-
1Academic Journal
المؤلفون: Е. М. Дорошенко, Ж. В. Мотылевич
المصدر: Žurnal Grodnenskogo Gosudarstvennogo Medicinskogo Universiteta, Vol 22, Iss 6, Pp 565-571 (2025)
مصطلحات موضوعية: аминокислоты, фенилаланин, глутамин, фенилацетат, фенилацетилглутамин, злокачественные новообразования, диагностика, маркеры, хроматография, Medicine
وصف الملف: electronic resource
-
2Academic Journal
المؤلفون: Владимир Юрьевич Старцев, Глеб Валентинович Кондратьев, Николай Иванович Тяпкин, Игорь Олегович Белогорцев, Павел Сергеевич Кондрашкин
المصدر: Медицина и организация здравоохранения, Vol 8, Iss 4 (2024)
مصطلحات موضوعية: злокачественные новообразования, Ленинградская область, организация здравоохранения, диагностика злокачественных новообразований, центр амбулаторной онкологической помощи, Medicine (General), R5-920
وصف الملف: electronic resource
-
3Academic Journal
المؤلفون: Marina Yu. Strekalovskaya
المصدر: Журнал медико-биологических исследований, Vol 11, Iss 4, Pp 391-397 (2023)
مصطلحات موضوعية: аутосенсибилизация, злокачественные новообразования, иммунная система человека, иммунный ответ, il-10, аутоантитела к фосфолипидам, аутоантитела к днк и рнк, tnf-α, Sports medicine, RC1200-1245, Biology (General), QH301-705.5
وصف الملف: electronic resource
-
4Academic Journal
المؤلفون: Л. В. Болотина, Л. Ю. Владимирова, Н. В. Деньгина, С. И. Кутукова, А. В. Новик, И. С. Романов
المصدر: Malignant tumours; Том 14, № 3s2-1 (2024); 160-182 ; Злокачественные опухоли; Том 14, № 3s2-1 (2024); 160-182 ; 2587-6813 ; 2224-5057
مصطلحات موضوعية: лучевая терапия, плоскоклеточный рак, рак носоглотки, рак щитовидной железы, злокачественные новообразования слюнных желез, лекарственная терапия
وصف الملف: application/pdf
Relation: https://www.malignanttumors.org/jour/article/view/1365/970; https://www.malignanttumors.org/jour/article/view/1365
-
5Academic Journal
المؤلفون: L. G. Solenova, N. I. Ryzhova, I. A. Antonova, G. A. Belitsky, K. I. Kirsanov, M. G. Yakubovskaya, Л. Г. Соленова, Н. И. Рыжова, И. А. Антонова, Г. А. Белицкий, К. И. Кирсанов, М. Г. Якубовская
المساهمون: this research has been carried out with the financial support of the Russian Science Foundation (grant No. 23-65-00003)., работа выполнена при финансовой поддержке Российского научного фонда (грант № 23-65-00003).
المصدر: Research and Practical Medicine Journal; Том 11, № 3 (2024); 85-102 ; Research'n Practical Medicine Journal; Том 11, № 3 (2024); 85-102 ; 2410-1893 ; 10.17709/2410-1893-2024-11-3
مصطلحات موضوعية: эпидемиологические исследования, microbiome, malignant neoplasms, carcinogenesis, mechanisms, epidemiological studies, микробиом, злокачественные новообразования, канцерогенез, механизмы
وصف الملف: application/pdf
Relation: https://www.rpmj.ru/rpmj/article/view/1025/648; O'Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep. 2006 Jul;7(7):688–693. doi:10.1038/sj.embor.7400731; Rajpoot M, Sharma AK, Sharma A, Gupta GK. Understanding the microbiome: Emerging biomarkers for exploiting the microbiota for personalized medicine against cancer. Semin Cancer Biol. 2018 Oct;52(Pt 1):1–8. doi:10.1016/j.semcancer.2018.02.003; de Martel C, Georges D, Bray F, Ferlay J, Clifford GM. Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. Lancet Glob Health. 2020 Feb;8(2):e180–e190. doi:10.1016/s2214-109x(19)30488-7; Radaic A, Kapila YL. The oralome and its dysbiosis: New insights into oral microbiome-host interactions. Comput Struct Biotechnol J. 2021 Feb 27;19:1335–1360. doi:10.1016/j.csbj.2021.02.010; Chen T, Yu WH, Izard J, Baranova OV, Lakshmanan A, Dewhirst FE. The Human Oral Microbiome Database: a web accessible resource for investigating oral microbe taxonomic and genomic information. Database (Oxford). 2010 Jul 6;2010:baq013. doi:10.1093/database/baq013; Ganly I, Yang L, Giese RA, Hao Y, Nossa CW, Morris LGT, et al. Periodontal pathogens are a risk factor of oral cavity squamous cell carcinoma, independent of tobacco and alcohol and human papillomavirus. Int J Cancer. 2019 Aug 1;145(3):775–784. doi:10.1002/ijc.32152; Li R, Xiao L, Gong T, Liu J, Li Y, Zhou X, Li Y, Zheng X. Role of oral microbiome in oral oncogenesis, tumor progression, and metastasis. Mol Oral Microbiol. 2023 Feb;38(1):9–22. doi:10.1111/omi.12403; Tuominen H, Rautava J. Oral Microbiota and Cancer Development. Pathobiology. 2021;88(2):116–126. doi:10.1159/000510979; Arzmi MH, Dashper S, McCullough M. Polymicrobial interactions of Candida albicans and its role in oral carcinogenesis. J Oral Pathol Med. 2019 Aug;48(7):546–551. doi:10.1111/jop.12905; Nieminen MT, Listyarifah D, Hagström J, Haglund C, Grenier D, Nordström D, et al. Treponema denticola chymotrypsin-like proteinase may contribute to orodigestive carcinogenesis through immunomodulation. Br J Cancer. 2018 Feb 6;118(3):428–434. doi:10.1038/bjc.2017.409; Rai AK, Panda M, Das AK, Rahman T, Das R, Das K, et al. Dysbiosis of salivary microbiome and cytokines influence oral squamous cell carcinoma through inflammation. Arch Microbiol. 2021 Jan;203(1):137–152. doi:10.1007/s00203-020-02011-w; Smędra A, Berent J. The Influence of the Oral Microbiome on Oral Cancer : A Literature Review and a New Approach. Biomolecules. 2023 May 11;13(5):815. doi:10.3390/biom13050815; Wu L, Yang J, She P, Kong F, Mao Z, Wang S. Single-cell RNA sequencing and traditional RNA sequencing reveals the role of cancer-associated fibroblasts in oral squamous cell carcinoma cohort. Front Oncol. 2023 May 10;13:1195520. doi:10.3389/fonc.2023.1195520; Fitzsimonds ZR, Rodriguez-Hernandez CJ, Bagaitkar J, Lamont RJ. From Beyond the Pale to the Pale Riders: The Emerging Association of Bacteria with Oral Cancer. J Dent Res. 2020 Jun;99(6):604–612. doi:10.1177/0022034520907341; Maisonneuve P, Amar S, Lowenfels AB. Periodontal disease, edentulism, and pancreatic cancer: a meta-analysis. Ann Oncol. 2017 May 1;28(5):985–995. doi:10.1093/annonc/mdx019; Michaud DS, Lu J, Peacock-Villada AY, Barber JR, Joshu CE, Prizment AE, et al. Periodontal Disease Assessed Using Clinical Dental Measurements and Cancer Risk in the ARIC Study. J Natl Cancer Inst. 2018 Aug 1;110(8):843–854. doi:10.1093/jnci/djx278; Sakanaka A, Kuboniwa M, Shimma S, Alghamdi SA, Mayumi S, Lamont RJ, et al. Fusobacterium nucleatum Metabolically Integrates Commensals and Pathogens in Oral Biofilms. mSystems. 2022 Aug 30;7(4):e0017022. doi:10.1128/msystems.00170-22; Zhang J, Bellocco R, Sandborgh-Englund G, Yu J, Sällberg Chen M, Ye W. Poor Oral Health and Esophageal Cancer Risk: A Nation-wide Cohort Study. Cancer Epidemiol Biomarkers Prev. 2022 Jul 1;31(7):1418–1425. doi:10.1158/1055-9965.epi-22-0151; Yano Y, Abnet CC, Poustchi H, Roshandel G, Pourshams A, Islami F, et al. Oral Health and Risk of Upper Gastrointestinal Cancers in a Large Prospective Study from a High-risk Region: Golestan Cohort Study. Cancer Prev Res (Phila). 2021 Jul;14(7):709–718. doi:10.1158/1940-6207.capr-20-0577; Zhao R, Li X, Yang X, et al. Association of Esophageal Squamous Cell Carcinoma with the Interaction Between Poor Oral Health and Single Nucleotide Polymorphisms in Regulating Cell Cycles and Angiogenesis: A Case-Control Study in High-Incidence Chinese. Cancer Control. 2022, 29, 10732748221075811. doi:10.1177/10732748221075811; Moreira C, Figueiredo C, Ferreira RM. The Role of the Microbiota in Esophageal Cancer. Cancers (Basel). 2023 Apr 30;15(9):2576. doi:10.3390/cancers15092576; Peters BA, Wu J, Pei Z, Yang L, Purdue MP, Freedman ND, et al. Oral Microbiome Composition Reflects Prospective Risk for Esophageal Cancers. Cancer Res. 2017 Dec 1;77(23):6777–6787. doi:10.1158/0008-5472.can-17-1296; Lv J, Guo L, Liu JJ, Zhao HP, Zhang J, Wang JH. Alteration of the esophageal microbiota in Barrett's esophagus and esophageal adenocarcinoma. World J Gastroenterol. 2019 May 14;25(18):2149–2161. doi:10.3748/wjg.v25.i18.2149; Lei J, Xu F, Deng C, Nie X, Zhong L, Wu Z, et al. Fusobacterium nucleatum promotes the early occurrence of esophageal cancer through upregulation of IL-32/PRTN3 expression. Cancer Sci. 2023 Jun;114(6):2414–2428. doi:10.1111/cas.15787; Yang L, Francois F, Pei Z. Molecular pathways: pathogenesis and clinical implications of microbiome alteration in esophagitis and Barrett esophagus. Clin Cancer Res. 2012 Apr 15;18(8):2138–2144. doi:10.1158/1078-0432.ccr-11-0934; Костин Р.К., Малюгин Д.А., Соленова Л.Г., Кулаева Е.Д. Микробиота желудочно-кишечного тракта и канцерогенез в различных органах человека. Журнал микробиологии, эпидемиологии и иммунобиологии. 2023;100(1):110–125. doi:10.36233/0372-9311-310; Yamaoka Y. Mechanisms of disease: Helicobacter pylori virulence factors. Nat Rev Gastroenterol Hepatol. 2010 Nov;7(11):629–641. doi:10.1038/nrgastro.2010.154; Doorakkers E, Lagergren J, Engstrand L, Brusselaers N. Eradication of Helicobacter pylori and Gastric Cancer : A Systematic Review and Meta-analysis of Cohort Studies. J Natl Cancer Inst. 2016 Jul 14;108(9):djw132. doi:10.1093/jnci/djw132; Park JY, Seo H, Kang CS, Shin TS, Kim JW, Park JM, et al. Dysbiotic change in gastric microbiome and its functional implication in gastric carcinogenesis. Sci Rep. 2022 Mar 11;12(1):4285. doi:10.1038/s41598-022-08288-9; Chen XH, Wang A, Chu AN, Gong YH, Yuan Y. Mucosa-Associated Microbiota in Gastric Cancer Tissues Compared With Non-cancer Tissues. Front Microbiol. 2019 Jun 5;10:1261. doi:10.3389/fmicb.2019.01261; Liu X, Shao L, Liu X, Ji F, Mei Y, Cheng Y, Liu F, Yan C, Li L, Ling Z. Alterations of gastric mucosal microbiota across different stomach microhabitats in a cohort of 276 patients with gastric cancer. EBioMedicine. 2019 Feb;40:336–348. doi:10.1016/j.ebiom.2018.12.034; Bakhti SZ, Latifi-Navid S. Interplay and cooperation of Helicobacter pylori and gut microbiota in gastric carcinogenesis. BMC Microbiol. 2021 Sep 23;21(1):258. doi:10.1186/s12866-021-02315-x; Dastmalchi N, Safaralizadeh R, Banan Khojasteh SM. The correlation between microRNAs and Helicobacter pylori in gastric cancer. Pathog Dis. 2019 Jun 1;77(4):ftz039. doi:10.1093/femspd/ftz039; Zheng R, Wang G, Pang Z, Ran N, Gu Y, Guan X, et al. Liver cirrhosis contributes to the disorder of gut microbiota in patients with hepatocellular carcinoma. Cancer Med. 2020 Jun;9(12):4232–4250. doi:10.1002/cam4.3045; Jiang JW, Chen XH, Ren Z, Zheng SS. Gut microbial dysbiosis associates hepatocellular carcinoma via the gut-liver axis. Hepatobiliary Pancreat Dis Int. 2019 Feb;18(1):19–27. doi:10.1016/j.hbpd.2018.11.002; Chai Y, Huang Z, Shen X, Lin T, Zhang Y, Feng X, et al. Microbiota Regulates Pancreatic Cancer Carcinogenesis through Altered Immune Response. Microorganisms. 2023 May 8;11(5):1240. doi:10.3390/microorganisms11051240; Pagliari D, Saviano A, Newton EE, Serricchio ML, Dal Lago AA, Gasbarrini A, Cianci R. Gut Microbiota-Immune System Crosstalk and Pancreatic Disorders. Mediators Inflamm. 2018 Feb 1;2018:7946431. doi:10.1155/2018/7946431; Morgan XC, Huttenhower C. Meta'omic analytic techniques for studying the intestinal microbiome. Gastroenterology. 2014 May;146(6):1437–1448.e1. doi:10.1053/j.gastro.2014.01.049; Martínez JE, Vargas A, Pérez-Sánchez T, Encío IJ, Cabello-Olmo M, Barajas M. Human Microbiota Network: Unveiling Potential Crosstalk between the Different Microbiota Ecosystems and Their Role in Health and Disease. Nutrients. 2021 Aug 24;13(9):2905. doi:10.3390/nu13092905; Schwabe RF, Greten TF. Gut microbiome in HCC - Mechanisms, diagnosis and therapy. J Hepatol. 2020 Feb;72(2):230–238. doi:10.1016/j.jhep.2019.08.016; Giallourou N, Urbaniak C, Puebla-Barragan S, Vorkas PA, Swann JR, Reid G. Characterizing the breast cancer lipidome and its interaction with the tissue microbiota. Commun Biol. 2021 Oct 27;4(1):1229. doi:10.1038/s42003-021-02710-0; Thomas RM, Gharaibeh RZ, Gauthier J, Beveridge M, Pope JL, Guijarro MV, et al. Intestinal microbiota enhances pancreatic carcinogenesis in preclinical models. Carcinogenesis. 2018 Jul 30;39(8):1068–1078. doi:10.1093/carcin/bgy073; Eibl G, Rozengurt E. Obesity and Pancreatic Cancer: Insight into Mechanisms. Cancers (Basel). 2021 Oct 10;13(20):5067. doi:10.3390/cancers13205067; Usyk M, Pandey A, Hayes RB, Moran U, Pavlick A, Osman I, et al. Bacteroides vulgatus and Bacteroides dorei predict immune-related adverse events in immune checkpoint blockade treatment of metastatic melanoma. Genome Med. 2021 Oct 13;13(1):160. doi:10.1186/s13073-021-00974-z; Saus E, Iraola-Guzmán S, Willis JR, Brunet-Vega A, Gabaldón T. Microbiome and colorectal cancer: Roles in carcinogenesis and clinical potential. Mol Aspects Med. 2019 Oct;69:93–106. doi:10.1016/j.mam.2019.05.001; Mima K, Sukawa Y, Nishihara R, Qian ZR, Yamauchi M, Inamura K, et al. Fusobacterium nucleatum and T Cells in Colorectal Carcinoma. JAMA Oncol. 2015 Aug;1(5):653–661. doi:10.1001/jamaoncol.2015.1377; Ito M, Kanno S, Nosho K, Sukawa Y, Mitsuhashi K, Kurihara H, et al. Association of Fusobacterium nucleatum with clinical and molecular features in colorectal serrated pathway. Int J Cancer. 