/jour/article/view/408
-
10Academic Journal
المؤلفون: V. V. Protoshchak, I. A. Solov'ev, V. S. Chirskiy, M. V. Vasilchenko, L. M. Sinelnikov, M. V. Paronnikov, E. G. Karpushchenko, A. A. Erokhina, S. A. Alentiev, M. V. Lazutkin, В. В. Протощак, И. А. Соловьев, В. С. Чирский, М. В. Васильченко, Л. М. Синельников, М. В. Паронников, Е. Г. Карпущенко, А. А. Ерохина, С. А. Алентьев, М. В. Лазуткин
المصدر: Cancer Urology; Том 17, № 1 (2021); 178-184 ; Онкоурология; Том 17, № 1 (2021); 178-184 ; 1996-1812 ; 1726-9776
مصطلحات موضوعية: рак, carcinosarcoma, sarcomatoid, tumor, cancer, карциносаркома, саркоматоид, опухоль
وصف الملف: application/pdf
Relation: https://oncourology.abvpress.ru/oncur/article/view/1312/1256; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1312/850; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1312/851; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1312/852; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1312/853; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1312/854; Humphrey P.A. Histological variants of prostatic carcinoma and their significance. Histopathology 2012;60(1):59—74. DOI:10.1111/j.1365-2559.2011.04039.x.; Somarelli J.A., Boss M.K., Epstein J.I. et al. Carcinosarcomas: tumors in transition? Histol Histopathol 2015;30(6):673-87. DOI:10.14670/HH-30.673.; Dundore P.A., Cheville J.C., Nascimento A.G. et al. Carcinosarcoma of the prostate. Report of 21 cases. Cancer 1995;76(6):1035-42. DOI:10.1002/1097-0142(19950915)76:63.0.co;2-8.; Hamlin W.B., Lund P.K. Carcinosarcoma of the prostate: a case report. J Urol 1967;97(3):518-22. DOI:10.1016/s0022-5347(17)63071-4.; Markowski M.C., Eisenberger M.A., Zahurak M. et al. Sarcomatoid carcinoma of the prostate: retrospective review of a case series from the Johns Hopkins Hospital. Urology 2015;86(3):539-43. DOI:10.1016/j.urology.2015.06.011.; Lauwers G.Y., Schevchuk M., Armenakas N., Reuter V.E. Carcinosarcoma of the prostate. Am J Surg Pathol 1993;17(4):342-9. DOI:10.1097/00000478-199304000-00004.; Протощак В.В., Андреев Е.А., Карпущенко Е.Г. и др. Рак предстательной железы и обоняние собак: возможности неинвазивной диагностики. Урология 2019;5:22-6. DOI:10.18565/urology.2019.5.22-26.; https://oncourology.abvpress.ru/oncur/article/view/1312
-
11Academic Journal
المؤلفون: I. A. Solovev, M. V. Shaposhnikov, A. A. Moskalev, И. А. Соловьёв, М. В. Шапошников, А. А. Москалев
المساهمون: State Projects “Molecular mechanisms of ageing, longevity, and stress tolerance in Drosophila melanogaster”, State Registration No. АААА-А18-118011120004-5, «The combination of various factors (cold, lack of insolation, restricted diet, and geroprotector treatment) for the maximum prolongation of individual life in the genus Drosophild’ No. 18-7-4-23, State Registration No. АААА-А18-118011120008-3
المصدر: Vavilov Journal of Genetics and Breeding; Том 22, № 7 (2018); 878-886 ; Вавиловский журнал генетики и селекции; Том 22, № 7 (2018); 878-886 ; 2500-3259 ; 2500-0462
مصطلحات موضوعية: продолжительность жизни, phototransduction, circadian clocks, photoregimens, aging, lifespan, фототрансдукция, циркадные часы, фоторежимы, старение
وصف الملف: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/1722/1142; Анисимов В.Н. Эпифиз, биоритмы и старение организма. Усп. физиол. наук. 2008;39(4):40-65.; Анисимов В.Н., Виноградова И.А., Борисенков М.Ф., Букалев А.В., Забежинский М.А., Панченко А.В., Попович И.Г., Семенченко А.В., Тындык М.Л. Световой режим, старение и рак. Вестн. Рос. ун-та дружбы народов. Сер. Медицина. 2012;(7):29-30.; Анисимов В.Н., Виноградова И.А., Букалев А.В., Борисенков М.Ф., Попович И.Г., Забежинский М.А., Панченко А.В., Тындык М.Л., Юрова М.Н. Световой десинхроноз и риск злокачественных новообразований у человека: состояние проблемы. Вопр. онкологии. 2013;59(3):302-313.; Виноградова И.А., Анисимов В.Н. Световой режим Севера и возрастная патология. Петрозаводск, 2012.; Добровольская Е.В., Соловьёв И.А., Прошкина Е.Н., Москалев А.А. Влияние сверхактивации генов циркадных ритмов в различных тканях на стрессоустойчивость и продолжительность жизни Drosophila melanogaster. Теоретическая и прикладная экология. 2016;3:32-40.; Лотош Т.А., Виноградова И.А., Букалев А.В., Анисимов В.Н. Модифицирующее влияние постоянного освещения на организм крыс в зависимости от сроков начала воздействия. Фундаментальные исследования. 2013;(5-2):308-313.; Москалев А.А., Малышева О.А. Роль светового режима в регуляции продолжительности жизни Drosophila melanogaster. Экология. 2009;40(3):221-226.; Москалев А.А., Малышева О.А. Роль генов транскрипционного фактора dFOXO, dSIR2 и HSP70 в изменении продолжительности жизни Drosophila melanogaster при различных режимах освещения. Экол. генетика. 2010;8(3):67-80.; Москалев А.А., Шосталь О.А., Зайнуллин В.Г. Генетические аспекты влияния различных режимов освещения на продолжительность жизни дрозофилы. Усп. геронтологии. 2006;18:55-58.; Соловьёв И.А., Добровольская Е.В., Москалев А.А. Генетический контроль циркадных ритмов и старение. Генетика. 2016; 52(4):393-412. DOI 107868/s001667581604010x.; Anisimov V.N., Vinogradova I.A., Panchenko A.V., Popovich I.G., Za-bezhinski M.A. Light-at-night-induced circadian disruption, cancer and aging. Curr. Aging Sci. 2012;5(3):170-177.; Bee L., Marini S., Pontarin G., Ferraro P., Costa R., Albrecht U., Ce-lotti L. Nucleotide excision repair efficiency in quiescent human fibroblasts is modulated by circadian clock. Nucleic Acids Res. 2015; 43(4):2126-2137. DOI 10.1093/nar/gkv081.; Biello S., Bonsall R., Atkinson D., Molyneux L., Harrington P.E., Lall G.M. Alterations in glutamatergic signaling contribute to the decline of circadian photoentrainment in aged mice. Neurobiol. Aging. 2018;66:75-84. DOI 10.1016/j.neurobiolaging.2018.02.013.; Bjorn L.O. Photobiology: the Science of Light and Life. New York, 2015.; Chang J.S., Noh D.Y., Park I.A., Kim M.J., Song H., Ryu S.H., Suh P.G. Overexpression of phospholipase C-y1 in rat 3Y1 fibroblast cells leads to malignant transformation. Cancer Res. 1997;57(24):5465-5468.; Chaudhari A., Gupta R., Makwana K., Kondratov R. Circadian clocks, diets and aging. Nutr. Healthy Aging. 2017;4(2):101-112. DOI 10.3233/NHA-160006.; Daneault V., Hebert M., Albouy G., Doyon J., Dumont M., Carrier J., Vandewalle G. Aging reduces the stimulating effect of blue light on cognitive brain functions. Sleep. 2014;37(1):85-96. DOI 10.5665/sleep.3314.; Dibner C., Schibler U. Circadian timing of metabolism in animal models and humans. J. Intern. Med. 2015;277(5):513-527. DOI 10.1111/joim.12347.; Feillet C., van der Horst G.T., Levi F., Rand D.A., Delaunay F. Coupling between the circadian clock and cell cycle oscillators: implication for healthy cells and malignant growth. Front. Neurol. 2015;6:96. DOI 10.3389/fneur.2015.00096.; Fogle K.J., Baik L.S., Houl J.H., Tran T.T., Roberts L., Dahm N.A., Cao Y., Zhou M., Holmes T.C. CRYPTOCHROME-mediated phototransduction by modulation of the potassium ion channel P-subunit redox sensor. Proc. Natl. Acad. Sci. USA. 2015;112(7):2245-2250. DOI 10.1073/pnas.1416586112.; Fortini M.E., Bonini N.M. Modeling human neurodegenerative diseases in Drosophila: on a wing and a prayer. Trends Genet. 2000; 16(4):161-167. DOI 10.1016/S0168-9525(99)01939-3.; Fuhr L., Abreu M., Pett P., Relogio A. Circadian systems biology: when time matters. Comput. Struct. Biotechnol. J. 2015;13:417-426. DOI 10.1016/j.csbj.2015.07.001.; Giebultowicz J.M. The circadian system and aging of Drosophila. Circadian Rhythms and Their Impact on Aging. Cham, Switzerland. 2017;129-145. DOI 10.1007/978-3-319-64543-8_6.; Hall H., Medina P., Cooper D.A., Escobedo S.E., Rounds J., Brennan K.J., Vincent C., Miura P., Doerge R., Weake V.M. Transcrip-tome profiling of aging Drosophila photoreceptors reveals gene expression trends that correlate with visual senescence. BMC Genomics. 2017;18(1):894. DOI 10.1186/s12864-017-4304-3.; Hardeland R. Melatonin as a geroprotector: healthy aging vs. extension of lifespan. Ed. A.M. Vaiserman. Anti-aging Drugs: From Basic Research to Clinical Practice. Cambridge: Royal Society of Chemistry. UK, 2017;474-495. DOI 10.1039/9781782626602-00474.; Hardie R.C., Juusola M. Phototransduction in Drosophila. Curr. Opin. Neurobiol. 2015;34:37-45. DOI 10.1016/j.conb.2015.01.008.; Hendricks J.C., Lu S., Kume K., Yin J.C., Yang Z., Sehgal A. Gender dimorphism in the role of cycle (BMAL1) in rest, rest regulation, and longevity in Drosophila melanogaster. J. Biol. Rhythms. 2003; 18(1):12-25. DOI 10.1177/0748730402239673.; Hori M., Shibuya K., Sato M., Saito Y. Lethal effects of short-wavelength visible light on insects. Sci. Rep. 2014;4:7383. DOI 10.1038/srep07383.; Ito C., Tomioka K. Heterogeneity of the peripheral circadian systems in Drosophila melanogaster: a review. Front. Physiol. 2016;7:8. DOI 10.3389/fphys.2016.00008.; Kamdar B.B., Tergas A.I., Mateen F.J., Bhayani N.H., Oh J. Night-shift work and risk of breast cancer: a systematic review and meta-analysis. Breast Cancer Res. Treat. 2013;138(1):291-301. DOI 10.1007/s10549-013-2433-1.; Katewa S.D., Akagi K., Bose N., Rakshit K., Camarella T., Zheng X., Hall D., Davis S., Nelson C.S., Brem R.B., Ramanathan A., Sehgal A., Giebultowicz J.M., Kapahi P. Peripheral circadian clocks mediate dietary restriction-dependent changes in lifespan and fat metabolism in Drosophila. Cell Metab. 