يعرض 1 - 3 نتائج من 3 نتيجة بحث عن '"И. А. Савинский"', وقت الاستعلام: 0.40s تنقيح النتائج
  1. 1
    Academic Journal

    المساهمون: The study was supported by the Russian Science Foundation (project 21-77-20022, geochemistry), the Ministry of Science and Higher Education of the Russian Federation (projects FSUS-2020-0039 and 0330-2019-0003 regional geology and petrography) and the Ministry of Science and Higher Education of Kazakhstan (project AR08855920, local geology, field work)., Работа выполнена при поддержке Российского научного фонда (проект № 21-77-20022, геохимия), Министерства науки и высшего образования РФ (проекты № FSUS-2020-0039 НГУ и № 0330-2019-0003 ИГМ СО РАН, региональная геология, петрография) и Министерства науки и высшего образования Казахстана (проект № АР08855920, локальная геология, полевые работы).

    المصدر: Geodynamics & Tectonophysics; Том 13, № 5 (2022); 0673 ; Геодинамика и тектонофизика; Том 13, № 5 (2022); 0673 ; 2078-502X

    وصف الملف: application/pdf

    Relation: https://www.gt-crust.ru/jour/article/view/1584/709; An A.-R., Choi S.H., Yu Y., Lee D.-С., 2016. Petrogenesis of Late Cenozoic Basaltic Rocks from Southern Vietnam. Lithos 272–273, 192–204. https://doi.org/10.1016/j.lithos.2016.12.008.; Antonyuk R.M., 1971. Volcanogenic-Siliceous Formations of Central Kazakhstan. In: Stratigraphy of the Precambrian of Kazakhstan and the Tien Shan. MSU Publishing House, Moscow, p. 152–160 (in Russian) [Антонюк Р.М. Вулканогенно-кремнистые формации Центрального Казахстана // Стратиграфия докембрия Казахстана и Тянь-Шаня. М.: Изд-во МГУ, 1971. С. 152–160].; Antonyuk R.M., 1974. Oceanic Crust of the Eugeosynclinal Region of Eastern Central Kazakhstan. In: Tectonics of the Ural-Mongolian Folded Belt. Nauka, Moscow, p. 67–69 (in Russian) [Антонюк Р.М. Океаническая кора эвгеосинклинальной области востока Центрального Казахстана // Тектоника Урало-Монгольского складчатого пояса. М.: Наука, 1974. С. 67–69].; Antonyuk R.M., 1976. Early Geosyncline Paleozoic Magmatic Formations of Central Kazakhstan. Bulletin of the Academy of Sciences of KazSSR. Geological Series 4, 81–85 (in Russian) [Антонюк Р.М. Раннегеосинклинальные магматические формации палеозоя Центрального Казахстана // Известия АН КазССР. Серия геологическая. 1976. № 4. С. 81–85].; Antonyuk R.M., Burmak A.L., Gerasimova N.A., Grankin M.S., Lykov L.I., Novikova M.Z., Serykh V.I., Stepanets V.G., Yakubchuk A.S., 1988. Magmatic Complexes of the Central Kazakhstan. Excursion Guide of the IV Kazakhstan Petrography Meeting. Karaganda, 62 p. (in Russian) [Антонюк Р.М., Бурмак А.Л., Герасимова Н.А., Гранкин М.С., Лыков Л.И., Новикова М.З., Серых В.И., Степанец В.Г., Якубчук А.С. Магматические комплексы Центрального Казахстана: Путеводитель экскурсии IV Казахстанского петрографического совещания. Караганда, 1988. 62 c.].; Antonyuk R.M., Khasen B.P., Lis S.N., Kasimov A.A., Orynbek T.Zh., 2020. In-depth Prediction, Prospecting and Exploration of Mineralization Sites in the Tekturmass Ophiolite Belt. Research Report. Karagandy, 80 p. (in Russian) [Антонюк Р.М., Хасен Б.П., Лис С.Н., Касимов А.А., Орынбек Т.Ж. Глубинный прогноз, поиски и разведка участков минерализации в Тектурмасском офиолитовом поясе: Отчет о Научно-исследовательской работе. Караганды, 2020. 80 с.].; Antonyuk R.M., Maslova I.G., Mukhtarov Zh.M., 2015. The Tekturmas Ophiolite Belt: Structure, Age, Geodynamics. In: Geology, Mineralogy and Prospects for the Exploration Mineral Resources of the Republic of Kazakhstan. Materials of the International Scientific and Practical Conference (November 26–27, 2015). Almaty, p. 7–28 (in Russian) [Антонюк Р.М., Маслова И.Г., Мухтаров Ж.М. Тектурмасский офиолитовый пояс: строение, возраст, геодинамика // Геология, минералогия и перспективы развития минерально-сырьевых ресурсов Республики Казахстан: Материалы Международной научно-практической конференции (26–27 ноября 2015). Алматы, 2015. С. 7–28].; Avdeev A.V., 1986. Geology of Ophiolite Zones of Kazakhstan. Brief PhD Thesis (Doctor of Geology and Mineralogy). Novosibirsk, 32 p. (in Russian) [Авдеев А.В. Геология офиолитовых зон Казахстана: Автореф. дис. … докт. геол.-мин. наук. Новосибирск, 1986, 32 c.].; Briqueu L., Bougault H., Joron J.L., 1984. Quantification of Nb, Ta, Ti and V Anomalies in Magmas Associated with Subduction Zones: Petrogenetic Implications. Earth and Planetary Science Letters 68 (2), 297–308. https://doi.org/10.1016/0012-821X(84)90161-4.; Buslov M.M., Safonova I.Yu., Watanabe T., Obut O., Fujiwara Y., Iwata K., Semakov N.N., Sugai Y., Smirnova L.V., Kazansky A.Yu., 2001. Evolution of the Paleo-Asian Ocean (Altai-Sayan Region, Central Asia) and Collision of Possible Gondwana-Derived Terranes with the Southern Marginal Part of the Siberian Continent. Geosciences Journal 5, 203–224. https://doi.org/10.1007/BF02910304.; Chetvertikova N.P., Sytova V.A., Ushatinskaya G.T., Keller N.B., Bondarenko O.B., Ulitina L.M., 1966. Stratigraphy and Fauna of the Silurian and Lower Devonian Deposits of the Nura Synclinorium. MSU Publishing House, Moscow, 256 p. (in Russian) [Четвертикова Н.П., Сытова В.А., Ушатинская Г.Т., Келлер Н.Б., Бондаренко О.Б., Улитина Л.М. Стратиграфия и фауна силурийских и нижнедевонских отложений Нуринского синклинория. М.: Изд-во МГУ, 1966. 256 с.].; Decisions of the III Kazakhstan Stratigraphic Conference on the Precambrian and Phanerozoic, 1991. Part 1. Precambrian and Paleozoic. Publishing House of the Academy of Sciences of KazSSR, Alma-Ata, 148 p. (in Russian) [Решения III Казахстанского стратиграфического совещания по докембрию и фанерозою. Ч. 1: Докембрий и палеозой. Алма-Ата: АН КазССР, 1991. 148 с.].; Degtyarev K.E., 2012. Tectonic Evolution of the Early Paleozoic Island-Arc Systems and the Formation of the Continental Crust of the Caledonides of Kazakhstan. GEOS, Moscow, 288 p. (in Russian) [Дегтярев К.Е. Тектоническая эволюция раннепалеозойских островодужных систем и формирование континентальной коры каледонид Казахстана. М.: Изд-во ГЕОС, 2012. 