-
1Academic Journal
المصدر: Physics and Chemistry of Solid State; Vol. 25 No. 3 (2024); 639-649 ; Фізика і хімія твердого тіла; Том 25 № 3 (2024); 639-649 ; 2309-8589 ; 1729-4428
مصطلحات موضوعية: Spintronic, DMS, RTFM, TM doped, DFT, GGA+U, GGA, PBE, LSDA, LSDA-SIC, SOL-GEL method, XRD, спінтроніка, TM легування, золь-гель метод
وصف الملف: application/pdf
Relation: https://journals.pnu.edu.ua/index.php/pcss/article/view/7945/8552; https://journals.pnu.edu.ua/index.php/pcss/article/view/7945
-
2Academic Journal
المؤلفون: A. A. Kholodkova, A. V. Reznichenko, A. A. Vasin, A. V. Smirnov, А. А. Холодкова, А. В. Резниченко, А. А. Васин, А. В. Смирнов
المساهمون: The study was conducted as part of the implementation of indicators for projects funded from the state budget or other external sources: The National Project “Science and Universities” to achieve the result “Creation of new laboratories, including under the guidance of young promising researchers (growing result),” FSFZ-2022-0003, Статья написана в рамках выполнения индикаторов по проектам, финансируемым из государственного бюджета или других внешних источников: Национальный проект «Наука и университеты» для достижения результата «Создание новых лабораторий, в том числе под руководством молодых перспективных исследователей (нарастающий итог)», FSFZ-2022-0003
المصدر: Fine Chemical Technologies; Vol 19, No 1 (2024); 72-87 ; Тонкие химические технологии; Vol 19, No 1 (2024); 72-87 ; 2686-7575 ; 2410-6593
مصطلحات موضوعية: сверхкритический водный флюид, ferroelectrics, piezoceramics, perovskite-like oxide ferroelectrics, solid-state synthesis, sol–gel method, hydrothermal synthesis, supercritical water, сегнетоэлектрики, пьезокерамика, перовскитоподобные оксидные сегнетоэлектрики, твердофазный синтез, золь-гель метод, гидротермальный синтез
وصف الملف: application/pdf
Relation: https://www.finechem-mirea.ru/jour/article/view/2034/2001; https://www.finechem-mirea.ru/jour/article/view/2034/2002; https://www.finechem-mirea.ru/jour/article/downloadSuppFile/2034/1151; Pithan C., Hennings D., Waser R. Progress in the Synthesis of Nanocrystalline BaTiO3 Powders for MLCC: Progress in Synthesis of Nanocrystalline BaTiO3 Powders. Int. J. Appl. Ceram. Technol. 2006;2(1):1–14. https://doi.org/10.1111/j.1744-7402.2005.02008.x; Brzozowski E., Castro M.S. Synthesis of barium titanate improved by modifications in the kinetics of the solid state reaction. J. Eur. Ceram. Soc. 2000;20(14–15):2347–2351. https://doi.org/10.1016/S0955-2219(00)00148-5; Chaisan W., Yimnirun R., Ananta S., Cann D.P. Dielectric properties of solid solutions in the lead zirconate titanatebarium titanate system prepared by a modified mixed-oxide method. Mater. Lett. 2005;59(28):3732–3737. https://doi.org/10.1016/j.matlet.2005.06.045; Kambale K.R.R., Kulkarni A.R.R., Venkataramani N. Grain growth kinetics of barium titanate synthesized using conventional solid state reaction route. Ceram. Int. 2014;40(1A):667–673. https://doi.org/10.1016/j.ceramint.2013.06.053; Mikhailov M.M., Neshchimenko V.V., Utebekov T.A., Yuriev S.A. Features high-temperature synthesis of barium zirconium titanate powder by using zirconium dioxide nanopowders. J. Alloys Compd. 2015;652:364–370. https://doi.org/10.1016/j.jallcom.2015.08.124; Roy A.C., Mohanta D. Structural and ferroelectric properties of solid-state derived carbonate-free barium titanate (BaTiO3) nanoscale particles. Scr. Mater. 2009;61(9):891–894. https://doi.org/10.1016/j.scriptamat.2009.07.022; Buscaglia M.T., Bassoli M., Buscaglia V., Alessio R. Solid-State Synthesis of Ultrafine BaTiO3 Powders from Nanocrystalline BaCO3 and TiO2. J. Am. Ceram. Soc. 2005;88(9):2374–2379. https://doi.org/10.1111/j.1551-2916.2005.00451.x; Kainth S., Choudhary R., Upadhyay S., Bajaj P., Sharma P., Brar L.K., et al. Non-isothermal solid-state synthesis kinetics of the tetragonal barium titanate. J. Solid State Chem. 2022;312:123275. https://doi.org/10.1016/j.jssc.2022.123275; Qian H., Zhu G., Xu H., Zhang X., Zhao Y., Yan D., et al. Preparation of tetragonal barium titanate nanopowders by microwave solid-state synthesis. Appl. Phys. A. 2020;126(4):294. https://doi.org/10.1007/s00339-020-03472-y; Sundararajan T., Prabu S.B., Vidyavathy S.M. Combined effects of milling and calcination methods on the characteristics of nanocrystalline barium titanate. Mater. Res. Bull. 2012;47(6):1448–5144. https://doi.org/10.1016/j.materresbull.2012.02.044; Clabel H J.L., Awan I.T., Pinto A.H., Nogueira I.C., Bezzon V.D.N., Leite E.R., et al. Insights on the mechanism of solid state reaction between TiO2 and BaCO3 to produce BaTiO3 powders: The role of calcination, milling, and mixing solvent. Ceram. Int. 2020;46(3):2987–3001. https://doi.org/10.1016/j.ceramint.2019.09.296; Nath A.K., Jiten C., Singh K.C., Laishram R., Thakur O.P., Bhattacharya D.K. Effect of Ball Milling Time on the Electrical and Piezoelectric Properties of Barium Titanate Ceramics. Integr. Ferroelectr. 2010;116(1):51–58. https://doi.org/10.1080/10584587.2010.488572; Rotaru R., Peptu C., Samoila P., Harabagiu V. Preparation of ferroelectric barium titanate through an energy effective solid state ultrasound assisted method. J. Am. Ceram. Soc. 2017;100(10):4511–4518. https://doi.org/10.1111/jace.15003; Lee H.W., Kim N.W., Nam W.H., Lim Y.S. Sonochemical activation in aqueous medium for solid-state synthesis of BaTiO3 powders. Ultrason. Sonochem. 2022;82:105874. https://doi.org/10.1016/j.ultsonch.2021.105874; Akbas H.Z., Aydin Z., Yilmaz O., Turgut S. Effects of ultrasonication and conventional mechanical homogenization processes on the structures and dielectric properties of BaTiO3 ceramics. Ultrason. Sonochem. 2017;34:873–880. https://doi.org/10.1016/j.ultsonch.2016.07.027; Jin S.H., Lee H.W., Kim N.W., Lee B.W., Lee G.G., Hong Y.W., et al. Sonochemically activated solid-state synthesis of BaTiO3 powders. J. Eur. Ceram. Soc. 2021;41(9):4826–4834. https://doi.org/10.1016/j.jeurceramsoc.2021.03.043; Stojanovic B.D., Simoes A.Z., Paiva-Santos C.O., Jovalekic C., Mitic V.V., Varela J.A. Mechanochemical synthesis of barium titanate. J. Eur. Ceram. Soc. 2005;25(12):1985–1989. https://doi.org/10.1016/j.jeurceramsoc.2005.03.003; Stojanovic B.D. Mechanochemical synthesis of ceramic powders with perovskite structure. J. Mater. Process. Technol. 