2016;23(1):143-154. DOI 10.1016/j.cmet.2015.10.014.; Kim M., Subramanian M., Cho Y.H., Kim G.H., Lee E., Park J.J. Shortterm exposure to dim light at night disrupts rhythmic behaviors and causes neurodegeneration in fly models of tauopathy and Alzheimer’s disease. Biochem. Biophys. Res. Commun. 2018;495(2):1722-1729. DOI 10.1016/j.bbrc.2017.12.021.; Kirkwood T.B. Evolution of ageing. Nature. 1977;270(5635):301-304. DOI 10.1038/270301a0.; Klarsfeld A., Rouyer F. Effects of circadian mutations and LD periodicity on the life span of Drosophila melanogaster. J. Biol. Rhythms. 1998;13(6):471-478. DOI 10.1177/074873098129000309.; Kloog I., Haim A., Portnov B.A. Using kernel density function as an urban analysis tool: Investigating the association between nightlight exposure and the incidence of breast cancer in Haifa, Israel. Com-put. Environ. Urban Syst. 2009;33(1):55-63. DOI 10.1016/j.com-penvurbsys.2008.09.006.; Kloog I., Haim A., Stevens R.G., Barchana M., Portnov B.A. Light at night co-distributes with incident breast but not lung cancer in the female population of Israel. Chronobiol. Int. 2008;25(1):65-81. DOI 10.1080/07420520801921572.; Kloog I., Stevens R.G., Haim A., Portnov B.A. Nighttime light level codistributes with breast cancer incidence worldwide. Cancer Causes Control. 2010;21(12):2059-2068. DOI 10.1007/s10552-010-9624-4.; Krishnan N., Kretzschmar D., Rakshit K., Chow E., Giebultowicz J.M. The circadian clock gene period extends health span in aging Drosophila melanogaster. Aging (Albany N.Y.). 2009;1(11):937-948. DOI 10.18632/aging.100103.; Lans H., Jansen G. Multiple sensory G proteins in the olfactory, gustatory and nociceptive neurons modulate longevity in Caenorhabdi-tis elegans. Dev. Biol. 2007;303(2):474-482. DOI 10.1016/j.ydbio.2006.11.028.; Lehrer S. Blindness increases life span of male rats: pineal effect on longevity. J. Chronic. Dis. 1981;34(8):427-429. DOI 10.1016/0021-9681(81)90041-2.; McLay L.K., Green M.P., Jones T.M. Chronic exposure to dim artificial light at night decreases fecundity and adult survival in Drosophila melanogaster. J. Insect Physiol. 2017;100:15-20. DOI 10.1016/j.jinsphys.2017.04.009.; Moskalev A.A., Proshkina E.N., Belyi A.A., Solovyev I.A. Genetics of aging and longevity. Russian Journal of Genetics: Applied Research. 2017;7(4):369-384. DOI 10.1134/s2079059717040074.; Ostrovsky M.A. Rhodopsin: Evolution and comparative physiology. Pa-leontol. J. 2017;51(5):562-572. DOI 10.1134/s0031030117050069.; Papp S.J., Huber A.L., Jordan S.D., Kriebs A., Nguyen M., Mores-co J.J., Yates J.R., Lamia K.A. DNA damage shifts circadian clock time via Hausp-dependent Cry1 stabilization. Elife. 2015;4. DOI 10.7554/eLife.04883.; Patel S.A., Chaudhari A., Gupta R., Velingkaar N., Kondratov R.V. Circadian clocks govern calorie restriction-mediated life span extension through BMAL1- and IGF-1-dependent mechanisms. FASEB J. 2016;30(4):1634-1642. DOI 10.1096/fj.15-282475.; Plachetzki D.C., Fong C.R., Oakley T.H. The evolution of phototransduction from an ancestral cyclic nucleotide gated pathway. Proc. Biol. Sci. 2010;277(1690):1963-1969. DOI 10.1098/rspb.2009.1797.; Poletini M.O., Moraes M.N., Ramos B.C., Jeronimo R., Castrucci A.M. TRP channels: a missing bond in the entrainment mechanism of peripheral clocks throughout evolution. Temperature (Austin). 2015; 2(4):522-534. DOI 10.1080/23328940.2015.1115803.; Randall A.S., Liu C.H., Chu B., Zhang Q., Dongre S.A., Juusola M., Franze K., Wakelam M.J., Hardie R.C. Speed and sensitivity of phototransduction in Drosophila depend on degree of saturation of membrane phospholipids. J. Neurosci. 2015;35(6):2731-2746. DOI 10.1523/JNEUROSCI.1150-14.2015.; Riera C.E., Huising M.O., Follett P., Leblanc M., Halloran J., Van An-del R., de Magalhaes Filho C.D., Merkwirth C., Dillin A. TRPV1 pain receptors regulate longevity and metabolism by neuropeptide signaling. Cell. 2014;157(5):1023-1036. DOI 10.1016/j.cell.2014.03.051.; Shen J., Zhu X., Gu Y., Zhang C., Huang J., Xiao Q. Toxic effect of visible light on Drosophila life span depending on diet protein content. J. Gerontol. Ser. A. 2018. DOI 10.1093/gerona/gly042.; Sheng Y., Tang L., Kang L., Xiao R. Membrane ion channels and receptors in animal lifespan modulation. J. Cell. Physiol. 2017;232(11): 2946-2956. DOI 10.1002/jcp.25824.; Shostal O.A., Moskalev A.A. The genetic mechanisms of the influence of the light regime on the lifespan of Drosophila melanogaster. Front. Genet. 2012;3:325. DOI 10.3389/fgene.2012.00325.; Solovev I., Shaposhnikov M., Kudryavtseva A., Moskalev A. Drosophila melanogaster as a model for studying the epigenetic basis of aging. Epigenetics of Aging and Longevity. Elsevier: Academic Press, 2018; 293-307. DOI 10.1016/B978-0-12-811060-7.00014-0.; Song B.M., Lee C.H. Toward a mechanistic understanding of color vision in insects. Front. Neural Circuits. 2018;12(16). DOI 10.3389/fncir.2018.00016.; Szklarczyk D., Morris J.H., Cook H., Kuhn M., Wyder S., Simo-novic M., Santos A., Doncheva N.T., Roth A., Bork P., Jensen L.J., von Mering C. The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. 2017;45(D1):D362-D368. DOI 10.1093/nar/gkw937.; Wolff T., Ready D.F. Pattern formation in the Drosophila retina. The Development of Drosophila melanogaster. N.Y. Cold Spring Harbor: Cold Spring Harbor Laboratory Press. 1993;2:1277-1325.; Xiao R., Liu J., Xu X.Z. Thermosensation and longevity. J. Comp. Physiol. A-Neuroethol. Sens. Neural. Behav. Physiol. 2015;201(9):857-867. DOI 10.1007/s00359-015-1021-8.; Zou S., Meadows S., Sharp L., Jan L.Y., Jan Y.N. Genome-wide study of aging and oxidative stress response in Drosophila melanogas-ter. Proc. Natl. Acad. Sci. USA. 2000;97(25):13726-13731. DOI 10.1073/pnas.260496697.; https://vavilov.elpub.ru/jour/article/view/1722
-
12Academic Journal
المؤلفون: I. A. Solovyev, N. A. Rukhliada, A. P. Utochkin, R. V. Titov, A. V. Kolunov, И. А. Соловьев, Н. В. Рухляда, А. П. Уточкин, Р. В. Титов, А. В. Колунов
المصدر: Marine Medicine; Том 4, № 2 (2018); 27-31 ; Морская медицина; Том 4, № 2 (2018); 27-31 ; 2587-7828 ; 2413-5747 ; 10.22328/2413-5747-2018-4-2
مصطلحات موضوعية: непрерывность в подготовке, navy surgery, ship doctor, Department of Navy Surgery, practical skills, targeted training, emergency surgery, continuing training, военно-морская хирургия, корабельный врач, кафедра военно-морской хирургии, практические навыки, профильность обучения, неотложная хирургия
وصف الملف: application/pdf
Relation: https://seamed.bmoc-spb.ru/jour/article/view/225/216; Мосягин И.Г., Попов А.М., Чирков Д.В. Морская доктрина России — в приоритете человек // Морская медицина. 2015. Т. 1, № 3. С. 5–12.; Соловьев И.А., Уточкин А.П., Смирнов С.П., Галака А.А. Профессор В.И. Петров — выдающийся военно-морской хирург, ученый, педагог (к 100-летию со дня рождения) // Вестник Национального медико-хирургического центра им. Н. И. Пирогова. 2015. Т. 10, № 3. С. 129–131.; Рухляда Н.В., Уточкин А.П., Парамонов Б.А., Сидельников В.О. Комбинированные поражения хирургического профиля и их компоненты. СПб.: МОРСАР АВ, 2003. 383 с.; Рухляда Н.В., Уточкин А.П., Доронин Ю.Г. Парамонов В.А., Ремез Н.В. Комбинированные поражения на военно-морском флоте. СПб.: ВМедА, 1998. 128 с.; Гудовских Н.С., Кузнецов В.В. Кто поделит Арктику? // Вестник акад. воен. наук. 2012. Т. 41, № 4. С. 4–12.; Зубарев П.Н., Матвеев С.А., Соловьев И.А. Предтеча хирургического образования в России (240 лет со дня рождения И. Ф. Буша) // Вестник Национального медико-хирургического центра им. Н. И. Пирогова. 2011. Т. 6, № 2. С. 154–155; Бельских А.Н., Цыган В.Н., Иорданишвили А.К. Академик Российской Академии наук профессор Юрий Леонидович Шевченко — выдающийся ученый, хирург, педагог, организатор Отечественного военного и практического здравоохранения (к 70-летию со дня рождения) // Вестник Российской военно-медицинской академии. 2017. № 1 (57). С. 273–274.; Бельских А.Н., Гребенюк А.Н., Ивченко Е.В. Перспективные технологии в военной медицине // Военно-медицинский журнал. 2013. Т. 334, № 6. С. 84–85.; Кабанов М.Ю., Гайдаш А.А., Рухляда Н.В., Соловьев И.А., Титов Р.В., Уточкин А.П., Смирнов С.И., Смолин Н.В., Тюрин М.В. Аспекты развития хирургической службы современного Военно-Морского Флота // Военно-медицинский журнал. 2013. Т. 334, № 6. С. 45–48.; Кабанов М.Ю., Мануйлов В.М., Соловьев И.А., Плескач В.В., Сорока А.К., Колунов А.В. Оказание хирургической помощи на кораблях ВМФ: становление, развитие, современность // Военно-медицинский журнал. 2014. Т. 335, № 2. С. 45–51.; https://seamed.bmoc-spb.ru/jour/article/view/225
-
13Academic Journal
المؤلفون: E. P. Kharchenko, I. A. Solov’ev, Е. П. Харченко, И. А. Соловьев
المصدر: Pelvic Surgery and Oncology; Том 7, № 4 (2017); 11-19 ; Тазовая хирургия и онкология; Том 7, № 4 (2017); 11-19 ; 2686-7435 ; 10.17650/2220-3478-2017-7-4
مصطلحات موضوعية: колоректальный рак, immune system, genetic instability, colorectal cancer, генетическая нестабильность, иммунная система
وصف الملف: application/pdf