288 с.].; Degtyarev K.E., Luchitskaya M.V., Tretyakov A.A., Pilitsyna A.V., Yakubchuk A.S., 2021a. Early Paleozoic Suprasubduction Complexes of the North Balkhash Ophiolite Zone (Central Kazakhstan): Geochronology, Geochemistry and Implications for Tectonic Evolution of the Junggar-Balkhash Ocean. Lithos 380–381, 105818. https://doi.org/10.1016/j.lithos.2020.105818.; Degtyarev K.E., Tolmacheva T.Yu., Tretyakov A.A., Kotov A.B., Yakubchuk A.S., Salnikova E.B., Van K.L., 2017. Polychronous Formation of the Ophiolite Association in the Tekturmas Zone of Central Kazakhstan Inferred from Geochronological and Biostratigraphic Data. Doklady Earth Sciences 472, 26–30. http://doi.org/10.1134/S1028334X17010214.; Degtyarev K.E., Yakubchuk A.S., Luchitskaya M.V., Tolmacheva T.Yu., Skoblenko (Pilitsyna) A.V., Tretyakov A.A., 2021b. Ordovician Supra-Subduction, Oceanic and Within-Plate Ocean Island Complexes in the Tekturmas Ophiolite Zone (Central Kazakhstan): Age, Geochemistry and Tectonic Implications. International Geology Review 64 (15), 2108–2150. https://doi.org/10.1080/00206814.2021.1969691.; Dobretsov N.L., Berzin N.A., Buslov M.M., 1995. Opening and Tectonic Evolution of the Paleo-Asian Ocean. International Geology Review 37 (4), 335–360. https://doi.org/10.1080/00206819509465407.; Geodynamic Map of Kazakhstan, 1995. Central Kazakhstan Series. Scale of 1:1500000. Explanatory Notes. Moscow, 251 p. (in Russian) [Геодинамическая карта Казахстана. Серия Центрально-Казахстанская. Масштаб 1:1500000: Объяснительная записка. М., 1995. 251 c.].; Geological Map of the Kazakh SSR, 1981. Central Kazakhstan Series. Scale 1:500000. Explanatory Notes. Alma-Ata, 324 p. (in Russian) [Геологическая карта Казахской ССР. Серия Центрально-Казахстанская. Масштаб 1:500000: Объяснительная записка. Алма-Ата, 1981. 324 с.].; Gridina N.M., 2003. Conodonts in Siliceous Deposits of the Northeastern Central Kazakhstan. Geosciences in Kazakhstan. MGK-32. Reports of Kazakh Geologists, p. 135–140 (in Russian) [Гридина Н.М. Конодонты в кремнистых отложениях северо-востока Центрального Казахстана // Геонауки в Казахстане. МГК-32. Доклады казахстанских геологов. 2003. C. 135–140].; Isozaki Y., Maruyama S., Fukuoka F., 1990. Accreted Oceanic Materials in Japan. Tectonophysics 181 (1–4), 179–205. https://doi.org/10.1016/0040-1951(90)90016-2.; Jahn B.M., Wu F.Y., Chen B., 2000. Granitoids of the Central Asian Orogenic Belt and Continental Growth in the Phanerozoic. Transactions of the Royal Society of Edinburgh 91 (1–2), 181–193. https://doi.org/10.1017/S0263593300007367.; Jensen L.S., 1976. A New Cation Plot for Classifying Subalkalic Volcanic Rocks. Ontario Geological Survey Miscellaneous Paper 66. 22 p.; Khassen B.P., Safonova I.Yu., Yermolov P.V., Antonyuk R.M., Gurova A.V., Obut O.T., Perfilova A.A., Savinskiy I.A., Tsujimori T., 2020. The Tekturmas Ophiolite Belt of Central Kazakhstan: Geology, Magmatism, and Tectonics. Geological Journal 55 (3), 2363–2382. http://doi.org/10.1002/gj.3782.; Kröner A., Kovach V.P., Alexeiev D.V., Wang K-L., Wong J., Degtyarev K.E., Kozakov I.K., 2017. No Excessive Crustal Growth in the Central Asian Orogenic Belt: Further Evidence from Field Relationships and Isotopic Data. Gondwana Research 50, 135–166. https://doi.org/10.1016/j.gr.2017.04.006.; Kröner A., Kovach V., Belousova E., Hegner E., Armstrong R., Dolgopolova A., Seltmann R., Alexeiev D.V., Hoffmann J.E. et al., 2014. Reassessment of Continental Growth during the Accretionary History of the Central Asian Orogenic Belt. Gondwana Research 25 (1), 103–125. https://doi.org/10.1016/j.gr.2012.12.023.; Kurkovskaya L.A., 1985. Conodonts from Ordovician Siliceous and Volcanogenic Formaitons of Central Kazakhstan. In: Geology of Early Geosynclinal Complexes of Central Kazakhstan. MSU Publishing House, Moscow, p. 164–177 (in Russian) [Курковская Л.А. Комплекс конодонтов из кремнистых и вулканогенных отложений ордовика Центрального Казахстана // Геология раннегеосинклинальных комплексов Центрального Казахстана. М.: Изд-во МГУ, 1985. C. 164–177].; Kuznetsov I.E., 1980. Ultramafic Rocks of the Tekturmas Anticlinorium. Problems of the Geology of Kazakhstan. MSU Publishing House, Moscow, p. 122–139 (in Russian) [Кузнецов И.Е. Ультрабазиты Тектурмасского антиклинория // Проблемы геологии Казахстана. М.: Изд-во МГУ, 1980. С. 122–139].; Le Maitre R.W. (Ed.), 2002. Igneous Rocks: A Classification and Glossary of Terms. Cambridge University Press, Cambridge, 251 p. https://doi.org/10.1017/CBO9780511535581.; Levashova N.M., Degtyarev K.E., Bazhenov M.L., 2012. Oroclinal Bending of the Middle and Late Paleozoic Volcanic Belts in Kazakhstan: Paleomagnetic Evidence and Geological Implications. Geotectonics 46, 285–302. http://doi.org/10.1134/S0016852112030041.; Li P., Sun M., Rosenbaum G., Yuan C., Safonova I., Cai K., Jiang Y., Zhang Y., 2018. Geometry, Kinematics and Tectonic Models of the Kazakhstan Orocline, Central Asian Orogenic Belt. Journal of Asian Earth Sciences 153, 42–56. https://doi.org/10.1016/j.jseaes.2017.07.029.; Magretova L.I., Ismailov H.K., Maslova I.G., Yakimenko R.D., Kurchavov A.M., Gurevich D.V., 2020. Copper-Nickel Mineralization with Platinum Group Minerals of the Bozshasor Volcano-Tectonic Structure of the North-Eastern Central Kazakhstan. Geology and Protection of Mineral Resources 2 (75) 20–29 (in Russian) [Магретова Л.И., Исмаилов Х.К., Маслова И.Г., Якименко Р.Д., Курчавов А.М., Гуревич Д.В. Медно-никелевое оруденение с платиноидами Бозшасорской вулкано-тектонической структуры северо-востока Центрального Казахстана // Геология и охрана недр. 2020. Т. 2. № 75. С. 20–29].; Maruyama Sh., Safonova I.Yu., Turkina O.M., Obut O.T., Krivonogov S.K., Gurova A.V., 2018. Geology and Magmatism of Pacific-Type Convergent Margins. Novosibirsk State University Publishing House, Novosibirsk, 96 p. (in Russian) [Маруяма Ш., Сафонова И.Ю., Туркина О.М., Обут О.Т., Кривоногов С.К., Гурова А.В. Геология и магматизм конвергентных окраин тихоокеанского типа. Новосибирск: ИПЦ НГУ, 2018. 96 с.].; Meschede M., 1986. A Method of Discriminating between Different Types of Mid-Ocean Ridge Basalts and Continental Tholeiites with the Nb-Zr-Y Diagram. Chemical Geology 56 (3–4), 207–218. https://doi.org/10.1016/0009-2541(86)90004-5.; Mullen E.D., 1983. MnO/TiO2/P2O5: A Minor Element Discrimination for Basaltic Rocks of Oceanic Environments and Its Implications for Petrogenesis. Earth and Planetary Science Letters 62 (1), 53–62. http://doi.org/10.1016/0012-821X(83)90070-5.; Novikova M.Z., German L.L., Kuznetsov I.E., Yakubchuk A.S., 1991. Ophiolites of the Tekturmas Zone. In: A.A. Abdulin (Ed.), Magmatism and Ore Potential of Kazakhstan. Gylym, Alma-Ata, p. 92–102 (in Russian) [Новикова М.З., Герман Л.Л., Кузнецов И.Е., Якубчук А.С. Офиолиты Тектурмасской зоны // Магматизм и рудоносность Казахстана / Ред. А.