2015 Sep 15;137(6):1258–1268. doi:10.1002/ijc.29488; Tahara T, Yamamoto E, Suzuki H, Maruyama R, Chung W, Garriga J, et al. Fusobacterium in colonic flora and molecular features of colorectal carcinoma. Cancer Res. 2014 Mar 1;74(5):1311–1318. doi:10.1158/0008-5472.can-13-1865; Kim M, Vogtmann E, Ahlquist DA, Devens ME, Kisiel JB, Taylor WR, et al. Fecal Metabolomic Signatures in Colorectal Adenoma Patients Are Associated with Gut Microbiota and Early Events of Colorectal Cancer Pathogenesis. mBio. 2020 Feb 18;11(1):e03186– 19. doi:10.1128/mbio.03186-19; Perrone F, Belluomini L, Mazzotta M, Bianconi M, Di Noia V, Meacci F, et al. Exploring the role of respiratory microbiome in lung cancer : A systematic review. Crit Rev Oncol Hematol. 2021 Aug;164:103404. doi:10.1016/j.critrevonc.2021.103404; Su K, Gao Y, He J. A comparison of the microbiome composition in lower respiratory tract at different sites in early lung cancer patients. Transl Lung Cancer Res. 2023 Jun 30;12(6):1264–1275. doi:10.21037/tlcr-23-231; Najafi S, Abedini F, Azimzadeh Jamalkandi S, Shariati P, Ahmadi A, Gholami Fesharaki M. The composition of lung microbiome in lung cancer : a systematic review and meta-analysis. BMC Microbiol. 2021 Nov 11;21(1):315. doi:10.1186/s12866-021-02375-z; Kovaleva O, Podlesnaya P, Rashidova M, Samoilova D, Petrenko A, Zborovskaya I, et al. Lung Microbiome Differentially Impacts Survival of Patients with Non-Small Cell Lung Cancer Depending on Tumor Stroma Phenotype. Biomedicines. 2020 Sep 13;8(9):349. doi:10.3390/biomedicines8090349; Zhang J, Xia Y, Sun J. Breast and gut microbiome in health and cancer. Genes Dis. 2020 Aug 20;8(5):581–589. doi:10.1016/j.gendis.2020.08.002; Prentice PM, Schoemaker MH, Vervoort J, Hettinga K, Lambers TT, van Tol EAF, et al. Human Milk Short-Chain Fatty Acid Composition is Associated with Adiposity Outcomes in Infants. J Nutr. 2019 May 1;149(5):716–722. doi:10.1093/jn/nxy320; Mikó E, Kovács T, Sebő É, Tóth J, Csonka T, Ujlaki G, et al. Microbiome-Microbial Metabolome-Cancer Cell Interactions in Breast Cancer-Familiar, but Unexplored. Cells. 2019 Mar 29;8(4):293. doi:10.3390/cells8040293; Parida S, Sharma D. The Microbiome-Estrogen Connection and Breast Cancer Risk. Cells. 2019 Dec 15;8(12):1642. doi:10.3390/cells8121642; Kovács T, Mikó E, Ujlaki G, Yousef H, Csontos V, Uray K, Bai P. The involvement of oncobiosis and bacterial metabolite signaling in metastasis formation in breast cancer. Cancer Metastasis Rev. 2021 Dec;40(4):1223–1249. doi:10.1007/s10555-021-10013-3; Burger M, Catto JW, Dalbagni G, Grossman HB, Herr H, Karakiewicz P, Kassouf W, Kiemeney LA, La Vecchia C, Shariat S, Lotan Y. Epidemiology and risk factors of urothelial bladder cancer. Eur Urol. 2013 Feb;63(2):234–241. doi:10.1016/j.eururo.2012.07.033; Sfanos KS, Yegnasubramanian S, Nelson WG, De Marzo AM. The inflammatory microenvironment and microbiome in prostate cancer development. Nat Rev Urol. 2018 Jan;15(1):11–24. do: 10.1038/nrurol.2017.167; Adebayo AS, Survayanshi M, Bhute S, Agunloye AM, Isokpehi RD, Anumudu CI, Shouche YS. Correction: The microbiome in urogenital schistosomiasis and induced bladder pathologies. PLoS Negl Trop Dis. 2017 Nov 15;11(11):e0006067. doi:10.1371/journal.pntd.0006067. Erratum for: PLoS Negl Trop Dis. 2017 Aug 9;11(8):e0005826. doi:10.1371/journal.pntd.0005826; Pearce MM, Zilliox MJ, Rosenfeld AB, Thomas-White KJ, Richter HE, Nager CW, et al.; Pelvic Floor Disorders Network. The female urinary microbiome in urgency urinary incontinence. Am J Obstet Gynecol. 2015 Sep;213(3):347.e1-11. doi:10.1016/j.ajog.2015.07.009; Shrestha E, White JR, Yu SH, Kulac I, Ertunc O, De Marzo AM, et al. Profiling the Urinary Microbiome in Men with Positive versus Negative Biopsies for Prostate Cancer. J Urol. 2018 Jan;199(1):161–171. doi:10.1016/j.juro.2017.08.001; Ahn HK, Kim K, Park J, Kim KH. Urinary microbiome profile in men with genitourinary malignancies. Investig Clin Urol. 2022 Sep;63(5):569–576. doi:10.4111/icu.20220124; Lipworth L, Tarone RE, McLaughlin JK. Renal cell cancer among African Americans : an epidemiologic review. BMC Cancer. 2011 Apr 12;11:133. doi:10.1186/1471-2407-11-133; Heidler S, Lusuardi L, Madersbacher S, Freibauer C. The Microbiome in Benign Renal Tissue and in Renal Cell Carcinoma. Urol Int. 2020;104(3-4):247–252. doi:10.1159/000504029; Yang JW, Wan S, Li KP, Chen SY, Yang L. Gut and urinary microbiota: the causes and potential treatment measures of renal cell carcinoma. Front Immunol. 2023 Jun 27;14:1188520. doi:10.3389/fimmu.2023.1188520; Chen Y, Ma J, Dong Y, Yang Z, Zhao N, Liu Q, et al. Characteristics of Gut Microbiota in Patients With Clear Cell Renal Cell Carcinoma. Front Microbiol. 2022 Jul 4;13:913718. doi:10.3389/fmicb.2022.913718; Mingdong W, Xiang G, Yongjun Q, Mingshuai W, Hao P. Causal associations between gut microbiota and urological tumors: a two-sample mendelian randomization study. BMC Cancer. 2023 Sep 11;23(1):854. doi:10.1186/s12885-023-11383-3; D'Antonio DL, Marchetti S, Pignatelli P, Piattelli A, Curia MC. The Oncobiome in Gastroenteric and Genitourinary Cancers. Int J Mol Sci. 2022 Aug 26;23(17):9664. doi:10.3390/ijms23179664; Porto JG, Arbelaez MCS, Pena B, Khandekar A, Malpani A, Nahar B, et al. The Influence of the Microbiome on Urological Malignancies : A Systematic Review. Cancers (Basel). 2023 Oct 14;15(20):4984. doi:10.3390/cancers15204984; da Silva APB, Alluri LSC, Bissada NF, Gupta S. Association between oral pathogens and prostate cancer: building the relationship. Am J Clin Exp Urol. 2019 Feb 18;7(1):1–10.; Fujita K, Matsushita M, De Velasco MA, Hatano K, Minami T, Nonomura N, Uemura H. The Gut-Prostate Axis: A New Perspective of Prostate Cancer Biology through the Gut Microbiome. Cancers (Basel). 2023 Feb 21;15(5):1375. doi:10.3390/cancers15051375; Tachedjian G, O'Hanlon DE, Ravel J. The implausible "in vivo" role of hydrogen peroxide as an antimicrobial factor produced by vaginal microbiota. Microbiome. 2018 Feb 6;6(1):29. doi:10.1186/s40168-018-0418-3; Han M, Wang N, Han W, Ban M, Sun T, Xu J. Vaginal and tumor microbiomes in gynecological cancer (Review). Oncol Lett. 2023 Mar 3;25(4):153. doi:10.3892/ol.2023.13739; Anahtar MN, Byrne EH, Doherty KE, Bowman BA, Yamamoto HS, Soumillon M, et al. Cervicovaginal bacteria are a major modulator of host inflammatory responses in the female genital tract. Immunity. 2015 May 19;42(5):965–976. doi:10.1016/j.immuni.2015.04.019; Sobstyl M, Brecht P, Sobstyl A, Mertowska P, Grywalska E. The Role of Microbiota in the Immunopathogenesis of Endometrial Cancer. Int J Mol Sci. 2022 May 20;23(10):5756. doi:10.3390/ijms23105756; Martin DH, Marrazzo JM. The Vaginal Microbiome: Current Understanding and Future Directions. J Infect Dis. 2016 Aug 15;214 Suppl 1(Suppl 1):S36–41. doi:10.1093/infdis/jiw184; Chase D, Goulder A, Zenhausern F, Monk B, Herbst-Kralovetz M. The vaginal and gastrointestinal microbiomes in gynecologic cancers : a review of applications in etiology, symptoms and treatment. Gynecol Oncol. 2015 Jul;138(1):190–200. doi:10.1016/j.ygyno.2015.04.036; Baker JM, Al-Nakkash L, Herbst-Kralovetz MM. Estrogen-gut microbiome axis: Physiological and clinical implications. Maturitas 2017 Sep;103:45–53. doi:10.1016/j.maturitas.2017.06.025; Doerflinger SY, Throop AL, Herbst-Kralovetz MM. Bacteria in the vaginal microbiome alter the innate immune response and barrier properties of the human vaginal epithelia in a species-specific manner. J Infect Dis. 2014 Jun 15;209(12):1989–1999. doi:10.1093/infdis/jiu004; Barczyński B, Frąszczak K, Grywalska E, Kotarski J, Korona-Głowniak I. Vaginal and Cervical Microbiota Composition in Patients with Endometrial Cancer. Int J Mol Sci. 2023 May 5;24(9):8266. doi:10.3390/ijms24098266; Elkafas H, Walls M, Al-Hendy A, Ismail N. Gut and genital tract microbiomes: Dysbiosis and link to gynecological disorders. Front Cell Infect Microbiol. 2022 Dec 16;12:1059825. doi:10.3389/fcimb.2022.1059825 Erratum in: Front Cell Infect Microbiol. 2023 May 12;13:1211349. doi:10.3389/fcimb.2023.1211349; Li Y, Liu G, Gong R, Xi Y. Gut Microbiome Dysbiosis in Patients with Endometrial Cancer vs. Healthy Controls Based on 16S rRNA Gene Sequencing. Curr Microbiol. 2023 Jun 9;80(8):239. doi:10.1007/s00284-023-03361-6; Zhou B, Sun C, Huang J, Xia M, Guo E, Li N, et al. The biodiversity Composition of Microbiome in Ovarian Carcinoma Patients. Sci Rep. 2019 Feb 8;9(1):1691. doi:10.1038/s41598-018-38031-2; Shanmughapriya S, Senthilkumar G, Vinodhini K, Das BC, Vasanthi N, Natarajaseenivasan K. Viral and bacterial aetiologies of epithelial ovarian cancer. Eur J Clin Microbiol Infect Dis. 2012 Sep;31(9):2311–2317. doi:10.1007/s10096-012-1570-5; Wang Q, Zhao L, Han L, Fu G, Tuo X, Ma S, et al. The differential distribution of bacteria between cancerous and noncancerous ovarian tissues in situ. J Ovarian Res. 2020 Jan 18;13(1):8. doi:10.1186/s13048-019-0603-4; Sharifian K, Shoja Z, Jalilvand S. The interplay between human papillomavirus and vaginal microbiota in cervical cancer development. Virol J. 2023 Apr 19;20(1):73. doi:10.1186/s12985-023-02037-8; Trifanescu OG, Trifanescu RA, Mitrica RI, Bran DM, Serbanescu GL, Valcauan L, et al. The Female Reproductive Tract Microbiome and Cancerogenesis : A Review Story of Bacteria, Hormones, and Disease. Diagnostics (Basel). 2023 Feb 24;13(5):877. doi:10.3390/diagnostics13050877; Chen Y, Knight R, Gallo RL. Evolving approaches to profiling the microbiome in skin disease. Front Immunol. 2023 Apr 4;14:1151527. doi:10.3389/fimmu.2023.1151527; Kullander J, Forslund O, Dillner J. Staphylococcus aureus and squamous cell carcinoma of the skin. Cancer Epidemiol Biomarkers Prev. 2009 Feb;18(2):472–478. doi:10.1158/1055-9965.epi-08-0905; Madhusudhan N, Pausan MR, Halwachs B, Durdević M, Windisch M, Kehrmann J, et al. Molecular Profiling of Keratinocyte Skin Tumors Links Staphylococcus aureus Overabundance and Increased Human β-Defensin-2 Expression to Growth Promotion of Squamous Cell Carcinoma. Cancers (Basel). 2020 Feb 26;12(3):541. doi:10.3390/cancers12030541; Glatthardt T, Campos JCM, Chamon RC, de Sá Coimbra TF, Rocha GA, de Melo MAF, et al. Small Molecules Produced by Commensal Staphylococcus epidermidis Disrupt Formation of Biofilms by Staphylococcus aureus. Appl Environ Microbiol. 2020 Feb 18;86(5):e02539–19. doi:10.1128/aem.02539-19; Nakatsuji T, Chen TH, Butcher AM, Trzoss LL, Nam SJ, Shirakawa KT, et al. A commensal strain of Staphylococcus epidermidis protects against skin neoplasia. Sci Adv. 2018 Feb 28;4(2):eaao4502. doi:10.1126/sciadv.aao4502; Li H, Goh BN, Teh WK, Jiang Z, Goh JPZ, Goh A, et al. Skin Commensal Malassezia globosa Secreted Protease Attenuates Staphylococcus aureus Biofilm Formation. J Invest Dermatol. 2018 May;138(5):1137–1145. doi:10.1016/j.jid.2017.11.034; Wang J, Aldabagh B, Yu J, Arron ST. Role of human papillomavirus in cutaneous squamous cell carcinoma: a meta-analysis. J Am Acad Dermatol. 2014 Apr;70(4):621–629. doi:10.1016/j.jaad.2014.01.857; Tutka K, Żychowska M, Reich A. Diversity and Composition of the Skin, Blood and Gut Microbiome in Rosacea-A Systematic Review of the Literature. Microorganisms. 2020 Nov 8;8(11):1756. doi:10.3390/microorganisms8111756; Yan D, Issa N, Afifi L, Jeon C, Chang HW, Liao W. The Role of the Skin and Gut Microbiome in Psoriatic Disease. Curr Dermatol Rep. 2017 Jun;6(2):94–103. doi:10.1007/s13671-017-0178-5; Опухоли костей и суставных хрящей (С40-С41). Эпидемиология злокачественных образований. Доступно по: https://oncology.ru/specialist/epidemiology/malignant/C40.; Nejman D, Livyatan I, Fuks G, Gavert N, Zwang Y, Geller LT, et al. The Human Tumor Microbiome Is Composed of Tumor Type-Specific Intracellular Bacteria. Science. 2020 May 29;368(6494):973–980. doi:10.1126/science.aay9189; Perry LM, Cruz SM, Kleber KT, Judge SJ, Darrow MA, Jones LB, et al. Human soft tissue sarcomas harbor an intratumoral viral microbiome which is linked with natural killer cell infiltrate and prognosis. J Immunother Cancer. 2023 Jan;11(1):e004285. doi:10.1136/jitc-2021-004285; Gruffaz M, Zhang T, Marshall V, Gonçalves P, Ramaswami R, Labo N, et al. Signatures of oral microbiome in HIV-infected individuals with oral Kaposi's sarcoma and cell-associated KSHV DNA. PLoS Pathog. 2020 Jan 17;16(1):e1008114. doi:10.1371/journal.ppat.1008114; Chen C., Dorado Garcia H., Scheer M. et al. Current and Future Treatment Strategies for Rhabdomyosarcoma. Front Oncol. 2019 Dec 20;9:1458. doi:10.3389/fonc.2019.01458; Peng J, Tsang JY, Ho DH, Zhang R, Xiao H, Li D, et al. Modulatory effects of adiponectin on the polarization of tumor-associated macrophages. Int J Cancer. 2015 Aug 15;137(4):848–858. doi:10.1002/ijc.29485; Grases-Pintó B, Abril-Gil M, Castell M, Rodríguez-Lagunas MJ, Burleigh S, Fåk Hållenius F, et al. Influence of Leptin and Adiponectin Supplementation on Intraepithelial Lymphocyte and Microbiota Composition in Suckling Rats. Front Immunol. 2019 Oct 9;10:2369. doi:10.3389/fimmu.2019.02369; Peng J, Wang JY, Huang HF, Zheng TT, Li J, Wang LJ, Ma XC, Xiao HT. Adiponectin Deficiency Suppresses Rhabdomyosarcoma Associated with Gut Microbiota Regulation. Biomed Res Int. 2021 Jan 23;2021:8010694. doi:10.1155/2021/8010694; https://www.rpmj.ru/rpmj/article/view/1025
-
6Academic Journal
المؤلفون: I. A. Zamulaeva, O. N. Matchuk, L. S. Mkrtchian, A. D. Kaprin, И. А. Замулаева, О. Н. Матчук, Л. С. Мкртчян, А. Д. Каприн
المساهمون: This work was not funded, Финансирование данной работы не проводилось.