Relation: https://ok.abvpress.ru/jour/article/view/230/191; De Rosa M., Rega D., Costabile V. et al. The biological complexity of colorectal cancer: insights into biomarkers for early detection and personalized care. Ther Adv Gastroenterol 2016;9(6):861–86. DOI:10.1177/1756283X16659790.; Харченко E.П. Канцерогенез: иммунная система и иммунотерапия. Иммунология 2011;32(1):50–6. [Kharchenko E.P. Carcinogenesis: the immune system and immunotherapy. Immunologiya = Immunology 2011;32(1):50–6. (In Russ.)].; Irrazábal T., Belcheva A., Girardin S.E. et al. The multifaceted role of the intestinal microbiota in colon cancer. Molecular Cell 2014;54(2):309–20. DOI:10.1016/j.molcel.2014.03.039.; Makkouk A., Weiner G.J. Cancer immunotherapy and breaking immune tolerance: new approaches to an old challenge. Cancer Res 2014;75(1):5–10. DOI:10.1158/0008-5472.CAN-14-2538.; Ha C., Lam Y.Y., Holmes A.J. Mechanistic links between gut microbial community dynamics, microbial functions and metabolic health. World J Gastroenterol 2014;20(44):16498–517. DOI:10.3748/wjg.v20.i44.16498.; Pflughoeft K.J., Versalovic J. Human microbiome in health and disease. Annu Rev Pathol 2012;7:99–122. DOI:10.1146/annurev-pathol-011811-132421.; McDermott A.J., Huffnagle G.B. The microbiome and regulation of mucosal immunity. Immunology 2013;142(1):24–31. DOI:10.1111/imm.12231.; Jandhyala S.M., Talukdar R., Subramanyam C. et al. Role of the normal gut microbiota World J Gastroenterol 2015;21(29):8787–803. DOI:10.3748/wjg.v21.i29.8787.; Dzutsev A., Goldszmid R.S., Viaud S. et al. The role of the microbiota in inflammation, carcinogenesis, and cancer therapy. Eur J Immunol 2015;45(1):17–31. DOI:10.1002/eji.201444972.; Cadwell K. The virome in host health and disease. Immunity 2015;42(5):805–13. DOI:10.1016/j.immuni.2015.05.003.; Gagnière J., Raisch J., Veziant J. et al. Gut microbiota imbalance and colorectal cancer. World J Gastroenterol 2016;22(2):501–18. DOI:10.3748/wjg.v22.i2.501.; Tojo R., Suárez A., Clemente M.G. et al. Intestinal microbiota in health and disease: role of bifidobacteria in gut homeostasis. World J Gastroenterol 2014;20(41):15163–76. DOI:10.3748/wjg.v20.i41.15163.; Bäumler A.J., Sperandio V. Interactions between the microbiota and pathogenic bacteria in the gut. Nature 2016;535(7610):85–93. DOI:10.1038/nature18849.; Eloe-Fadrosh E.A., Rasko D.A. The human microbiome: from symbiosis to pathogenesis. Annu Rev Med 2013;64:145–63. DOI:10.1146/annurev-med-010312-133513.; Forbes J.D., Van Domselaar G., Bernstein C.N. The gut microbiota in immunemediated inflammatory diseases. Front Microbiol 2016;7:1081. DOI:10.3389/fmicb.2016.01081.; Peterson C.T., Sharma V., Elmén L., Peterson S.N. Immune homeostasis, dysbiosis and therapeutic modulation of the gut microbiota. Clin Exp Immunol 2014;179(3):363–77. DOI:10.1111/cei.12474.; Muszer M., Noszczyńska M., Kasperkiewicz K. et al. Human microbiome: when a friend becomes an enemy. Arch Immunol Ther Exp 2015;63(4):287–98. DOI:10.1007/s00005-015-0332-3.; Fardini Y., Wang X., Temoin S. et al. Fusobacterium nucleatum adhesin FadA binds vascular endothelial cadherin and alters endothelial integrity. Mol Microbiol 2011;82(6):1468–80. DOI:10.1111/j.1365-2958.2011.07905.x.; Rubinstein M.R., Wang X., Liu W. et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/b-catenin signaling via its FadA adhesin. Cell Host Microbe 2013;14(2):195–206. DOI:10.1016/j.chom.2013.07.012.; Wu S., Morin P.J., Maouyo D. et al. Bacteroides fragilis enterotoxin induces c-Myc expression and cellular proliferation. Gastroenterology 2003;124(2):392–400. DOI:10.1053/gast.2003.50047.; Lundberg J.O., Weitzberg E., Cole J.A. et al. Nitrate, bacteria and human health. Nat Rev Microbiol 2004;2(7):593–602. DOI:10.1038/nrmicro929.; Sobko T., Huang L., Midtvedt T. et al. Generation of NO by probiotic bacteria in the gastrointestinal tract. Free Radic Biol Med 2006;41(6):985–91. DOI:10.1016/j.freeradbiomed.2006.06.020.; Huycke M.M., Moore D.R. In vivo production of hydroxyl radical by Enterococcus faecalis colonizing the intestinal tract using aromatic hydroxylation. Free Radic Biol Med 2002;33(6):818–26.; Arthur J.C., Perez-Chanona E., Muhlbauer M. et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 2012;338(6103):120–3. DOI:10.1126/science.1224820.; Carman R.J., van Tassell R.L., Kingston D.G. et al. Conversion of IQ, a dietary pyrolysis carcinogen to a direct-acting mutagen by normal intestinal bacteria of humans. Mutat Res 1988;206(3):335–42.; De Kok T.M., van Maanen J.M., Lankelma J. et al. Electron spin resonance spectroscopy of oxygen radicals generated by synthetic fecapentaene-12 and reduction of fecapentaene mutagenicity to Salmonella typhimurium by hydroxyl radical scavenging. Carcinogenesis 1992;13(7):1249–55. PMID: 1322251.; Salaspuro M. Bacteriocolonic pathway for ethanol oxidation: characteristics and implications. Ann Med 1996;28(3):195–200. PMID: 8811162.; Choi S.W., Mason J.B. Folate status: effects on pathways of colorectal carcinogenesis. J Nutr 2002;132(8 suppl):2413S–8S. PMID: 12163703.; Deplancke B., Finster K., Graham W.V. et al. Gastrointestinal and microbial responses to sulfate supplemented drinking water in mice. Exp Biol Med (Maywood) 2003;228(4):424–33. PMID: 12671187.; Christl S.U., Scheppach W., Kasper H. Hydrogen metabolism in the large intestine – physiology and clinical implications. Z Gastroenterol 1995;33(7):408–13. PMID: 7571760.; Gill C.I., Rowland I.R. Diet and cancer: assessing the risk. Br J Nutr 2002;88(suppl 1): S73–87. DOI:10.1079/BJN2002632.; Hague A., Manning A.M., Hanlon K.A. et al. Sodium butyrate induces apoptosis in human colonic tumour cell lines in a p53-independent pathway: implications for the possible role of dietary fibre in the prevention of large-bowel cancer. Int J Cancer 1993;55(3):498–505. PMID: 8397167.; Caderni G., De Filippo C., Luceri et al. Effects of black tea, green tea and wine extracts on intestinal carcinogenesis induced by azoxymethane in F344 rats. Carcinogenesis 2000;21(11):1965–9. PMID: 11062155.; Yamamoto M., Matsumoto S. Gut microbiota and colorectal cancer. Genes Environ 2016;38:11. DOI:10.1186/s41021-016-0038-8.; Formica V., Cereda V., Nardecchia A. et al. Immune reaction and colorectal cancer: friends or foes? World J Gastroenterol 2014;20(35):12407–19. DOI:10.3748/wjg.v20.i35.12407.; Pernot S., Terme M., Voron T. et al. Colorectal cancer and immunity: what we know and perspectives. World J Gastroenterol 2014;20(14):3738–50. DOI:10.3748/wjg.v20.i14.3738.; De Vries N.L., Swets M., Vahrmeijer A.L. et al. The immunogenicity of colorectal cancer in relation to tumor development and treatment. Int J Mol Sci 2016;17(7):1030. DOI:10.3390/ijms17071030.; Mármol I., Sánchez-de-Diego C., Pradilla Dieste A. et al. Colorectal carcinoma: a general overview and future perspectives in colorectal cancer. Int J Mol Sci 2017;18(1):E197. DOI:10.3390/ijms18010197.; Ballester V., Rashtak S., Boardman L. Clinical and molecular features of youngonset colorectal cancer. World J Gastroenterol 2016;22(5):1736–44. DOI:10.3748/wjg.v22.i5.1736.; Rodriguez-Salasa N., Dominguezb G., Barderasc R. et al. Clinical relevance of colorectal cancer molecular subtypes. Crit Rev Oncol Hematol 2017;109:9–19. DOI:10.1016/j.critrevonc.2016.11.007.; Aghagolzadeh P., Radpour R. New trends in molecular and cellular biomarker discovery for colorectal cancer. World J Gastroenterol 2016;22(25):5678–93. DOI:10.3748/wjg.v22.i25.5678.; Patel A., Tripathi G., Gopalakrishnan K. Field cancerisation in colorectal cancer: a new frontier or pastures past? World J Gastroenterol 2015;21(13):3763–72. DOI:10.3748/wjg.v21.i13.3763.; Podlaha O., Riester M., De S., Michor F. Evolution of the cancer genome. Trends Genet 2012;28(4):155–63. DOI:10.1016/j.tig.2012.01.003.; Joyce J.A., Fearon D.T. T-cell exclusion, immune privilege, and the tumor microenvironment. Science 2015;348(6230): 74–80. DOI:10.1126/science.aaa6204.; Palucka A.K., Coussens L.M. The basis of oncoimmunology. Cell 2016;164(6): 1233–47. DOI:10.1016/j.cell.2016.01.049.; Харченко E.П. Иммунное узнавание и иммунная привилегия. Иммунология 2008;29(2):118–24. [Kharchenko E.P. Immune recognition and immune privilege. Immunologiya = Immunology 2008;29(2):118–24. (In Russ.)].; Харченко Е.П. Иммунная привилегия: патологический aспект. Иммунология 2009;30(4):249–55. [Kharchenko E.P. Immune privilege: a pathological aspect. Immunologiya = Immunology 2009;30(4):249–55. (In Russ.)].; Suntsova M., Garazha A., Ivanova A. et al. Molecular functions of human endogenous retroviruses in health and disease. Cell Mol Life Sci 2015;72(19):3653–75. DOI:10.1007/s00018-015-1947-6.; Philippe P., Mullins C.S., Naville M. et al. Expression of young HERV-H loci in the course of colorectal carcinoma and correlation with molecular subtypes. Oncotarget 2015;6(37):40095–50111. DOI:10.18632/oncotarget.5539.; Díaz-Carballo D., Acikelli A.H., Klein J. et al. Therapeutic potential of antiviral drugs targeting chemorefractory colorectal adenocarcinoma cells overexpressing endogenous retroviral elements. J Exp Clin Cancer Res 2015;34:81. DOI 10.1186/s13046-015-0199-5.; Harrison M.M., Jenkins B.V., O’ConnorGiles K.M. et al. A CRISPR view of development. Genes Dev 2016;28(17): 1859–72. DOI:10.1101/gad.248252.114.; https://ok.abvpress.ru/jour/article/view/230