2003; 143–144(1):78–81. https://doi.org/10.1016/S0924-0136(03)00323-6; Ohara S., Kondo A., Shimoda H., Sato K., Abe H., Naito M. Rapid mechanochemical synthesis of fine barium titanate nanoparticles. Mater. Lett. 2008;62(17–18):2957–2959. https://doi.org/10.1016/j.matlet.2008.01.083; Kozma G., Lipták K., Deák C., Rónavári A., Kukovecz Á., Kónya Z. Conversion Study on the Formation of Mechanochemically Synthesized BaTiO3. Chemistry. 202215;4(2):592–602. https://doi.org/10.3390/chemistry4020042; Kudłacik-Kramarczyk S., Drabczyk A., Głąb M., Dulian P., Bogucki R., Miernik K., et al. Mechanochemical Synthesis of BaTiO3 Powders and Evaluation of Their Acrylic Dispersions. Materials. 2020;13(15):3275. https://doi.org/10.3390/ma13153275; Kong L.B., Zhang T.S., Ma J., Boey F. Progress in synthesis of ferroelectric ceramic materials via high-energy mechanochemical technique. Prog. Mater. Sci. 2008;53(2): 207–322. https://doi.org/10.1016/j.pmatsci.2007.05.001; Apaydin F., Parlak T.T., Yildiz K. Low temperature formation of barium titanate in solid state reaction by mechanical activation of BaCO3 and TiO2. Materials Research Express. 2020;6(12):126330. https://doi.org/10.1088/20531591/ab6c0d; More S.P., Khedkar M.V., Jadhav S.A., Somvanshi S.B., Humbe A.V., Jadhav K.M. Wet chemical synthesis and investigations of structural and dielectric properties of BaTiO3 nanoparticles. J. Phys.: Conf. Ser. 2020;1644(1):012007. https://doi.org/10.1088/1742-6596/1644/1/012007; Hennings D., Mayr W. Thermal Decomposition of (BaTi) Citrates into Barium Titanate. J. Solid State Chem. 1978;26(4):329–338. https://doi.org/10.1016/0022-4596(78)90167-6; Kao C.F., Yang W.D. Preparation of barium strontium titanate powder from citrate precursor. Appl. Organomet. Chem. 1999;13(5):383–397. http://doi.org/10.1002/(SICI)10990739(199905)13:53.0.CO;2-P; Wang H. Inhibition of the formation of barium carbonate by fast heating in the synthesis of BaTiO3 powders via an EDTA gel method. Mater. Chem. Phys. 2002;74:1–4. https://doi.org/10.1016/S0254-0584(01)00410-2; Sen S., Choudhary R.N.P., Pramanik P. Synthesis and characterization of nanostructured ferroelectric compounds. Mater. Lett. 2004;58(27–28):3486–3490. https://doi.org/10.1016/j.matlet.2004.06.063; Aktaş P. Synthesis and Characterization of Barium Titanate Nanopowders by Pechini Process. Celal Bayar University Journal of Science (CBUJOS). 2020;16(3):293–300. https://doi.org/10.18466/cbayarfbe.734061; Turky A.O., Rashad M.M., Bechelany M. Tailoring optical and dielectric properties of Ba0.5Sr0.5TiO3 powders synthesized using citrate precursor route. Mater. Des. 2016;90:54–59. https://doi.org/10.1016/j.matdes.2015.10.113; Hsieh T.-H., Yen S.-C., Ray D.-T. A study on the synthesis of (Ba,Ca)(Ti,Zr)O3 nano powders using Pechini polymeric precursor method. Ceram. Int. 2012;38(1):755–759. https://doi.org/10.1016/j.ceramint.2011.08.001; Durán P., CapelF., Tartaj J., Moure C. BaTiO3 formation by thermal decomposition of a (BaTi)-citrate polyester resin in air. J. Mater. Res. 2001;16(1):197–209. https://doi.org/10.1557/JMR.2001.0032; Ries A., Simões A.Z., Cilense M, Zaghete M.A, Varela J.A. Barium strontium titanate powder obtained by polymeric precursor method. Mater. Charact. 2003;50(2–3):217–221. https://doi.org/10.1016/S1044-5803(03)00095-0; Prado L.R., de Resende N.S., Silva R.S., Egues S.M.S., Salazar-Banda G.R. Influence of the synthesis method on the preparation of barium titanate nanoparticles. Chem. Eng. Process.: Process Intensif. 2015;103:12–20. https://doi.org/10.1016/j.cep.2015.09.011; Duran P., Gutierrez D., Tartaj J., Moure C. Densification behaviour, microstructure development and dielectric properties of pure BaTiO3 prepared by thermal decomposition of (Ba, Ti)-citrate polyester resins. Ceram. Int. 2002;28(3):283–292. https://doi.org/10.1016/S02728842(01)00092-X; Luan W., Gao L. Influence of pH value on properties of nanocrystalline BaTiO3 powder. Ceram. Int. 2001;27(6): 645–648. https://doi.org/10.1016/S0272-8842(01)00012-8; Lazarević Z.Ž., Vijatović M., Dohčević-Mitrović Z., Romčević N.Ž., Romčević M.J., Paunović N., et al. The characterization of the barium titanate ceramic powders prepared by the Pechini type reaction route and mechanically assisted synthesis. J. Eur. Ceram. Soc. 2010;30(2):623–628. https://doi.org/10.1016/j.jeurceramsoc.2009.08.011; Ashiri R., Nemati A., Sasani Ghamsari M. Crack-free nanostructured BaTiO3 thin films prepared by sol–gel dipcoating technique. Ceram. Int. 2014;40(6):8613–8619. https://doi.org/10.1016/j.ceramint.2014.01.078; Hayashi T., Ohji N., Hiraoka K., Fukunaga T., Maiwa H. Preparation and Properties of Ferroelectric BaTiO3 Thin Films by Sol–Gel Process. Jpn. J. Appl. Phys. 1993;32(9S): 4092–4094. https://doi.org/10.1143/JJAP.32.4092; Demydov D., Klabunde K.J. Characterization of mixed metal oxides (SrTiO3 and BaTiO3) synthesized by a modified aerogel procedure. J. Non-Cryst. Solids. 2004;350:165–172. https://doi.org/10.1016/j.jnoncrysol.2004.06.022; Suslov A., Kobylianska S., Durilin D., Ovchar O., Trachevskii V., Jancar B., et al. Modified Pechini Processing of Barium and Lanthanum–Lithium Titanate Nanoparticles and Thin Films. Nanoscale Res. Lett. 2017;12(1):350. https://doi.org/10.1186/s11671-017-2123-8; Teh Y.C., Saif A.A., Poopalan P. Sol–Gel Synthesis and Characterization of Ba1−xGdxTiO3+δ Thin Films on SiO2/Si Substrates Using Spin-Coating Technique. Mater. Sci. 20179;23(1):51–56. https://doi.org/10.5755/j01.ms.23.1.13954; Devi L.R., Sharma H.B. Structural and optical parameters of sol–gel derived Barium Strontium Titanate (BST) thin film. Mater. Today Proc. 2022;65(5):2801–2806. https://doi.org/10.1016/j.matpr.2022.06.219; Pfaff G. Sol–gel synthesis of barium titanate powders of various compositions. J. Mater. Chem. 1992;2(6):591–594. https://doi.org/10.1039/JM9920200591; Phule P.P., Risbud S.H. Sol–gel synthesis and characterization of BaTi4O9 and BaTiO3 powders. In: Materials Research Society Symposium Proceedings (MRS Online Proceedings Library). 