المصدر: Research and Practical Medicine Journal; Том 11, № 3 (2024); 8-23 ; Research'n Practical Medicine Journal; Том 11, № 3 (2024); 8-23 ; 2410-1893 ; 10.17709/2410-1893-2024-11-3
مصطلحات موضوعية: опухолевые стволовые клетки, HPV-associated malignant neoplasms, radiation complications, rehabilitation, regenerative medicine, collagen-containing composition, Sphero®GEL, cancer stem cells, ВПЧ-ассоциированные злокачественные новообразования, лучевые осложнения, реабилитация, регенеративная медицина, коллагенсодержащая композиция, Сферо®ГЕЛЬ
وصف الملف: application/pdf
Relation: https://www.rpmj.ru/rpmj/article/view/1033/641; https://www.rpmj.ru/rpmj/article/view/1033/642; Salvante ERG, Popoiu AV, Saxena AK, Popoiu TA, Boia ES, Cimpean AM, Rus FS, Dorobantu FR, Chis M. Glycosaminoglycans Modulate the Angiogenic Ability of Type I Collagen-Based Scaffolds by Acting on Vascular Network Remodeling and Maturation. Bioengineering (Basel). 2024 Apr 25;11(5):423. doi:10.3390/bioengineering11050423; Jadach B, Mielcarek Z, Osmałek T. Use of Collagen in Cosmetic Products. Curr Issues Mol Biol. 2024 Mar 4;46(3):2043–2070. doi:10.3390/cimb46030132; Sorushanova A, Delgado LM, Wu Z, Shologu N, Kshirsagar A, Raghunath R, et al. The Collagen Suprafamily: From Biosynthesis to Advanced Biomaterial Development. Adv Mater. 2019 Jan;31(1):e1801651. doi:10.1002/adma.201801651; Shekhter AB, Fayzullin AL, Vukolova MN, Rudenko TG, Osipycheva VD, Litvitsky PF. Medical Applications of Collagen and Collagen-Based Materials. Curr Med Chem. 2019;26(3):506–516. doi:10.2174/0929867325666171205170339; Балан В. Е., Краснопольская К. В., Оразов М. Р., Токтар Л. Р., Тихомирова Е. В. Коллагенотерапия пациенток с генитоуринарным менопаузальным синдромом – новая возможность в арсенале врача. Российский вестник акушера-гинеколога. 2020;20(4):65–75. doi:10.17116/rosakush20202004165; Tramacere F, Lancellotta V, Casà C, Fionda B, Cornacchione P, Mazzarella C, et al. Assessment of Sexual Dysfunction in Cervical Cancer Patients after Different Treatment Modality : A Systematic Review. Medicina (Kaunas). 2022 Sep 5;58(9):1223. doi:10.3390/medicina58091223; Мкртчян Л. С. Химиолучевое лечение местнораспространенного рака шейки матки и факторы прогноза. Дисс. МРНЦ им. А.Ф. Цыба – филиал ФГБУ «НМИЦ радиологии» Минздрава России, Обнинск, 2020, с. 33-34. Доступно по: https://www.dissercat.com/content/khimioluchevoe-lechenie-mestnorasprostranennogo-raka-sheiki-matki-i-faktory-prognoza. Дата обращения: 21. 08. 2024.; Shagidulin M, Onishchenko N, Sevastianov V, Krasheninnikov M, Lyundup A, Nikolskaya A, et al. Experimental Correction and Treatment of Chronic Liver Failure Using Implantable Cell-Engineering Constructs of the Auxiliary Liver Based on a Bioactive Heterogeneous Biopolymer Hydrogel. Gels. 2023 Jun 1;9(6):456. doi:10.3390/gels9060456; Матчук О. Н., Замулаева И. А. Количественные изменения популяции стволовых клеток рака шейки матки линии HeLa под влиянием фракционированного γ-облучения in vitro. Радиация и риск. 2019;28(2):112–123. doi:10.21870/0131-3878-2019-28-2-112-123; Nunes T, Hamdan D, Leboeuf C, El Bouchtaoui M, Gapihan G, Nguyen TT, et al. Targeting Cancer Stem Cells to Overcome Chemoresistance. Int J Mol Sci. 2018 Dec 13;19(12):4036. doi:10.3390/ijms19124036; Peitzsch C, Kurth I, Ebert N, Dubrovska A, Baumann M. Cancer stem cells in radiation response: current views and future perspectives in radiation oncology. Int J Radiat Biol. 2019 Jul;95(7):900–911. doi:10.1080/09553002.2019.1589023; Phi LTH, Sari IN, Yang YG, Lee SH, Jun N, Kim KS, et al. Cancer Stem Cells (CSCs) in Drug Resistance and their Therapeutic Implications in Cancer Treatment. Stem Cells Int. 2018 Feb 28;2018:5416923. doi:10.1155/2018/5416923; Zamulaeva I, Matchuk O, Selivanova E, Mkrtchian L, Yakimova A, Gusarova V, et al. Effects of Fractionated Radiation Exposure on Vimentin Expression in Cervical Cancers: Analysis of Association with Cancer Stem Cell Response and Short-Term Prognosis. Int J Mol Sci. 2023 Feb 7;24(4):3271. doi:10.3390/ijms24043271; Luo M, Clouthier SG, Deol Y, Liu S, Nagrath S, Azizi E, Wicha MS. Breast cancer stem cells: current advances and clinical implications. Methods Mol Biol. 2015;1293:1–49. doi:10.1007/978-1-4939-2519-3_1; Lytle NK, Barber AG, Reya T. Stem cell fate in cancer growth, progression and therapy resistance. Nat Rev Cancer. 2018 Nov;18(11):669–680. doi:10.1038/s41568-018-0056-x; Yang F, Xu J, Tang L, Guan X. Breast cancer stem cell: the roles and therapeutic implications. Cell Mol Life Sci. 2017 Mar;74(6):951– 966. doi:10.1007/s00018-016-2334-7; Moon S, Ok Y, Hwang S, Lim YS, Kim HY, Na YJ, Yoon S. A Marine Collagen-Based Biomimetic Hydrogel Recapitulates Cancer Stem Cell Niche and Enhances Progression and Chemoresistance in Human Ovarian Cancer. Mar Drugs. 2020 Sep 29;18(10):498. doi:10.3390/md18100498; Cescon M, Rampazzo E, Bresolin S, Da Ros F, Manfreda L, Cani Aet al. Collagen VI sustains cell stemness and chemotherapy resistance in glioblastoma. Cell Mol Life Sci. 2023 Jul 28;80(8):233. doi:10.1007/s00018-023-04887-5; Cowan JM, Juric M, Petrie RJ. Culturing and Imaging Glioma Stem Cells in 3D Collagen Matrices. Curr Protoc. 2023 Jan;3(1):e643. doi:10.1002/cpz1.643; Devarajan R, Izzi V, Peltoketo H, Rask G, Kauppila S, Väisänen MR, et al. Targeting collagen XVIII improves the efficiency of ErbB inhibitors in breast cancer models. J Clin Invest. 2023 Sep 15;133(18):e159181. doi:10.1172/jci159181; Morimoto T, Takemura Y, Miura T, Yamamoto T, Kakizaki F, An H, et al. Novel and efficient method for culturing patient-derived gastric cancer stem cells. Cancer Sci. 2023 Aug;114(8):3259–3269. doi:10.1111/cas.15840; Abuwatfa WH, Pitt WG, Husseini GA. Scaffold-based 3D cell culture models in cancer research. J Biomed Sci. 2024 Jan 14;31(1):7. doi:10.1186/s12929-024-00994-y; Jalil SMA, Henry JC, Cameron AJM. Targets in the Tumour Matrisome to Promote Cancer Therapy Response. Cancers (Basel). 2024 May 11;16(10):1847. doi:10.3390/cancers16101847; Пономарева А. С., Баранова Н. В., Милосердов И. А., Севастьянов В. И. Влияние биоматриксов на жизнеспособность и инсулинпродуцирующую функцию островков Лангерганса человека in vitro. Вестник трансплантологии и искусственных органов. 2022;24(4):109–117. doi:10.15825/1995-1191-2022-4-109-117; Севастьянов В. И. Клеточно-инженерные конструкции в тканевой инженерии и регенеративной медицине. Вестник трансплантологии и искусственных органов. 2015;17(2):127–130. doi:10.15825/1995-1191-2015-2-127-130; Chhabra R. Cervical cancer stem cells: opportunities and challenges. J Cancer Res Clin Oncol. 2015 Nov;141(11):1889–1897. doi:10.1007/s00432-014-1905-y; Di Fiore R, Suleiman S, Drago-Ferrante R, Subbannayya Y, Pentimalli F, Giordano A, et al. Cancer Stem Cells and Their Possible Implications in Cervical Cancer : A Short Review. Int J Mol Sci. 2022 May 5;23(9):5167. doi:10.3390/ijms23095167; Javed S, Sharma BK, Sood S, Sharma S, Bagga R, Bhattacharyya S, et al. Significance of CD133 positive cells in four novel HPV-16 positive cervical cancer-derived cell lines and biopsies of invasive cervical cancer. BMC Cancer. 2018 Apr 2;18(1):357. doi:10.1186/s12885-018-4237-5; Басок Ю.Б., Григорьев А.М., Кирсанова Л.А., Кириллова А.Д., Суббот А.М., Цветкова А.В., и др. Сравнительное исследование хондрогенеза мезенхимальных стромальных клеток жировой ткани человека при культивировании на коллагенсодержащих носителях в условиях in vitro. Вестник трансплантологии и искусственных органов. 2021;23(3):90–100. doi:10.15825/1995-1191-2021-3-90-100; https://www.rpmj.ru/rpmj/article/view/1033
-
7Academic Journal
المؤلفون: V. P. Gordienko, В. П. Гордиенко
المصدر: Siberian journal of oncology; Том 23, № 4 (2024); 5-18 ; Сибирский онкологический журнал; Том 23, № 4 (2024); 5-18 ; 2312-3168 ; 1814-4861
مصطلحات موضوعية: злокачественные новообразования, заболеваемость, смертность, Дальний Восток, incidence, mortality, Far East
وصف الملف: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/3188/1246; Злокачественные новообразования в России в 2022 году (заболеваемость и смертность). Под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой. М., 2023. 275 с.; Злокачественные новообразования в России в 2013 году (заболеваемость и смертность). Под ред. А.Д. Каприна, В.В. Старинского, Г.В. Петровой. М., 2015. 250 с.; Состояние онкологической помощи населению России в 2013 году. Под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой. М., 2014. 235 с.; Состояние онкологической помощи населению России в 2022 году. Под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой. М., 2023. 252 с.; Агаджанян Н.А., Уйба В.В., Куликова М.П., Кочеткова А.В. Актуальные проблемы адаптационной, экологической и восстановительной медицины. М., 2006. 208 с.; Higginson J., Muir C.S., Munoz N. Human Cancer: Epidemiology and Environmental Causes. Cambridge: Cambridge University Press, 1999. 577 p.; Мерабишвили В.М. Индекс достоверности учета – важнейший критерий объективной оценки деятельности онкологической службы для всех локализаций злокачественных новообразований, независимо от уровня летальности больных. Вопросы онкологии. 2019; 65(4): 510–5.; Российский статистический ежегодник. 2023. Росстат. М., 2023. 701 с.; Гордиенко В.П., Вахненко А.А., Янушевский К.В. Основные показатели заболеваемости и смертности населения от злокачественных новообразований в Дальневосточном федеральном округе. Социальные аспекты здоровья населения. 2018; 64(6). doi:10.21045/2071-5021-2018-64-6-5.; Петрова Г.В., Грецова О.П., Каприн А.Д., Старинский В.В. Характеристика и методы расчета медико-статистических показателей, применяемых в онкологии. Практические рекомендации. М., 2014. 40 с.; Кулаков Ю.В., Каминский Н.В. Метеогеофизический стресс и пути его преодоления. Владивосток, 2003. 199 с.; Soung N.K., Kim B.Y. Psychological stress and cancer. J Anal Sci Technol. 2015; 30: 1–6. doi:10.1186/s40543-015-0070-5.; Абдуразакова Х.Н., Магомедов М.Г., Омарова С.О., Гасанова З.М. Влияние стресcогенных факторов риска на распространенность злокачественных новообразований (обзор литературы). Лечащий врач. 2022; 10(25): 44–7. doi:10.51793/OS.2022.25.10.007.; Мерабишвили В.М. Аналитические показатели. Индекс достоверности учета. Вопросы онкологии. 2018; 64(3): 445–52. doi:10.37469/0507-3758-2018-64-3-445-452.; Чердынцева Н.В., Писарева Л.Ф., Панферова Е.В., Иванова А.А., Малиновская Е.А., Одинцова И.Н., Дорошенко А.В., Гервас П.А., Слонимская Е.М., Шивит-оол А.А., Дворниченко В.В., Чойнзонов Е.Л. Этнические аспекты наследственного рака молочной железы в регионе Сибири. Актуальные вопросы онкологии. Вестник РАМН. 2014; (11–12): 72–9.; Arnold M., Razum O., Coebergh J.W. Cancer risk diversity in nonwestern migrants to Europe: An overview of the literature. Eur J Cancer. 2010; 46(14): 2647–59. doi:10.1016/j.ejca.2010.07.050.; Vanthomme K., Rosskamp M., De Schutter H., Vandenheede H. Lung cancer incidence differences in migrant men in Belgium, 2004-2013: histology-specific analyses. BMC Cancer. 2021; 21(1). doi:10.1186/s12885-021-08038-6.; Авдеев Ю.А. Дальний Восток: как остановить отток населения и сделать его привлекательным? (полемические размышления). Уровень жизни населения регионов России. 2021; 17(3): 299–313. doi:10.1918/1Isprr. 2021.17.3.1.; Жуйкова Л.Д., Чойнзонов Е.Л., Ананина О.А., Пикалова Л.В., Кононова Г.А. Распространенность онкологических заболеваний среди населения региона Сибири и Дальнего Востока. Здравоохранение Российской Федерации. 2023; 67(1): 64–71. doi:10.47470/0044-197X-2023-67-1-64-71.; Балашов П.Ю., Старинский В.В., Александрова Л.М. Кадровые ресурсы онкологической службы России. Европейский онкологический журнал. 2014; 3(03).; https://www.siboncoj.ru/jour/article/view/3188
-
8Academic Journal
المؤلفون: D. A. Zavyalov, L. Yu. Krestinina, Д. А. Завьялов, Л. Ю. Крестинина
المساهمون: The work was carried out within the framework of the Federal target program «Ensuring nuclear and radiation safety for 2016-2020 and for the period until 2030». We express our gratitude to the staff of the biophysical laboratory of the Ural Research Center for Radiation Medicine (M.O. Degteva, E.A. Shishkina, E.l. Tolstykh) for calculating estimates of individual doses for offspring cohort members, as well as to the staff of the Human Database department under the leadership of N.V. Startsev for updating data on residence history, vital status and causes of mortality for offspring cohort members as well as to the employees of the epidemiological laboratory and personally S.B. Epifanova, for preparing the data for analysis., Работа выполнена в рамках реализации федеральной целевой программы «Обеспечение ядерной и радиационной безопасности на 2016-2020 годы и на период до 2030 года». Выражаем благодарность сотрудникам биофизической лаборатории УНПЦ РМ (|М.О. Дегтевой|, Е.А. Шишкиной, Е.И. Толстых) за расчет оценок индивидуальных доз для членов когорты потомков, а также сотрудникам отдела Базы данных «Человек» УНПЦ РМ под руководством Старцева Н.В. за обновление данных о местах проживания, жизненном статусе и причинах смерти членов когорты потомков облученного населения, а также сотрудникам эпидемиологической лаборатории и лично Епифановой С.Б. за подготовку аналитических файлов.
المصدر: Radiatsionnaya Gygiena = Radiation Hygiene; Том 17, № 3 (2024); 39-48 ; Радиационная гигиена; Том 17, № 3 (2024); 39-48 ; 2409-9082 ; 1998-426X
مصطلحات موضوعية: доза на гонады, excess relative risk of mortality, solid cancer, lung cancer, exposed population, УКПОН, избыточный относительный риск смерти, солидные злокачественные новообразования, рак легких
وصف الملف: application/pdf
Relation: https://www.radhyg.ru/jour/article/view/1060/907; Дуброва Ю.Е. Индукция мутаций в половых клетках человека и мышей //Генетика. 2016. Т. 52, № 1. С. 24-36. DOI:10.7868/S0016675816010033.; Ослина Д.С., Рыбкина В.Л., Азизова Т.В. Передача радиационно-индуцированной геномной нестабильности от облученных родителей потомкам // Медицинская радиология и радиационная безопасность. 2022. Т. 67, №4. С. 10-18. DOI:10.33266/1024-6177-2022-67-4-10-18.; UNSCEAR. Sources, Effects and Risks of Ionizing Radiation. UNSCEAR 2013 Report. Volume II. Scientific annex B: Effects of radiation exposure of children. New York, 2013. 284 p.; Публикация 103 Международной Комиссии по радиационной защите (МКРЗ). Пер с англ. / Под общей ред. М.Ф. Киселёва и Н.К. Шандалы. М.:ООО ПКФ «Алана», 2009. 344 с.; Little М.Р., Goodhead D.T., Bridges В.А., Bouffier S.D. Evidence relevant to untargeted and transgenerational effects in the offspring of irradiated parents // Mutation Research. 2013. Vol. 753, №1. P. 50-67. DOI:10.1016/j.mrrev.2O13.04.001.; Соснина С.Ф., Сокольников М.Э. Наследуемые эффекты у потомков, связанные с вредным воздействием на родителей (Обзор литературы) // Радиационная гигиена. 2019. Т. 12, №3. С.84-95. DOI:10.21514/1998-426Х-2019-12-3-84-95.; Кочергина Е.В., Горский А.И., Чекин С.Ю. и др. Радиационно-эпидемиологическое исследование заболеваемости потомков первого поколения участников ликвидации последствий аварии на чернобыльской атомной электростанции // Радиация и риск. 2021. Т. 30, №. 1. С. 110-130. DOI:10.21870/0131-3878-2021-30-1-110130.; Ozasa К., Grant E.J., Kodama К. Japanese Legacy Cohorts: The Life Span Study Atomic Bomb Survivor Cohort and Survivors' Offspring // Journal of epidemiology. 2018. Vol. 28, №4. P. 162-169. DOI:10.2188/jea.JE20170321.; Ozasa K., Cullings H.M., Ohishi W., et al. Epidemiological studies of atomic bomb radiation at the Radiation Effects Research Foundation // International Journal of Radiation Biology. 2019. Vol. 95, №7. P. 879-891. DOI:10.1080/09553002.2019.1569778.; Kossenko M.M., OstroumovaY., Akleyev A., etal. Mortality in the offspring of individuals living along the radioactively contaminated Techa River: a descriptive analysis // Radiation and Environmental Biophysics. 2000. Vol. 39, №4. P. 219225. DOI:10.1007/s004110000074.; Аклеев A.B., Киселев М.Ф. Медико-биологические и экологические последствия радиоактивного загрязнения реки Теча. 2. изд., испр. и доп. М.: Медбиоэкстрем, 2001.530 с.; Крестинина, Л.Ю., Шалагинов С.А., Старцев Н.В. Уральская когорта потомков облучённого населения // Вопросы радиационной безопасности. 2022. С. 86-94.; Degteva М.О., Napier В.А., Tolstykh E.I., et al. Enhancements in the Techa River Dosimetry System: Code for Reconstruction of Deterministic Estimates of Dose From Environmental Exposures // Health Physics. 2019. Vol. 117, №4, P. 378-87. DOI:10.1097/HP.0000000000001067.; Preston D.L., Lubin J.H., Pierce D.A., McConney M.E. Epicure Users Guide. Seattle, Washington: Hirosoft International Company, 1993.; Крестинина Л.Ю., Силкин С.С., Микрюкова Л.Д. и др. Риск заболеваемости солидными злокачественными новообразованиями в Уральской когорте аварийно-облученного населения: 1956-2017 // Радиационная гигиена. 2020. Т. 13, №3. С. 6-17. DOI:10.21514/1998-426Х-2020-13-3-6-17.; Крестинина Л.Ю., Силкин С.С. Риск смерти от солидных злокачественных новообразований в Уральской когорте аварийно-облученного населения: 1950-2019 // Радиационная гигиена. 2023. Т. 16, №1. С. 19-31. DOI:10.21514/1998-426Х-2023-16-1-19-31.; Тельнов В.И., Кабирова Н.Р., Окатенко П.В. Оценка влияния радиационных и нерадиационных факторов на канцерогенный риск у потомков (F1, дети) работников ПО "Маяк", подвергшихся преконцептивному облучению // Вопросы радиационной безопасности. 2020. № 1 (97). С.76-86.; https://www.radhyg.ru/jour/article/view/1060