-
14Academic Journal
المؤلفون: A. A. Moskalev, E. N. Proshkina, A. A. Belyi, I. A. Solovyev, А. А. Москалев, Е. Н. Прошкина, А. А. Белый, И. А. Соловьев
المساهمون: Президиум РАН
المصدر: Vavilov Journal of Genetics and Breeding; Том 20, № 4 (2016); 426-440 ; Вавиловский журнал генетики и селекции; Том 20, № 4 (2016); 426-440 ; 2500-3259
مصطلحات موضوعية: программа долголетия, aging, longevity genes, longevity program, старение, гены долголетия
وصف الملف: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/695/798; Москалев А.А. Старение и гены. СПб.: Наука, 2008.; Москалев А.А., Зайнуллин В.Г. Роль reaper-зависимого апоптоза в радиационно-индуцированном изменении продолжительности жизни у Drosophila melanogaster. Радиац. биология. Радиоэкология. 2003;43(2):242-244.; Шапошников М.В., Прошкина Е.Н., Шилова Л.А., Москалев А.А. Роль репарации повреждений ДНК в долголетии. М.: Товарищество научных изданий КМК, 2015.; Adler A.S., Kawahara T.L., Segal E., Chang H.Y. Reversal of aging by NFkappaB blockade. Cell Cycle. 2008;7(5):556-559.; Ahmed S., Passos J.F., Birket M.J., Beckmann T., Brings S., Peters H., Birch-Machin M.A., von Zglinicki T., Saretzki G. Telomerase does not counteract telomere shortening but protects mitochondrial function under oxidative stress. J. Cell Sci. 2008;121(Pt 7):1046-1053. DОI 10.1242/jcs.019372.; Åkerfelt M., Morimoto R.I., Sistonen L. Heat shock factors: integrators of cell stress, development and lifespan. Nat. Rev. Mol. Cell Biol. 2010;11(8):545-555.; Amsellem V., Gary-Bobo G., Marcos E., Maitre B., Chaar V., Validire P., Stern J.B., Noureddine H., Sapin E., Rideau D., Hue S., Le Corvoisier P., Le Gouvello S., Dubois-Rande J.L., Boczkowski J., Adnot S. Telomere dysfunction causes sustained inflammation in chronic obstructive pulmonary disease. Am. J. Resp. Crit. Care. 2011; 184(12):1358-1366. DОI 10.1164/rccm.201105-0802OC.; Anderson R., Prolla T. PGC-1α in aging and anti-aging interventions. BBA-Gen. Subjects. 2009;1790(10):1059-1066.; Anisimov V.N., Bartke A. The key role of growth hormone-insulinIGF-1signaling in aging and cancer. Crit. Rev. Oncol. Hematol. 2013;87(3):201-223. DОI 10.1016/j.critrevonc.2013.01.005.; Arai Y., Takayama M., Abe Y., Hirose N. Adipokines and aging. J. Atheroscler. Thromb. 2011;18(7):545-550.; Argmann C., Dobrin R., Heikkinen S., Auburtin A., Pouilly L., Cock T.-A., Koutnikova H., Zhu J., Schadt E.E., Auwerx J. Pparγ2 is a key driver of longevity in the mouse. PLoS Genet. 2009;5(12): e1000752.; Argon Y., Gidalevitz T. Candidate Genes That Affect Aging Through Protein Homeostasis Longevity Genes. New York: Springer, 2015: 45-72.; Aschner Y., Downey G.P. Transforming growth factor-beta: master regulator of the respiratory system in health and disease. Am. J. Respir. Cell Mol. Biol. 2016. DОI 10.1165/rcmb.2015-0391TR.; Ayyadevara S., Bharill P., Dandapat A., Hu C., Khaidakov M., Mitra S., Shmookler Reis R.J., Mehta J.L. Aspirin inhibits oxidant stress, reduces age-associated functional declines, and extends lifespan of Caenorhabditis elegans. Antioxid. Redox. Sign. 2013;18(5):481-490. DОI 10.1089/ars.2011.4151.; Baker D.J., Childs B.G., Durik M., Wijers M.E., Sieben C.J., Zhong J., Saltness R.A., Jeganathan K.B., Verzosa G.C., Pezeshki A., Khazaie K., Miller J.D., van Deursen J.M. Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature. 2016; 530(7589):184-189. DОI 10.1038/nature16932.; Baker D.J., Wijshake T., Tchkonia T., LeBrasseur N.K., Childs B.G., van de Sluis B., Kirkland J.L., van Deursen J.M. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature. 2011;479(7372):232-236. DОI 10.1038/nature10600.; Bar C., Bernardes de Jesus B., Serrano R., Tejera A., Ayuso E., Jimenez V., Formentini I., Bobadilla M., Mizrahi J., de Martino A., Gomez G., Pisano D., Mulero F., Wollert K.C., Bosch F., Blasco M.A. Telomerase expression confers cardioprotection in the adult mouse heart after acute myocardial infarction. Nat. Commun. 2014;5:5863. DОI 10.1038/ncomms6863.; Basso N., Paglia N., Stella I., de Cavanagh E.M., Ferder L., del Rosario Lores Arnaiz M., Inserra F. Protective effect of the inhibition of the renin-angiotensin system on aging. Regul. Peptides. 2005; 128(3):247-252. DОI 10.1016/j.regpep.2004.12.027.; Benigni A., Corna D., Zoja C., Sonzogni A., Latini R., Salio M., Conti S., Rottoli D., Longaretti L., Cassis P., Morigi M., Coffman T.M., Remuzzi G. Disruption of the Ang II type 1 receptor promotes longevity in mice. J. Clin. Invest. 2009;119(3):524-530. DОI 10.1172/JCI36703.; Benigni A., Orisio S., Noris M., Iatropoulos P., Castaldi D., Kamide K., Rakugi H., Arai Y., Todeschini M., Ogliari G., Imai E., Gondo Y., Hirose N., Mari D., Remuzzi G. Variations of the angiotensin II type 1 receptor gene are associated with extreme human longevity. Age (Dordr). 2013;35(3):993-1005. DОI 10.1007/s11357-012-9408-8.; Bernardes de Jesus B., Vera E., Schneeberger K., Tejera A.M., Ayuso E., Bosch F., Blasco M.A. Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer. EMBO Mol. Med. 2012;4(8):691-704. DОI 10.1002/emmm.201200245.; Bian A., Neyra J.A., Zhan M., Hu M.C. Klotho, stem cells, and aging. Clin. Interv. Aging. 2015;10:1233.; Biteau B., Karpac J., Hwangbo D., Jasper H. Regulation of Drosophila lifespan by JNK signaling. Exp. Gerontol. 2011;46(5):349-354. DОI 10.1016/j.exger.2010.11.003.; Biteau B., Karpac J., Supoyo S., Degennaro M., Lehmann R., Jasper H. Lifespan extension by preserving proliferative homeostasis in Drosophila. PLoS Genet. 2010;6(10):e1001159. DОI 10.1371/journal.pgen.1001159.; Bitto A., Wang A.M., Bennett C.F., Kaeberlein M. Biochemical genetic pathways that modulate aging in multiple species. Cold Spring Harb. Persp. Med. 2015;5(11). DОI 10.1101/cshperspect.a025114.; Bluher M., Kahn B.B., Kahn C.R. Extended longevity in mice lacking the insulin receptor in adipose tissue. Science. 2003;299(5606):572-574. DОI 10.1126/science.1078223.; Boccardi V., Pelini L., Ercolani S., Ruggiero C., Mecocci P. From cellular senescence to Alzheimer’s disease: The role of telomere shortening. Ageing Res. Rev. 2015;22:1-8. DОI 10.1016/j.arr.2015.04.003.; Brooks C.L., Gu W. How does SIRT1 affect metabolism, senescence and cancer? Nat. Rev. Cancer. 2009;9(2):123-128.; Broom L., Marinova-Mutafchieva L., Sadeghian M., Davis J.B., Medhurst A.D., Dexter D.T. Neuroprotection by the selective iNOS inhibitor GW274150 in a model of Parkinson disease. Free Radic. Biol. Med. 2011;50(5):633-640. DОI 10.1016/j.freeradbiomed.2010.12.026.; Budanov A.V., Karin M. p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell. 2008;134(3):451-460. DОI 10.1016/j.cell.2008.06.028.; Cai W., He J.C., Zhu L., Chen X., Wallenstein S., Striker G.E., Vlassara H. Reduced oxidant stress and extended lifespan in mice exposed to a low glycotoxin diet: association with increased AGER1 expression. Am. J. Pathol. 2007;170(6):1893-1902. DОI 10.2353/ajpath.2007.061281.; Cantó C., Auwerx J. Calorie restriction: is AMPK a key sensor and effector? Physiology. 2011;26(4):214-224.; Carrard G., Bulteau A.-L., Petropoulos I., Friguet B. Impairment of proteasome structure and function in aging. Int. J. Biochem. Cell Biol. 2002;34(11):1461-1474.; Carrieri G., Marzi E., Olivieri F., Marchegiani F., Cavallone L., Cardelli M., Giovagnetti S., Stecconi R., Molendini C., Trapassi C., De Benedictis G., Kletsas D., Franceschi C. The G/C915 polymorphism of transforming growth factor beta1 is associated with human longevity: a study in Italian centenarians. Aging Cell. 2004;3(6):443-448. DОI 10.1111/j.1474-9728.2004.00129.x.; Cha D.R., Han J.Y., Su D.M., Zhang Y., Fan X., Breyer M.D., Guan Y. Peroxisome proliferator-activated receptor-alpha deficiency protects aged mice from insulin resistance induced by high-fat diet. Am. J. Nephrol. 2007;27(5):479-482.; Cha Y.I., Kim H.-S. Emerging role of sirtuins on tumorigenesis: possible link between aging and cancer. BMB Reports. 2013;46(9): 429-438.; Chang H.C., Guarente L. SIRT1 and other sirtuins in metabolism. Trends Endocrin. Met. 2014;25(3):138-145. DОI 10.1016/j.tem.2013.12.001.; Chen D., Guarente L. SIR2: a potential target for calorie restriction mimetics. Trends Mol. Med. 2007;13(2):64-71.; Chen H., Zheng X., Zheng Y. Age-associated loss of lamin-B leads to systemic inflammation and gut hyperplasia. Cell. 2014;159(4): 829-843.; Cheong J.K., Zhang F., Chua P.J., Bay B.H., Thorburn A., Virshup D.M. Casein kinase 1alpha-dependent feedback loop controls autophagy in RAS-driven cancers. J. Clin. Invest. 2015;125(4):1401-1418. DОI 10.1172/JCI78018.; Chondrogianni N., Georgila K., Kourtis N., Tavernarakis N., Gonos E.S. 20S proteasome activation promotes life span extension and resistance to proteotoxicity in Caenorhabditis elegans. The FASEB J. 2015;29(2):611-622.; Chondrogianni N., Petropoulos I., Grimm S., Georgila K., Catalgol B., Friguet B., Grune T., Gonos E.S. Protein damage, repair and proteolysis. Mol. Aspects Med. 2014;35:1-71.; Clempson A.M., Pollott G.E., Brickell J.S., Bourne N.E., Munce N., Wathes D.C. Polymorphisms in the autosomal genes for mitochondrial function TFAM and UCP2 are associated with performance and longevity in dairy cows. Animal. 