1988:121:275–280. https://doi.org/10.1557/PROC121-275; Cernea M. Sol–gel synthesis and characterization of BaTiO3 powder. J. Optoelectron. Adv. Mater. 2005;7(6):3015–3022.; Omar A.F.C., Hatta F.F., Kudin T.I.T., Mohamed M.A., Hassan O.H. Calcination Effect on Structural Trasformation of Barium Titanite Ferroelectric Ceramic by Sol Gel Method. Int. J. Eng. Adv. Technol. 2019;9(1):5893–5896. https://doi.org/10.35940/ijeat.A3023.109119; Lemoine C., Gilbert B., Michaux B., Pirard J.P., Lecloux A. Synthesis of barium titanate by the sol–gel process. J. Non-Cryst. Solids. 1994;175(1):1–13. https://doi.org/10.1016/0022-3093(94)90309-3; Ianculescu A.C., Vasilescu C.A., Crisan M., Raileanu M., Vasile B.S., Calugaru M., et al. Formation mechanism and characteristics of lanthanum-doped BaTiO3 powders and ceramics prepared by the sol–gel process. Mater. Charact. 2015;106: 195–207. https://doi.org/10.1016/j.matchar.2015.05.022; Phule P.P., Risbud S.H. Low-temperature synthesis and processing of electronic materials in the BaO–TiO2 system. J. Mater. Sci. 1990;25:1169–1183. https://doi.org/10.1007/BF00585422; Nanni P., Viviani M., Buscaglia V. Synthesis of Dielectric Ceramic Materials. In: Nalwa H.S. (Ed.). Handbook of Low and High Dielectric Constant Materials and Their Applications. Academic Press; 1999. p. 429–55. https://doi.org/10.1016/B978-012513905-2/50011-X; Zheng C., Cui B., You Q., Chang Z. Characterization of BaTiO3 Powders and Ceramics Prepared Using the Sol–gel Process, with Triton X-100 Used as a Surfactant. In: The 7th National Conference on Functional Materials and Applications. 2010. P. 341–346.; Bakken K., Pedersen V.H., Blichfeld A.B., Nylund I.-E., Tominaka S., Ohara K., Grande T., Einarsrud M.-A. Structures and Role of the Intermediate Phases on the Crystallization of BaTiO3 from an Aqueous Synthesis Route. ACS Omega. 2021;6(14):9567–9576. https://doi.org/10.1021/acsomega.1c00089; Singh M., Yadav B.C., Ranjan A., Kaur M., Gupta S.K. Synthesis and characterization of perovskite barium titanate thin film and its application as LPG sensor. Sensors and Actuators B: Chemical. 2017;241:1170–1178. https://doi.org/10.1016/j.snb.2016.10.018; Nagdeote S.B. Sol–gel Synthesis, Structural and Dielectric Characteristics of Nanocrystalline Barium Titanate Solid. Macromol. Symp. 2021;400(1):2100060. https://doi.org/10.1002/masy.202100060; Boulos M., Guillemet-Fritsch S., Mathieu F., Durand B., Lebey T., Bley V. Hydrothermal synthesis of nanosized BaTiO3 powders and dielectric properties of corresponding ceramics. Solid State Ion. 2005;176(13–14):1301–1309. https://doi.org/10.1016/j.ssi.2005.02.024; Cai W., Rao T., Wang A., Hu J., Wang J., Zhong J., et al. A simple and controllable hydrothermal route for the synthesis of monodispersed cube-like barium titanate nanocrystals. Ceram. Int. 2015;41(3):4514–4522. https://doi.org/10.1016/j.ceramint.2014.11.146; Lee W.W., Chung W.H., Huang W.S., Lin W.C., Lin W.Y., Jiang Y.R., et al. Photocatalytic activity and mechanism of nano-cubic barium titanate prepared by a hydrothermal method. J. Taiwan Inst. Chem. Eng. 2013;44(4):660–669. https://doi.org/10.1016/j.jtice.2013.01.005; Kumazawa H., Kagimoto T., Kawabata A. Preparation of barium titanate ultrafine particles from amorphous titania by a hydrothermal method and specific dielectric constants of sintered discs of the prepared particles. J. Mater. Sci. 1996;31(10):2599–2602. https://doi.org/10.1007/BF00687288; Ávila H.A., Ramajo L.A., Reboredo M.M., Castro M.S., Parra R. Hydrothermal synthesis of BaTiO3 from different Ti-precursors and microstructural and electrical properties of sintered samples with submicrometric grain size. Ceram. Int. 2011;37(7):2383–2390. https://doi.org/10.1016/j.ceramint.2011.03.032; Zhu X., Zhang Z., Zhu J., Zhou S., Liu Z. Morphology and atomic-scale surface structure of barium titanate nanocrystals formed at hydrothermal conditions. J. Cryst. Growth. 2009;311(8):2437–2442. https://doi.org/10.1016/j.jcrysgro.2009.02.016; Zhu K., Qiu J., Kajiyoshi K., Takai M., Yanagisawa K. Effect of washing of barium titanate powders synthesized by hydrothermal method on their sinterability and piezoelectric properties. Ceram. Int. 2009;35(5):1947–1951. https://doi.org/10.1016/j.ceramint.2008.10.018; Hertl W. Kinetics of Barium Titanate Synthesis. J. Am. Ceram. Soc. 1988;71(10):879–883. https://doi.org/10.1111/j.1151-2916.1988.tb07540.x; MacLaren I., Ponton C.B. A TEM and HREM study of particle formation during barium titanate synthesis in aqueous solution. J. Eur. Ceram. Soc. 2000;20(9):1267–1275. https://doi.org/10.1016/S0955-2219(99)00287-3; Eckert J.O., Hung-Houston C.C., Gersten B.L., Lencka M.M., Riman R.E. Kinetics and Mechanisms of Hydrothermal Synthesis of Barium Titanate. J. Am. Ceram. Soc. 1996;79(11):2929–2939. https://doi.org/10.1111/j.1151-2916.1996.tb08728.x; Pinceloup P., Courtois C., Vincens J., Leriche A., Thierry B. Evidence of a dissolution-precipitation mechanism in hydrothermal synthesis of barium titanate powders. J. Eur. Ceram. Soc. 1999;19(6–7):973–977. https://doi.org/10.1016/S0955-2219(98)00356-2; Walton R.I., Millange F., Smith R.I., Hansen T.C., O’Hare D. Real Time Observation of the Hydrothermal Crystallization of Barium Titanate Using in Situ Neutron Powder Diffraction. J. Am. Chem. Soc. 2001;123(50):12547–12555. https://doi.org/10.1021/ja011805p; Lencka M.M., Riman R.E. Hydrothermal synthesis of perovskite materials: Thermodynamic modeling and experimental verification. Ferroelectrics. 1994;151(1): 159–164. https://doi.org/10.1080/00150199408244737; Lencka M.M., Riman R.E. Thermodynamic Modeling of Hydrothermal Synthesis of Ceramic Powders. Chem. Mater. 