-
9Academic Journal
المؤلفون: A. V. Khachaturyan, P. V. Bulychkin, А. В. Хачатурян, П. В. Булычкин
المصدر: Siberian journal of oncology; Том 23, № 1 (2024); 120-129 ; Сибирский онкологический журнал; Том 23, № 1 (2024); 120-129 ; 2312-3168 ; 1814-4861
مصطلحات موضوعية: иммуноопосредованный противоопухолевый ответ, malignant tumours, monoclonal antibodies, radiation therapy, immunotherapy, immune-mediated antitumour response, злокачественные новообразования, моноклональные антитела, лучевая терапия, иммунотерапия
وصف الملف: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/2955/1194; Debela D.T., Muzazu S.G., Heraro K.D., Ndalama M.T., Mesele B.W., Haile D.C., Kitui S.K., Manyazewal T. New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Med. 2021; 9. doi:10.1177/20503121211034366.; Charmsaz S., Collins D.M., Perry A.S., Prencipe M. Novel Strategies for Cancer Treatment: Highlights from the 55th IACR Annual Conference. Cancers (Basel). 2019; 11(8): 1125. doi:10.3390/cancers11081125.; Delaney G., Jacob S., Featherstone C., Barton M. The role of radio-therapy in cancer treatment: estimating optimal utilization from a review of evidence-based clinical guidelines. Cancer. 2005; 104(6): 1129–37. doi:10.1002/cncr.21324. Erratum in: Cancer. 2006; 107(3): 660.; Azzam E.I., Jay-Gerin J.P., Pain D. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett. 2012; 327(1–2): 48–60. doi:10.1016/j.canlet.2011.12.012.; Chen H., Han Z., Luo Q., Wang Y., Li Q., Zhou L., Zuo H. Radio-therapy modulates tumor cell fate decisions: a review. Radiat Oncol. 2022; 17(1): 196. doi:10.1186/s13014-022-02171-7.; Mole R.H. Whole body irradiation; radiobiology or medicine? Br J Radiol. 1953; 26(305): 234–41. doi:10.1259/0007-1285-26-305-234.; Wirsdörfer F., Jendrossek V. The Role of Lymphocytes in Radio-therapy-Induced Adverse Late Effects in the Lung. Front Immunol. 2016; 7: 591. doi:10.3389/fimmu.2016.00591.; Belka C., Ottinger H., Kreuzfelder E., Weinmann M., Lindemann M., Lepple-Wienhues A., Budach W., Grosse-Wilde H., Bamberg M. Impact of localized radiotherapy on blood immune cells counts and function in humans. Radiother Oncol. 1999; 50(2): 199–204. doi:10.1016/s0167-8140(98)00130-3.; Yao Z., Jones J., Kohrt H., Strober S. Selective resistance of CD44hi T cells to p53-dependent cell death results in persistence of immunologic memory after total body irradiation. J Immunol. 2011; 187(8): 4100–8. doi:10.4049/jimmunol.1101141.; Kachikwu E.L., Iwamoto K.S., Liao Y.P., DeMarco J.J., Agazaryan N., Economou J.S., McBride W.H., Schaue D. Radiation enhances regulatory T cell representation. Int J Radiat Oncol Biol Phys. 2011; 81(4): 1128–35. doi:10.1016/j.ijrobp.2010.09.034.; Slone H.B., Peters L.J., Milas L. Effect of Host Immune Capability on Radiocurability and Subsequent Transplantability of a Murine Fibrosarcoma2. JNCI: Journal of the National Cancer Institute. 1979; 63(5): 1229–35. doi:10.1093/jnci/63.5.1229.; Demaria S., Ng B., Devitt M.L., Babb J.S., Kawashima N., Liebes L., Formenti S.C. Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int J Radiat Oncol Biol Phys. 2004; 58(3): 862–70. doi:10.1016/j.ijrobp.2003.09.012.; Marciscano A.E., Anandasabapathy N. The role of dendritic cells in cancer and anti-tumor immunity. Semin Immunol. 2021; 52. doi:10.1016/j.smim.2021.101481.; ApetohL.,Ghiringhelli F.,TesniereA.,ObeidM.,OrtizC.,CriolloA., Mignot G., Maiuri M.C., Ullrich E., Saulnier P., Yang H., Amigorena S., Ryffel B., Barrat F.J., Saftig P., Levi F., Lidereau R., Nogues C., Mira J.P., ChompretA.,Joulin V.,Clavel-Chapelon F.,BourhisJ.,André F.,DelalogeS., Tursz T., Kroemer G., Zitvogel L. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med. 2007; 13(9): 1050–9. doi:10.1038/nm1622.; Burnette B.C., Liang H., Lee Y., Chlewicki L., Khodarev N.N., Weichselbaum R.R., Fu Y.X., Auh S.L. The efficacy of radiotherapy relies upon induction of type i interferon-dependent innate and adaptive immunity. Cancer Res. 2011; 71(7): 2488–96. doi:10.1158/0008-5472.CAN-10-2820.; Bui T.M., Wiesolek H.L., Sumagin R. ICAM-1: A master regulator of cellular responses in inflammation, injury resolution, and tumorigenesis. J Leukoc Biol. 2020; 108(3): 787–99. doi:10.1002/JLB.2MR0220-549R.; Yang L., Froio R.M., Sciuto T.E., Dvorak A.M., Alon R., Luscinskas F.W. ICAM-1 regulates neutrophil adhesion and transcellular migration of TNF-α-activated vascular endothelium under flow. Blood. 2005; 106(2): 584–92. doi:10.1182/blood-2004-12-4942.; Zhao Y., Zhang T., Wang Y., Lu D., Du J., Feng X., Zhou H., Liu N., Zhu H., Qin S., Liu C., Gao X., Yang Z., Liu Z. ICAM-1 orchestrates the abscopal effect of tumor radiotherapy. Proc Natl Acad Sci USA. 2021; 118(14). doi:10.1073/pnas.2010333118.; Matsumura S., Wang B., Kawashima N., Braunstein S., Badura M., Cameron T.O., Babb J.S., Schneider R.J., Formenti S.C., Dustin M.L., Demaria S. Radiation-induced CXCL16 release by breast cancer cells attracts effector T cells. J Immunol. 2008; 181(5): 3099–107. doi:10.4049/jimmunol.181.5.3099.; Kozin S.V., Kamoun W.S., Huang Y., Dawson M.R., Jain R.K., Duda D.G. Recruitment of myeloid but not endothelial precursor cells facilitates tumor regrowth after local irradiation. Cancer Res. 2010; 70(14): 5679–85. doi:10.1158/0008-5472.CAN-09-4446.; Koch C., Fischer N.C., Puchert M., Engele J. Interactions of the chemokines CXCL11 and CXCL12 in human tumor cells. BMC Cancer. 2022; 22(1): 1335. doi:10.1186/s12885-022-10451-4.; Chen M., Qiao G., Hylander B.L., Mohammadpour H., Wang X.Y., Subjeck J.R., Singh A.K., Repasky E.A. Adrenergic stress constrains the development of anti-tumor immunity and abscopal responses following local radiation. Nat Commun. 2020; 11(1): 1821. doi:10.1038/s41467-020-15676-0.; Bao X., Xie L. Targeting purinergic pathway to enhance radio-therapy-induced immunogenic cancer cell death. J Exp Clin Cancer Res. 2022; 41(1): 222. doi:10.1186/s13046-022-02430-1.; Rapoport B.L., Anderson R. Realizing the Clinical Potential of Immunogenic Cell Death in Cancer Chemotherapy and Radiotherapy. Int J Mol Sci. 2019; 20(4): 959. doi:10.3390/ijms20040959.; Liao Y., Liu S., Fu S., Wu J. HMGB1 in Radiotherapy: A Two Headed Signal Regulating Tumor Radiosensitivity and Immunity. Onco Targets Ther. 2020; 13: 6859–71. doi:10.2147/OTT.S253772.; Kono K., Mimura K., Kiessling R. Immunogenic tumor cell death induced by chemoradiotherapy: molecular mechanisms and a clinical translation. Cell Death Dis. 2013; 4(6). doi:10.1038/cddis.2013.207.; Lippert T.P., Greenberg R.A. The abscopal effect: a sense of DNA damage is in the air. Journal of Clinical Investigation. 2021; 131(9). doi:10.1172/JCI148274.; Li A., Yi M., Qin S., Song Y., Chu Q., Wu K. Activating cGAS-STING pathway for the optimal effect of cancer immunotherapy. J Hematol Oncol. 2019; 12(1): 35. doi:10.1186/s13045-019-0721-x.; Vanpouille-Box C., Alard A., Aryankalayil M.J., Sarfraz Y., Diamond J.M., Schneider R.J., Inghirami G., Coleman C.N., Formenti S.C., Demaria S. DNAexonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat Commun. 2017; 8. doi:10.1038/ncomms15618.; Dewan M.Z., Galloway A.E., Kawashima N., Dewyngaert J.K., Babb J.S., Formenti S.C., Demaria S. Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin Cancer Res. 2009; 15(17): 5379–88. doi:10.1158/1078-0432.CCR-09-0265.; Maity A., Mick R., Huang A.C., George S.M., Farwell M.D., Lukens J.N., Berman A.T., Mitchell T.C., Bauml J., Schuchter L.M., O’Hara M., Lin L.L., Demichele A., Christodouleas J.P., Haas N.B., Patsch D.M., Hahn S.M., Minn A.J., Wherry E.J., Vonderheide R.H. Aphase I trial of pembrolizumab with hypofractionated radiotherapy in patients with metastatic solid tumours. Br J Cancer. 2018; 119(10): 1200–7. doi:10.1038/s41416-018-0281-9.; Barsoumian H.B., Ramapriyan R., Younes A.I., Caetano M.S., Menon H., Comeaux N.I., Cushman T.R., Schoenhals J.E., Cadena A.P., Reilly T.P., Chen D., Masrorpour F., Li A., Hong D.S., Diab A., Nguyen Q.N., Glitza I., Ferrarotto R., Chun S.G., Cortez M.A., Welsh J. Low-dose radiation treatment enhances systemic antitumor immune responses by overcoming the inhibitory stroma. J Immunother Cancer. 2020; 8(2). doi:10.1136/jitc-2020-000537.; Barsoumian H.B., Sezen D., Menon H., Younes A.I., Hu Y., He K., Puebla-Osorio N., Wasley M., Hsu E., Patel R.R., Yang L., Cortez M.A., Welsh J.W. High Plus Low Dose Radiation Strategy in Combination with TIGIT and PD1 Blockade to Promote Systemic Antitumor Responses. Cancers (Basel). 2022; 14(1): 221. doi:10.3390/cancers14010221.; Malamas A.S., Gameiro S.R., Knudson K.M., Hodge J.W. Sublethal exposure to alpha radiation (223Ra dichloride) enhances various carcinomas’ sensitivity to lysis by antigen-specific cytotoxic T lymphocytes through calreticulin-mediated immunogenic modulation. Oncotarget. 2016; 7(52): 86937–47. doi:10.18632/oncotarget.13520.; Punnanitinont A., Kannisto E.D., Matsuzaki J., Odunsi K., Yendamuri S., Singh A.K., Patnaik S.K. Sublethal Radiation Affects Antigen Processing and Presentation Genes to Enhance Immunogenicity of Cancer Cells. Int J Mol Sci. 2020; 21(7): 2573. doi:10.3390/ijms21072573.; Abuodeh Y., Venkat P., Kim S. Systematic review of case reports on the abscopal effect. Curr Probl Cancer. 2016; 40(1): 25–37. doi:10.1016/j.currproblcancer.2015.10.001.; Tubin S., Popper H.H., Brcic L. Novel stereotactic body radiation therapy (SBRT)-based partial tumor irradiation targeting hypoxic segment of bulky tumors (SBRT-PATHY): improvement of the radiotherapy outcome by exploiting the bystander and abscopal effects. Radiat Oncol. 2019; 14(1): 21. doi:10.1186/s13014-019-1227-y.; Vaidya J.S., Bulsara M., Baum M., Wenz F., Massarut S., Pigorsch S., Alvarado M., Douek M., Saunders C., Flyger H., Eiermann W., Brew-Graves C., Williams N.R., Potyka I., Roberts N., Bernstein M., Brown D., Sperk E., Laws S., Sütterlin M., Corica T., Lundgren S., Holmes D., Vinante L., Bozza F., Pazos M., Blanc-Onfroy M.L., Gruber G., Polkowski W., Dedes K.J., Niewald M., Blohmer J., McReady D., Hoefer R., Kelemen P., Petralia G., Falzon M., Joseph D., Tobias J.S. New clinical and biological insights from the international TARGIT-A randomised trial of targeted intraoperative radiotherapy during lumpectomy for breast cancer. Br J Cancer. 2021; 125(3): 380–9. doi:10.1038/s41416-021-01440-8.; Han Y., Liu D., Li L. PD-1/PD-L1 pathway: current researches in cancer. Am J Cancer Res. 2020; 10(3): 727–42.; Chen D.S., Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013; 39(1): 1–10. doi:10.1016/j.immuni.2013.07.012.; Yu H., Boyle T.A., Zhou C., Rimm D.L., Hirsch F.R. PD-L1 Expression in Lung Cancer. J Thorac Oncol. 2016; 11(7): 964–75. doi:10.1016/j.jtho.2016.04.014. Erratum in: J Thorac Oncol. 2017; 12 (1): 157–9.; Salama A.K., Hodi F.S. Cytotoxic T-lymphocyte-associated antigen-4. Clin Cancer Res. 2011; 17(14): 4622–8. doi:10.1158/1078-0432.CCR-10-2232.; Селедцов В.И., Селедцова Г.В., Доржиева А.Б., Иванова И.П. Иммунотерапия в комплексном лечении опухолевых заболеваний. Сибирский онкологический журнал. 2022; 21(2): 118–29. doi:10.21294/1814-4861-2022-21-2-118-129.; Царев И.Л., Мелерзанов А.В. Обзор подходов к иммунотерапии в онкологии. Research’n Practical Medicine Journal. 2017; 4(3): 51–65. doi:10.17709/2409-2231-2017-4-3-5.; Golden E.B., Chhabra A., Chachoua A., Adams S., Donach M., Fenton-Kerimian M., Friedman K., Ponzo F., Babb J.S., Goldberg J., Demaria S., Formenti S.C. Local radiotherapy and granulocyte-macrophage colony-stimulating factor to generate abscopal responses in patients with metastatic solid tumours: a proof-of-principle trial. Lancet Oncol. 2015; 16(7): 795–803. doi:10.1016/S1470-2045(15)00054-6.; Ye H., Pang H., Shi X., Ren P., Huang S., Yu H., Wu J., Lin S. Nivolumab and Hypofractionated Radiotherapy in Patients WithAdvanced Lung Cancer: ABSCOPAL-1 Clinical Trial. Front Oncol. 2021; 11. doi:10.3389/fonc.2021.657024.; Bahig H., Aubin F., Stagg J., Gologan O., Ballivy O., Bissada E., Nguyen-Tan F.P., Soulières D., Guertin L., Filion E., Christopoulos A., Lambert L., Tehfe M., Ayad T., Charpentier D., Jamal R., Wong P. Phase I/II trial of Durvalumab plus Tremelimumab and stereotactic body radiotherapy for metastatic head and neck carcinoma. BMC Cancer. 2019; 19(1): 68. doi:10.1186/s12885-019-5266-4.; Kim H., Ahn M.J., Oh D., Park S., Jung H.A., Lee S.H., Park K., Ahn Y.C. Phase II trial of combined durvalumab plus tremelimumab with proton therapy to boost the abscopal effect for recurrent or metastatic head and neck squamous cell carcinoma. JCO. 2021; 39(15s). doi:10.1200/JCO.2021.39.15_suppl.6034.; Theelen W.S.M.E., Chen D., Verma V., Hobbs B.P., Peulen H.M.U., Aerts J.G.J.V., Bahce I., Niemeijer A.L.N., Chang J.Y., de Groot P.M., Nguyen Q.N., Comeaux N.I., Simon G.R., Skoulidis F., Lin S.H., He K., Patel R., Heymach J., Baas P., Welsh J.W. Pembrolizumab with or without radiotherapy for metastatic non-small-cell lung cancer: a pooled analysis of two randomised trials. Lancet Respir Med. 2021; 9(5): 467–75. doi:10.1016/S2213-2600(20)30391-X. Erratum in: Lancet Respir Med. 2021; 9(3).; Hodi F.S., O’Day S.J., McDermott D.F., Weber R.W., Sosman J.A., Haanen J.B., Gonzalez R., Robert C., Schadendorf D., Hassel J.C., Akerley W., van den Eertwegh A.J., Lutzky J., Lorigan P., Vaubel J.M., Linette G.P., Hogg D., Ottensmeier C.H., Lebbé C., Peschel C., Quirt I., Clark J.I., Wolchok J.D., Weber J.S., Tian J., Yellin M.J., Nichol G.M., Hoos A., Urba W.J. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010; 363(8): 711–23. doi:10.1056/NEJMoa1003466. Erratum in: N Engl J Med. 2010; 363(13): 1290.; Vaddepally R.K., Kharel P., Pandey R., Garje R., Chandra A.B. Review of Indications of FDA-Approved Immune Checkpoint Inhibitors per NCCN Guidelines with the Level of Evidence. Cancers (Basel). 