А. Абдулин. Алма-Ата: Гылым, 1991. C. 92–102].; Pearce J.A., 1982. Trace Element Characteristics of Lavas from Destructive Plate Boundaries. In: R.S. Thorpe (Ed.), Orogenic Andesites and Related Rocks. John Wiley & Sons, Chichester, p. 528–548.; Safonova I., Kotlyarov A. Krivonogov S., Xiao W., 2017. Intra-Oceanic Arcs of the Paleo-Asian Ocean. Gondwana Research 50, 167–194. http://doi.org/10.1016/j.gr.2017.04.005.; Safonova I., Maruyama S., Kojima S., Komiya T., Krivonogov S., Koshida K., 2016. Recognizing OIB and MORB in Accretionary Complexes: A New Approach Based on Ocean Plate Stratigraphy, Petrology, and Geochemistry. Gondwana Research 33, 92–114. http://doi.org/10.1016/j.gr.2015.06.013.; Safonova I., Savinskiy I., Perfilova A., Gurova A., Maruyama S., Tsujimori T., 2020. The Itmurundy Pacific-Type Orogenic Belt in Northern Balkhash, Central Kazakhstan: Revisited Plus First U-Pb Age, Geochemical and Nd Isotope Data from Igneous Rocks. Gondwana Research 79, 49–69. https://doi.org/10.1016/j.gr.2019.09.004.; Safonova I.Y., 2017. Juvenile versus Recycled Crust in the Central Asian Orogenic Belt: Implications from Ocean Plate Stratigraphy, Blueschist Belts and Intra-Oceanic Arcs. Gondwana Research 47, 6–27. http://doi.org/10.1016/j.gr.2016.09.003.; Safonova I.Y., Khanchuk A.I., 2021. Subduction Erosion at Pacific-Type Convergent Margins. Russian Journal of Pacific Geology 15, 495–509. http://doi.org/10.1134/S1819714021060087.; Safonova I.Y., Utsunomiya A., Kojima S., Nakae S., Tomurtogoo O., Filippov A.N., Koizumi K., 2009. Pacific Superplume-Related Oceanic Basalts Hosted by Accretionary Complexes of Central Asia, Russian Far East and Japan. Gondwana Research 16 (3–4), 587–608. https://doi.org/10.1016/j.gr.2009.02.008.; Safonova I.Yu., Perfilova A.A., Obut O.T., Savinsky I.A., Cherny R.I., Petrenko N.A., Gurova A.V., Kotler P.D., Khromykh S.V., Krivonogov S.K., Maruyama S., 2019. The Itmurundy Accretionary Complex, Northern Balkhash Area: Geological Structure, Stratigraphy and Tectonic Origin. Russian Journal of Pacific Geology 13, 283–296. https://doi.org/10.1134/S1819714019030072.; Shabalina L.V., 2005. Deep Structure and Patterns of Distribution of Mineralization Zones in the Central Kazakhstan Paleorift System. Brief PhD Thesis (Candidate of Geology and Mineralogy). Alma-Ata, 16 p. (in Russian) [Шабалина Л.В Глубинное строение и закономерности размещения полезных ископаемых Центрально-Казахстанской палеорифтовой системы: Автореф. дис. … канд. геол.-мин. наук. Алма-Ата, 2005. 16 с.].; Shen P., Pan H., Seitmuratova E., Yuan F., Jakupova S.A., 2015. Cambrian Intra-Oceanic Subduction System in the Bozshakol Area, Kazakhstan. Lithos 224–225, 61–77. https://doi.org/10.1016/j.lithos.2015.02.025.; Stepanets V.G., 2016. Geodynamic Position of the Tekturmas Accretionary Prism Ophiolites (Central Kazakhstan). Part 1. News of the National Academy of Sciences of the Republic of Kazakhstan. Series of Geology and Technical Sciences 5 (419), 34–49 (in Russian) [Степанец В.Г. Геодинамическая позиция офиолитов Тектурмасской аккреционной призмы (Центральный Казахстан). Часть 1 // Известия НАН РК. Серия геологии и технических наук. 2016. Т. 5 (419). С. 34–49].; Stepanets V.G., Gridina N.M., Konik V.E., 1998. Upper Ordovician Olistostromes and Stratigraphy of Volcanic-Siliceous Complexes of the Agyrek and Kosgombay Mountains (Central Kazakhstan). Geology of Kazakhstan 1, 12–23 (in Russian) [Степанец В.Г., Гридина Н.М., Коник В.Е. Верхнеордовикские олистостромы и стратиграфия вулканогенно-кремнистых комплексов гор Агырек и Косгомбай (Центральный Казахстан) // Геология Казахстана. 1998. Т. 1. С. 12–23].; Sun S.-S., McDonough W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society of London Special Publications 42 (1), 313–345. http://dx.doi.org/10.1144/GSL.SP.1989.042.01.19.; Turmanidze T.L., Grishin D.M., Pechersky D.M., Stepanets V.G., 1991. Paleomagnetic Data from Ordovician Ophiolites of the Allochthonous Karaulcheku, Tolpak, and Bazarbay Massifs (Central Kazakhstan). Geotectonics 4, 54–69 (in Russian) [Турманидзе Т.Л., Гришин Д.М., Печерский Д.М., Степанец В.Г. Палеомагнитная информация об ордовикских офиолитах из аллохтонных массивов Караулчеку, Толпак и Базарбай (Центральный Казахстан) // Геотектоника. 1991. Т. 4. С. 54–69].; Wakita K., 2012. Mappable Features of Mélanges Derived from Ocean Plate Stratigraphy in the Jurassic Accretionary Complexes of Mino and Chichibu Terranes, Southwest Japan. Tectonophysics 568–569, 74–85. https://doi.org/10.1016/j.tecto.2011.10.019.; Weit A., Trumbull R.B., Keiding J.K., Geissler W.H., Gibson S.A., Veksler I.V., 2017. The Magmatic System beneath the Tristan Da Cunha Island: Insights from Thermobarometry, Melting Models and Geophysics. Tectonophysics 716, 64–76. https://doi.org/10.1016/j.tecto.2016.08.010.; Winchester J.A., Floyd P.A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology 20, 325–343. https://doi.org/10.1016/0009-2541(77)90057-2.; Windley B.F., Alexeiev D., Xiao W., Kröner A., Badarch G., 2007. Tectonic Models for Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society of London 164 (1), 31–47. http://doi.org/10.1144/0016-76492006-022.; Yakubchuk A.A., Stepanets V.G., German L.L., 1988. Subparallel Dike Swarms in Ophiolite Massifs Are Evidence of Spreading. Doklady of the USSR Academy of Sciences 298 (5), 1193–1197 (in Russian) [Якубчук А.А., Степанец В.Г., Герман Л.Л. Рои пластинчатых даек, субпараллельных в офиолитовых массивах, – свидетели спрединга // Доклады АН СССР. 1988. Т. 298. № 5. С. 1193–1197].; Yakubchuk A.S., 1990. Tectonic Settings of Paleozoic Ophiolites of Central Kazakhstan. Geotectonics 5, 55–68 (in Russian) [Якубчук А.С. Тектоническая обстановка офиолитовых зон в палеозойской структуре Центрального Казахстана // Геотектоника. 1990. Т. 5. С. 55–68].; Yakubchuk A.S., 1991. Tectonic Position and Structure of Ophiolites of Central Kazakhstan Using the Tekturmas and Southwestern Maykain-Kyzyltas Zones as Examples. Brief PhD Thesis (Candidate of Geology and Mineralogy). Moscow, 16 p. (in Russian) [Якубчук А.С. Тектоническая позиция и строение офиолитов Центрального Казахстана на примере Тектурмасской и юго-западной части Майкаин-Кызылтасской зоны: Автореф. дис. … канд. геол.-мин. наук. М., 1991. 16 с.].; Zonenshain L.P., Kuzmin M.I., Natapov L.M., 1990. Geology of the USSR: A Plate Tectonic Synthesis. Geodynamic Monograph Series. American Geophysical Union, 242 p.; https://www.gt-crust.ru/jour/article/view/1584

  2. 2
    Academic Journal

    المساهمون: The study was supported by the Russian Science Foundation (project 20-77-10051, zirconometry, project 21-77-20022, geochemistry), Russian Foundation for Basic Research (project 20-35-90091, petrography), Ministry of Science and Higher Education of the Russian Federation (State Assignment projects FSUS-2020-0039, NSU, petrochemistry, 0330-2019-0003, IGM SB RAS, regional geology) and the Ministry of Science and Education of Kazakhstan (project АР08855920, local geology)., Работа выполнена при поддержке Российского научного фонда (проект № 20-77-10051, И.А. Савинский, проект № 21-77-20022, И.Ю. Сафонова), РФФИ (проект № 20-35-90091, А.А. Перфилова), госзадания Министерства науки и высшего образования РФ (проект № FSUS-2020-0039, НГУ, А.В. Гурова, проект № 0330-2019-0003, ИГМ СО РАН, П.Д. Котлер). Дополнительная поддержка при проведении полевых работ была оказана Министерством науки и образования Казахстана (проект № АР08855920).