1993;5(1):61–70. https://doi.org/10.1021/cm00025a014; Akbulut Özen S., Özen M., Şahin M., Mertens M. Study of the hydrothermal crystallization process of barium titanate by means of X-ray mass attenuation coefficient measurements at an energy of 59.54 keV. Mater. Charact. 2017;129:329–335. https://doi.org/10.1016/j.matchar.2017.05.006; Neubrand A., Lindner R., Hoffmann P. Room-Temperature Solubility Behavior of Barium Titanate in Aqueous Media. J. Am. Ceram. Soc. 2004;83(4):860–864. https://doi.org/10.1111/j.1151-2916.2000.tb01286.x; Kholodkova A.A., Danchevskaya M.N., Ivakin Y.D., Muravieva G.P. Synthesis of fine-crystalline tetragonal barium titanate in low-density water fluid. J. Supercrit. Fluids. 2015;105:201–208. https://doi.org/10.1016/j.supflu.2015.05.004; Kholodkova A.A., Danchevskaya M.N., Ivakin Y.D., Muravieva G.P., Tyablikov A.S. Crystalline barium titanate synthesized in sub- and supercritical water. J. Supercrit. Fluids. 2016;117:194–202. https://doi.org/10.1016/j.supflu.2016.06.018; Hayashi H., Noguchi T., Islam N.M., Hakuta Y., Imai Y., Ueno N. Hydrothermal synthesis of BaTiO3 nanoparticles using a supercritical continuous flow reaction system. J. Cryst. Growth. 2010;312(12–13):1968–1972. https://doi.org/10.1016/j.jcrysgro.2010.03.034; Hakuta Y., Ura H., Hayashi H., Arai K. Effect of water density on polymorph of BaTiO3 nanoparticles synthesized under sub and supercritical water conditions. Mater. Lett. 2005;59(11):1387–1390. https://doi.org/10.1016/j.matlet.2004.11.063; Aoyagi S., Kuroiwa Y., Sawada A., Kawaji H., Atake T. Size effect on crystal structure and chemical bonding nature in BaTiO3 nanopowder. J. Therm. Anal. Calorim. 2005;81(3): 627–630. https://doi.org/10.1007/s10973-005-0834-z; Frey M.H., Payne D.A. Grain-size effect on structure and phase transformations for barium titanate. Phys. Rev. B. Condens. Matter. 1996;54(5):3158–3168. https://doi.org/10.1103/physrevb.54.3158; Hennings D., Schnell A., Simon G. Diffuse Ferroelectric Phase Transitions in Ba(Ti1−yZry)O3 Ceramics. J. Am. Ceram. Soc. 1982;65(11):539–544. https://doi.org/10.1111/j.1151-2916.1982.tb10778.x; Lee T., Aksay I.A. Hierarchical Structure−Ferroelectricity Relationships of Barium Titanate Particles. Cryst. Growth Des. 2001;1(5):401–419. https://doi.org/10.1021/cg010012b; Kozawa T., Onda A., Yanagisawa K. Accelerated formation of barium titanate by solid-state reaction in water vapour atmosphere. J. Eur. Ceram. Soc. 2009;29(15):3259–3264. https://doi.org/10.1016/j.jeurceramsoc.2009.05.031; Buscaglia V., Buscaglia M.T. Synthesis and Properties of Ferroelectric Nanotubes and Nanowires: A Review. In: Alguero M., Gregg J.M., Mitoseriu L. (Eds.). Nanoscale Ferroelectrics and Multiferroics: Key Processing and Characterization Issues, and Nanoscale Effects. First Edit. John Wiley & Sons; 2016. P. 200–231. https://doi.org/10.1002/9781118935743.ch8; Bao N., Shen L., Gupta A., Tatarenko A., Srinivasan G., Yanagisawa K. Size-controlled one-dimensional monocrystalline BaTiO3 nanostructures. Appl. Phys. Lett. 2009;94(25):253109. https://doi.org/10.1063/1.3159817; Maxim F., Ferreira P., Vilarinho P. Strategies for the Structure and Morphology Control of BaTiO3 Nanoparticles. In: New Applications for Nanomaterials. Series: Micro and Nanoengineering. 2014. V. 22. P. 83–97.; Yosenick T.J., Miller D.V., Kumar R., Nelson J.A., Randall C.A., Adair J.H. Synthesis of nanotabular barium titanate via a hydrothermal route. J. Mater. Res. 2005;20(4):837–843. https://doi.org/10.1557/JMR.2005.0117; Kong X., Hu D., Ishikawa Y., Tanaka Y., Feng Q. Solvothermal Soft Chemical Synthesis and Characterization of Nanostructured Ba1−x(Bi0.5K0.5)xTiO3 Platelike Particles with Crystal-Axis Orientation. Chem. Mater. 2011;23(17): 3978–3986. https://doi.org/10.1021/cm2015252; Huang K.C., Huang T.C., Hsieh W.F. Morphology-controlled synthesis of barium titanate nanostructures. Inorg. Chem. 2009;48(19):9180–9184. https://doi.org/10.1021/ic900854x; Feng Q., Hirasawa M., Yanagisawa K. Synthesis of crystalaxis-oriented BaTiO3 and anatase platelike particles by a hydrothermal soft chemical process. Chem. Mater. 2001;13(2):290–296. https://doi.org/10.1021/cm000411e; Kang S.O., Park B.H., Kim Y.Il. Growth mechanism of shape-controlled barium titanate nanostructures through soft chemical reaction. Cryst. Growth Des. 2008;8(9):3180–3186. https://doi.org/10.1021/cg700795q; Li Y., Gao X.P., Pan G.L., Yan T.Y., Zhu H.Y. Titanate nanofiber reactivity: Fabrication of MTiO3 (M = Ca, Sr, and Ba) perovskite oxides. J. Phys. Chem. C. 2009;113(11): 4386–4394. https://doi.org/10.1021/jp810805f; Xue L., Yan Y. Controlling the morphology of nanostructured barium titanate by hydrothermal method. J. Nanosci. Nanotechnol. 2010;10(2):973–979. https://doi.org/10.1166/jnn.2010.1884; Bao N., Shen L., Srinivasan G., Yanagisawa K., Gupta A. Shape-controlled monocrystalline ferroelectric barium titanate nanostructures: From nanotubes and nanowires to ordered nanostructures. J. Phys. Chem. C. 2008;112(23):8634–8642. https://doi.org/10.1021/jp802055a; Kanatzidis M.G., Poeppelmeier K.R., Bobev S., Guloy A.M., Hwu S.J., Lachgar A., et al. Report from the third workshop on future directions of solid-state chemistry: The status of solid-state chemistry and its impact in the physical sciences. Prog. Solid State Chem. 2008;36(1–2):1–133. https://doi.org/10.1016/j.progsolidstchem.2007.02.002; Özen M., Mertens M., Snijkers F., Hondt H.D., Cool P. Molten-salt synthesis of tetragonal micron-sized barium titanate from a peroxo-hydroxide precursor. Adv. Powder Technol. 2017;28(1):146–154. https://doi.org/10.1016/j.apt.2016.09.007; Gorokhovsky A.V., Escalante-Garcia J.I., Sánches-Monjarás T., Vargas-Gutierrez G. Synthesis of barium titanate powders and coatings by treatment of TiO2 with molten mixtures of Ba(NO3)2, KNO3 and KOH. Mater. Lett. 2004;58(17–18):2227–3220. https://doi.org/10.1016/j.matlet.2004.01.025; Zhang Y., Wang L., Xue D. Molten salt route of well dispersive barium titanate nanoparticles. Powder Technol. 2012;217: 629–633. https://doi.org/10.1016/j.powtec.2011.11.043; Zhao W., E L., Ya J., Liu Z., Zhou H. Synthesis of HighAspect-Ratio BaTiO3 Platelets by Topochemical Conversion and Fabrication of Textured Pb(Mg1/3Nb2/3)O3-32.5PbTiO3 Ceramics. Bull. Korean Chem. Soc. 2012;33(7):2305–2308. https://doi.org/10.5012/bkcs.2012.33.7.2305; https://www.finechem-mirea.ru/jour/article/view/2034