2020; 12(3): 738. doi:10.3390/cancers12030738.; Small E.J., Tchekmedyian N.S., Rini B.I., Fong L., Lowy I., Allison J.P. A pilot trial of CTLA-4 blockade with human anti-CTLA-4 in patients with hormone-refractory prostate cancer. Clin Cancer Res. 2007; 13(6): 1810–5. doi:10.1158/1078-0432.CCR-06-2318.; Bertrand A., Kostine M., Barnetche T., Truchetet M.E., Schaeverbeke T. Immune related adverse events associated with anti-CTLA-4 antibodies: systematic review and meta-analysis. BMC Med. 2015; 13: 211. doi:10.1186/s12916-015-0455-8.; Formenti S.C., Rudqvist N.P., Golden E., Cooper B., Wennerberg E., Lhuillier C., Vanpouille-Box C., Friedman K., Ferrari de Andrade L., Wucherpfennig K.W., Heguy A., Imai N., Gnjatic S., Emerson R.O., Zhou X.K., Zhang T., Chachoua A., Demaria S. Radiotherapy induces responses of lung cancer to CTLA-4 blockade. Nat Med. 2018; 24(12): 1845–51. doi:10.1038/s41591-018-0232-2.; Theurich S., Rothschild S.I., Hoffmann M., Fabri M., Sommer A., Garcia-Marquez M., Thelen M., Schill C., Merki R., Schmid T., Koeberle D., Zippelius A., Baues C., Mauch C., Tigges C., Kreuter A., Borggrefe J., von Bergwelt-Baildon M., Schlaak M. Local Tumor Treatment in Combination with Systemic Ipilimumab Immunotherapy Prolongs Overall Survival in Patients with Advanced Malignant Melanoma. Cancer Immunol Res. 2016; 4(9): 744–54. doi:10.1158/2326-6066.CIR-15-0156.; Chicas-Sett R., Morales-Orue I., Rodriguez-Abreu D., Lara-Jimenez P. Combining radiotherapy and ipilimumab induces clinically relevant radiation-induced abscopal effects in metastatic melanoma patients: A systematic review. Clin Transl Radiat Oncol. 2017; 9: 5–11. doi:10.1016/j.ctro.2017.12.004.; Latchman Y., Wood C.R., Chernova T., Chaudhary D., Borde M., Chernova I., Iwai Y., Long A.J., Brown J.A., Nunes R., Greenfield E.A., Bourque K., Boussiotis V.A., Carter L.L., Carreno B.M., Malenkovich N., Nishimura H., Okazaki T., Honjo T., Sharpe A.H., Freeman G.J. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol. 2001; 2(3): 261–8. doi:10.1038/85330.; Theelen W.S.M.E., Peulen H.M.U., Lalezari F., van der Noort V., de Vries J.F., Aerts J.G.J.V., Dumoulin D.W., Bahce I., Niemeijer A.N., de Langen A.J., Monkhorst K., Baas P. Effect of Pembrolizumab After Stereotactic Body Radiotherapy vs Pembrolizumab Alone on Tumor Response in Patients With Advanced Non-Small Cell Lung Cancer: Results of the PEMBRO-RT Phase 2 Randomized Clinical Trial. JAMA Oncol. 2019; 5(9): 1276–82. doi:10.1001/jamaoncol.2019.1478.; Tree A.C., Jones K., Hafeez S., Sharabiani M.T.A., Harrington K.J., Lalondrelle S., Ahmed M., Huddart R.A. Dose-limiting Urinary Toxicity With Pembrolizumab Combined With Weekly Hypofractionated Radiation Therapy in Bladder Cancer. Int J Radiat Oncol Biol Phys. 2018; 101(5): 1168–71. doi:10.1016/j.ijrobp.2018.04.070.; RogerA.,FinetA.,BoruB.,BeauchetA.,MazeronJ.J.,OtzmeguineY., Blom A., Longvert C., de Maleissye M.F., Fort M., Funck-Brentano E., Saiag P. Efficacy of combined hypo-fractionated radiotherapy and anti-PD-1 monotherapy in difficult-to-treat advanced melanoma patients. Oncoimmunology. 2018; 7(7). doi:10.1080/2162402X.2018.1442166.; Chen D., Menon H., Verma V., Guo C., Ramapriyan R., Barsoumian H., Younes A., Hu Y., Wasley M., Cortez M.A., Welsh J. Response and outcomes after anti-CTLA4 versus anti-PD1 combined with stereotactic body radiation therapy for metastatic non-small cell lung cancer: retrospective analysis of two single-institution prospective trials. J Immunother Cancer. 2020; 8(1). doi:10.1136/jitc-2019-000492. Erratum in: J Immunother Cancer. 2020; 8(1).; Gerber D.E., Urbanic J.J., Langer C., Hu C., Chang I.F., Lu B., Movsas B., Jeraj R., Curran W.J., Bradley J.D. Treatment Design and Rationale for a Randomized Trial of Cisplatin and Etoposide Plus Thoracic Radiotherapy Followed by Nivolumab or Placebo for Locally Advanced Non-Small-Cell Lung Cancer (RTOG 3505). Clin Lung Cancer. 2017; 18(3): 333–9. doi:10.1016/j.cllc.2016.10.009.; Bozorgmehr F., Hommertgen A., Krisam J., Lasitschka F., Kuon J., Maenz M., Huber P.E., König L., Kieser M., Debus J., Thomas M., Rieken S. Fostering efficacy of anti-PD-1-treatment: Nivolumab plus radiotherapy in advanced non-small cell lung cancer – study protocol of the FORCE trial. BMC Cancer. 2019; 19(1): 1074. doi:10.1186/s12885-019-6205-0.; Bassetti M.F., Sethakorn N., Lang J.M., Schehr J.L., Schultz Z., Morris Z.S., Matkowskyj K.A., Eickhoff J.C., Morris B., Traynor A.M., Duma N., Campbell T.C., Baschnagel A., Leal T. Outcomes and safety analysis of a phase IB trial of stereotactic body radiotherapy (SBRT) to all sites of oligometastatic non-small cell lung cancer combined with durvalumab and tremelimumab. JCO. 2021; 39(15s). doi:10.1200/JCO.2021.39.15_suppl.e21212.; Pakkala S., Higgins K., Chen Z., Sica G., Steuer C., Zhang C., Zhang G., Wang S., Hossain M.S., Nazha B., Beardslee T., Khuri F.R., Curran W., Lonial S., Waller E.K., Ramalingam S., Owonikoko T.K. Durvalumab and tremelimumab with or without stereotactic body radiation therapy in relapsed small cell lung cancer: a randomized phase II study. J Immunother Cancer. 2020; 8(2). doi:10.1136/jitc-2020-001302.; Leary R., Gardner R.B., Mockbee C., Roychowdhury D.F. Boosting Abscopal Response to Radiotherapy with Sargramostim:AReview of Data and Ongoing Studies. Cureus. 2019; 11(3). doi:10.7759/cureus.4276.; Strigari L., Mancuso M., Ubertini V., Soriani A., Giardullo P., Benassi M., D’Alessio D., Leonardi S., Soddu S., Bossi G. Abscopal effect of radiation therapy: Interplay between radiation dose and p53 status. Int J Radiat Biol. 2014; 90(3): 248–55. doi:10.3109/09553002.2014.874608. Erratum in: Int J Radiat Biol. 2015; 91(3): 294.; Dovedi S.J., Adlard A.L., Lipowska-Bhalla G., McKenna C., Jones S., Cheadle E.J., Stratford I.J., Poon E., Morrow M., Stewart R., Jones H., Wilkinson R.W., Honeychurch J., Illidge T.M. Acquired resistance to fractionated radiotherapy can be overcome by concurrent PD-L1 blockade. Cancer Res. 2014; 74(19): 5458–68. doi:10.1158/0008-5472.CAN-14-1258.; Slovin S.F., Higano C.S., Hamid O., Tejwani S., Harzstark A., Alumkal J.J., Scher H.I., Chin K., Gagnier P., McHenry M.B., Beer T.M. Ipilimumab alone or in combination with radiotherapy in metastatic castration-resistant prostate cancer: results from an open-label, multicenter phase I/II study. Ann Oncol. 2013; 24(7): 1813–21. doi:10.1093/annonc/mdt107.; Kwon E.D., Drake C.G., Scher H.I., Fizazi K., Bossi A., van den Eertwegh A.J., Krainer M., Houede N., Santos R., Mahammedi H., Ng S., Maio M., Franke F.A., Sundar S.,Agarwal N., BergmanA.M., Ciuleanu T.E., Korbenfeld E., Sengeløv L., Hansen S., Logothetis C., Beer T.M., McHenry M.B., Gagnier P., Liu D., Gerritsen W.R.; CA184-043 Investigators. Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol. 2014; 15(7): 700–12. doi:10.1016/S1470-2045(14)70189-5.; D’Andrea M.A., Reddy G.K. Immune SystemActivation in Patients with Metastatic Renal Cell Carcinoma Induced by the Systemic Abscopal Effects of Radiation Therapy. Oncol Res Treat. 2023; 46(1–2): 33–44. doi:10.1159/000527959.; Zhang X., Zhang Y., Liu Y., Yang Y., Dong P., He L., Zhou F. Stereotactic body radiotherapy-induced abscopal effect twice after pembrolizumab failure in hereditary leiomyomatosis and renal cell carcinoma: a case report with genetic and immunologic analysis. Transl Androl Urol. 2021; 10(11): 4304–12. doi:10.21037/tau-21-644.; https://www.siboncoj.ru/jour/article/view/2955
-
10Academic Journal
المؤلفون: О. I. Kit, E. M. Frantsiyants, A. I. Shikhlyarova, I. V. Neskubina, S. A. Ilchenko, О. И. Кит, Е. М. Франциянц, А. И. Шихлярова, И. В. Нескубина, С. А. Ильченко
المصدر: Research and Practical Medicine Journal; Том 11, № 1 (2024); 40-53 ; Research'n Practical Medicine Journal; Том 11, № 1 (2024); 40-53 ; 2410-1893 ; 10.17709/2410-1893-2024-11-1
مصطلحات موضوعية: злокачественные новообразования, mitochondrial DNA, extracellular mitochondria, malignant neoplasms, митохондриальная ДНК, внеклеточные митохондрии
وصف الملف: application/pdf
Relation: https://www.rpmj.ru/rpmj/article/view/982/611; Al Amir Dache Z, Otandault A, Tanos R, Pastor B, Meddeb R, Sanchez C, et al. Blood contains circulating cell-free respiratory competent mitochondria. FASEB J. 2020 Mar;34(3):3616–3630. https://doi.org/10.1096/fj.201901917rr; Liu Z, Sun Y, Qi Z, Cao L, Ding S. Mitochondrial transfer/transplantation: an emerging therapeutic approach for multiple diseases. Cell Biosci. 2022 May 19;12(1):66. https://doi.org/10.1186/s13578-022-00805-7; Shanmughapriya S, Langford D, Natarajaseenivasan K. Inter and Intracellular mitochondrial trafficking in health and disease. Ageing Res Rev. 2020 Sep;62:101128. https://doi.org/10.1016/j.arr.2020.101128; Zampieri LX, Silva-Almeida C, Rondeau JD, Sonveaux P. Mitochondrial transfer in cancer: a comprehensive review. Int J Mol Sci. 2021 Mar 23;22(6):3245. https://doi.org/10.3390/ijms22063245; Liu D, Gao Y, Liu J, Huang Y, Yin J, Feng Y, et al. Intercellular mitochondrial transfer as a means of tissue revitalization. Signal Transduct Target Ther. 2021 Feb 16;6(1):65. https://doi.org/10.1038/s41392-020-00440-z; Кит О. И., Франциянц Е. М., Шихлярова А. И., Нескубина И. В. Механизмы естественного переноса митохондрий в норме и при онкопатологии. Ульяновский медико-биологический журнал. 2023;3:14–29. https://doi.org/10.34014/2227-1848-2023-3-14-29; Pollara J, Edwards RW, Lin L, Bendersky VA, Brennan TV. Circulating mitochondria in deceased organ donors are associated with immune activation and early allograft dysfunction. JCI Insight. 2018 Aug 9;3(15):e121622. https://doi.org/10.1172/jci.insight.121622; Song X, Hu W, Yu H, Wang H, Zhao Y, Korngold R, Zhao Y. Existence of Circulating Mitochondria in Human and Animal Peripheral Blood. Int J Mol Sci. 2020 Mar 19;21(6):2122. https://doi.org/10.3390/ijms21062122; Stefano GB, Kream RM. Mitochondrial DNA heteroplasmy as an informational reservoir dynamically linked to metabolic and immunological processes associated with COVID-19 Neurological Disorders. Cell Mol Neurobiol. 2022 Jan;42(1):99–107. https://doi.org/10.1007/s10571-021-01117-z; Stefano GB, Kream RM. Viruses broaden the definition of life by genomic incorporation of artificial intelligence and machine learning processes. Curr Neuropharmacol. 2022;20(10):1888–1893. https://doi.org/10.2174/1570159x20666220420121746; Chou SH, Lan J, Esposito E, Ning M, Balaj L, Ji X, et al. Extracellular mitochondria in cerebrospinal fluid and neurological recovery after subarachnoid hemorrhage. Stroke. 2017 Aug;48(8):2231–2237. https://doi.org/10.1161/strokeaha.117.017758; Joshi AU, Minhas PS, Liddelow SA, Haileselassie B, Andreasson KI, Dorn GW 2nd, Mochly-Rosen D. Fragmented mitochondria released from microglia trigger A1 astrocytic response and propagate inflammatory neurodegeneration. Nat Neurosci. 2019 Oct;22(10):1635–1648. https://doi.org/10.1038/s41593-019-0486-0 . Erratum in: Nat Neurosci. 2021 Feb;24(2):289; Angajala A, Lim S, Phillips JB, Kim JH, Yates C, You Z, Tan M. Diverse roles of mitochondria in immune responses: novel insights into immuno-metabolism. Front Immunol. 2018 Jul 12;9:1605. https://doi.org/10.3389/fimmu.2018.01605; Lynch MA. Can the emerging field of immunometabolism provide insights into neuroinflammation? Prog Neurobiol. 2020 Jan;184:101719. https://doi.org/10.1016/j.pneurobio.2019.101719; Wu Z, Oeck S, West AP, Mangalhara KC, Sainz AG, Newman LE, et al. Mitochondrial DNA stress signalling protects the nuclear genome. Nat Metab. 2019 Dec;1(12):1209–1218. https://doi.org/10.1038/s42255-019-0150-8; Dutta S, Das N, Mukherjee P. Picking up a fight: fine tuning mitochondrial innate immune defenses against RNA Viruses. Front Microbiol. 2020 Aug 31;11:1990. https://doi.org/10.3389/fmicb.2020.01990; Tiku V, Tan MW, Dikic I. Mitochondrial Functions in Infection and Immunity. Trends Cell Biol. 2020 Apr;30(4):263-275. https://doi.org/10.1016/j.tcb.2020.01.006 Erratum in: Trends Cell Biol. 2020 Sep;30(9):748; Brokatzky D, Häcker G. Mitochondria: intracellular sentinels of infections. Med Microbiol Immunol. 2022 Aug;211(4):161–172. https://doi.org/10.1007/s00430-022-00742-9; Boudreau LH, Duchez AC, Cloutier N, Soulet D, Martin N, Bollinger J, et al. Platelets release mitochondria serving as substrate for bactericidal group IIA-secreted phospholipase A2 to promote inflammation. Blood. 2014 Oct 2;124(14):2173–2183. https://doi.org/10.1182/blood-2014-05-573543; Sansone P, Savini C, Kurelac I, Chang Q, Amato LB, Strillacci A, et al. Packaging and transfer of mitochondrial DNA via exosomes regulate escape from dormancy in hormonal therapy-resistant breast cancer. Proc Natl Acad Sci U S A. 2017 Oct 24;114(43):E9066– E9075. https://doi.org/10.1073/pnas.1704862114; Newell C, Hume S, Greenway SC, Podemski L, Shearer J, Khan A. Plasma-derived cell-free mitochondrial DNA: A novel non-invasive methodology to identify mitochondrial DNA haplogroups in humans. Mol Genet Metab. 2018 Dec;125(4):332–337. https://doi.org/10.1016/j.ymgme.2018.10.002; Grazioli S, Pugin J. Mitochondrial damage-associated molecular patterns: from inflammatory signaling to human diseases. Front Immunol. 2018 May 4;9:832. https://doi.org/10.3389/fimmu.2018.00832; Puhm F, Afonyushkin T, Resch U, Obermayer G, Rohde M, Penz T, et al. Mitochondria are a subset of extracellular vesicles released by activated monocytes and induce type I IFN and TNF responses in endothelial cells. Circ Res. 2019 Jun 21;125(1):43–52. https://doi.org/10.1161/circresaha.118.314601 Epub 2019 May 8. Erratum in: Circ Res. 2019 Oct 25;125(10):e93; Rodríguez-Nuevo A, Zorzano A. The sensing of mitochondrial DAMPs by non-immune cells. Cell Stress. 2019 May 23;3(6):195–207. https://doi.org/10.15698/cst2019.06.190; Bronkhorst AJ, Ungerer V, Diehl F, Anker P, Dor Y, Fleischhacker M, et al. Towards systematic nomenclature for cell-free DNA. Hum Genet. 2021 Apr;140(4):565–578. https://doi.org/10.1007/s00439-020-02227-2; Trumpff C, Rausser S, Haahr R, Karan KR, Gouspillou G, Puterman E, Kirschbaum C, Picard M. Dynamic behavior of cell-free mitochondrial DNA in human saliva. Psychoneuroendocrinology. 2022 Sep;143:105852. https://doi.org/10.1016/j.psyneuen.2022.105852; Tumburu L, Ghosh-Choudhary S, Seifuddin FT, Barbu EA, Yang S, Ahmad MM, et al. Circulating mitochondrial DNA is a proinflammatory DAMP in sickle cell disease. Blood. 2021 Jun 3;137(22):3116–3126. https://doi.org/10.1182/blood.2020009063 Erratum in: Blood. 2022 Sep 15;140(11):1327.; Duvvuri B, Lood C. Cell-free DNA as a biomarker in autoimmune rheumatic diseases. Front Immunol. 2019 Mar 19;10:502. https://doi.org/10.3389/fimmu.2019.00502; Meddeb R, Dache ZAA, Thezenas S, Otandault A, Tanos R, Pastor B, et al. Quantifying circulating cell-free DNA in humans. Sci Rep. 2019 Mar 26;9(1):5220. https://doi.org/10.1038/s41598-019-41593-4; Trumpff C, Marsland AL, Basualto-Alarcón C, Martin JL, Carroll JE, Sturm G, et al. Acute psychological stress increases serum circulating cell-free mitochondrial DNA. Psychoneuroendocrinology. 2019 Aug;106:268–276. https://doi.org/10.1016/j.psyneuen.2019.03.026; Kim K, Moon H, Lee YH, Seo JW, Kim YG, Moon JY, et al. Clinical relevance of cell-free mitochondrial DNA during the early postoperative period in kidney transplant recipients. Sci Rep. 2019 Dec 9;9(1):18607. https://doi.org/10.1038/s41598-019-54694-x; Varhaug KN, Vedeler CA, Myhr KM, Aarseth JH, Tzoulis C, Bindoff LA. Increased levels of cell-free mitochondrial DNA in the cerebrospinal fluid of patients with multiple sclerosis. Mitochondrion. 2017 May;34:32–35. https://doi.org/10.1016/j.mito.2016.12.003; Yen K, Mehta HH, Kim SJ, Lue Y, Hoang J, Guerrero N, et al. The mitochondrial derived peptide humanin is a regulator of lifespan and healthspan. Aging (Albany NY). 2020 Jun 23;12(12):11185–11199. https://doi.org/10.18632/aging.103534; Reynolds JC, Bwiza CP, Lee C. Mitonuclear genomics and aging. Hum Genet. 