    المصدر: Geodynamics & Tectonophysics; Том 13, № 1 (2022); 0572 ; Геодинамика и тектонофизика; Том 13, № 1 (2022); 0572 ; 2078-502X

    وصف الملف: application/pdf

    Relation: https://www.gt-crust.ru/jour/article/view/1425/624; Alexeiev D.V., Ryazantsev A.V., Kröner A., Tretyakov A.A., Xia X., Liu D.Y., 2011. Geochemical Data and Zircon Ages for Rocks in a High-Pressure Belt of Chu-Yili Mountains, Southern Kazakhstan: Implications for the Earliest Stages of Accretion in Kazakhstan and the Tianshan. Journal of Asian Earth Sciences 42 (5), 805–820. https://doi.org/10.1016/j.jseaes.2010.09.004.; Бискэ Ю.С. Островные дуги в палеозойской истории Южного Тянь-Шаня // Геотектоника. 1991. № 2. C. 41–46.; Black L.P., Kamo S.L., Allen C.M., Davis D.W., Aleinikoff J.N., Valley J.W., Mundil R., Campbell I.H. et al., 2004. Improved 206Pb/238U Microprobe Geochronology by the Monitoring of a Trace-Element-Related Matrix Effect; SHRIMP, ID-TIMS, ELA-ICP-MS and Oxygen Isotope Documentation for a Series of Zircon Standards. Chemical Geology 205 (1–2), 115–140. https://doi.org/10.1016/j.chemgeo.2004.01.003.; Clift P.D., Vannucchi P., 2004. Controls on Tectonic Accretion versus Erosion in Subduction Zones: Implications for the Origin and Recycling of the Continental Crust. Reviews of Geophysics 42 (2), RG2001. https://doi.org/10.1029/2003RG000127.; Coleman R.G., 1977. Ophiolites. Ancient Oceanic Lithosphere? Springer, Berlin, Heidelberg, 229 p. https://doi.org/10.1007/978-3-642-66673-5.; Дегтярев К.Е. Тектоническая эволюция раннепалеозойской активной окраины в Казахстане // Труды ГИН РАН. М.: Наука, 1999. Вып. 513. 123 с.; Degtyarev K.E., Luchitskaya M.V., Tretyakov A.A., Pilitsyna A.V., Yakubchuk A.S., 2021. Early Paleozoic Suprasubduction Complexes of the North Balkhash Ophiolite Zone (Central Kazakhstan): Geochronology, Geochemistry and Implications for Tectonic Evolution of the Junggar-Balkhash Ocean. Lithos 380–381, 105818. https://doi.org/10.1016/j.lithos.2020.105818.; Degtyarev K.E., Yakubchuk A.S., Luchitskaya M.V., Tretyakov A.A., 2020. Age and Structure of a Fragment of the Early Cambrian Ophiolite Sequence (North Balkhash Zone, Central Kazakhstan). Doklady Earth Sciences 491, 111–116. https://doi.org/10.1134/S1028334X20030034.; Dickinson W.R., Beard L.S., Brakenridge G.R., Erjavek J.L., Ferguson R.C., Inman K.F., Knepp R.A., Lindberg F.A., Ryberg P.T., 1983. Provenance of North American Phanerozoic Sandstones in Relation to Tectonic Setting. Geological Society of America Bulletin 94 (2), 222–235. https://doi.org/10.1130/0016-7606(1983)942.0.CO;2.; Dobretsov N.L., Berzin N.A., Buslov M.M., 1995. Opening and Tectonic Evolution of the Paleo-Asian Ocean. International Geology Review 37 (4), 335–360. https://doi.org/10.1080/00206819509465407.; Геологическая карта СССР. Серия Прибалхашская. Масштаб 1:200000. Лист L-43-XI. Южно-Казахстанское геологическое управление Мингео СССР, 1960.; Griffin W.L., Powell W.J., Pearson N.J., O’Reilly S.Y., 2008. GLITTER: Data Reduction Software for Laser Ablation ICPMS. In: P.J. Sylvester (Ed.), Laser Ablation-ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues. Mineralogical Association of Canada Short Course Series. Vol. 40. Vancouver, p. 308–311.; Irvine T.N., Baragar W.R.A., 1971. A Guide to the Chemical Classification of the Common Volcanic Rocks. Canadian Journal of Earth Sciences 8 (5), 523–547. https://doi.org/10.1139/e71-055.; Isozaki Y., Aoki K., Nakama T., Yanai S., 2010. New Insight into a Subduction-Related Orogen: A Reappraisal of the Geotectonic Framework and Evolution of the Japanese Islands. Gondwana Research 18 (1), 82–105. https://doi.org/10.1016/j.gr.2010.02.015.; Isozaki Y., Maruyama S., Fukuoka F., 1990. Accreted Oceanic Materials in Japan. Tectonophysics 181 (1–4), 179–205. https://doi.org/10.1016/0040-1951(90)90016-2.; Jensen L.S., 1976. A New Cation Plot for Classifying Subalkalic Volcanic Rocks. Ontario Division Mines Miscellaneous, 22 p.; Jochum K.P., Nohl U., 2008. Reference Materials in Geochemistry and Environmental Research and the Georem Database. Chemical Geology 253, 50–53. https://doi.org/10.1016/j.chemgeo.2008.04.002.; Ханчук А.И., Никитина А.П., Панченко И.В., Бурий Г.И., Кемкин И.В. Палеозойские и мезозойские гайоты Сихотэ-Алиня и Сахалина // Доклады АН СССР. 1989. Т. 307. № 1. С. 186–190.; Khubanov V.B., Buyantuev M.D., Tsygankov A.A., 2016. U–Pb Dating of Zircons from PZ3–MZ Igneous Complexes of Transbaikalia by Sector-Field Mass Spectrometry with Laser Sampling: Technique and Comparison with SHRIMP. Russian Geology and Geophysics 57 (1), 190–205. https://doi.org/10.1016/j.rgg.2016.01.013.; Куренков С.А., Диденко А.Н., Симонов В.А. Геодинамика палеоспрединга. М.: ГЕОС, 2002. 294 с.; Kusky T., Windley B., Safonova I., Wakita K., Wakabayashi J., Polat A., Santosh M., 2013. Recognition of Ocean Plate Stratigraphy in Accretionary Orogens through Earth History: A Record of 3.8 Billion Years of Sea Floor Spreading, Subduction, and Accretion. Gondwana Research 24 (2), 501–547. https://doi.org/10.1016/j.gr.2013.01.004.; Le Maitre R.W. (Ed.), 2002. Igneous Rocks: A Classification and Glossary of Terms. Cambridge University Press, Cambridge, 251 p.; Long X., Yuan C., Sun M., Safonova I., Xiao W., Wang Y., 2012. Geochemistry and U-Pb Detrital Zircon Dating of Paleozoic Graywackes in East Junggar, NW China: Insights into Subduction–Accretion Processes in the Southern Central Asian Orogenic Belt. Gondwana Research 21, (2–3) 637–653. https://doi.org/10.1016/j.gr.2011.05.015.; Ludwig K.R., 2012. ISOPLOT 3.75. A Geochronological Toolkit for Microsoft Excel. User’s Manual. Berkeley Geochronology Center Special Publication 5, 75 p.; Macdonald G.A., 1968. Composition and Origin of Hawaiian Lavas. In: R.R. Coats, R.L. Hay, C.A. Anderson (Eds), Studies in Volcanology. Geological Society of America Memoir 116, 477–522. https://doi.org/10.1130/MEM116-p477.; Maruyama S., 1997. Pacific-Type Orogeny Revisited: Miyashiro-Type Orogeny Proposed. Island Arc 6 (1), 91–120. https://doi.org/10.1111/j.1440-1738.1997.tb00042.x.; Maruyama S., Omori S., Sensu H., Kawai K., Windley B.F., 2011. Pacific-Type Orogens: New Concepts and Variations in Space and Time from Present to Past. Journal of Geography 120 (1), 115–223. https://doi.org/10.5026/jgeography.120.115.; Miyashiro A., 1973. The Troodos Ophiolitic Complex Was Probably Formed in an Island Arc. Earth and Planetary Science Letters 19 (2), 218–224. https://doi.org/10.1016/0012-821X(73)90118-0.; Miyashiro A., 1975. Volcanic Rock Series and Tectonic Setting. Annual Review of Earth and Planetary Sciences 3, 251–269. https://doi.org/10.1146/annurev.ea.03.050175.001343.; Mullen E.D., 1983. MnO/TiO2/P2O5: A Minor Element Discriminant for Basaltic Rocks of Oceanic Environments and Its Implications for Petrogenesis. Earth and Planetary Science Letters 62 (1), 53–62. https://doi.org/10.1016/0012-821X(83)90070-5.; Никитин И.