-
3Academic Journal
المصدر: Вестник Северо-Кавказского федерального университета, Vol 0, Iss 2, Pp 16-24 (2022)
مصطلحات موضوعية: тонкие пленки tio, золь-гель метод, нанесение на вращающуюся подложку, спектрофотометрия, ик-спектроскопия, tio2 thin films, sol-gel method, rotating substrate coating, spectrophotometry, infrared 2 spectroscopy, Economics as a science, HB71-74
وصف الملف: electronic resource
-
4Academic Journal
المؤلفون: Alexander A. Kravtsov, Andrey V. Blinov, Maria A. Yasnaya, Dmitry S. Vakalov, Mikhail E. Domrachev
المصدر: Вестник Северо-Кавказского федерального университета, Vol 0, Iss 1, Pp 45-50 (2022)
مصطلحات موضوعية: наночастицы zno, золь-гель метод, нанокомпозит zno-cuxo, zno nanoparticles, sol-gel method, zno-cuxo nanocomposite, Economics as a science, HB71-74
وصف الملف: electronic resource
-
5Academic Journal
المصدر: Вестник Северо-Кавказского федерального университета, Vol 0, Iss 4, Pp 20-26 (2022)
مصطلحات موضوعية: тонкие пленки tio2, фотосенсибилизация, наночастицы cu, золь-гель метод, нанесение на вращающуюся подложку, эллипсометрия, спектры пропускания, пк-спектроскопия, thin tio2 films, photosensitivity, cu nanoparticles, sol-gel method, coating the rotating substrate, ellipsometry, transmission spectra, ir spectroscopy, Economics as a science, HB71-74
وصف الملف: electronic resource
-
6Academic Journal
المؤلفون: Dmitri Sergeevich Vakalov, Dmitri Petrovich Valukhov, Eugenie Alekseevich Bondarenko, Ul'jana Andreevna Maryina
المصدر: Вестник Северо-Кавказского федерального университета, Vol 0, Iss 1, Pp 127-131 (2022)
مصطلحات موضوعية: люминесценция, фотопроводимость, zno, наночастицы, золь-гель метод, luminescence, photoconductivity, nanoparticles, sol-gel technique, Economics as a science, HB71-74
وصف الملف: electronic resource
-
7Academic Journal
المؤلفون: Oleg Chapura, Alexey Skomorokhov, Arthur Osipov, Elena Belayeva, Nikita Remarenko, Yas Osamah Yas
المصدر: Вестник Северо-Кавказского федерального университета, Vol 0, Iss 2, Pp 30-34 (2022)
مصطلحات موضوعية: фотолюминесценция, оксид титана, самарий, наночастицы, золь-гель метод, photoluminescence, titanium oxide, samarium, nanoparticle, sol-gel method, Economics as a science, HB71-74
وصف الملف: electronic resource
-
8Academic Journal
المؤلفون: Ковалев, Андрей Игоревич, Винник, Денис Александрович, Жеребцов, Дмитрий Анатольевич, Белая, Елена Александровна
المصدر: Chemistry; Том 15, № 1 (2023): Вестник Южно-Уральского государственного университета. Серия: Химия; 131-137 ; Химия; Том 15, № 1 (2023): Вестник Южно-Уральского государственного университета. Серия: Химия; 131-137 ; 2412-0413 ; 2076-0493
مصطلحات موضوعية: hexaferrites, sol-gel synthesis, XRD, SEM, гексаферриты, золь-гель метод, РФА, СЭМ
وصف الملف: application/pdf
-
9Academic Journal
المؤلفون: S. M. Zulfugarova, G. R. Azimova, Z. F. Aleskeroiva, G. M. Guseinli, D. B. Tagiyev, С. М. Зульфугарова, Г. Р. Азимова, З. Ф. Алескерова, Г. М. Гусейнли, Д. Б. Тагиев
المصدر: Proceedings of the National Academy of Sciences of Belarus, Chemical Series; Том 59, № 2 (2023); 105-114 ; Известия Национальной академии наук Беларуси. Серия химических наук; Том 59, № 2 (2023); 105-114 ; 2524-2342 ; 1561-8331 ; 10.29235/1561-8331-2023-59-2
مصطلحات موضوعية: оксидные катализаторы, low-temperature oxidation, combustion sol-gel method, oxide catalysts, низкотемпературное окисление, золь-гель метод с горением
وصف الملف: application/pdf
Relation: https://vestichem.belnauka.by/jour/article/view/809/702; Royer, S. Catalytic oxidation of carbon monoxide over transition metal oxides / S. Royer, D. Duprez // ChemCataChem. – 2011. – Vol. 3, N 1. – P. 24–65. https://doi.org/10.1002/cctc.201000378; Nanocatalysts for Low-Temperature Oxidation of CO: Review / G. G. Xanthopouloua [et al.] // Eurasian Chem.-Technol. J. – 2015. – Vol. 17. – P.17–32.; Soliman, N. K. Factors affecting CO oxidation reaction over nanosized materials: A review / N. K. Soliman // J. Mat. Res. Technol. – 2019. – Vol. 8, N 2. – P. 2395–2407. https://doi.org/10.1016/j.jmrt.2018.12.012; Dey, S. Selection of Manganese oxide catalysts for catalytic oxidation of Carbon monoxide at ambient conditions / S. Dey, N. S. Mehta // Res., Environ. Sustainability. – 2020. – Vol. 1. – P. 100003. https://doi.org/10.1016/j.resenv.2020.100003; Mahammadunnisa, S. NiO/Ce1−x NixO2−δ as an alternative to noble metal catalysts for CO oxidation / S. Mahammadunnisa, M. K. Reddy, N. Lingaiah // Catal. Sci. Technol. – 2013. – N 3. – P. 730–736. https://doi.org/10.1039/C2CY20641B; Prasad, R. A Review on CO Oxidation Over Copper Chromite Catalyst / R. Prasad, P. Singh // Catal. Rewiews: Science and Engineering. – 2012. – Vol. 54, iss. 2. – P. 224–279. https://doi.org/10.1080/01614940.2012.648494; Aniz, C. U. A study on catalysis by ferrospinels for preventing atmospheric pollution from carbon monoxide / C. U. Aniz, T. D. R. Nair // Open J. Phys. Chem. – 2011. – Vol. 1, N 3. – P. 124–130. https://doi.org/10.4236/ojpc.2011.13017; Молчанов, В. В. Влияние механохимической активации на каталитические свойства ферритов со структурой шпинели / В. В. Молчанов, Р. А. Буянов, Ю. Т. Павлюхин // Кинетика и катализ. – 2003. – Т. 44, N 6. – С. 860–864. https://doi.org/10.1023/B:KICA.0000009055.02997.9c; Nanosized copper ferrite materials: mechanochemical synthesis and characterization / E. Manova [et al.] // J. Solid State Chem. – 2011. – Vol. 184, iss. 5. – P. 1153–1158. https://doi.org/10.1016/j.jssc.2011.03.035; Томина, Е. В. Микроволновый синтез ортоферрита иттрия и допирование его никелем / Е. В. Томина, Н. А. Куркин, С. А. Мальцев // Конденсированные