2020 Mar;139(3):381–399. https://doi.org/10.1007/s00439-020-02119-5; Reynolds JC, Lai RW, Woodhead JST, Joly JH, Mitchell CJ, Cameron-Smith D, et al. MOTS-c is an exercise-induced mitochondrial-encoded regulator of age-dependent physical decline and muscle homeostasis. Nat Commun. 2021 Jan 20;12(1):470. https://doi.org/10.1038/s41467-020-20790-0; Thierry A.R., El Messaoudi S., Gahan P.B., Anker P., Stroun M. Origins, structures, and functions of circulating DNA in oncology. Cancer Metastasis Rev. 2016 Sep;35(3):347–376. https://doi.org/10.1007/s10555-016-9629-x; Malik AN, Parsade CK, Ajaz S, Crosby-Nwaobi R, Gnudi L, Czajka A, Sivaprasad S. Altered circulating mitochondrial DNA and increased inflammation in patients with diabetic retinopathy. Diabetes Res Clin Pract. 2015 Dec;110(3):257–265. https://doi.org/10.1016/j.diabres.2015.10.006; Sudakov NP, Popkova TP, Katyshev AI, Goldberg OA, Nikiforov SB, Pushkarev BG, et al. Level of blood cell-free circulating mitochondrial DNA as a novel biomarker of acute myocardial ischemia. Biochemistry (Mosc). 2015 Oct;80(10):1387–1392. https://doi.org/10.1134/s000629791510020x; Zhang Q, Itagaki K, Hauser CJ. Mitochondrial DNA is released by shock and activates neutrophils via p38 map kinase. Shock. 2010;34(1):55–59. https://doi.org/10.1097/shk.0b013e3181cd8c08; Otandault A, Anker P, Al Amir Dache Z, Guillaumon V, Meddeb R, Pastor B, et al. Recent advances in circulating nucleic acids in oncology. Ann Oncol. 2019 Mar 1;30(3):374–384. https://doi.org/10.1093/annonc/mdz031; Sanchez C, Snyder MW, Tanos R, Shendure J, Thierry AR. New insights into structural features and optimal detection of circulating tumor DNA determined by single-strand DNA analysis. NPJ Genom Med. 2018 Nov 23;3:31. https://doi.org/10.1038/s41525-018-0069-0; Heitzer E, Haque IS, Roberts CES, Speicher MR. Current and future perspectives of liquid biopsies in genomics-driven oncology. Nat Rev Genet. 2019 Feb;20(2):71–88. https://doi.org/10.1038/s41576-018-0071-5; Zhu Y, Zhang H, Chen N, Hao J, Jin H, Ma X. Diagnostic value of various liquid biopsy methods for pancreatic cancer: A systematic review and meta-analysis. Medicine (Baltimore). 2020 Jan;99(3):e18581. https://doi.org/10.1097/md.0000000000018581; Bronkhorst AJ, Ungerer V, Holdenrieder S. The emerging role of cell-free DNA as a molecular marker for cancer management. Biomol Detect Quantif. 2019 Mar 18;17:100087. https://doi.org/10.1016/j.bdq.2019.100087; Bronkhorst AJ, Ungerer V, Oberhofer A, Holdenrieder S. The rising tide of cell-free DNA profiling: From snapshot to temporal genome analysis. Laboratoriums Medizin. 2022. https://doi.org/10.1515/labmed-2022-0030; Keup C, Suryaprakash V, Hauch S, Storbeck M, Hahn P, Sprenger-Haussels M, et al. Integrative statistical analyses of multiple liquid biopsy analytes in metastatic breast cancer. Genome Med. 2021 May 17;13(1):85. https://doi.org/10.1186/s13073-021-00902-1; Keup C, Kimmig R, Kasimir-Bauer S. Combinatorial power of cfDNA, CTCs and EVs in oncology. Diagnostics (Basel). 2022 Mar 31;12(4):870. https://doi.org/10.3390/diagnostics12040870; Neuberger EWI, Hillen B, Mayr K, Simon P, Krämer-Albers EM, Brahmer A. Kinetics and topology of DNA associated with circulating extracellular vesicles released during exercise. Genes (Basel). 2021 Apr 2;12(4):522. https://doi.org/10.3390/genes12040522; Cisneros-Villanueva M, Hidalgo-Pérez L, Rios-Romero M, Cedro-Tanda A, Ruiz-Villavicencio CA, Page K, et al. Cell-free DNA analysis in current cancer clinical trials: a review. Br J Cancer. 2022 Feb;126(3):391–400. https://doi.org/10.1038/s41416-021-01696-0; Keserű JS, Soltész B, Lukács J, Márton É, Szilágyi-Bónizs M, Penyige A, et al. Detection of cell-free, exosomal and whole blood mitochondrial DNA copy number in plasma or whole blood of patients with serous epithelial ovarian cancer. J Biotechnol. 2019 Jun 10;298:76–81. https://doi.org/10.1016/j.jbiotec.2019.04.015; Castellani CA, Longchamps RJ, Sun J, Guallar E, Arking DE. Thinking outside the nucleus: Mitochondrial DNA copy number in health and disease. Mitochondrion. 2020 Jul;53:214–223. https://doi.org/10.1016/j.mito.2020.06.004; Lin YH, Lim SN, Chen CY, Chi HC, Yeh CT, Lin WR. Functional role of mitochondrial DNA in cancer progression. Int J Mol Sci. 2022 Jan 31;23(3):1659. https://doi.org/10.3390/ijms23031659; Gammage PA, Frezza C. Mitochondrial DNA: the overlooked oncogenome? BMC Biol. 2019 Jul 8;17(1):53. https://doi.org/10.1186/s12915-019-0668-y; Lam ET, Bracci PM, Holly EA, Chu C, Poon A, Wan E, et al. Mitochondrial DNA sequence variation and risk of pancreatic cancer. Cancer Res. 2012 Feb 1;72(3):686–695. https://doi.org/10.1158/0008-5472.can-11-1682; An Q, Hu Y, Li Q, Chen X, Huang J, Pellegrini M, et al. The size of cell-free mitochondrial DNA in blood is inversely correlated with tumor burden in cancer patients. Precis Clin Med. 2019 Sep;2(3):131–139. https://doi.org/10.1093/pcmedi/pbz014; Silagy M, Pes O, Marton E, Boogli G, Soltes B, Keser J, et al. Circulating cell-free nucleic acids: key characteristics and clinical applications. 2020;21(18):6827. https://doi.org/10.3390/ijms21186827; Yue P, Jing S, Liu L, Ma F, Zhang Y, Wang C, et al. Association between mitochondrial DNA copy number and cardiovascular disease: current evidence based on a systematic review and meta-analysis. PLoS One. 2018 Nov 7;13(11):e0206003. https://doi.org/10.1371/journal.pone.0206003; Dabravolski SA, Khotina VA, Sukhorukov VN, Kalmykov VA, Mikhaleva LM, Orekhov AN. The role of mitochondrial DNA mutations in cardiovascular diseases. Int J Mol Sci. 2022 Jan 16;23(2):952. https://doi.org/10.3390/ijms23020952; Tuchalska-Czuroń J, Lenart J, Augustyniak J, Durlik M. Is mitochondrial DNA copy number a good prognostic marker in resectable pancreatic cancer? Pancreatology. 2019 Jan;19(1):73–79. https://doi.org/10.1016/j.pan.2018.11.009; Gentiluomo M, Katzke VA, Kaaks R, Tjønneland A, Severi G, Perduca V, et al. Mitochondrial DNA copy-number variation and pancreatic cancer risk in the prospective EPIC cohort. Cancer Epidemiol Biomarkers Prev. 2020 Mar;29(3):681–686. https://doi.org/10.1158/1055-9965.epi-19-0868; Moro L. Mitochondrial DNA and mitomir variations in pancreatic cancer: potential diagnostic and prognostic biomarkers. Int J Mol Sci. 2021 Sep 7;22(18):9692. https://doi.org/10.3390/ijms22189692; Randeu H, Bronkhorst AJ, Mayer Z, Oberhofer A, Polatoglou E, Heinemann V, et al. Preanalytical variables in the analysis of mitochondrial DNA in whole blood and plasma from pancreatic cancer patients. Diagnostics (Basel). 2022 Aug 6;12(8):1905. https://doi.org/10.3390/diagnostics12081905; Bernal-Tirapo J, Bayo Jiménez MT, Yuste-García P, Cordova I, Peñas A, García-Borda FJ, et al. Evaluation of mitochondrial function in blood samples shows distinct patterns in subjects with thyroid carcinoma from those with hyperplasia. Int J Mol Sci. 2023 Mar 29;24(7):6453. https://doi.org/10.3390/ijms24076453; Stefano GB, Büttiker P, Weissenberger S, Esch T, Anders M, Raboch J, et al. Independent and sensory human mitochondrial functions reflecting symbiotic evolution. Front Cell Infect Microbiol. 2023 Jun 14;13:1130197. https://doi.org/10.3389/fcimb.2023.1130197; Singh A, Faccenda D, Campanella M. Pharmacological advances in mitochondrial therapy. EBioMedicine. 2021 Mar;65:103244. https://doi.org/10.1016/j.ebiom.2021.103244; Catalán M, Olmedo I, Faúndez J, Jara JA. Medicinal chemistry targeting mitochondria: from new vehicles and pharmacophore groups to old drugs with mitochondrial activity. Int J Mol Sci. 2020 Nov 18;21(22):8684. https://doi.org/10.3390/ijms21228684; Xu J, Shamul JG, Kwizera EA, He X. Recent advancements in mitochondria-targeted nanoparticle drug delivery for cancer therapy. Nanomaterials (Basel). 2022 Feb 23;12(5):743. https://doi.org/10.3390/nano12050743; https://www.rpmj.ru/rpmj/article/view/982
-
11Academic Journal
المؤلفون: T. A. Kormanovskaya, D. V. Kononenko, K. A. Saprykin, Т. А. Кормановская, Д. В. Кононенко, К. А. Сапрыкин
المصدر: Radiatsionnaya Gygiena = Radiation Hygiene; Том 17, № 1 (2024); 34-43 ; Радиационная гигиена; Том 17, № 1 (2024); 34-43 ; 2409-9082 ; 1998-426X
مصطلحات موضوعية: Оренбургская область, indoor radon, radon concentration, integrated measurement method, SSNTD, malignant neoplasms, lung cancer, Orenburg region, радон в воздухе помещений, объемная активность, интегральный метод, трековый радиометр, онкозаболеваемость органов дыхания, злокачественные новообразования
وصف الملف: application/pdf
Relation: https://www.radhyg.ru/jour/article/view/1015/875; Кормановская Т.А., Романович И.К., Вяльцина Н.Е. и др. Облучение населения Оренбургской области природными источниками ионизирующего излучения. Часть 1: Результаты комплексного радиационного обследования населенных пунктов восточных районов Оренбургской области // Радиационная гигиена. 2023. Т. 16, № 1. С. 6–18. DOI 10.21514/1998-426X-2023-16-1-6-18.; Кормановская Т.А., Романович И.К., Вяльцина Н.Е. и др. Облучение населения Оренбургской области природными источниками ионизирующего излучения. Часть 2: Дозы облучения населения восточных районов Оренбургской области // Радиационная гигиена. 2023. Т. 16, № 2. С. 7–18. DOI 10.21514/1998-426X-2023-16-2-7-18.; Киселев С.М., Жуковский М.В., Стамат И.П., Ярмошенко И.В. Радон. От фундаментальных исследований к прак тике регулирования. М.: Изд-во «ФГБУ ГНЦ ФМБЦ им. А.И. Бурназяна ФМБА России», 2016. 432 с.; Васильев А.С., Романович И.К., Кононенко Д.В. и др. Обоснование методических подходов к контролю содержания радона в воздухе помещений эксплуатируемых зданий с некруглосуточным пребыванием людей // Радиационная гигиена. 2021. Т. 14, № 3. С. 29–40. DOI 10.21514/1998-426X-2021-14-3-29-40.; Исторический багаж. «Золотой» Алдан – центр добычи золота в Якутии. URL: https://xn--80aabjhkiabkj9b0amel2g.xn--p1ai/post/zolotoy-aldan-%E2%80%94-centr-dobychizolota-v-yakutii-1601 (Дата обращения: 24.01.2024).; Бойцов В.Е., Пилипенко Г.Н. Золото и уран в мезозойских гидротермальных месторождениях Центрального Алдана // Геология рудных месторождений. 1998. Т. 40, № 4. С. 354–369.; Геологический музей Оренбургского государственного университета. Путеводитель по музею и его экспонатам: учебное пособие / Г.В. Тараборин; Оренбургский гос. унт. Оренбург: ОГУ, 2014. 200 с.; Атлас Оренбургской области / под науч. ред. чл.-корр. РАН А.А. Чибилёва. М.: Просвещение, “ДИ ЭМ БИ”, 2003. 32 с.; Health Effects of Exposure to Radon: BEIR VI. Washington, D.C.: National Academy Press, 1999. 516 p.; WHO handbook on indoor radon: a public health perspective. Geneva: WHO Press, 2009. 110 p.; Навигаторы, карты мира, карты России. Карта Оренбургской области с районами. URL: https:// ynavigator.ru/karta-orenburgskoj-oblasti.html (Дата обращения: 24.01.2024).; https://www.radhyg.ru/jour/article/view/1015
-
12Academic Journal
المؤلفون: S. S. Silkin, L. Yu. Krestinina, С. С. Силкин, Л. Ю. Крестинина
المساهمون: The work was carried out within the framework of the federal target program «Ensuring nuclear and radiation safety for 2016–2020 and for the period until 2030», Работа выполнена в рамках реализации федеральной целевой программы «Обеспечение ядерной и радиационной безопасности на 2016–2020 годы и на период до 2030 года».
المصدر: Radiatsionnaya Gygiena = Radiation Hygiene; Том 17, № 1 (2024); 76-85 ; Радиационная гигиена; Том 17, № 1 (2024); 76-85 ; 2409-9082 ; 1998-426X
مصطلحات موضوعية: когортное исследование, death risk, solid cancer mortality, chronic exposure, cohort study, риск смерти, солидные злокачественные новообразования, хроническое облучение
وصف الملف: application/pdf
Relation: https://www.radhyg.ru/jour/article/view/1019/879; UNSCEAR 2013. Report. Volume II. SCIENTIFIC ANNEX B: Effects of radiation exposure of children. Sources, effects and risks of ionizing radiation. Report to the General Assembly with Scientific Annexes. VOLUME II Scientific Annex B. 2013. Vol. 13-87320. 271 p.; Hatch M., Brenner A., Bogdanova T. et al. A screening study of thyroid cancer and other thyroid diseases among individuals exposed in utero to iodine-131 from Chernobyl fallout // The Journal of Clinical Endocrinology and Metabolism. 2009. Vol. 94, No. 3. P. 899-906. doi:10.1210/jc.2008-2049.; Neta G., Hatch M., Kitahara C.M. et al. In utero exposure to iodine-131 from Chernobyl fallout and anthropometric characteristics in adolescence // Radiation Research. 2014. Vol. 181, No. 3. P. 293-301. doi:10.1667/RR13304.1.; Ostroumova E.V., Akleyev A.V. Cancer Mortality Among Techa Riverside Residents (Southern Urals), Chronically Exposed to Radiation During the Prenatal Period and in Childhood. 11th International Congress of the International Radiation Protection Association [Internet]. Madrid, Spain. 2004. URL: irpa11.irpa.net/pdfs/1b21.pdf. 2003. (Дата обращения: 15.11.2023).; Schonfeld S.J., Krestinina L.Yu., Epifanova S. et al. Solid cancer mortality in the Techa River Cohort (1950-2007) // Radiation Research. 2013. Vol. 179. P. 183-189.; Силкин С.С., Крестинина Л.Ю. Анализ смертности от злокачественных новообразований в когорте населения, облученного на Восточно-Уральском радиоактивном следе за 57-летний период // Медицина экстремальных ситуаций. 2019. Т. 21, № 2. С. 258-265.; Крестинина Л.Ю., Силкин С.С. Риск смерти от солидных злокачественных новообразований в Уральской когорте аварийно-облученного населения: 1950–2019 // Радиационная гигиена. 2023. Т. 16, № 1. С. 19-31. DOI:10.21514/1998-426X-2023-16-1-19-31.; Шалагинов С.А., Крестинина Л.Ю. Уральская когорта населения, облученного в детском возрасте // Радиационная гигиена. 2020. Т.13, № 1. С. 91–93. DOI:10.21514/1998-426X-2020-13-1-91-93.; Крестинина Л.Ю., Шалагинов С.А., Силкин С.С. и др. Радиогенный риск заболеваемости солидными злокачественными новообразованиями у лиц, облучённых на Южном Урале в детском возрасте // Радиационная гигиена. 2021. Т.14, № 1. С. 49-59. DOI:10.21514/1998-426X-2021-14-1-49-59.; Tolstykh E.I., Peremyslova L.M., Degteva M.O., Napier B.A. Reconstruction of radionuclide intakes for the residents of East Urals Radioactive Trace (1957-2011) // Radiation and Environmental Biophysics. 2017. Vol. 56, № 1. P.17-45. DOI 10.1007/s00411-016-0677-y.; Tolstykh E.I., Degteva M.O., Peremyslova L.M. et al. Reconstruction of long-lived radionuclide intakes for Techa riverside residents: Strontium-90 // Health Physics. 2011. Vol. 101, No. 1. P. 28–47.; Tolstykh E.I., Degteva M.O., Peremyslova L.M. et al. Reconstruction of long-lived radionuclide intakes for Techa riverside residents: 137Cs // Health Physics. 2013. Vol. 104, No. 5. P. 481–498.; Degteva M.O., Napier B.A., Tolstykh E.I. et al. Enhancements in the Techa River Dosimetry System: TRDS-2016D code for reconstruction of deterministic estimates of dose from environmental exposures // Health Physics. 2019. Vol. 117, № 4. P. 378–387.; Preston D.L., Lubin J.H., Pierce D.A., McConney M.E. Epicure Users Guide. Seattle, Washington: Hirosoft International Corporation; 1993.; https://www.radhyg.ru/jour/article/view/1019
-
13Academic Journal
المؤلفون: S. S. Silkin, L. D. Mikryukova, С. С. Силкин, Л. Д. Микрюкова
المساهمون: The work was carried out with financial support from the Federal Medical and Biological Agency of Russia as part of the implementation of a state order on the topic «Risks of the development of site-specific cancers during chronic exposure in the Ural cohort of emergency exposed population»., Работа выполнена при финансовой поддержке Федерального медико-биологического агентства России в рамках реализации государственного заказа по теме «Риски развития органоспецифических новобразований при хроническом облучении в Уральской когорте аварийно-облученного населения».