Ф. Ордовикские кремнистые и кремнисто-базальтовые комплексы Казахстана // Геология и геофизика. 2002. Т. 43. С. 512–527.; Новикова М.З., Герасимова Н.А., Дубинина С.В. Конодонты из вулканогенно-кремнистого комплекса Северного Прибалхашья // Доклады АН СССР. 1983. Т. 271. С. 1449–1451.; Orihashi Y., Hirata T., 2003. Rapid Quantitative Analysis of Y and REE Abundances in XRF Glass Bead for Selected GSJ Reference Rock Standards Using Nd-YAG 266 nm UV Laser Ablation ICP-MS. Geochemical Journal 37 (3), 401–412. https://doi.org/10.2343/geochemj.37.401.; Паталаха Е.И., Белый В.А. Офиолиты Итмурунды-Казыкской зоны // Офиолиты Казахстана / Ред. А.А. Абдулин, Е.И. Паталаха. Алма-Ата: Наука, 1981. С. 7–102.; Pearce J.A., Peate D.W., 1995. Tectonic Implications of the Composition of Volcanic Arc Magmas. Annual Reviews in Earth and Planetary Sciences 23, 251–285. https://doi.org/10.1146/annurev.ea.23.050195.001343.; Pettijohn F.J., Potter P.E., Siever R., 1987. Sand and Sandstone. Springer, New York, 553 p. https://doi.org/10.1007/978-1-4612-1066-5.; Regelous M., Hofmann A.W., Abouchami W., Galer S.J.G., 2003. Geochemistry of Lavas from the Emperor Seamounts, and the Geochemical Evolution of Hawaiian Magmatism from 85 to 42 Ma. Journal of Petrology 44 (1), 113–140. https://doi.org/10.1093/petrology/44.1.113.; Safonova I., 2009. Intraplate Magmatism and Oceanic Plate Stratigraphy of the Paleo-Asian and Paleo-Pacific Oceans from 600 to 140 Ma. Ore Geology Reviews 35 (2), 137–154. https://doi.org/10.1016/j.oregeorev.2008.09.002.; Safonova I., Kojima S., Nakae S., Romer R., Seltmann R., Sano H., Onoue T., 2015. Oceanic Island Basalts in Accretionary Complexes of SW Japan: Tectonic and Petrogenetic Implications. Journal of Asian Earth Sciences 113 (1), 508–523. https://doi.org/10.1016/j.jseaes.2014.09.015.; Safonova I., Maruyama S., Kojima S., Komiya T., Krivonogov S., Koshida K., 2016. Recognizing OIB and MORB in Accretionary Complexes: A New Approach Based on Ocean Plate Stratigraphy, Petrology, and Geochemistry. Gondwana Research 33, 92–114. https://doi.org/10.1016/j.gr.2015.06.013.; Safonova I.Yu, Perfilova A.A., Obut O.T., Savinsky I.A., Cherny R.I., Petrenko N.A., Gurova A.V., Kotler P.D. et al., 2019. Itmurundy Accretionary Complex (Northern Balkhash): Geological Structure, Stratigraphy and Tectonic Origin. Russian Journal of Pacific Geology 13, 283–296. https://doi.org/10.1134/S1819714019030072.; Safonova I., Santosh M., 2014. Accretionary Complexes in the Asia-Pacific Region: Tracing Archives of Ocean Plate Stratigraphy and Tracking Mantle Plumes. Gondwana Research 25 (1), 126–158. https://doi.org/10.1016/j.gr.2012.10.008.; Safonova I.Yu., Savinsky I.A., Perfilova A.A., Gurova A.V., Maruyama S., Tsujimori T., 2020. Itmurundy Accretionary Complex (Northern Balkhash): Geological Structure, Stratigraphy and Tectonic Origin. Gondwana Research 79, 49–69. https://doi.org/10.1016/j.gr.2019.09.004.; Sano H., Kanmera K., 1988. Paleogeographic Reconstruction of Accreted Oceanic Rocks, Akiyoshi, Southwest Japan. Geology 16 (7), 600–602. https://doi.org/10.1130/0091-7613(1988)0162.3.CO;2.; Sano H., Kojima S., 2000. Carboniferous to Jurassic Oceanic Rocks of Mino-Tamba-Ashio Terrane, Southwest Japan. The Memoirs of the Geological Society of Japan 55, 123–144.; Scholl D.W., von Huene R., 2007. Crustal Recycling at Modern Subduction Zones Applied to the Past – Issues of Growth and Preservation of Continental Basement Crust, Mantle Geochemistry, and Supercontinent Reconstruction. Geological Society of America Memoirs 200, 9–32. https://doi.org/10.1130/2007.1200(02).; Шутов В.Д. Классификация песчаников // Литология и полезные ископаемые. 1967. № 5. С. 86–102.; Slama J., Kosler J., Condon D.J., Crowley J.L., Gerdes A., Hanchar J.M., Horstwood M.S.A., Morris G.A. et al., 2008. Plešovice Zircon – a New Natural Reference Material for U–Pb and Hf Isotopic Microanalysis. Chemical Geology 249 (1–2), 1–35. https://doi.org/10.1016/j.chemgeo.2007.11.005.; Степанец В.Г. Геология и геодинамика офиолитов Центрального Казахстана. Караганда: Изд-во КарТУ, 2015. 362 с.; Stern R.J., Scholl D.W., 2010. Yin and Yang of Continental Crust Creation and Destruction by Plate Tectonic Processes. International Geology Review 52 (1), 1–31. https://doi.org/10.1080/00206810903332322.; Sun S.-S., McDonough W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. In: A.D. Saunders, M.J. Norry (Eds), Magmatism in the Ocean Basins. Geological Society of London Special Publications 42, 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19.; Taylor S.R., McLennan S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell, Oxford, 379 p.; Wakita K., 2012. Mappable Features of Mélanges Derived from Ocean Plate Stratigraphy in the Jurassic Accretionary Complexes of Mino and Chichibu Terranes, Southwest Japan. Tectonophysics 568–569, 74–85. https://doi.org/10.1016/j.tecto.2011.10.019.; Wakita K., Metcalfe I., 2005. Ocean Plate Stratigraphy in East and Southeast Asia. Journal of Asian Earth Sciences 24 (60), 670–702. https://doi.org/10.1016/j.jseaes.2004.04.004.; Winchester J.A., Floyd P.A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology 20, 325–343. https://doi.org/10.1016/0009-2541(77)90057-2.; Windley