среды и межфазные границы. –2019. – Т. 21, N. 2. – С. 306–312. https://doi.org/10.17308/kcmf.2019.21/768; Микроволновый синтез ферритов (Co, Ni, Cu, Zn) / Ю. Н. Литвишков [и др.] // Журн. прикл. химии. – 2018. – T. 91, N. 5. – C. 679–687.; Рахманкулов, Д. Л. Микроволновое излучение и интенсификация химических процессов / Д. Л. Рахманкулов, И. Х. Бикбулатов. – М.: Химия, 2003. – 220 c.; Ванецев, А. С. Микроволновой синтез индивидуальных и многокомпонентных оксидов / А. С. Ванецев, Ю. Д. Третьяков // Успехи химии. – 2007. – T. 76, N. 5. – C. 435–453.; Yen-Chun, Liu. Magnetic and catalytic properties of copper ferrite nanopowders prepared by a microwave-induced combustion process / Yen-Chun Liu, Yen-Pei Fu // Ceram. Int. – 2010. – Vol. 36, iss. 5. – P. 1597–1601. https://doi.org/10.1016/j.ceramint.2010.02.032; Catalytic activity of copper ferrite synthesized with the using of microwave treatment in the oxidation reaction of carbon monoxide / G. R. Azimova [et al.] // Am. J. Clin. Nutr. – 2020. – Vol. 2. – P. 29–35.; Bushkova, V. S. Synthesis and study of the properties of nanoferrites obtained by the sol-gel method with the participation of auto-combustion / V. S. Bushkova // Journal of Nano- and Electronic Physics. – 2015. – Vol. 7, N.1. – P. 01023–01029.; Structural parameters and magnetic properties of copper ferrite nanopowders obtained by the sol-gel combustion / V. A. Zhuravlev [et al.] // J. Alloys Compd. – 2016. – Vol. 692. – P. 705–712. https://doi.org/10.1016/j.jallcom.2016.09.069; Sol-gel auto combustion synthesis and characterizations of cobalt ferritenanoparticles: Different fuels approach / V. R. Bhagwata [et al.] // Mater. Sci. Eng. – 2019. – Vol. 248. – P. 11438. https://doi.org/10.1016/j.mseb.2019.114388; Synthesis of cobalt ferrite (CoFe2O4) by combustion with different concentrations of glycine / C. G. Kaufmann [et al.] // IOP Conf. Ser.: Mater. Sci. Eng. – 2019. – Vol. 659. – P. 012079. https://doi.org/10.1088/1757-899X/659/1/012079; Synthesis and characterization of nickel ferrite nanoparticles by sol - gel auto combustion method / R. Kesavamoorthi [et al.] // J. Chem. Pharm. Sci. – 2016. – Vol. 9, N. 1. – P. 160–162.; Dey, S. Catalytic conversion of carbon monoxide into carbon dioxide over spinel catalysts: An overview / S. Dey, G. Ch. Dhal // Mater. Sci. Energy Technol. – 2019. – Vol. 2, iss. 3. – P. 575–588. https://doi.org/10.1016/j.mset.2019.06.003; Copper based mixed oxide catalysts (CuMnCe, CuMnCo and CuCeZr) for the oxidation of CO at low temperature / S. Dey [et al.] // Mater. Discovery. – 2017. – Vol. 10. – P. 1–14. https://doi.org/10.1016/j.md.2018.02.001; Effect of preparation conditions on the catalytic activity of CuMnOx catalysts for CO Oxidation / S. Dey [et al.] // Bull. Chem. Reaction Eng. Catal. – 2017. – Vol. 12, N. 3. – P. 1–15. https://doi.org/10.9767/bcrec.12.3.900.437-451; Kinetics of catalytic oxidation of CO over copper-manganese oxide catalyst / M. Li [et al.] // Separation and Purification Technology. – 2007. – Vol. 57, iss. 1. – P. 147–151. https://doi.org/10.1016/j.seppur.2007.03.016; Pillai, U. R. Room temperature oxidation of carbon monoxide over copper oxide catalyst /; U. R. Pillai, S. Deevi // Applied Catalysis B: Environmental. – 2006. – Vol. 64, N 1-2. – P. 146–154. https://doi.org/10.1016/j.apcatb.2005.11.005; Брусенцов, Ю. А. Основы физики и технологии оксидных полупроводников / Ю. А. Брусенцов, А. М. Минаев. – Тамбов, 2002. – 80 c.; https://vestichem.belnauka.by/jour/article/view/809
-
10Report
المؤلفون: Ли, Ханьюй
المساهمون: Пушилина, Наталья Сергеевна
مصطلحات موضوعية: калий, золь-гель метод, сложные фосфаты, электроды, батарея, potassium, sol gel method, composite phosphate, electrode, battery pack, 661.87.091
وصف الملف: application/pdf
Relation: Ли Х. Синтез и исследование свойств KTi2(P04)3 : бакалаврская работа / Х. Ли; Национальный исследовательский Томский политехнический университет (ТПУ), Инженерная школа ядерных технологий (ИЯТШ), Отделение экспериментальной физики (ОЭФ); науч. рук. Н. С. Пушилина. — Томск, 2023.; http://earchive.tpu.ru/handle/11683/75537
-
11Academic Journal
المصدر: Алматы технологиялық университетінің хабаршысы, Vol 0, Iss 3, Pp 5-9 (2021)
مصطلحات موضوعية: золь-гель метод, микробиологические повреждения, микроорганизмы, молочная кислота, стойкость к воздействию плесневых грибов, наночастицы, ацетат цинка, Technology (General), T1-995
وصف الملف: electronic resource
-
12Academic Journal
المؤلفون: M. M. Izbergenova, A. . Kutzhanova, K. . Dyussenbieva
المصدر: Алматы технологиялық университетінің хабаршысы, Vol 0, Iss 2, Pp 43-47 (2021)
مصطلحات موضوعية: совмещенные процессы, золь-гель метод, крашение, заключительная отделка, микробиологические повреждения, Technology (General), T1-995
وصف الملف: electronic resource
-
13Academic Journal
المصدر: Вестник Северо-Кавказского федерального университета, Vol 0, Iss 2, Pp 16-24 (2022)
مصطلحات موضوعية: тонкие пленки tio, золь-гель метод, нанесение на вращающуюся подложку, спектрофотометрия, ик-спектроскопия, tio 2 thin films, sol-gel method, rotating substrate coating, spectrophotometry, infrared 2 spectroscopy, Economics as a science, HB71-74
-
14Academic Journal
المصدر: Вестник Северо-Кавказского федерального университета, Vol 0, Iss 4, Pp 20-26 (2022)
مصطلحات موضوعية: тонкие пленки tio 2, фотосенсибилизация, наночастицы cu, золь-гель метод, нанесение на вращающуюся подложку, эллипсометрия, спектры пропускания, пк-спектроскопия, thin tio 2 films, photosensitivity, cu nanoparticles, sol-gel method, coating the rotating substrate, ellipsometry, transmission spectra, ir spectroscopy, Economics as a science, HB71-74
-
15Academic Journal
المؤلفون: Oleg Chapura, Alexey Skomorokhov, Arthur Osipov, Elena Belayeva, Nikita Remarenko, Yas Osamah Yas
المصدر: Вестник Северо-Кавказского федерального университета, Vol 0, Iss 2, Pp 30-34 (2022)
مصطلحات موضوعية: фотолюминесценция, оксид титана, самарий, наночастицы, золь-гель метод, photoluminescence, titanium oxide, samarium, nanoparticle, sol-gel method, Economics as a science, HB71-74