2011;5(9):1335-1343. DОI 10.1017/S1751731111000346.; Codd V., Nelson C.P., Albrecht E., Mangino M., Deelen J., Buxton J.L., Hottenga J.J., Fischer K., Esko T., Surakka I. Identification of seven loci affecting mean telomere length and their association with disease. Nat. Genet. 2013;45(4):422-427.; Cohen H.Y., Miller C., Bitterman K.J., Wall N.R., Hekking B., Kessler B., Howitz K.T., Gorospe M., de Cabo R., Sinclair D.A. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science. 2004;305(5682):390-392.; Corpet A., Stucki M. Chromatin maintenance and dynamics in senescence: a spotlight on SAHF formation and the epigenome of senescent cells. Chromosoma. 2014;123(5):423-436. DОI 10.1007/s00412-014-0469-6.; Costacou T., Zgibor J.C., Evans R.W., Otvos J., Lopes-Virella M.F., Tracy R.P., Orchard T.J. The prospective association between adiponectin and coronary artery disease among individuals with type 1 diabetes. The pittsburgh epidemiology of diabetes complications study. Diabetologia. 2005;48(1):41-48. DОI 10.1007/s00125-004-1597-y.; de Cavanagh E.M., Inserra F., Ferder L. Angiotensin II blockade: how its molecular targets may signal to mitochondria and slow aging. Coincidences with calorie restriction and mTOR inhibition. Am. J. Physiol. Heart Circ. Physiol. 2015;309(1):H15-H44. DОI 10.1152/ajpheart.00459.2014.; Demontis F., Patel V.K., Swindell W.R., Perrimon N. Intertissue control of the nucleolus via a myokine-dependent longevity pathway. Cell Rep. 2014;7(5):1481-1494. DОI 10.1016/j.celrep.2014.05.001.; Demontis F., Perrimon N. FOXO/4E-BP signaling in Drosophila muscles regulates organism-wide proteostasis during aging. Cell. 2010;143(5):813-825. DОI 10.1016/j.cell.2010.10.007. Dërmaku-Sopjani M., Kolgeci S., Abazi S., Sopjani M. Significance of the anti-aging protein Klotho. Mol. Memb. Biol. 2013;30(8): 369-385.; Ding J., Sackmann-Sala L., Kopchick J.J. Mouse models of growth hormone action and aging: a proteomic perspective. Proteomics. 2013;13(3-4):674-685. DОI 10.1002/pmic.201200271.; Dominy J.E., Puigserver P. Mitochondrial biogenesis through activation of nuclear signaling proteins. Cold Spring Harb. Persp. Biol. 2013;5(7):a015008.; Efeyan A., Zoncu R., Sabatini D.M. Amino acids and mTORC1: from lysosomes to disease. Trends Mol. Med. 2012;18(9):524-533. DОI 10.1016/j.molmed.2012.05.007.; Fang E.F., Scheibye-Knudsen M., Chua K.F., Mattson M.P., Croteau D.L., Bohr V.A. Nuclear DNA damage signalling to mitochondria in ageing. Nat. Rev. Mol. Cell Biol. 2016. DОI 10.1038/nrm.2016.14.; Feng Z., Lin M., Wu R. The regulation of aging and longevity: a new and complex role of p53. Genes. Cancer. 2011;2(4):443-452. DОI 10.1177/1947601911410223.; Fleming T.H., Humpert P.M., Nawroth P.P., Bierhaus A. Reactive metabolites and AGE/RAGE-mediated cellular dysfunction affect the aging process: a mini-review. Gerontology. 2011;57(5):435-443. DОI 10.1159/000322087.; Frippiat C., Dewelle J., Remacle J., Toussaint O. Signal transduction in H2O2-induced senescence-like phenotype in human diploid fibroblasts. Free Radic. Biol. Med. 2002;33(10):1334-1346.; Gallot Y.S., Durieux A.-C., Castells J., Desgeorges M.M., Vernus B., Plantureux L., Rémond D., Jahnke V.E., Lefai E., Dardevet D. Myostatin gene inactivation prevents skeletal muscle wasting in cancer. Cancer Res. 2014;74(24):7344-7356.; Garcia-Martinez J.M., Alessi D.R. mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serumand glucocorticoid-induced protein kinase 1 (SGK1). Biochem. J. 2008;416(3):375-385. DОI 10.1042/BJ20081668.; Garg A., Agarwal A.K. Lipodystrophies: disorders of adipose tissue biology. Biochem. Bioph. Acta. 2009;1791(6):507-513. DОI 10.1016/j.bbalip.2008.12.014.; Genabai N.K., Ahmad S., Zhang Z., Jiang X., Gabaldon C.A., Gangwani L. Genetic inhibition of JNK3 ameliorates spinal muscular atrophy. Hum. Mol. Genet. 2015;24(24):6986-7004. DОI 10.1093/hmg/ddv401.; Goetz R., Ohnishi M., Ding X., Kurosu H., Wang L., Akiyoshi J., Ma J., Gai W., Sidis Y., Pitteloud N., Kuro O.M., Razzaque M.S., Mohammadi M. Klotho coreceptors inhibit signaling by paracrine fibroblast growth factor 8 subfamily ligands. Mol. Cell Biol. 2012;32(10):1944-1954. DОI 10.1128/MCB.06603-11.; Goitre L., Trapani E., Trabalzini L., Retta S.F. The Ras superfamily of small GTPases: the unlocked secrets. Methods Mol. Biol. 2014; 1120:1-18. DОI 10.1007/978-1-62703-791-4_1.; Green S.J., Scheller L.F., Marletta M.A., Seguin M.C., Klotz F.W., Slayter M., Nelson B.J., Nacy C.A. Nitric oxide: cytokine-regulation of nitric oxide in host resistance to intracellular pathogens. Immunol. Lett. 1994;43(1-2):87-94.; Grube K., Burkle A. Poly(ADP-ribose) polymerase activity in mononuclear leukocytes of 13 mammalian species correlates with speciesspecific life span. Proc. Natl Acad. Sci. USA. 1992;89(24):11759-11763.; Han J., Ryu S., Moskowitz D.M., Rothenberg D., Leahy D.J., Atzmon G., Barzilai N., Suh Y. Discovery of novel non-synonymous SNP variants in 988 candidate genes from 6 centenarians by target capture and next-generation sequencing. Mech. Ageing Dev. 2013;134(10):478-485. DОI 10.1016/j.mad.2013.01.005.; Hannon G.J., Beach D. p15INK4B is a potential effector of TGF-betainduced cell cycle arrest. Nature. 1994;371(6494):257-261. DОI 10.1038/371257a0.; Hannum G., Guinney J., Zhao L., Zhang L., Hughes G., Sadda S., Klotzle B., Bibikova M., Fan J.-B., Gao Y. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol. Cell. 2013;49(2):359-367.; Harshman L.G., Moore K.M., Sty M.A., Magwire M.M. Stress resistance and longevity in selected lines of Drosophila melanogaster. Neurobiol. Aging. 1999;20(5):521-529.; Hart R.W., Setlow R.B. Correlation between deoxyribonucleic acid excision-repair and life-span in a number of mammalian species. Proc. Natl Acad. Sci. USA. 1974;71(6):2169-2173.; Hartmann N., Reichwald K., Wittig I., Drose S., Schmeisser S., Luck C., Hahn C., Graf M., Gausmann U., Terzibasi E., Cellerino A., Ristow M., Brandt U., Platzer M., Englert C. Mitochondrial DNA copy number and function decrease with age in the short-lived fish Nothobranchius furzeri. Aging Cell. 2011;10(5):824-831. DОI 10.1111/j.1474-9726.2011.00723.x.; He C., Tsuchiyama S.K., Nguyen Q.T., Plyusnina E.N., Terrill S.R., Sahibzada S., Patel B., Faulkner A.R., Shaposhnikov M.V., Tian R., Tsuchiya M., Kaeberlein M., Moskalev A.A., Kennedy B.K., Polymenis M. Enhanced longevity by ibuprofen, conserved in multiple species, occurs in yeast through inhibition of tryptophan import. PLoS Genet. 2014;10(12):e1004860. DОI 10.1371/journal.pgen.1004860.; Hepple R.T., Baker D.J., McConkey M., Murynka T., Norris R. Caloric restriction protects mitochondrial function with aging in skeletal and cardiac muscles. Rejuv. Res. 2006;9(2):219-222.; Herranz D., Munoz-Martin M., Canamero M., Mulero F., MartinezPastor B., Fernandez-Capetillo O., Serrano M. Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer. Nat. Commun. 2010;1:3. DОI 10.1038/ncomms1001.; Herskovits A.Z., Guarente L. SIRT1 in neurodevelopment and brain senescence. Neuron. 2014;81(3):471-483. DОI 10.1016/j.neuron.2014.01.028.; Hollander M.C., Sheikh M.S., Bulavin D.V., Lundgren K., AugeriHenmueller L., Shehee R., Molinaro T.A., Kim K.E., Tolosa E., Ashwell J.D., Rosenberg M.P., Zhan Q., Fernandez-Salguero P.M., Morgan W.F., Deng C.X., Fornace A.J., Jr. Genomic instability in Gadd45a-deficient mice. Nat. Genet. 1999;23(2):176-184. DОI 10.1038/13802.; Hsu A.L., Murphy C.T., Kenyon C. Regulation of aging and agerelated disease by DAF-16 and heat-shock factor. Science. 2003; 300(5622):1142-1145. DОI 10.1126/science.1083701.; Hu M.C., Shi M., Zhang J., Pastor J., Nakatani T., Lanske B., Razzaque M.S., Rosenblatt K.P., Baum M.G., Kuro-o M. Klotho: a novel phosphaturic substance acting as an autocrine enzyme in the renal proximal tubule. The FASEB J. 2010;24(9):3438-3450.; Hulmi J.J., Oliveira B.M., Silvennoinen M., Hoogaars W.M., Pasternack A., Kainulainen H., Ritvos O. Exercise restores decreased physical activity levels and increases markers of autophagy and oxidative capacity in myostatin/activin-blocked mdx mice. Am. J. Physiol. Endoc. Metab. 2013;305(2):E171-E182.; Icreverzi A., de la Cruz A.F., Walker D.W., Edgar B.A. Changes in neuronal CycD/Cdk4 activity affect aging, neurodegeneration, and oxidative stress. Aging Cell. 2015;14(5):896-906. DОI 10.1111/acel.12376.; Jäger S., Handschin C., Pierre J., Spiegelman B.M. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α. Proc. Natl Acad. Sci. 2007;104(29):12017-12022.; Jazwinski S.M., Yashin A.I. Aging and health – a systems biology perspective. Introduction. Interdiscip. Top Gerontol. 2015;40:VII-XII.; Jewell J.L., Russell R.C., Guan K.L. Amino acid signalling upstream of mTOR. Nat. Rev. Mol. Cell Biol. 2013;14(3):133-139. DОI 10.1038/nrm3522.; Junnila R.K., List E.O., Berryman D.E., Murrey J.W., Kopchick J.J. The GH/IGF-1 axis in ageing and longevity. Nat. Rev. Endocrinol. 2013;9(6):366-376. DОI 10.1038/nrendo.2013.67.; Kanfi Y., Naiman S., Amir G., Peshti V., Zinman G., Nahum L., BarJoseph Z., Cohen H.Y. The sirtuin SIRT6 regulates lifespan in male mice. Nature. 