B.F., Alexeiev D., Xiao W., Kröner A., Badarch G., 2007. Tectonic Models for Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society of London 164 (1), 31–47. http://dx.doi.org/10.1144/0016-76492006-022.; Woodhead J., Eggins S., Gamble J., 1993. High Field Strength and Transition Element Systematics in Island Arc and Back-Arc Basin Basalts: Evidence for Multi-Phase Melt Extraction and a Depleted Mantle Wedge. Earth and Planetary Science Letters 114 (4), 491–504. https://doi.org/10.1016/0012-821X(93)90078-N.; Xiao W.J., Huang B., Han C., Sun S., Li. J., 2010. A Review of the Western Part of the Altaids: A Key to Understanding the Architecture of Accretionary Orogens. Gondwana Research 18 (2–3), 253–273. https://doi.org/10.1016/j.gr.2010.01.007.; Yan Q., Castillo P., Shi X., Wang L., Liao L., Ren J., 2015. Geochemistry and Petrogenesis of Volcanic Rocks from the Continent-Ocean Transition Zone in Northern South China Sea and Their Tectonic Implications. Lithos 218–219, 117–126. https://doi.org/10.1016/j.lithos.2014.12.023.; Yarmolyuk V.V., Kovach V.P., Kozakov I.K., Kozlovsky A.M., Kotov A.B., Rytsk E.Y., 2012. Mechanisms of Continental Crust Formation in the Central Asian Foldbelt. Geotectonics 46, 251–272. https://doi.org/10.1134/S001685211204005X.; Zhylkaidarov A.M., 1998. Conodonts form Ordovician of Central Kazakhstan. Acta Paleontologica Polonica 43 (1), 53–68.; Zonenshain L.P., Kuzmin M.I., Natapov L.M., 1990. Geology of the USSR: A Plate Tectonic Synthesis. Geodynamic Monograph Series. American Geophysical Union, 242 p.; https://www.gt-crust.ru/jour/article/view/1425

  3. 3
    Academic Journal

    المساهمون: Petrographic and geochronological studies were funded by RSF grant 19-77-10004. The geology of the region was studied under a government contract to executing base projects of IGM SB RAS (0330–2016–0013, 0330–2016–0002), Петрографические и геохронологические исследования выполнены за счет средств гранта РНФ № 19-77-10004. Геология района изучена в рамках государственного задания по базовым проектам НИР ИГМ СО РАН (№ 0330–2016–0013, 0330–2016–0002). В работе задействовалось оборудование ЦКП «Геодинамика и геохронология» ИЗК СО РАН

    المصدر: Geodynamics & Tectonophysics; Том 12, № 4 (2021); 865-882 ; Геодинамика и тектонофизика; Том 12, № 4 (2021); 865-882 ; 2078-502X

    وصف الملف: application/pdf

    Relation: https://www.gt-crust.ru/jour/article/view/1370/589; Багдасаров Ю.А., Нечаева Е.А., Фролов А.А. Чадобецкая провинция ультраосновных пород и карбонатитов // Геология месторождений редких металлов. М., 1972. Вып. 35. С. 176–178.; Baksi A.K., Archibald D.A., Farrar E., 1996. Intercalibration of 40Ar/39Ar Dating Standards. Chemical Geology 129 (3–4), 307–324. https://doi.org/10.1016/0009-2541(95)00154-9.; Basu A.R., Poreda R.J., Renne P.R., Telchmann F., Vasiliev Y.R., Sobolev N.V., Turrin B.D., 1995. High-3He Plume Origin and Temporal–Spatial Evolution of the Siberian Flood Basalts. Science 269 (5225), 825–882. https://doi.org/10.1126/science.269.5225.822.; Carlson R.W., Czamanske G., Fedorenko V., Ilupin I., 2006. A Comparison of Siberian Meimechites and Kimberlites: Implications for the Source of High-Mg Alkalic Magmas and Flood Basalts. Geochemistry Geophysics Geosystems 7 (11). https://doi.org/10.1029/2006GC001342.; Chebotarev D.A., Doroshkevich A.G., Klemd R., Karmanov N.S., 2017a. Evolution of Nb-Mineralization in the Chuktukon Carbonatite Massif, Chadobets Upland (Krasnoyarsk Territory, Russia). Periodico di Mineralogia 86 (2), 99–118. https://doi.org/10.2451/2017PM733.; Chebotarev D.A., Doroshkevich A.G., Sharygin V.V., Yudin D.S., Ponomarchuk A.V., Sergeev S.A., 2017b. Geochronology of the Chuktukon Carbonatite Massif, Chadobets Uplift (Krasnoyarsk Territory). Russian Geology and Geophysics 58 (10), 1222–1231. https://doi.org/10.1016/j.rgg.2017.02.003.; Dalrymple G.B., Czamanske G.K., Fedorenko V.A., Simonov O.N., Lanphere M.A., Likhachev A.P., 1995. A Reconnaissance 40Ar/39Ar Geochronologic Study of Ore-Bearing and Related Rocks, Siberian Russia. Geochimica et Cosmochimica Acta 59 (10), 2071–2083. https://doi.org/10.1016/0016-7037(95)00127-1.; Дашкевич Н.Н., Стародубцев Г.С., Германов Е.К. О кимберлитовых трубках и структуре Чадобецкого поднятия // Материалы по геологии и полезным ископаемым Красноярского края. Красноярск: Красноярское книжное издательство, 1962. Вып. 3. С. 117–130.; Donskaya T.V., Gladkochub D.P., Fedorovsky V.S., Sklyarov E.V., Cho M., Sergeev S.A., Demonterova E.I., Mazukabzov A.M. et al., 2017. Pre-Collisional (>0.5Ga) Complexes of the Olkhon Terrane (Southern Siberia) as an Echo of Events in the Central Asian Orogenic Belt. Gondwana Research 42, 243–263. https://doi.org/10.1016/j.gr.2016.10.016.; Donskaya T.V., Gladkochub D.P., Kovach V.P., Mazukabzov A.M., 2005. Petrogenesis of Early Proterozoic Postcollisional Granitoids in the Southern Siberian Craton. Petrology 13 (3), 229–252.; Doroshkevich A.G., Chebotarev D.A., Sharygin V.V., Prokopyev I.R., Nikolenko A.M., 2019. Petrology of Alkaline Silicate Rocks and Carbonatites of the Chuktukon Massif, Chadobets Upland, Russia: Sources, Evolution and Relation to the Triassic Siberian LIP. Lithos 332–333, 245–260. https://doi.org/10.1016/j.lithos.2019.03.006.; Doroshkevich A.G., Ripp G.S., Izbrodin I.A., Savatenkov V.M., 2012. Alkaline Magmatism of the Vitim Province, West Transbaikalia, Russia: Age, Mineralogical, Geochemical and Isotope (О, C, D, Sr and Nd) Data. Lithos 152, 157–172. https://doi.org/10.1016/j.lithos.2012.05.002.; Doroshkevich A.G., Sharygin V.V., Belousova E.A., Izbrodin I.A., Prokopyev I.R., 2021. Zircon from the Chuktukon Alkaline Ultramafic Carbonatite Complex (Chadobets Uplift. Siberian Craton) as Evidence of Source Heterogeneity. Lithos 382–383, 105957. https://doi.org/10.1016/j.lithos.2020.105957.; Doroshkevich A.G., Sklyarov E.V., Starikova A.E., Vasiliev V., Ripp G.S., Izbrodin I.A., Posokhov V.F., 2017. Stable Isotope (C, O, H) Characteristics and Genesis of the Tazheran Brucite Marbles and Skarns, Olkhon Region, Russia. Mineralogy and Petrology 111, 399–416. https://doi.org/10.1007/s00710-016-0477-8.; Геологическая карта СССР. Серия Ангаро-Ленская. Масштаб 1:200000. Лист О-47-IV: Объяснительная записка. М., 1971. 