-
16Academic Journal
المؤلفون: Mironyuk, Ivan, Mykytyn, Igor, Vasylyeva, Hanna
المصدر: Physics and Chemistry of Solid State; Vol. 23 No. 3 (2022); 542-549 ; Фізика і хімія твердого тіла; Том 23 № 3 (2022); 542-549 ; 2309-8589 ; 1729-4428
مصطلحات موضوعية: Titanium dioxide, Sol-gel, Borate acid, Anatase, Rutile, Діоксид титану, Золь-гель метод, Анатаз, Рутил
وصف الملف: application/pdf
Relation: https://journals.pnu.edu.ua/index.php/pcss/article/view/5926/6562; https://journals.pnu.edu.ua/index.php/pcss/article/view/5926
-
17Academic Journal
المؤلفون: E. A. Melnik, A. A. Sysolyatina, A. S. Kholmogorova, L. K. Neudachina, V. A. Osipova, A. V. Pestov, Е. А. Мельник, А. А. Сысолятина, А. С. Холмогорова, Л. К. Неудачина, В. А. Осипова, В. А. Пестов
المصدر: Measurement Standards. Reference Materials; Том 18, № 2 (2022); 57-71 ; Эталоны. Стандартные образцы; Том 18, № 2 (2022); 57-71 ; 2687-0886
مصطلحات موضوعية: электронные отходы, селективное извлечение, сорбционная колонка, разделение металлов, концентрирование, функциональные материалы, полисилсесквиоксан, тиомочевина, тиокарбамид, серебро, золь-гель метод
وصف الملف: application/pdf
Relation: https://www.rmjournal.ru/jour/article/view/354/262; Metals in e -waste: Occurrence, fate, impacts and remediation technologies / S. C. Chakraborty [et al.] // Process Safety and Environmental Protection. 2022. Vol. 162. P. 230–252. https://doi.org/10.1016/j.psep.2022.04.011; Characterization, recovery opportunities, and valuation of metals in municipal sludges from U. S. Wastewater treatment plants nationwide / P. Westerhoff [et al.] // Environmental Science & Technology. 2015, Vol. 49, no. 16. P. 9479–9488. h ttps://doi.org/10.1021/es505329q; Dutta D., Goel S., Kumar S. Health risk assessment for exposure to heavy metals in soils in and around E-waste dumping site // Journal of Environmental Chemical Engineering. 2022. Vol. 10, no. 2. P. 107269. https://doi.org/10.1016/j.jece.2022.107269; Has the question of e-waste opened a Pandora’s box? An overview of unpredictable issues and challenges / B. Bakhiyi [et al.] // Environment International. 2018. Vol. 110. P. 173–192. https://doi.org/10.1016/j.envint.2017.10.021; Das S., Chellam S. Estimating light-duty vehicles’ contributions to ambient PM2.5 and PM10 at a near-highway urban elementary school via elemental characterization emphasizing rhodium, palladium, and platinum // Science of The Total Environment. 2020. Vol. 747. P. 141268. https://doi.org/10.1016/j.scitotenv.2020.141268; Assessment of heavy metal contamination and health risk from indoor dust and air of informal E-waste recycling shops in Dhaka, Bangladesh / M. Mowla [et al.] // Journal of Hazardous Materials Advances. 2021. Vol. 4. P. 100025. https://doi.org/10.1016/j.hazadv.2021.100025; The traffic signature on the vertical PM profile: Environmental and health risks within an urban roadside environment / St. Pateraki [et al.] // Science of the Total Environment. 2019. Vol. 646. P. 448–459. https://doi.org/10.1016/j.scitotenv.2018.07.289; Martell A. E., Smith R. M. Critical stability constants: Other organic ligands. Vol. 3. New-York: Ed. Plenum, 1989. P. 313–314.; Synthesis of thiourea-immobilized polystyrene nanoparticles and their sorption behavior with respect to silver ions in aqueous phase / J. I. Yun [et al.] // Journal of Hazardous Materials. 2018. Vol. 344. P. 398–407. https://doi.org/10.1016/j.jhazmat.2017.10.050; Sorption behavior of thiourea-grafted polymeric resin toward silver ion, reduction to silver nanoparticles, and their antibacterial properties / P. Kumar [et al.] // Industrial Engineering Chemistry. 2013. Vol. 52, no. 19. P. 6438–6445. https://doi.org/10.1021/ie3035866; Stepwise extraction of gold and silver from refractory gold concentrate calcine by thiourea / Guo X. [et al.] // Hydrometallurgy. 2020. Vol. 194. P. 105330. https://doi.org/10.1016/j.hydromet.2020.105330; Recovery of silver (I) using a thiourea-modified chitosan resin / L. Wang [et al.] // Journal of Hazardous Materials. 2010. Vol. 180, no. 1–3. P. 577–582. https://doi.org/10.1016/j.jhazmat.2010.04.072; Zhang M., Zhang Y., Helleur R. Selective adsorption of Ag+ by ion-imprinted O-carboxymethyl chitosan beads grafted with thiourea– glutaraldehyde // Chemical Engineering Journal. 2015. Vol. 264. P. 56–65. https://doi.org/10.1016/j.cej.2014.11.062; Kinetics and thermodynamics modeling of Nd(III) removal from aqueous solution using modified Amberlite XAD7 / P. Negrea [et al.] // Journal of Rare Earths. 2020. Vol. 38, no. 3. P. 306–314. https://doi.org/10.1016/j.jre.2019.04.023; Separation of platinum, palladium and rhodium from aqueous solutions using ion exchange resin: A review / J. Lee [et al.] // Separation and Purification Technology. 2020. Vol. 246. P. 116896. https://doi.org/10.1016/j.seppur.2020.116896; Extraction of precious metals from industrial solutions by the pine (Pinus sylvestris) sawdust-based biosorbent modified with thiourea groups / V. N. Losev [et al.] // Hydrometallurgy. 2018. Vol. 176. P. 118–128. https://doi.org/10.1016/j.hydromet.2018.01.016; Recovery and reduction of Au(III) from mixed metal solution by thiourearesorcinol-formaldehyde microspheres / X. Chen [et al.] // Journal of Hazardous Materials. 2020. Vol. 397. P. 122812. https://doi.org/10.1016/j.jhazmat.2020.122812; Gold recovery from precious metals in acidic media by using human hair waste as a new pretreatment-free green material / D. Yu [et al.] // Journal of Environmental Chemical Engineering. 2021. Vol. 9. P. 104724. https://doi.org/10.1016/j.jece.2020.104724; Pal N., Sim S., Cho E.-B. Multifunctional periodic mesoporous benzene-silicas for evaluation of CO2 adsorption at standard temperature and pressure // Microporous and Mesoporous Materials. 2020. Vol. 293. P. 109816. https://doi.org/10.1016/j.micromeso.2019.109816; Amine-containing (nano-) Periodic Mesoporous Organosilica and its application in catalysis, sorption and luminescence / A. M. Kaczmarek [et al.] // Microporous and Mesoporous Materials. 