2012;483(7388):218-221. DОI 10.1038/nature10815.; Kanfi Y., Peshti V., Gozlan Y.M., Rathaus M., Gil R., Cohen H.Y. Regulation of SIRT1 protein levels by nutrient availability. FEBS Lett. 2008;582(16):2417-2423. DОI 10.1016/j.febslet.2008.06.005.; Katewa S.D., Akagi K., Bose N., Rakshit K., Camarella T., Zheng X., Hall D., Davis S., Nelson C.S., Brem R.B., Ramanathan A., Sehgal A., Giebultowicz J.M., Kapahi P. Peripheral circadian clocks mediate dietary restriction-dependent changes in lifespan and fat metabolism in Drosophila. Cell Metab. 2016;23(1):143-154. DОI 10.1016/j.cmet.2015.10.014.; Katsimpardi L., Litterman N.K., Schein P.A., Miller C.M., Loffredo F.S., Wojtkiewicz G.R., Chen J.W., Lee R.T., Wagers A.J., Rubin L.L. Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. Science. 2014;344(6184):630-634. DОI 10.1126/science.1251141.; Keane M., Semeiks J., Webb A.E., Li Y.I., Quesada V., Craig T., Madsen L.B., van Dam S., Brawand D., Marques P.I., Michalak P., Kang L., Bhak J., Yim H.S., Grishin N.V., Nielsen N.H., Heide-Jorgensen M.P., Oziolor E.M., Matson C.W., Church G.M., Stuart G.W., Patton J.C., George J.C., Suydam R., Larsen K., Lopez-Otin C., O’Connell M.J., Bickham J.W., Thomsen B., de Magalhaes J.P. Insights into the evolution of longevity from the bowhead whale genome. Cell Rep. 2015;10(1):112-122. DОI 10.1016/j.celrep.2014.12.008.; Kenyon C., Chang J., Gensch E., Rudner A., Tabtiang R. A C. elegans mutant that lives twice as long as wild type. Nature. 1993; 366(6454):461-464. DОI 10.1038/366461a0.; Khan M.H., Ligon M., Hussey L.R., Hufnal B., Farber R. 2nd., Munkácsy E., Rodriguez A., Dillow A., Kahlig E., Rea S.L. TAF-4 is required for the life extension of isp-1, clk-1 and tpk-1 Mit mutants. Aging (Albany NY). 2013;5(10):741-758.; Khapre R.V., Kondratova A.A., Patel S., Dubrovsky Y., Wrobel M., Antoch M.P., Kondratov R.V. BMAL1-dependent regulation of the mTOR signaling pathway delays aging. Aging (Albany NY). 2014; 6(1):48-57.; Kim E.B., Fang X., Fushan A.A., Huang Z., Lobanov A.V., Han L., Marino S.M., Sun X., Turanov A.A., Yang P., Yim S.H., Zhao X., Kasaikina M.V., Stoletzki N., Peng C., Polak P., Xiong Z., Kiezun A., Zhu Y., Chen Y., Kryukov G.V., Zhang Q., Peshkin L., Yang L., Bronson R.T., Buffenstein R., Wang B., Han C., Li Q., Chen L., Zhao W., Sunyaev S.R., Park T.J., Zhang G., Wang J., Gladyshev V.N. Genome sequencing reveals insights into physiology and longevity of the naked mole rat. Nature. 2011;479(7372):223-227. DОI 10.1038/nature10533.; Kleinert H., Wallerath T., Fritz G., Ihrig-Biedert I., Rodriguez-Pascual F., Geller D.A., Forstermann U. Cytokine induction of NO synthase II in human DLD-1 cells: roles of the JAK-STAT, AP-1 and NF-kappaB-signaling pathways. Br. J. Pharmacol. 1998;125(1):193-201. DОI ß10.1038/sj.bjp.0702039.; Klichko V.I., Chow E.S., Kotwica-Rolinska J., Orr W.C., Giebultowicz J.M., Radyuk S.N. Aging alters circadian regulation of redox in Drosophila. Front. Genet. 2015;6:83. DОI 10.3389/fgene.2015.00083.; Kolovou G., Kolovou V., Vasiliadis I., Giannakopoulou V., Mihas C., Bilianou H., Kollia A., Papadopoulou E., Marvaki A., Goumas G., Kalogeropoulos P., Limperi S., Katsiki N., Mavrogeni S. The frequency of 4 common gene polymorphisms in nonagenarians, centenarians, and average life span individuals. Angiology. 2014;65(3): 210-215. DОI 10.1177/0003319712475075.; Kondratov R.V., Kondratova A.A., Gorbacheva V.Y., Vykhovanets O.V., Antoch M.P. Early aging and age-related pathologies in mice deficient in BMAL1, the core componentof the circadian clock. Genes. Dev. 2006;20(14):1868-1873. DОI 10.1101/gad.1432206.; Kourtis N., Tavernarakis N. Cellular stress response pathways and ageing: intricate molecular relationships. EMBO J. 2011;30(13): 2520-2531.; Kruegel U., Robison B., Dange T., Kahlert G., Delaney J.R., Kotireddy S., Tsuchiya M., Tsuchiyama S., Murakami C.J., Schleit J. Elevated proteasome capacity extends replicative lifespan in Saccharomyces cerevisiae. PLoS Genet. 2011;7(9):e1002253.; Kumar S., Dietrich N., Kornfeld K. Angiotensin converting enzyme (ACE) inhibitor extends Caenorhabditis elegans Life Span. PLoS Genet. 2016;12(2):e1005866. DОI 10.1371/journal.pgen.1005866.; Le Bourg E. The somatotropic axis may not modulate ageing and longevity in humans. Biogerontology. 2016;17(2):421-429. DОI 10.1007/s10522-015-9632-6.; Lee S.-J., Hwang A.B., Kenyon C. Inhibition of respiration extends C. elegans life span via reactive oxygen species that increase HIF-1 activity. Curr. Biol. 2010a;20(23):2131-2136.; Lee Y.H., Lee H.Y., Kim T.G., Lee N.H., Yu M.K., Yi H.K. PPARgamma maintains homeostasis through autophagy regulation in dental pulp. J. Dent. Res. 2015;94(5):729-737. DОI 10.1177/0022034515573833.; Lee Y.H., Lee N.H., Bhattarai G., Yun J.S., Kim T.I., Jhee E.C., Yi H.K. PPARγ inhibits inflammatory reaction in oxidative stress induced human diploid fibloblast. Cell Biochem. Funct. 2010b;28(6): 490-496.; Leiser S.F., Kaeberlein M. The hypoxia-inducible factor HIF-1 functions as both a positive and negative modulator of aging. Biol. Chem. 2010;391(10):1131-1137.; Lewis K.N., Mele J., Hornsby P.J., Buffenstein R. Stress resistance in the naked mole-rat: the bare essentials – a mini-review. Gerontology. 2012;58(5):453-462. DОI 10.1159/000335966.; Lewis K.N., Wason E., Edrey Y.H., Kristan D.M., Nevo E., Buffenstein R. Regulation of Nrf2 signaling and longevity in naturally long-lived rodents. Proc. Natl Acad. Sci. USA. 2015;112(12):3722-3727. DОI 10.1073/pnas.1417566112.; Liu S.F., Ye X., Malik A.B. Inhibition of NF-kappaB activation by pyrrolidine dithiocarbamate prevents In vivo expression of proinflammatory genes. Circulation. 1999;100(12):1330-1337.; Longo V.D. The Ras and Sch9 pathways regulate stress resistance and longevity. Exp. Gerontol. 2003;38(7):807-811.; Lopez-Lluch G., Hunt N., Jones B., Zhu M., Jamieson H., Hilmer S., Cascajo M., Allard J., Ingram D., Navas P. Calorie restriction induces mitochondrial biogenesis and bioenergetic efficiency. Proc. Natl Acad. Sci. USA. 2006;103(6):1768-1773.; Lopez-Otin C., Blasco M.A., Partridge L., Serrano M., Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194-1217. DОI 10.1016/j.cell.2013.05.039.; Lorenzini A., Johnson F.B., Oliver A., Tresini M., Smith J.S., Hdeib M., Sell C., Cristofalo V.J., Stamato T.D. Significant correlation of species longevity with DNA double strand break recognition but not with telomere length. Mech. Ageing Dev. 2009;130(11-12):784-792. DОI 10.1016/j.mad.2009.10.004.; Luo S., Shaw W.M., Ashraf J., Murphy C.T. TGF-beta Sma/Mab signaling mutations uncouple reproductive aging from somatic aging. PLoS Genet. 2009;5(12):e1000789. DОI 10.1371/journal.pgen.1000789.; Luzi L., Confalonieri S., Di Fiore P.P., Pelicci P.G. Evolution of Shc functions from nematode to human. Curr. Opin. Genet. Dev. 2000;10(6):668-674.; Manya H., Akasaka-Manya K., Endo T. Klotho protein deficiency and aging. Geriatr. Gerontol. Int. 2010;10(s1):S80-S87.; Mao Z., Hine C., Tian X., Van Meter M., Au M., Vaidya A., Seluanov A., Gorbunova V. SIRT6 promotes DNA repair under stress by activating PARP1. Science. 2011;332(6036):1443-1446. DОI 10.1126/science.1202723.; Marin-Garcia J. Mitochondrial DNA repair: a novel therapeutic target for heart failure. Heart Fail Rev. 2016. DОI 10.1007/s10741-016-9543-x.; Martín-Montalvo A., Villalba J.M., Navas P., De Cabo R. NRF2, cancer and calorie restriction. Oncogene. 2011;30(5):505-520.; Maslov A.Y., Ganapathi S., Westerhof M., Quispe-Tintaya W., White R.R., Van Houten B., Reiling E., Dollé M.E., Steeg H., Hasty P. DNA damage in normally and prematurely aged mice. Aging Cell. 2013;12(3):467-477.; Masternak M.M., Bartke A. PPARs in calorie restricted and genetically long-lived mice. PPAR Res. 2006;2007.; Matsuda T., Kanki T., Tanimura T., Kang D., Matsuura E.T. Effects of overexpression of mitochondrial transcription factor A on lifespan and oxidative stress response in Drosophila melanogaster. Biochem. Bioph. Res. Commun. 2013;430(2):717-721. DОI 10.1016/j.bbrc.2012.11.084.; McPherron A., Lawler A., Lee S. Regulation of skeletal muscle massin micebyanew TGF-ß superfamily member. Nature. 1997;5(1):83-90.; Mendias C.L., Bakhurin K.I., Gumucio J.P., Shallal-Ayzin M.V., Davis C.S., Faulkner J.A. Haploinsufficiency of myostatin protects against aging-related declines in muscle function and enhances the longevity of mice. Aging Cell. 2015;14(4):704-706.; Merino M.M., Rhiner C., Lopez-Gay J.M., Buechel D., Hauert B., Moreno E. Elimination of unfit cells maintains tissue health and prolongs lifespan. Cell. 2015;160(3):461-476. DОI 10.1016/j.cell.2014.12.017.; Miller M.D., Crotty M., Giles L.C., Bannerman E., Whitehead C., Cobiac L., Daniels L.A., Andrews G. Corrected arm muscle area: an independent predictor of long-term mortality in community-dwelling older adults? J. Am. Geriatr. Soc. 2002;50(7):1272-1277.; Min J.-N., Whaley R.A., Sharpless N.E., Lockyer P., Portbury A.L., Patterson C. CHIP deficiency decreases longevity, with accelerated aging phenotypes accompanied by altered protein quality control. Mol. Cell. Biol. 2008;28(12):4018-4025.; Morrow G., Samson M., Michaud S., Tanguay R.M. Overexpression of the small mitochondrial Hsp22 extends Drosophila life span and increases resistance to oxidative stress. The FASEB J. 2004;18(3): 598-599.; Moskalev A.A., Aliper A.M., Smit-McBride Z., Buzdin A., Zhavoronkov A. Genetics and epigenetics of aging and longevity. Cell Cycle. 