المصدر: Radiatsionnaya Gygiena = Radiation Hygiene; Том 17, № 2 (2024); 29-37 ; Радиационная гигиена; Том 17, № 2 (2024); 29-37 ; 2409-9082 ; 1998-426X
مصطلحات موضوعية: облученное население, colorectal cancer, excess relative risk, exposed population, злокачественные новообразования толстого кишечника, избыточный относительный риск
وصف الملف: application/pdf
Relation: https://www.radhyg.ru/jour/article/view/1036/887; Arnold M., Sierra M.S., Laversanne M. et al. Global patterns and trends in colorectal cancer incidence and mortality // Gut. 2017. Vol. 66, No. 4. P. 683-691. DOI:10.1136/gutjnl-2015-310912.; Злокачественные новообразования в России в 2021 году (заболеваемость и смертность) / Под редакцией А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой. М.: МНИОИ им. П.А. Герцена – филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2022. 252 с.; Ханевич М.Д., Хазов А.В., Хрыков Г.Н. и др. Факторы риска и профилактика колоректального рака // Профилактическая медицина. 2019. Т. 22, № 3. С. 107-111. DOI:10.17116/profmed201922031107; Bray F., Ferlay J., Soerjomataram I. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries // CA Cancer Journal for Clinicians. 2018. Vol. 68, No 6. P. 394-424.; Semmens E.O., Kopecky K.J., Grant E. et al. Relationship between anthropometric factors, radiation exposure, and colon cancer incidence in the Life Span Study cohort of atomic bomb survivors // Cancer Causes Control. 2013. Vol. 24, No. 1. P.27–37. DOI:10.1007/s10552-012-0086-8.; Baxter N.N., Tepper J.E., Durham S.B. et al. Increased risk of rectal cancer after prostate radiation: a population-based study // Gastroenterology. 2005. Vol. 128, No 4. P. 819-24. DOI:10.1053/j.gastro.2004.12.038. PMID: 15825064.; Parkin D.M., Darby S.C. Cancers in 2010 attributable to ionising radiation exposure in the UK // British Journal of Cancer. 2011. Vol. 105, № 2. P. 57–65. DOI:10.1038/bjc.2011.485.; Richardson D.B., Cardis E., Daniels R.D. et al. Risk of cancer from occupational exposure to ionising radiation: retrospective cohort study of workers in France, the United Kingdom, and the United States (INWORKS) // British Medical Journal. 2015. Vol. 351. h5359. DOI:10.1136/bmj.h5359.; Силкин С.С., Крестинина Л.Ю., Старцев В.Н. и др. Уральская когорта аварийно-облученного населения // Медицина экстремальных ситуаций. 2019. № 3. C. 393-402.; Degteva M.O., Napier B.A., Tolstykh E.I. et al. Enhancements in the Techa River Dosimetry System: TRDS-2016D code for reconstruction of deterministic estimates of dose from environmental exposures // Health Physics. 2019. Vol. 117, № 4. P. 378-387. DOI:10.1097/HP.0000000000001067.; Tolstykh E.I., Degteva M.O., Peremyslova L.M. et al. Reconstruction of long-lived radionuclide intakes for Techa riverside residents: Strontium-90 // Health Physics. 2011. Vol. 101, No. 1. P. 28–47.; Tolstykh E.I., Degteva M.O., Peremyslova L.M. et al. Reconstruction of long-lived radionuclide intakes for Techa riverside residents: 137Cs // Health Physics. 2013. Vol. 104, No. 5. P. 481–498.; Shagina N.B., Tolstykh E.I., Degteva M.O. et al. Age and gender specific biokinetic model for strontium in humans // Journal of Radiological Protection. 2015. Vol. 35, No. 1. P. 87-127. DOI:10.1088/0952-4746/35/1/87.; Бирюков А.П., Иванов В.К., Максютов М.А. и др. Ионизирующее излучение как фактор риска развития злокачественных новообразований органов пищеварения (научный обзор) // Радиация и риск. 2001. Т. 12. C. 99-108.; Pierce D.A., Shimizu Y., Preston D.L. et al. Studies of the mortality of atomic bomb survivors. Report 12, part 1. Cancer: 1950-1990/RERF report N 11-95 // Journal of Radiation Research. 1996. Vol. 146. P. 9-17.; Sugiyama H., Misumi M., Brenner A. et al. Radiation risk of incident colorectal cancer by anatomical site among atomic bomb survivors: 1958-2009 // International Journal of Cancer. 2020. Vol. 146, No. 3. P. 635-645. DOI:10.1002/ijc.32275.; Sont W.N., Zielinski J.M., Ashmore J.P. et al. First analysis of cancer incidence and occupational radiation exposure based on the National Dose Registry of Canada // American Journal of Epidemiology. 2001. Vol. 153, No. 4. P. 309-318.; Davis F.G., Yu K.L., Preston D. et al. Solid Cancer Incidence in the Techa River Incidence Cohort: 1956-2007 // Radiation Research. 2015. Vol. 184, No. 1. P. 56-65. DOI:10.1667/RR14023.1.; United Nations. Sources and Effects of Ionizing Radiation. Volume I: Sources; Volume II: Effects. United Nations Scientific Committee on the Effects of Atomic Radiation, 2000 Report to the General Assembly, with scientific annexes. United Nations sales publications E.00.IX.3 and E.00.IX.4. United Nations: New York, 2000.; United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). UNSCEAR 2006 Report. Annex A. Epidemiological Studies of Radiation and Cancer. 13–322. United Nations: New York, 2008.; https://www.radhyg.ru/jour/article/view/1036
-
14Academic Journal
المؤلفون: A. L. Tikhomirov, V. V. Kazenashev, A. A. Dubinin, R. R. Sadikova, M. V. Maminova, J. S. Globa, A. V. Bukharov, А. Л. Тихомиров, В. В. Казенашев, А. А. Дубинин, Р. Р. Садикова, М. В. Маминова, Ю. С. Глоба, А. В. Бухаров
المصدر: Obstetrics, Gynecology and Reproduction; Vol 18, No 3 (2024); 425-436 ; Акушерство, Гинекология и Репродукция; Vol 18, No 3 (2024); 425-436 ; 2500-3194 ; 2313-7347
مصطلحات موضوعية: МРТ-диагностика, cystic neoplasms, differential diagnosis of uterine cystic neoplasms, atypical hydatidosis localization, uterine fibroids, ovarian cysts, malignant neoplasms, MRI diagnostics, кистозные новообразования, дифференциальная диагностика кистозных образований матки, атипичная локализация эхинококкоза, миома матки, яичниковые кисты, злокачественные новообразования
وصف الملف: application/pdf
Relation: https://www.gynecology.su/jour/article/view/2081/1212; Твердохлебова Т.И., Ковалев Е.В., Карпущенко Г.В. и др. Эхинококкоз на юге России: эпидемиологические и эпизоотологические аспекты. Инфекционные болезни. 2022;20(2):68–74. https://doi.org/10.20953/1729-9225-2022-2-68-74.; Ennaceur F., Toumi D., Jaouad F. et al. Primary echinococcus hydatid cyst of the uterus: An unusual location. Case Rep Surg. 2021;2021:9977326. https://doi.org/10.1155/2021/9977326.; Алёхина Н.А., Мартынова О.В., Соколова Я.О. и др. Эхинококкоз человека с изолированным и сочетанным поражением легкого в Астраханской области. Научно- методический электронный журнал «Концепт». 2017;39:2811–5.; Kumar K., Zaidi A., Husain N. Ovarian hydatid cyst: an uncommon site of presentation. Autops Case Rep. 2023;13:e2023461. https://doi.org/10.4322/acr.2023.461.; Alloun M., Alomar K., Shaker K. et al. A rare case of an isolated primary hydatid cyst in the uterus in a 7-year-old child: Case report and review of the literature. Int J Surg Case Rep. 2023;113:109077. https://doi.org/10.1016/j.ijscr.2023.109077.; Yordanov A., Boncev R., Kostov S. et al. A very rare case of echinococcus granulosus arising in the ovary and the uterus. Prz Menopauzalny. 2023;22(4):236–9. https://doi.org/10.5114/pm.2023.133791.; Seifi S., Shadman A., Mardi A., Asl E.M. Pelvic hydatid cyst presentation as an ovarian torsion: A rare case report. SAGE Open Med Case Rep. 2022;10:2050313X221136997. https://doi.org/10.1177/2050313X221136997.; Koç N. Primary hydatid cyst mimicking uterine leiomyoma. Turkiye Parazitol Derg. 2017;41(1):57–9. https://doi.org/10.5152/tpd.2017.4613.; Çay Ü., Alabaz D., Gündeşlioglu Ö. et al. Multi-organ/disseminated echinococcosis in children: Case series and review of the literature. J Paediatr Child Health. 2022;58(7):1193–200. https://doi.org/10.1111/jpc.15942.; Shmueli M., Van Buren J., Sagi O. et al. Performance of echinococcosis serology is associated with disease endemicity, hydatid cyst location, eosinophilia, imaging finding, and treatment. Acta Parasitol. 2023;69(1):233–41. https://doi.org/10.1007/s11686-023-00736-4.; Alvi M.A., Ali R.M.A., Khan S. et al. Past and present of diagnosis of echinococcosis: A review (1999–2021). Acta Trop. 2023;243:106925. https://doi.org/10.1016/j.actatropica.2023.106925.; Гинекология по Уильямсу. Под ред. Б.Л. Хоффман, Дж.О. Шорджа, Л.М. Хальворсон и др. Адаптированный перевод с английского под ред. Г.Т. Сухих, В.Н. Серова. М.: ГЭОТАР-Медиа, 2023. 1280 с.; Кириленко В.П., Грудницкая Е.Н., Воскресенский С.Л. Миома матки: пересмотр радикальных подходов и переход к стратегии органосохраняющих операций. Медицинские новости. 2022;(6):27–32.; Адамян Л.В., Сонова М.М., Арсланян К Н., Логинова О.Н. Современные аспекты комплексного лечения миомы матки. Лечащий врач. 2019;(3):46.; Lao X., Hu D., Ji L. et al. Magnetic resonance imaging and next-generation sequencing for the diagnosis of cystic echinococcosis in the intradural spine: a case report. J Med Case Rep. 2023;17(1):446. https://doi.org/10.1186/s13256-023-04197-1.; Заривчацкий М.Ф., Мугатаров И.Н., Каменских Е.Д. и др. Хирургическое лечение эхинококкоза печени. Пермский медицинский журнал. 2021;38(3):32–40.; Альперович Б.И. Хирургия печени. М.: ГЭОАР-Медиа, 2013. 352 c.; 2001 WHO classification of hepatic hydatid cysts. Radiopaedia. Режим доступа: https://radiopaedia.org/articles/2001-who-classification-of-hepatic-hydatid-cysts?lang=us. [Дата обращения: 15.04.2024].; https://www.gynecology.su/jour/article/view/2081
-
15Academic Journal
المؤلفون: E. K. Makimbetov, T. U. Talgat, A. A. Sorokin, A. А. Amankulov, T. А. Tilloev, N. M. Mamashov, Э. К. Макимбето, Т. У. Талгат, А. А. Сорокин, А. А. Аманкулова, Т. А. Тиллоев, Н. М. Мамашов
المساهمون: The study was performed without external funding., Исследование проведено без спонсорской поддержки.
المصدر: Russian Journal of Pediatric Hematology and Oncology; Том 11, № 2 (2024); 54-60 ; Российский журнал детской гематологии и онкологии (РЖДГиО); Том 11, № 2 (2024); 54-60 ; 2413-5496 ; 2311-1267
مصطلحات موضوعية: вариабельность, malignant neoplasms, children, young age, morbidity, indicator, gender, ethnic group, variability, злокачественные новообразования, дети, младший возраст, заболеваемость, показатель, пол, этническая группа
وصف الملف: application/pdf
Relation: https://journal.nodgo.org/jour/article/view/1039/908; Steliarova-Foucher E., Colombet M., Ries L.A.G., Moreno F., Dolya A., Bray F., Hesseling P., Shin H.Y., Stiller C.A.; IICC-3 contributors. International incidence of childhood cancer, 2001–10: a population-based registry study. Lancet Oncol. 2017;18 (6):719–31. doi:10.1016/S1470-2045(17)30186-9.; Krejci D., Zapletalova M., Svobodová I., Pehalova L., Muzik J., Klimes D., Snajdrova L., Bajciova V., Múdrý P., Kodýtková D, Smelhaus V., Janotova I., Vrzalová A., Luks A., Sterba J., Starý J., Dusek L. Epidemiological Trends for Childhood and Adolescent Cancers in the Period 1994-2016 in the Czech Republic. Klin Onkol. 2019; 32(6):426–35. doi:10.14735/amko2019426.; Волкова А.Р., Вахитов Х.М., Кумирова Э.В. Детские злокачественные новообразования и их учет: мировые и отечественные тенденции. Российский журнал детской гематологии и онкологии. 2020;3(7):64–9. doi:10.21682/2311-1267-2020-7-3-64-69.; Satyanarayana L., Asthana S., Labani P.S. Childhood cancer incidence in India: a review of population-based cancer registries. Indian Pediatr. 2014;51(3):218–20. doi:10.1007/s13312-014-0377-0.; Isaacs H. Jr. Fetal and neonatal hepatic tumors. J Pediatr Surg. 2007;42(11):1797–803. doi:10.1016/j.jpedsurg.2007.07.047.; Yang C.P., Hung I.J., Jaing T.H., Chang W.H. Cancers in infancy: percent distribution and incidence rates. Acta Paediatr Taiwan. 2006;47(6):273–7. PMID: 17407977.; Телешова М.В. Злокачественные рабдоидные опухоли мягких тканей у детей. Обзор литературы. Российский журнал детской гематологии и онкологии. 2017;4(4):56–66. doi:10.17650/2311-1267-2017-4-4-56-66.; Bao P.P., Li K., Wu C.X., Huang Z.Z., Wang C.F., Xiang Y.M., Peng P., Gong Y.M., Xiao XM, Zheng Y. Recent incidences and trends of childhood malignant solid tumors in Shanghai, 2002–2010. Zhonghua Er Ke Za Zhi. 2013;51(4):288–94. PMID: 23927803.; Das S., Kumar Paul D.K., Anshu K., Bhakta S. Childhood Cancer Incidence in India Betweem 2012 and 2014: Report of a Populationbased Cancer Registry. Indian Pediatr. 2017;15(54):1033–6. doi:10.1007/s13312-017-1207-y.; Yang C.P., Hung I.J., Jaing T.H., Shih L.Y., Chang W.H. Cancer in infants: a review of 82 cases. Pediatr Hematol Oncol. 2005;22(6):463–81. doi:10.108008880010591002233.; Пролесковская И.В., Быданов О.И., Конопля Н.Е. Эпидемиология нейробластомы у детей в Республике Беларусь. Российский журнал детской гематологии и онкологии. 2021;1(8):35–42. doi:10.21682/2311-1267-2021-8-1-35-42.; Siegel D.A., King J.B., Lupo P.J., Durbin E.B., Tai E., Mills K., Van Dyne E., Buchanan Lunsford N., Henley S.J., Wilson R.J. Counts, incidence rates, and trends of pediatric cancer in the United States, 2003–2019. J Natl Cancer Inst. 2023;115(11):1337–54. doi:10.1093/jnci/djad115.; Kodytkova D., Bajciova V., Krejci D., Zapletalova M., Dusek V., Jarkovsky J., Muzik J., Klimes D., Stary J., Smelhaus V., Vrzalova A., Janotova I., Sterba J., Dusek L. Trends in incidence of childhood cancers in the Czech Republic: population-based analysis of national registries (1994–2014). Neoplasma. 2018;65(4):620–9. doi:10.4149/neo_2018_170517N358.; AIRTUM Working Group; CCM; AIEOP Working Group. Italian cancer fi gures, report 2012: Cancer in children and adolescents. Epidemiol Prev. 2013;37(1 Suppl 1):1–225. PMID: 23585445.; Bao P.P., Zheng Y., Wang C.F., Gu K., Jin F., Lu W. Time trends and characteristics of childhood cancer among children age 0–14 in Shanghai. Pediatr Blood Cancer. 2009;53(1):13–6. doi:10.1002/pbc.21939.DOI:10.1002/pbc.21939.; Isaacs H. Jr. Perinatal (fetal and neonatal) germ cell tumors. J Pediatr Surg. 2004;39(7):1003–13. doi:10.1016/j.jpedsurg.2004.03.045.; Heck J.E., Lombardi C.A., Cockburn M., Meyers T.J., Wilhelm M., Ritz B. Epidemiology of rhabdoid tumors of early childhood. Pediatr Blood Cancer. 2013;60(1):77–81. doi:10.1002/pbc.24141.; Krejci D., Zapletlova M., Svobodova I., Viera Bajciova V., Mudry P., Smelhaus V., Sterba J., Stary J., Capocaccia R., Dusek L. Childhood cancer epidemiology in the Czech Republic (1994–2016). Cancer Epidemiol. 2020;69:101848. doi:10.1016/j.canep.; Bhatia S., Sather H.N., Heerema N.A., Trigg M.E., Gaynon P.S., Robison L.L. Racial and ethnic diff erences in survival of children with acute lymphoblastic leukemia. Blood. 2002;100(6):1957–64. doi:10.1182/blood-2002-02-0395.; Fathi A., Bahadoram M., Amani F. Epidemiology of Childhood Cancer in Northwest Iran. Asian Pac J Cancer Prev. 2015;16(13):5459–62. doi:10.7314/APJCP.2015.16.13.5459.; https://journal.nodgo.org/jour/article/view/1039
-
16Academic Journal
المؤلفون: V. M. Moiseenko, В. М. Моисеенко
المصدر: Malignant tumours; Принято в печать ; Злокачественные опухоли; Принято в печать ; 2587-6813 ; 2224-5057
مصطلحات موضوعية: биология рака, oncology, malignant neoplasms, clinical oncology, concept of carcinogenesis, tumor growth, cancer genetics, signaling pathways, cancer biology, онкология, злокачественные новообразования, клиническая онкология, концепция канцерогенеза, опухолевый рост, генетика рака, сигнальные пути
وصف الملف: application/pdf
Relation: https://www.malignanttumors.org/jour/article/view/1311/934; https://www.malignanttumors.org/jour/article/view/1311
-
17Academic Journal
المؤلفون: E. N. Efanova, I. N. Lakomova, E. V. Pavlova, A. N. Kazurova, Е. Н. Ефанова, И. Н. Лакомова, Е. В. Павлова, А. Н. Казурова
المصدر: HIV Infection and Immunosuppressive Disorders; Том 16, № 1 (2024); 79-85 ; ВИЧ-инфекция и иммуносупрессии; Том 16, № 1 (2024); 79-85 ; 2077-9828 ; 10.22328/2077-9828-2024-16-1
مصطلحات موضوعية: гигантский врожденный невус, immunosuppression, melanoma, basal cell carcinoma of the skin, malignant neoplasms of the skin, giant congenital nevus, иммуносупрессия, меланома, базальноклеточный рак кожи, злокачественные новообразования (ЗНО)