96 с.; Геологическая карта СССР. Масштаб 1:1000000 (новая серия). Лист О-(47), 48 (Усть-Кут): Объяснительная записка. Л.: Изд-во ВСЕГЕИ, 1984. С. 172.; Ghobadi M., Gerdes A., Kogarko L., Hoefer H., Brey G., 2018. In Situ LA-ICPMS Isotopic and Geochronological Studies on Carbonatites and Phoscorites from the Guli Massif, Maymecha-Kotuy, Polar Siberia. Geochemistry International 56, 766–783. https://doi.org/10.1134/S0016702918080049.; Gladkochub D.P., Donskaya T.V., Ivanov A.V., Ernst R., Mazukabzov A.M., Pisarevsky S.A., Ukhova N.A., 2010a. Phanerozoic Mafic Magmatism in the Southern Siberian Craton: Geodynamic Implications. Russian Geology and Geophysics 51 (9), 952–964. https://doi.org/10.1016/j.rgg.2010.08.005.; Gladkochub D.P., Pisarevsky S.A., Donskaya T.V., Ernst R.E., Wingate M.T.D., Serlund U., Mazukabzov A.M., Sklyarov E.V. et al., 2010b. Proterozoic Mafic Magmatism in Siberian Craton: An Overview and Implications for Paleocontinental Reconstruction. Precambrian Research 183 (3), 660–668. https://doi.org/10.1016/j.precamres.2010.02.023.; Gladkochub D.P., Wingate M.T.D., Pisarevsky S.A., Donskaya T.V., Mazukabzov A.M., Ponomarchuk V.A., Stanevich A.M., 2006. Mafic Intrusions in Southwestern Siberia and Implications for a Neoproterozoic Connection with Laurentia. Precambrian Research 147 (3–4), 260–278. https://doi.org/10.1016/j.precamres.2006.01.018.; Griffin W.L., Powell W.J., Pearson N.J., O’Reilly S.Y., 2008. GLITTER: Data Reduction Software for Laser Ablation ICPMS. In: P.J. Sylvester (Ed.), Laser Ablation-ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues. Mineralogical Association of Canada Short Course Series. Vol. 40. Vancouver, p. 308–311.; Hiess J., McLean N., Condon D.J., Noble S.R., 2012. 238U/235U Systematics in Terrestrial Uranium-Bearing Minerals. Science 335 (6076), 1610–1614. https://doi.org/10.1126/science.1215507.; Ivanov A.V., He H., Yan L., Ryabov V.V., Shevko A.Y., Palesskii S.V., Nikolaeva I.V., 2013. Siberian Traps Large Igneous Province: Evidence for Two Food Basalt Pulses around the Permo-Triassic Boundary and in the Middle Triassic, and Contemporaneous Granitic Magmatism. Earth-Science Reviews 122, 58–76. https://doi.org/10.1016/j.earscirev.2013.04.001.; Jackson S.E., Griffin W.L., Pearson N.J., Belousova E.A., 2004. The Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry to in Situ U-Pb Zircon Geochronology. Chemical Geology 211 (1–2), 47–69. https://doi.org/10.1016/j.chemgeo.2004.06.017.; Kargin A.V., Golubeva Y.Y., Demonterova E.I., Koval’chuk E.V., 2017. Petrographic-Geochemical Types of Triassic Alkaline Ultramafic Rocks in the Northern Anabar Province, Yakutia, Russia. Petrology 25, 535–565. https://doi.org/10.1134/S0869591117060030.; Kargin A.V., Nosova A.A., Postnikov A.V., Chugaev A.V., 2016. Devonian Ultramafic Lamprophyre in the Irkineeva–Chadobets Trough in the Southwest of the Siberian Platform: Age, Composition, and Implications for Diamond Potential Prediction. Geology of Ore Deposits 58, 383–403. https://doi.org/10.1134/S1075701516050068.; Kogarko L.N., Zartman R.E., 2011. New Data on the Age of the Guli Intrusion and Implications for the Relationships between Alkaline Magmatism in the Maymecha–Kotuy Province and the Siberian Superplume: U–Th–Pb Isotopic Systematics. Geochemistry International 49, 439–448. https://doi.org/10.1134/S0016702911050065.; Kozakov I.K., Kovach V.P., Yarmolyuk V.V., Kotov A.B., Salnikova E.B., Zagornaya N.Yu., 2003. Crust-Forming Processes in the Geologic Development of the Tuva–Mongolia Massif: Sm–Nd Isotopic and Geochemical Data for Granitoids. Petrology 11 (5), 444–463.; Kuzmin M.I., Yarmolyuk V.V., Kravchinsky V.A., 2010. Phanerozoic Hot Spot Traces and Paleogeographic Reconstructions of the Siberian Continent Based on Interaction with the African Large Low Shear Velocity Province. Earth-Science Reviews 102 (1–2), 29–59. https://doi.org/10.1016/j.earscirev.2010.06.004.; Лапин А.В. Строение, условия формирования и рудоносность главных типов месторождений кор выветривания карбонатитов // Отечественная геология. 1997. № 11. С. 15–22.; Лапин А.В. О кимберлитах Чадобецкого поднятия в связи с проблемой формационно-металлогенического анализа платформенных щелочно-ультраосновных магматитов // Отечественная геология. 2001. № 4. С. 30–34.; Лапин А.В., Лисицин Д.В. О минералогическом типоморфизме щелочных ультраосновных магматитов Чадобецкого поднятия // Отечественная геология. 2004. № 6. С. 83–92.; Letnikova E.F., Izokh A.E., Nikolenko E.I., Pokhilenko N.P., Shelestov V.O., Hilen Geng, Lobanov S.S., 2014. Late Triassic High-Potassium Trachitic Volcanism of the Northeast of the Siberian Platform: Evidence in the Sedimentary Record. Doklady Earth Sciences 459, 1344–1347. https://doi.org/10.1134/S1028334X14110221.; Ломаев В.Г., Сердюк С.С. Чуктуконское месторождение ниобий-редкоземельных руд – приоритетный объект для модернизации редкометалльной промышленности России // Журнал Сибирского федерального университета. Техника и технологии. 2011. Т. 2 № 4. С. 132–154.; Ludwig K.R., 2003. ISOPLOT/Ex: A Geochronological Toolkit for Microsoft Excel. Version 3.00. Berkeley Geochronology Center Special Publication 4, 74 p.; Махнева Н.А., Махнева Г.Г., Белякова Е.В. и др. Отчет по объекту «Поисковые и оценочные работы на Чуктуконском рудном поле (Красноярский край). Государственный контракт от 09.09.2014 № 198. 2016. Кн. 1. 