2020. Vol. 291. P. 109687. https://doi.org/10.1016/j.micromeso.2019.109687; Merging metal organic framework with hollow organosilica nanoparticles as a versatile nanoplatform for cancer theranostics / L. Chen [et al.] // Acta Biomaterialia. 2019. Vol. 86. P. 406–415. https://doi.org/10.1016/j.actbio.2019.01.005; Surface-coating engineering for flame retardant flexible polyurethane foams: A critical review / H. Yang [et al.] // Composites Part B: Engineering. 2019. Vol. 176. P. 107185. https://doi.org/10.1016/j.compositesb.2019.107185; Controllable preparation of thio-functionalized composite polysilsesquioxane microspheres in a microreaction system / T. Tang [et al.] // Advanced Powder Technology. 2022. Vol. 33, no. 5. P. 103578. https://doi.org/10.1016/j.apt.2022.103578; Interpenetrating polymer network-based composites reinforced by polysilsesquioxanes: Molecular dynamic simulations and experimental analysis / W. Zhang [et al.] // Composites Part B: Engineering. 2021. Vol. 209. P. 108604. https://doi.org/10.1016/j.compositesb.2021.108604; Controlled formation of ordered coordination polymeric networks using silsesquioxane building blocks / S. Banerjee [et al.] // Dalton Transactions. 2016. Vol. 45. P. 17082. https://doi.org/10.1039/c6dt02868c; Synthesis of non-spherical bridged polysilsesquioxane particles with controllable morphology / P. Li [et al.] // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2022. Vol. 637. P. 128203. https://doi.org/10.1016/j.colsurfa.2021.128203; Photosensitive hybrid polysilsesquioxanes for etching-free processing of flexible copper clad laminate / Y.-M. Choi [et al.] // Composites Science and Technology. 2021. Vol. 201. P. 108556. https://doi.org/10.1016/j.compscitech.2020.108556; Carboxylic acid-modified polysilsesquioxane aerogels for the selective and reversible complexation of heavy metals and organic molecules / C. R. Ehgartner [et al.] // Microporous and Mesoporous Materials. 2021. Vol. 312. P. 110759. https://doi.org/10.1016/j.micromeso.2020.110759; Mercury sorption on a thiocarbamoyl derivative of chitosan / K. C. Gavilan [et al.] // Journal of Hazardous Materials. 2009. Vol. 165. P. 415–426. https://doi.org/10.1016/j.jhazmat.2008.10.005; Syntheses of diethylenetriamine-bridged polysilsesquioxanes and their structure–adsorption properties for Hg(II) and Ag(I) / C. Sun [et al.] // Chemical Engineering Journal. 2014. Vol. 240. P. 369–378. https://doi.org/10.1016/j.cej.2013.11.092; Study on soluble heavy metals with preconcentration by using a new modified oligosilsesquioxane sorbent / E. G. Vieira [et al.] // Journal of Hazardous Materials. 2012. Vol. 237–238. P. 215–222. https://doi.org/10.1016/j.jhazmat.2012.08.030; High stability amino-derived reversed-phase/anion-exchange mixed-mode phase based on polysilsesquioxane microspheres for simultaneous separation of compound drugs / J. Shi [et al.] // Journal of Pharmaceutical and Biomedical Analysis. 2021. Vol. 203. P. 114187. https://doi.org/10.1016/j.jpba.2021.114187; Selective adsorption of Ag(I) ions with poly(vinyl alcohol) modified with thiourea (TU–PVA) / T. Yang [et al.] // Hydrometallurgy. 2018. Vol. 175. P. 179–186. https://doi.org/10.1016/j.hydromet.2017.11.007; Selective adsorption for Ag (I) from wastewater by carbon-magnetic fly ash beads modified with polydopamine and thiourea / L. Zhang [et al.] // Sustainable Chemistry and Pharmacy. 2020. Vol. 17. P. 100287. https://doi.org/10.1016/j.scp.2020.100287; Influence of the Structure of the Aminoalkyl Group in Polysiloxane on the Selectivity of Its Interaction with Metal Ions / A. S. Kholmogorova [et al.] // Russian Journal of Applied Chemistry. 2021. Vol. 94, no. 4, P. 478–485. https://doi.org/10.1134/S1070427221040078; https://www.rmjournal.ru/jour/article/view/354
-
18Academic Journal
المؤلفون: L. M. Lynkou, V. A. Bogush, T. V. Borbotko, N. V. Nasonova
المصدر: Doklady Belorusskogo gosudarstvennogo universiteta informatiki i radioèlektroniki, Vol 0, Iss 2, Pp 43-53 (2019)
مصطلحات موضوعية: сверхпроводниковая электроника, сбис, наноструктурированные материалы, золь-гель метод, экраны электромагнитного излучения, защита информации от утечки по техническим каналам, Electronics, TK7800-8360
وصف الملف: electronic resource
-
19Academic Journal
المؤلفون: Аль-Камали, М. Ф. С. Х.
مصطلحات موضوعية: SiO2:CuO:NiO, Золь-гель метод, EDX-анализ, СЭМ, Sol-gel method, EDX analysis, SEM
جغرافية الموضوع: Брест
وصف الملف: application/pdf
Relation: Аль-Камали, М. Ф. С. Х. Разработка золь-гель технологии получения сложных нанокомпозитных SiO2:CuO:NiO для последующего вакуумного напыления / М. Ф. С. Х. Аль-Камали // III Республиканский форум молодых ученых учреждений высшего образования : сборник материалов форума, Брест, 21–24 мая 2024 г. / Министерство образования Республики Беларусь, Брестский государственный технический университет, Брестский государственный университет имени А. С. Пушкина; редкол. : Н. Н. Шалобыта [и др.]. – Брест : БрГТУ, 2024. – С. 5–7.; https://elib.gstu.by/handle/220612/36528; 546:54.057
-
20Conference
المؤلفون: Tikhonov, Alexey Evgenievich
المساهمون: Novoselov, Ivan Yurievich
مصطلحات موضوعية: водные растворы, нитратные растворы, водно-органические растворы, наноразмерные порошки, золь-гель метод, оксид иттрия, оксид циркония, плазмохимический синтез
وصف الملف: application/pdf
Relation: Изотопы: технологии, материалы и применение : сборник тезисов докладов VI Международной научной конференции молодых ученых, аспирантов и студентов, г. Томск, 26-29 октября 2020 г.; Tikhonov A. E. Comparison of Y2O3 and ZrO2 synthesized from water nitrate solutions and water-organic nitrate solutions / A. E. Tikhonov; sci. adv. I. Yu. Novoselov // Изотопы: технологии, материалы и применение : сборник тезисов докладов VI Международной научной конференции молодых ученых, аспирантов и студентов, г. Томск, 26-29 октября 2020 г. — Томск : ТПУ, 2020. — [С. 51-52].; http://earchive.tpu.ru/handle/11683/63947