وصف الملف: application/pdf
Relation: https://hiv.bmoc-spb.ru/jour/article/view/882/579; Титов К.С., Гомберг М.А., Неретин Е.Ю., Маркин А.А. Особенности прогноза и лечения у пациентов с ВИЧ-ассоциированными злокачественными опухолями кожи // Клиническая дерматология и венерология. 2022. Т. 21, № 4. С. 510–515; Павлов Ю.И., Волков В.В., Громов И.А., Холопов А.А. Клинический случай пациентки с подногтевой меланомой // Амбулаторная хирургия. 2020. № 3–4. С. 61–65.; Бахарева Ю.О., Тараканова В.О., Рубаняк М.Ю., Каменских Е.М. Меланома кожи (C43): анализ тенденций заболеваемости и смертности в свете пандемии COVID-19, молекулярная эпидемиология // Вопросы онкологии. 2023. Т. 69, № 4. С. 631–638.; Казаков С.В., Щербак С.Г. Клинический случай базальноклеточного рака кожи // Клиническая дерматология и венерология. 2017. Т. 16, № 2. С. 16–18.; Facciolà A., Venanzi Rullo E., Ceccarelli M., D’Andrea F., Coco M., Micali C., Cacopardo B., Marino A., Cannavò S.P., Di Rosa M., Condorelli F., Pellicanò G.F., Guarneri C., Nunnari G. Malignant melanoma in HIV: Epidemiology, pathogenesis, and management. Dermatol Ther. 2020, Vol. 33, No. 1.; Trunfio M., Ribero S., Bonora S., Di Perri G., Quaglino P., Calcagno A. Malignant Melanoma in People Living with HIV/AIDS: Can We Know More, Can We Do Better? // AIDS Rev. 2019. Vol. 21, No. 2. Р. 65–75.; Proietti I., Skroza N., Michelini S., Mambrin A., Tolino E., Bernardini N., Balduzzi V., Marchesiello A., Volpe S., Maddalena P., Bellini D., Vicini S., Potenza C. Efficacy of nivolumab in HIV patient with melanoma brain metastases // AIDS. 2020. Vol. 34, No. 9. Р. 1433–1435.; Рассохин В.В., Некрасова А.В., Михайлова Н.Б. Злокачественные опухоли при ВИЧ-инфекции. Эпидемиология, патогенез, формы опухолей // ВИЧ-инфекция и иммуносупрессии. 2017. № 9. С. 1–7.; Воробьева О.В., Ласточкин А.В. Клинико-морфологический случай рака шейки матки на фоне ВИЧ-ассоциированной инфекции // ВИЧинфекция и иммуносупрессии. 2021. № 13. С. 72–76.; Азовцева О.В., Трофимова Т.С., Архипов Г.С. Летальные исходы у больных с ВИЧ-инфекцией, параллели с адекватностью диагностики, диспансеризации и лечения // ВИЧ-инфекция и иммуносупрессии. 2018. № 3. С. 90–101; Рассохин В.В., Некрасова А.В., Беляков Н.А. Злокачественные опухоли при ВИЧ-инфекции. Локализация, профилактика, лечение // ВИЧ-инфекция и иммуносупрессии. 2017. № 2. С. 16–26.; Нелидова Н.В., Кузьмина Н.В., Русак Ю.Э., Ефанова Е.Н. Клиническое наблюдение саркомы Капоши, ассоциированной с ВИЧ, у больного диссеминированным туберкулезом легких, вирусными гепатитами В и С // Лечащий врач. 2021. Т. 11, № 24. С. 45–49. doi:10.51793/OS.2021.24.11.007; https://hiv.bmoc-spb.ru/jour/article/view/882
-
18Academic Journal
المؤلفون: I. R. Rakhmatullina, И. Р. Рахматуллина
المصدر: Creative surgery and oncology; Том 14, № 2 (2024); 200-203 ; Креативная хирургия и онкология; Том 14, № 2 (2024); 200-203 ; 2076-3093 ; 2307-0501
مصطلحات موضوعية: биология рака, oncology, malignant neoplasms, clinical oncology, concept of carcinogenesis, tumor growth, cancer genetics, signaling pathways, cancer biology, онкология, злокачественные новообразования, клиническая онкология, концепция канцерогенеза, опухолевый рост, генетика рака, сигнальные пути
وصف الملف: application/pdf
-
19Academic Journal
المؤلفون: E. V. Karabina, D. D. Sakaeva, O. N. Lipatov, Е. В. Карабина, Д. Д. Сакаева, О. Н. Липатов
المصدر: Creative surgery and oncology; Том 14, № 1 (2024); 69-77 ; Креативная хирургия и онкология; Том 14, № 1 (2024); 69-77 ; 2076-3093 ; 2307-0501
مصطلحات موضوعية: нежелательные явления, malignancies, antineoplastic drug therapy, oncology, efficacy of off-label use, adverse events, злокачественные новообразования, противоопухолевая лекарственная терапия, онкология, эффективность использования off-label
وصف الملف: application/pdf
Relation: https://www.surgonco.ru/jour/article/view/918/593; Scher K.S., Hurria A. Under-representation of older adults in cancer registration trials: known problem, little progress. J Clin Oncol. 2012;30(17):2036–8. DOI:10.1200/JCO.2012.41.6727; Марцевич С.Ю., Навасардян А.Р., Комкова Н.А. Назначение лекарственных средств не в соответствии с официальной инструкцией по медицинскому применению (off-label). Возможные причины, виды и последствия. Правовое регулирование в Российской Федерации. Рациональная фармакотерапия в кардиологии. 2017;13(5):667–74. DOI:10.20996/1819-6446-2017-13-5-667-674; Переверзев А.П., Лепахин В.К. Современный взгляд на проблему применения ЛС с нарушением предписаний инструкции. Медицинский совет 2013;(4-1):110–1. DOI:10.21518/2079-701X-2013-4-110-111; Lim M., Shulman D.S., Roberts H., Li A., Clymer J., Bona K., et al. Offlabel prescribing of targeted anticancer therapy at a large pediatric cancer center. Cancer Med. 2020;9(18):6658–66. DOI:10.1002/cam4.3349; Lee D.P., Skolnik J.M., Adamson P.C. Pediatric phase I trials in oncology: an analysis of study conduct efficiency. J Clin Oncol. 2005;23(33):8431–41. DOI:10.1200/JCO.2005.02.1568; Aguilera D., Mazewski C., Fangusaro J., MacDonald T.J., McNallKnapp R.Y., Hayes L.L., et al. Response to bevacizumab, irinotecan, and temozolomide in children with relapsed medulloblastoma: a multiinstitutional experience. Childs Nerv Syst. 2013;29(4):589–96. DOI:10.1007/s00381-012-2013-4; Spini A., Ciccone V., Rosellini P., Ziche M., Lucenteforte E., Salvo F., et al. Safety of anti-angiogenic drugs in pediatric patients with solid tumors: a systematic review and meta-analysis. Cancers (Basel). 2022;14(21):5315. DOI:10.3390/cancers14215315; Kalra M., Heath J.A., Kellie S.J., Dalla Pozza L., Stevens M.M., Swamy S., et al. Confirmation of bevacizumab activity, and maintenance of efficacy in retreatment after subsequent relapse, in pediatric low-grade glioma. J Pediatr Hematol Oncol. 2015;37(6):e341–6. DOI:10.1097/MPH.0000000000000371; Calò P., Pianton N., Basle A., Vasiljevic A., Barritault M., Beuriat P.A., et al. Bevacizumab as single agent in children and teenagers with optic pathway glioma. Cancers (Basel). 2023;15(4):1036. DOI:10.3390/cancers15041036; Green K., Panagopoulou P., D’Arco F., O’Hare P., Bowman R., Walters B., et al. A nationwide evaluation of bevacizumab-based treatments in pediatric low-grade glioma in the UK: Safety, efficacy, visual morbidity, and outcomes. Neuro Oncol. 2023;25(4):774–85. DOI:10.1093/neuonc/noac223; Bennebroek C.A.M., van Zwol J., Porro G.L., Oostenbrink R., Dittrich A.T.M., Groot A.L.W., et al. Impact of bevacizumab on visual function, tumor size, and toxicity in pediatric progressive optic pathway glioma: a retrospective nationwide multicentre study. Cancers (Basel). 2022;14(24):6087. DOI:10.3390/cancers14246087; Cenna R., Basiricò M., Berchialla P., Bertorello N., Cagnazzo C., et al. Off-label and compassionate use of targeted anticancer therapies: The experience of an Italian pediatric cancer center. Pediatr Blood Cancer. 2023;70(3):e30148. DOI:10.1002/pbc.30148; de Marcellus C., Tauziède-Espariat A., Cuinet A., Pasqualini C., Robert M.P., Beccaria K., et al. The role of irinotecan-bevacizumab as rescue regimen in children with low-grade gliomas: a retrospective nationwide study in 72 patients. J Neurooncol. 2022;157(2):355–64. DOI:10.1007/s11060-022-03970-4; El-Khouly F.E., Veldhuijzen van Zanten S.E.M., Jansen M.H.A., Bakker D.P., Sanchez Aliaga E., Hendrikse N.H., et al. A phase I/II study of bevacizumab, irinotecan and erlotinib in children with progressive diffuse intrinsic pontine glioma. J Neurooncol. 2021;153(2):263–71. DOI:10.1007/s11060-021-03763-1; Su J.M., Murray J.C., McNall-Knapp R.Y., Bowers D.C., Shah S., Adesina A.M., et al. A phase 2 study of valproic acid and radiation, followed by maintenance valproic acid and bevacizumab in children with newly diagnosed diffuse intrinsic pontine glioma or high-grade glioma. Pediatr Blood Cancer. 2020;67(6):e28283. DOI:10.1002/pbc.28283; Crotty E.E., Leary S.E.S., Geyer J.R., Olson J.M., Millard N.E., Sato A.A., et al. Children with DIPG and high-grade glioma treated with temozolomide, irinotecan, and bevacizumab: the Seattle Children’s Hospital experience. J Neurooncol. 2020;148(3):607–17. DOI:10.1007/s11060-020-03558-w; Zhukova N., Rajagopal R., Lam A., Coleman L., Shipman P., Walwyn T., et al. Use of bevacizumab as a single agent or in adjunct with traditional chemotherapy regimens in children with unresectable or progressive low-grade glioma. Cancer Med. 2019;8(1):40–50. DOI:10.1002/cam4.1799; Metts J., Harrington B., Salman E., Bradfield S.M., Flanary J., Mosha M., et al. A phase I study of irinotecan and temozolomide with bevacizumab in children with recurrent/refractory central nervous system tumors. Childs Nerv Syst. 2022;38(5):919–28. DOI:10.1007/s00381-022-05479-7; Schiavetti A., Varrasso G., Mollace M.G., Dominici C., Ferrara E., Papoff P., et al. Bevacizumab-containing regimen in relapsed/progressed brain tumors: a single-institution experience. Childs Nerv Syst. 2019;35(6):1007–12. DOI:10.1007/s00381-019-04117-z; Levy A.S., Krailo M., Chi S., Villaluna D., Springer L., Williams-Hughes C., et al. Temozolomide with irinotecan versus temozolomide, irinotecan plus bevacizumab for recurrent medulloblastoma of childhood: Report of a COG randomized Phase II screening trial. Pediatr Blood Cancer. 2021;68(8):e29031. DOI:10.1002/pbc.29031; Gaspar N., Campbell-Hewson Q., Gallego Melcon S., Locatelli F., Venkatramani R., Hecker-Nolting S., et al. Phase I/II study of single-agent lenvatinib in children and adolescents with refractory or relapsed solid malignancies and young adults with osteosarcoma (ITCC-050)☆. ESMO Open. 2021;6(5):100250. DOI:10.1016/j.esmoop.2021.100250; Gaspar N., Venkatramani R., Hecker-Nolting S., Melcon S.G., Locatelli F., Bautista F., et al. Lenvatinib with etoposide plus ifosfamide in patients with refractory or relapsed osteosarcoma (ITCC-050): a multicentre, open-label, multicohort, phase 1/2 study. Lancet Oncol. 2021;22(9):1312–21. DOI:10.1016/S1470-2045(21)00387-9; Mascarenhas L., Chi Y.Y., Hingorani P., Anderson J.R., Lyden E.R., Rodeberg D.A., et al. Randomized phase II trial of bevacizumab or temsirolimus in combination with chemotherapy for first relapse rhabdomyosarcoma: a report from the children’s oncology group. J Clin Oncol. 2019;37(31):2866–74. DOI:10.1200/JCO.19.00576; Russo I., Di Paolo V., Crocoli A., Mastronuzzi A., Serra A., Di Paolo P.L., et al. A chart review on the feasibility and safety of the vincristine irinotecan pazopanib (VIPaz) association in children and adolescents with resistant or relapsed sarcomas. Front Oncol. 2020;10:1228. DOI:10.3389/fonc.2020.01228; Weiss A.R., Chen Y.L., Scharschmidt T.J., Chi Y.Y., Tian J., Black J.O., et al. Pathological response in children and adults with large unresected intermediate-grade or high-grade soft tissue sarcoma receiving preoperative chemoradiotherapy with or without pazopanib (ARST1321): a multicentre, randomised, open-label, phase 2 trial. Lancet Oncol. 2020;21(8):1110–22. DOI:10.1016/S1470-2045(20)30325-9; Federico S.M., Caldwell K.J., McCarville M.B., Daryani V.M., Stewart C.F., Mao S., et al. Phase I expansion cohort to evaluate the combination of bevacizumab, sorafenib and low-dose cyclophosphamide in children and young adults with refractory or recurrent solid tumours. Eur J Cancer. 2020;132:35–42. DOI:10.1016/j.ejca.2020.03.010; Geoerger B., Morland B., Jiménez I., Frappaz D., Pearson A.D.J., Vassal G., et al. Phase 1 dose-escalation and pharmacokinetic study of regorafenib in paediatric patients with recurrent or refractory solid malignancies. Eur J Cancer. 2021;153:142–52. DOI:10.1016/j.ejca.2021.05.023; Meany H.J., Widemann B.C., Hinds P.S., Bagatell R., Shusterman S., Stern E., et al. Phase 1 study of sorafenib and irinotecan in pediatric patients with relapsed or refractory solid tumors. Pediatr Blood Cancer. 2021;68(11):e29282. DOI:10.1002/pbc.29282; Santana V.M., Sahr N., Tatevossian R.G., Jia S., Campagne O., Sykes A., et al. A phase 1 trial of everolimus and bevacizumab in children with recurrent solid tumors. Cancer. 2020;126(8):1749–57. DOI:10.1002/cncr.32722; Inaba H., Panetta J.C., Pounds S.B., Wang L., Li L., Navid F., et al. Sorafenib population pharmacokinetics and skin toxicities in children and adolescents with refractory/relapsed leukemia or solid tumor malignancies. Clin Cancer Res. 2019;25(24):7320–30. DOI:10.1158/1078-0432.CCR-19-0470; Glod J., Arnaldez F.I., Wiener L., Spencer M., Killian J.K., Meltzer P., et al. A phase II trial of vandetanib in children and adults with succinate dehydrogenase-deficient gastrointestinal stromal tumor. Clin Cancer Res. 2019;25(21):6302–8. DOI:10.1158/1078-0432.CCR-19-0986; Verschuur A.C., Bajčiová V., Mascarenhas L., Khosravan R., Lin X., Ingrosso A., et al. Sunitinib in pediatric patients with advanced gastrointestinal stromal tumor: results from a phase I/II trial. Cancer Chemother Pharmacol. 2019;84(1):41–50. DOI:10.1007/s00280-019-03814-5; Keino D., Yokosuka T., Hirose A., Sakurai Y., Nakamura W., Fujita S., et al. Pilot study of the combination of sorafenib and fractionated irinotecan in pediatric relapse/refractory hepatic cancer (FINEX pilot study). Pediatr Blood Cancer. 2020;67(11):e28655. DOI:10.1002/pbc.28655; Kraft I.L., Akshintala S., Zhu Y., Lei H., Derse-Anthony C., Dombi E., et al. Outcomes of children and adolescents with advanced hereditary medullary thyroid carcinoma treated with vandetanib. clin cancer res. 2018;24(4):753–65. DOI:10.1158/1078-0432.CCR-17-2101; Raciborska A., Bilska K. Sorafenib in patients with progressed and refractory bone tumors. Med Oncol. 2018;35(10):126. DOI:10.1007/s12032-018-1180-x; Modak S., Kushner B.H., Basu E., Roberts S.S., Cheung N.K. Combination of bevacizumab, irinotecan, and temozolomide for refractory or relapsed neuroblastoma: Results of a phase II study. Pediatr Blood Cancer. 2017;64(8):10.1002/pbc.26448. DOI:10.1002/pbc.26448; Wetmore C., Daryani V.M., Billups C.A., Boyett J.M., Leary S., Tanos R., et al. Phase II evaluation of sunitinib in the treatment of recurrent or refractory high-grade glioma or ependymoma in children: a children’s Oncology Group Study ACNS1021. Cancer Med. 2016;5(7):1416–24. DOI:10.1002/cam4.713; Mascolo A., Scavone C., Bertini M., Brusco S., Punzo F., Pota E., et al. Safety of anticancer agents used in children: a focus on their off-label use through data from the spontaneous reporting system. Front Pharmacol. 2020;11:621. DOI:10.3389/fphar.2020.00621; Eaton A.A., Sima C.S., Panageas K.S. Prevalence and safety of off-label use of chemotherapeutic agents in older patients with breast cancer: estimates from SEER-Medicare Data. J Natl Compr Canc Netw. 2016;14(1):57–65. DOI:10.6004/jnccn.2016.0007; Dal Pan G.J. Monitoring the safety of medicines used off-label. Clin Pharmacol Ther. 2012;91:787–95. DOI:10.1038/clpt.2012.24; Rusz C.M., Ősz B.E., Jîtcă G., Miklos A., Bătrînu M.G., Imre S. Offlabel medication: from a simple concept to complex practical aspects. Int J Environ Res Public Health. 2021;18(19):10447. DOI:10.3390/ijerph181910447; Eguale T., Buckeridge D.L., Verma A., Winslade N.E., Benedetti A., Hanley J.A., et al. Association of off-label drug use and adverse drug events in an adult population. JAMA Intern Med. 2016;176(1):55–63. DOI:10.1001/jamainternmed.2015.6058; https://www.surgonco.ru/jour/article/view/918
-
20Academic Journal
المؤلفون: Цеймах, Александр Евгеньевич, Мищенко, Александр Николаевич, Шойхет, Яков Нахманович, Бедян, Нвард Карленовна
المصدر: Bulletin of Medical Science; Vol. 33 No. 1 (2024): Bulletin of Medical Science; 121-127 ; Бюллетень медицинской науки; Том 33 № 1 (2024): Бюллетень медицинской науки; 121-127 ; 2541-8475
مصطلحات موضوعية: злокачественные новообразования желчевыводящих протоков, химиотерапия, malignant tumors of the biliary ducts, chemotherapy
وصف الملف: application/pdf