2014;13(7):1063-1077. DОI 10.4161/cc.28433.; Moskalev A., Plyusnina E., Shaposhnikov M., Shilova L., Kazachenok A., Zhavoronkov A. The role of D-GADD45 in oxidative, thermal and genotoxic stress resistance. Cell Cycle. 2012;11(22):4222-4241. DОI 10.4161/cc.22545.; Moskalev A.A., Proshkina E.N., Shaposhnikov M.V. Chapter 2. Gadd45 Proteins in Aging and Longevity of Mammals and Drosophila. Life Extension Lessons from Drosophila. Cham: Springer, 2015:39-65.; Moskalev A., Shaposhnikov M. Pharmacological inhibition of NF-kappaB prolongs lifespan of Drosophila melanogaster. Aging (Albany NY). 2011;3(4):391-394.; Moskalev A., Shaposhnikov M., Turysheva E. Life span alteration after irradiation in Drosophila melanogaster strains with mutations of Hsf and Hsps. Biogerontology. 2009;10(1):3-11. DОI 10.1007/s10522-008-9147-5.; Mostoslavsky R., Chua K.F., Lombard D.B., Pang W.W., Fischer M.R., Gellon L., Liu P., Mostoslavsky G., Franco S., Murphy M.M., Mills K.D., Patel P., Hsu J.T., Hong A.L., Ford E., Cheng H.L., Kennedy C., Nunez N., Bronson R., Frendewey D., Auerbach W., Valenzuela D., Karow M., Hottiger M.O., Hursting S., Barrett J.C., Guarente L., Mulligan R., Demple B., Yancopoulos G.D., Alt F.W. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell. 2006;124(2):315-329. DОI 10.1016/j.cell.2005.11.044.; Neufeld-Cohen A., Robles M.S., Aviram R., Manella G., Adamovich Y., Ladeuix B., Nir D., Rousso-Noori L., Kuperman Y., Golik M., Mann M., Asher G. Circadian control of oscillations in mitochondrial rate-limiting enzymes and nutrient utilization by PERIOD proteins. Proc. Natl Acad. Sci. USA. 2016;113(12):E1673-E1682. DОI 10.1073/pnas.1519650113.; Oh S.W., Mukhopadhyay A., Svrzikapa N., Jiang F., Davis R.J., Tissenbaum H.A. JNK regulates lifespan in Caenorhabditis elegans by modulating nuclear translocation of forkhead transcription factor/DAF-16. Proc. Natl Acad. Sci. USA. 2005;102(12):4494-4499. DОI 10.1073/pnas.0500749102.; Olovnikov A.M. A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J. Theor. Biol. 1973;41(1): 181-190.; Onken B., Driscoll M. Metformin induces a dietary restriction–like state and the oxidative stress response to extend C. elegans healthspan via AMPK, LKB1, and SKN-1. PLoS ONE. 2010;5(1):e8758.; Oudit G.Y., Liu G.C., Zhong J., Basu R., Chow F.L., Zhou J., Loibner H., Janzek E., Schuster M., Penninger J.M., Herzenberg A.M., Kassiri Z., Scholey J.W. Human recombinant ACE2 reduces the progression of diabetic nephropathy. Diabetes. 2010;59(2):529-538. DОI 10.2337/db09-1218.; Pall M.L., Levine S. Nrf2, a master regulator of detoxification and also antioxidant, anti-inflammatory and other cytoprotective mechanisms, is raised by health promoting factors. Sheng Li Xue Bao. 2015;67(1):1-18.; Perkins N.D. Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat. Rev. Mol. Cell Biol. 2007;8(1):49-62. DОI 10.1038/nrm2083.; Piaceri I., Bagnoli S., Tedde A., Sorbi S., Nacmias B. Ataxia-telangiectasia mutated (ATM) genetic variant in Italian centenarians. Neurol. Sci. 2013;34(4):573-575. DОI 10.1007/s10072-012-1188-5.; Picca A., Pesce V., Fracasso F., Joseph A.M., Leeuwenburgh C., Lezza A.M. Aging and calorie restriction oppositely affect mitochondrial biogenesis through TFAM binding at both origins of mitochondrial DNA replication in rat liver. PLoS ONE. 2013;8(9):e74644. DОI 10.1371/journal.pone.0074644.; Pickering A.M., Lehr M., Miller R.A. Lifespan of mice and primates correlates with immunoproteasome expression. J. Clin. Invest. 2015;125(5):2059-2068.; Plyusnina E.N., Shaposhnikov M.V., Moskalev A.A. Increase of Drosophila melanogaster lifespan due to D-GADD45 overexpression in the nervous system. Biogerontology. 2011;12(3):211-226. DОI 10.1007/s10522-010-9311-6.; Pyo J.-O., Yoo S.-M., Ahn H.-H., Nah J., Hong S.-H., Kam T.-I., Jung S., Jung Y.-K. Overexpression of Atg5 in mice activates autophagy and extends lifespan. Nat. Commun. 2013;4.; Rakshit K., Giebultowicz J.M. Cryptochrome restores dampened circadian rhythms and promotes healthspan in aging Drosophila. Aging. Cell. 2013;12(5):752-762. DОI 10.1111/acel.12100.; Ramasamy R., Shekhtman A., Schmidt A.M. The multiple faces of RAGE – opportunities for therapeutic intervention in aging and chronic disease. Expert. Opin. Ther. Targets. 2016;20(4):431-446. DОI 10.1517/14728222.2016.1111873.; Regenhardt R.W., Mecca A.P., Desland F., Ritucci-Chinni P.F., Ludin J.A., Greenstein D., Banuelos C., Bizon J.L., Reinhard M.K., Sumners C. Centrally administered angiotensin-(1-7) increases the survival of stroke-prone spontaneously hypertensive rats. Exp. Physiol. 2014;99(2):442-453. DОI 10.1113/expphysiol.2013.075242.; Rera M., Bahadorani S., Cho J., Koehler C.L., Ulgherait M., Hur J.H., Ansari W.S., Lo T., Jr., Jones D.L., Walker D.W. Modulation of longevity and tissue homeostasis by the Drosophila PGC-1 homolog. Cell Metab. 2011;14(5):623-634. DОI 10.1016/j.cmet.2011.09.013.; Ropelle E.R., Pauli J.R., Cintra D.E., da Silva A.S., De Souza C.T., Guadagnini D., Carvalho B.M., Caricilli A.M., Katashima C.K., Carvalho-Filho M.A., Hirabara S., Curi R., Velloso L.A., Saad M.J., Carvalheira J.B. Targeted disruption of inducible nitric oxide synthase protects against aging, S-nitrosation, and insulin resistance in muscle of male mice. Diabetes. 2013;62(2):466-470. DОI 10.2337/db12-0339.; Rubinsztein D.C., Mariño G., Kroemer G. Autophagy and aging. Cell. 2011;146(5):682-695.; Salminen A., Kaarniranta K. AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network. Ageing Res. Rev. 2012;11(2):230-241. DОI 10.1016/j.arr.2011.12.005.; Santos E.L., de Picoli Souza K., da Silva E.D., Batista E.C., Martins P.J., D’Almeida V., Pesquero J.B. Long term treatment with ACE inhibitor enalapril decreases body weight gain and increases life span in rats. Biochem. Pharmacol. 2009;78(8):951-958. DОI 10.1016/j.bcp.2009.06.018.; Satoh A., Brace C.S., Rensing N., Cliften P., Wozniak D.F., Herzog E.D., Yamada K.A., Imai S. Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH. Cell Metab. 2013;18(3):416-430.; Seim I., Fang X., Xiong Z., Lobanov A.V., Huang Z., Ma S., Feng Y., Turanov A.A., Zhu Y., Lenz T.L., Gerashchenko M.V., Fan D., Hee Yim S., Yao X., Jordan D., Xiong Y., Ma Y., Lyapunov A.N., Chen G., Kulakova O.I., Sun Y., Lee S.G., Bronson R.T., Moskalev A.A., Sunyaev S.R., Zhang G., Krogh A., Wang J., Gladyshev V.N. Genome analysis reveals insights into physiology and longevity of the Brandt’s bat Myotis brandtii. Nat. Commun. 2013;4:2212. DОI 10.1038/ncomms3212.; Shaposhnikov M.V., Moskalev A.A., Plyusnina E.N. Effect of PARP-1 overexpression and pharmacological inhibition of NF-kB on the lifespan of Drosophila melanogaster. Adv. Gerontol. 2011;24(3): 405-419.; Shaposhnikov M., Proshkina E., Shilova L., Zhavoronkov A., Moskalev A. Lifespan and stress resistance in Drosophila with overexpressed DNA repair genes. Sci. Rep. 2015;5:15299. DОI 10.1038/srep15299.; Shaw W.M., Luo S., Landis J., Ashraf J., Murphy C.T. The C. elegans TGF-beta Dauer pathway regulates longevity via insulin signaling. Curr. Biol. 2007;17(19):1635-1645. DОI 10.1016/j.cub.2007.08.058.; Simmonds R.E., Foxwell B.M. Signalling, inflammation and arthritis: NF-kappaB and its relevance to arthritis and inflammation. Rheumatology (Oxford). 2008;47(5):584-590. DОI 10.1093/rheumatology/kem298.; Simonsen A., Cumming R.C., Brech A., Isakson P., Schubert D.R., Finley K.D. Promoting basal levels of autophagy in the nervous system enhances longevity and oxidant resistance in adult Drosophila. Autophagy. 2008;4(2):176-184.; Sinha M., Jang Y.C., Oh J., Khong D., Wu E.Y., Manohar R., Miller C., Regalado S.G., Loffredo F.S., Pancoast J.R., Hirshman M.F., Lebowitz J., Shadrach J.L., Cerletti M., Kim M.J., Serwold T., Goodyear L.J., Rosner B., Lee R.T., Wagers A.J. Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle. Science. 2014;344(6184):649-652. DОI 10.1126/science.1251152.; Slack C., Alic N., Foley A., Cabecinha M., Hoddinott M.P., Partridge L. The Ras-Erk-ETS-signaling pathway is a drug target for longevity. Cell. 2015;162(1):72-83. DОI 10.1016/j.cell.2015.06.023.; Smith J.S., Brachmann C.B., Celic I., Kenna M.A., Muhammad S., Starai V.J., Avalos J.L., Escalante-Semerena J.C., Grubmeyer C., Wolberger C. A phylogenetically conserved NAD+-dependent protein deacetylase activity in the Sir2 protein family. Proc. Natl Acad. Sci. 2000;97(12):6658-6663.; Snell T.W., Johnston R.K., Rabeneck B., Zipperer C., Teat S. Joint inhibition of TOR and JNK pathways interacts to extend the lifespan of Brachionus manjavacas (Rotifera). Exp. Gerontol. 2014;52:55-69. DОI 10.1016/j.exger.2014.01.022.; Solovyev I.A., Dobrovolskaya E.V., Moskalev A.A. Genetic control of circadian rhythms and aging. Russ. J. Genet. 2016;52(4):343-361.; Stenesen D., Suh J.M., Seo J., Yu K., Lee K.-S., Kim J.-S., Min K.-J., Graff J.M. Adenosine nucleotide biosynthesis and AMPK regulate adult life span and mediate the longevity benefit of caloric restriction in flies. Cell Metab. 2013;17(1):101-112.; Sung B., Park S., Yu B.P., Chung H.Y. Amelioration of age-related inflammation and oxidative stress by PPARγ activator: suppression of NF-κB by 2, 4-thiazolidinedione. Exp. Gerontol. 