210 с.; Malich K.N., Khiller V.V., Badanina I.Yu., Belousova E.A., 2015. Results of Dating of Thorianite and Baddeleyite from Carbonatites of the Guli Massif, Russia. Doklady Earth Sciences 464, 1029–1032. https://doi.org/10.1134/S1028334X15100050.; Nikiforov A.V., Yarmolyuk V.V., 2007. Early Paleozoic Age and Geodynamic Setting of the Botogol and Khushagol Alkaline Massifs in the Central Asian Fold Belt. Doklady Earth Science 412, 6–10. https://doi.org/10.1134/S1028334X07010023.; Nosova A.A., Kargin A.V., Sazonova L.V., Dubinina E.O., Chugaev A.V., Lebedeva N.M., Yudin D.S., Larionova Y.O. et al., 2020. Sr-Nd-Pb Isotopic Systematic and Geochronology of Ultramafic Alkaline Magmatism of the Southwestern Margin of the Siberian Craton: Metasomatism of the Subcontinental Lithospheric Mantle Related to Subduction and Plume Events. Lithos 364–365, 105509. https://doi.org/10.1016/j.lithos.2020.105509.; Nosova A.A., Sazonova L.V., Kargin A.V., Smirnova M.D., Lapin A.V., Shcherbakov V.D., 2018. Olivine in Ultramafic Lamprophyres: Chemistry, Crystallisation and Melt Sources of Siberian Pre- and Post-Trap Aillikites. Contributions to Mineralogy and Petrology 173, 55. https://doi.org/10.1007/s00410-018-1480-3.; Nugumanova Ya., Doroshkevich A., Prokopyev I., Starikova A., 2021. Compositional Variations of Spinels from Ultramafic Lamprophyres of the Chadobets Complex (Siberian Craton, Russia). Minerals 11 (5), 456. https://doi.org/10.3390/min11050456.; Paton M.T., Ivanov A.V., Fiorentini M.L., McNaughton M.J., Mudrovska I., Reznitskii L.Z., Demonterova E.I., 2010. Late Permian and Early Triassic Magmatic Pulses in the Angara-Taseeva Syncline, Southern Siberian Traps and Their Possible Influence on the Environment. Russian Geology and Geophysics 51 (9), 1012–1020. https://doi.org/10.1016/j.rgg.2010.08.009.; Pernet-Fisher J.F., Howarth G.H., Pearson D.G., Woodland S., Barry P.H., Pokhilenko N.P., Agashev A.M., Taylor L.A., 2015. Plume Impingement on the Siberian SCLM: Evidence from Re-Os Isotope Systematics. Lithos 218–219, 141–154. https://doi.org/10.1016/j.lithos.2015.01.010.; Poller U., Gladkochub D.P., Donskaya T.V., Mazukabzov A.M., Sklyarov E.V., Todt W., 2005. Multistage Magmatic and Metamorphic Evolution in the Southern Siberian Craton: Archean and Paleoproterozoic Zircon Ages Revealed by SHRIMP and TIMS. Precambrian Research 136 (3–4), 353–368. https://doi.org/10.1016/j.precamres.2004.12.003.; Prokopyev I., Starikova A., Doroshkevich A., Nugumanova Y., Potapov V., 2020. Petrogenesis of Ultramafic Lamprophyres from the Terina Complex (Chadobets Upland, Russia): Mineralogy and Melt Inclusion Composition. Minerals 10 (5), 419. https://doi.org/10.3390/min10050419.; Sklyarov E.V., Fedorovsky V.S., Kotov A.B., Lavrenchuk A.V., Mazukabzov A.M., Levitsky V.I., Sal’nikova E.B., Starikova A.E., 2009. Carbonatites in Collisional Settings and Pseudo-Carbonatites of the Early Paleozoic Ol’khon Collisional System. Russian Geology and Geophysics 50 (12), 1091–1106. https://doi.org/10.1016/j.rgg.2009.11.008.; Скляров Р.Я. Некоторые черты геологического строения Чадобецкого антиклинального поднятия // Материалы по геологии и полезным ископаемым Красноярского края. Красноярск: Красноярское книжное издательство, 1962. Вып. 3. С. 21–31.; Slama J., Kosler J., Condon D.J., Crowley J.L., Gerdes A., Hanchar J.M., Horstwood M.S.A., Morris G.A. et al., 2008. Plesovice Zircon – A New Natural Reference Material for U-Pb and Hf Isotopic Microanalysis. Chemical Geology 249 (1–2), 1–35. https://doi.org/10.1016/j.chemgeo.2007.11.005.; Слукин А.Д. Коры выветривания и бокситы Чадобецкого поднятия. М.: Наука, 1973. 148 с.; Starikova A., Prokopyev I., Doroshkevich A., Ragozin A., Chervyakovsky V., 2021. Polygenic Nature of Olivines from the Ultramafic Lamprophyres of the Terina Complex (Chadobets Upland, Siberian Platform) Based on Trace Element Composition, Crystalline, and Melt Inclusion Data. Minerals 11 (4), 408. https://doi.org/10.3390/min11040408.; Starikova A.E., Sklyarov E.V., Kotov A.B., Sal’nikova E.B., Fedorovskii V.S., Lavrenchuk A.V., Mazukabzov A.M., 2014. Vein Calciphyre and Contact Mg Skarn from the Tazheran Massif (Western Baikal Area, Russia): Age and Genesis. Doklady Earth Sciences 457, 1003–1007. https://doi.org/10.1134/S1028334X14080182.; Starosel’tsev V.S., 2009. Identifying Paleorifts as Promising Tectonic Elements for Active Oil and Gas Generation. Russian Geology and Geophysics 50 (4), 358–364. https://doi.org/10.1016/j.rgg.2009.03.011.; Государственная геологическая карта Российской Федерации. Серия Ангаро-Енисейская. Масштаб 1:1000000. Лист О-47 (Братск): Объяснительная записка. СПб.: Изд-во ВСЕГЕИ, 2012. 470 с.; Steiger R.H., Jager E., 1977. Subcommission on Geochronology: Convention on the Use of Decay Constants in Geoand Cosmochronology. Earth and Planetary Science Letters 36 (3), 359–361. https://doi.org/10.1016/0012-821X(77)90060-7.; Sun J., Liu C., Tappe S., Kostrovitsky S.I., Wu F.-Y., Yakovlev D., Yang Y.-H., Yang J.-H., 2014. Repeated Kimberlite Magmatism beneath Yakutia and Its Relationship to Siberian Flood Volcanism: Insights from in Situ U–Pb and Sr–Nd Perovskite Isotope Analysis. Earth and Planetary Science Letters 404, 283–295. https://doi.org/10.1016/j.epsl.2014.07.039.; Tappe S., Foley S.F., Jenner G.A., Kjarsgaard B.A., 2005. Integrating Ultramafic Lamprophyres into the IUGS Classification of Igneous Rocks: Rationale and Implications. Journal of Petrology 46 (9), 1893–1900. https://doi.org/10.1093/petrology/egi039.; Травин А.В. Термохронология субдукционно-коллизионных и коллизионных событий Центральной Азии: Автореф. дис. … докт. геол.-мин. наук. Новосибирск, 2016. 55 с.; Цыкина С.В. Зональность редкометалльного оруденения коры выветривания карбонатитов Чуктуконского месторождения // Геология и минеральные ресурсы Центральной Сибири. Красноярск: КНИИГиМС, 2003. Вып. 4. С. 153–158.; Vladimirov A.G., Gibsher A.S., Izokh A.E., Rudnev S.N., 1999. Early Paleozoic Granitoid Batholiths of Central Asia: Abundance, Sources, and Geodynamic Formation Conditions. Doklady Earth Sciences 369А, 1268–1271.; Vrublevskii V.V., Voitenko N.N., Romanov A.P., Polyakov G.V., Izokh A.E., Gertner I.F., Krupchatnikov V.I., 2005. Magma Sources of Triassic Lamproites of Gornyi Altai and Taimyr: Sr and Nd Isotope Evidence for Plume–Lithosphere Interaction. Doklady Earth Sciences 405A (9), 1365–1367.; Yarmolyuk V.V., Kovalenko V.I., 2003. Deep Geodynamics and Mantle Plumes: Role Information of the Central-Asian Folded Belt. Petrology 11 (6), 504–531.; https://www.gt-crust.ru/jour/article/view/1370