2006;41(6): 590-599.; Swindell W.R., Masternak M.M., Kopchick J.J., Conover C.A., Bartke A., Miller R.A. Endocrine regulation of heat shock protein mRNA levels in long-lived dwarf mice. Mech. Ageing Dev. 2009;130(6):393-400.; Sykiotis G.P., Bohmann D. Keap1/Nrf2 signaling regulates oxidative stress tolerance and lifespan in Drosophila. Dev. Cell. 2008;14(1): 76-85. DОI 10.1016/j.devcel.2007.12.002.; Symphorien S., Woodruff R.C. Effect of DNA repair on aging of transgenic Drosophila melanogaster: I. mei-41 locus. J. Gerontol. A Biol. Sci. Med. Sci. 2003;58(9):B782-B787.; Szwergold B.S., Miller C.B. Potential of birds to serve as a pathologyfree model of type 2 diabetes, Part 1. Is the apparent absence of the rage gene a factor in the resistance of avian organisms to chronic hyperglycemia? Rejuv. Res. 2014;17(1):54-61. DОI 10.1089/rej.2013.1498.; Tan Q., Soerensen M., Kruse T.A., Christensen K., Christiansen L. A novel permutation test for case-only analysis identifies epistatic effects on human longevity in the FOXO gene family. Aging Cell. 2013;12(4):690-694. DОI 10.1111/acel.12092.; Tan V.P., Miyamoto S. Nutrient-sensing mTORC1: Integration of metabolic and autophagic signals. J. Mol. Cell Cardiol. 2016). DОI 10.1016/j.yjmcc.2016.01.005.; Tatar M., Kopelman A., Epstein D., Tu M.P., Yin C.M., Garofalo R.S. A mutant Drosophila insulin receptor homolog that extends lifespan and impairs neuroendocrine function. Science. 2001;292(5514): 107-110. DОI 10.1126/science.1057987.; Taylor R.C., Dillin A. Aging as an event of proteostasis collapse. Cold Spring Harbor Persp. Biol. 2011;3(5):a004440.; Tian J., Yan Z., Wu Y., Zhang S.L., Wang K., Ma X.R., Guo L., Wang J., Zuo L., Liu J.Y., Quan L., Liu H.R. Inhibition of iNOS protects endothelial-dependent vasodilation in aged rats. Acta Pharmacol. Sin. 2010;31(10):1324-1328. DОI 10.1038/aps.2010.111.; Tomaru U., Takahashi S., Ishizu A., Miyatake Y., Gohda A., Suzuki S., Ono A., Ohara J., Baba T., Murata S. Decreased proteasomal activity causes age-related phenotypes and promotes the development of metabolic abnormalities. Am. J. Pathol. 2012;180(3):963-972.; Tran H., Brunet A., Grenier J.M., Datta S.R., Fornace A.J., Jr., DiStefano P.S., Chiang L.W., Greenberg M.E. DNA repair pathway stimulated by the forkhead transcription factor FOXO3a through the Gadd45 protein. Science. 2002;296(5567):530-534. DОI 10.1126/science.1068712.; Tsurumi A., Li W.X. Global heterochromatin loss: a unifying theory of aging? Epigenetics. 2012;7(7):680-688. DОI 10.4161/epi.20540.; Tsutsui M., Shimokawa H., Otsuji Y., Ueta Y., Sasaguri Y., Yanagihara N. Nitric oxide synthases and cardiovascular diseases: insights from genetically modified mice. Circ. J. 2009;73(6):986-993.; Twumasi-Boateng K., Wang T.W., Tsai L., Lee K.H., Salehpour A., Bhat S., Tan M.W., Shapira M. An age-dependent reversal in the protective capacities of JNK signaling shortens Caenorhabditis elegans lifespan. Aging Cell. 2012;11(4):659-667. DОI 10.1111/j.1474-9726.2012.00829.x.; Tyner S.D., Venkatachalam S., Choi J., Jones S., Ghebranious N., Igelmann H., Lu X., Soron G., Cooper B., Brayton C., Park S.H., Thompson T., Karsenty G., Bradley A., Donehower L.A. p53 mutant mice that display early ageing-associated phenotypes. Nature. 2002;415(6867):45-53. DОI 10.1038/415045a.; Ulgherait M., Rana A., Rera M., Graniel J., Walker D.W. AMPK modulates tissue and organismal aging in a non-cell-autonomous manner. Cell Reports. 2014;8(6):1767-1780.; Ungar L., Harari Y., Toren A., Kupiec M. Tor complex 1 controls telomere length by affecting the level of Ku. Curr. Biol. 2011;21(24): 2115-2120. DОI 10.1016/j.cub.2011.11.024.; Ungvari Z., Ridgway I., Philipp E.E., Campbell C.M., McQuary P., Chow T., Coelho M., Didier E.S., Gelino S., Holmbeck M.A., Kim I., Levy E., Sosnowska D., Sonntag W.E., Austad S.N., Csiszar A. Extreme longevity is associated with increased resistance to oxidative stress in Arctica islandica, the longest-living non-colonial animal. J. Gerontol. A Biol. Sci. Med. Sci. 2011;66(7):741-750. DОI 10.1093/gerona/glr044.; Vajapey R., Rini D., Walston J., Abadir P. The impact of age-related dysregulation of the angiotensin system on mitochondrial redox balance. Front. Physiol. 2014;5:439. DОI 10.3389/fphys.2014.00439.; Van Deursen J.M. The role of senescent cells in ageing. Nature. 2014;509(7501):439-446. DОI 10.1038/nature13193.; Van Meter M., Kashyap M., Rezazadeh S., Geneva A.J., Morello T.D., Seluanov A., Gorbunova V. SIRT6 represses LINE1 retrotransposons by ribosylating KAP1 but this repression fails with stress and age. Nat. Commun. 2014;5:5011. DОI 10.1038/ncomms6011.; Vermeulen C.J., Van De Zande L., Bijlsma R. Resistance to oxidative stress induced by paraquat correlates well with both decreased and increased lifespan in Drosophila melanogaster. Biogerontology. 2005;6(6):387-395. DОI 10.1007/s10522-005-4903-2.; Wang M.C., Bohmann D., Jasper H. JNK signaling confers tolerance to oxidative stress and extends lifespan in Drosophila. Dev. Cell. 2003;5(5):811-816.; Wang Y., Sun Z. Antiaging gene Klotho regulates endothelin-1 levels and endothelin receptor subtype B expression in kidneys of spontaneously hypertensive rats. J. Hypertens. 2014;32(8):1629-1636.; Weiss A., Attisano L. The TGFbeta superfamily signaling pathway. Wiley Interdiscip. Rev. Dev. Biol. 2013;2(1):47-63. DОI 10.1002/wdev.86.; White T.A., LeBrasseur N.K. Myostatin and sarcopenia: opportunities and challenges – A mini-review. Gerontology. 2014;60(4):289-293.; Willcox B.J., Tranah G.J., Chen R., Morris B.J., Masaki K.H., He Q., Willcox D.C., Allsopp R.C., Moisyadi S., Poon L.W., Rodriguez B., Newman A.B., Harris T.B., Cummings S.R., Liu Y., Parimi N., Evans D.S., Davy P., Gerschenson M., Donlon T.A. The FoxO3 gene and cause-specific mortality. Aging Cell. 2016. DОI 10.1111/acel.12452.; Xia H., Suda S., Bindom S., Feng Y., Gurley S.B., Seth D., Navar L.G., Lazartigues E. ACE2-mediated reduction of oxidative stress in the central nervous system is associated with improvement of autonomic function. PLoS ONE. 2011;6(7):e22682. DОI 10.1371/journal.pone.0022682.; Xie J., Yoon J., An S.-W., Kuro-o M., Huang C.-L. Soluble Klotho protects against uremic cardiomyopathy independently of fibroblast growth factor 23 and phosphate. J. Am. Soc. Nephrol. 2015;26(5): 1150-1160.; Yonekura H., Yamamoto Y., Sakurai S., Watanabe T., Yamamoto H. Roles of the receptor for advanced glycation endproducts in diabetes-induced vascular injury. J. Pharmacol. Sci. 2005;97(3):305-311.; Zhang G., Li J., Purkayastha S., Tang Y., Zhang H., Yin Y., Li B., Liu G., Cai D. Hypothalamic programming of systemic ageing involving IKK-beta, NF-kappaB and GnRH. Nature. 2013;497(7448):211-216. DОI 10.1038/nature12143.; Zhang R., Chen H.-Z., Liu D.-P. The four layers of aging. Cell Systems. 2015;1(3):180-186.; Zhao G., Hatting M., Nevzorova Y.A., Peng J., Hu W., Boekschoten M.V., Roskams T., Muller M., Gassler N., Liedtke C., Davis R.J., Cubero F.J., Trautwein C. Jnk1 in murine hepatic stellate cells is a crucial mediator of liver fibrogenesis. Gut. 2014;63(7): 1159-1172. DОI 10.1136/gutjnl-2013-305507.; https://vavilov.elpub.ru/jour/article/view/695
-
15
المؤلفون: И. А. Соловьев, А. П. Уточкин, П. П. Лукьянюк, I. A. Soloviev, A. P. Utochkin, P. P. Lukianiuk
المصدر: Marine Medicine ; Морская медицина
مصطلحات موضوعية: marine medicine, department of naval and hospital surgery, Luchitsky Michael Alekseevich, combined destruction, the school of naval surgeons, морская медицина, кафедра военно-морской и госпитальной хирургии, Лущицкий Михаил Алексеевич, комбинированные поражения, школа военно-морских хирургов
-
16
المؤلفون: И. А. Соловьев, Н. В. Рухляда, А. П. Уточкин, Р. В. Титов, А. В. Колунов, I. A. Solovyev, N. A. Rukhliada, A. P. Utochkin, R. V. Titov, A. V. Kolunov
المصدر: Marine Medicine ; Морская медицина
مصطلحات موضوعية: marine medicine, navy surgery, ship doctor, Department of Navy Surgery, practical skills, targeted training, emergency surgery, continuing training, морская медицина, военно-морская хирургия, корабельный врач, кафедра военно-морской хирургии, практические навыки, профильность обучения, неотложная хирургия, непрерывность в подготовке
-
17
المؤلفون: И. А. Соловьёв, Ю. Н. Закревский, Д. А. Суров, О. В. Балюра, А. В. Перетечиков, С. И. Егоров, Е. Н. Ершов, I. A. Solovyev, Yu. N. Zakrevskiy, D. A. Surov, O. V. Balura, A. V. Peretechikov, S. I. Egorov, E. N. Ershov
المصدر: Marine Medicine ; Морская медицина
مصطلحات موضوعية: marine medicine, surgeries by the ship, naval surgery, endovideo surgeries, laparoscopic appendektomiya, морская медицина, хирургические операции на корабле, военно-морская хирургия, эндовидеохирургические операции, лапароскопическая аппендэктомия
-
18
المؤلفون: И. А. Соловьев, Р. В. Титов, А. А. Галака, I. A. Soloviyev, R. V. Titov, A. A. Galaka
المصدر: Marine Medicine ; Морская медицина
مصطلحات موضوعية: подводный взрыв, мелководье, минно-взрывная травма, механические повреждения, хирургическая помощь, раневой процесс, underwater explosion, shallow water, mine-explosion trauma, mechanical injury, surgical care, wound dynamics