يعرض 1 - 1 نتائج من 1 نتيجة بحث عن '"Е. Ю. Бахарев"', وقت الاستعلام: 0.32s تنقيح النتائج
  1. 1
    Academic Journal

    المساهمون: This work was supported by an ANO grant (Agreement No. 1603-32/23с), Работа выполнена при поддержке гранта АНО (Соглашение № 1603-32/23с)

    المصدر: Russian Sklifosovsky Journal "Emergency Medical Care"; Том 12, № 4 (2023); 637-649 ; Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь»; Том 12, № 4 (2023); 637-649 ; 2541-8017 ; 2223-9022

    وصف الملف: application/pdf

    Relation: https://www.jnmp.ru/jour/article/view/1727/1362; Meyer DJ. Enzymatic/non-enzymatic formation of nitric oxide. Nat Med. 1995;1(11):1103–1104. PMID: 7584968 doi:10.1038/nm1195-1103a; Zweier JL, Samouilov A, Kuppusamy P. Non-enzymatic nitric oxide synthesis in biological systems. Biochim Biophys Acta. 1999;1411(2–3):250–262. PMID: 10320661 doi:10.1016/s0005-2728(99)00018-3; Граник В.Г., Григорьев Н.Б. Оксид азота (NO). Новый путь к поиску лекарств. Москва: Вузовская книга; 2004.; Houde M, Desbiens L, D’Orléans-Juste P. Endothelin-1: biosynthesis, signaling and vasoreactivity. Adv Pharmacol. 2016;77:143–175. PMID: 27451097 doi:10.1016/bs.apha.2016.05.002; Cortese-Krott MM, Rodriguez-Mateos A, Sansone R, Kuhnle GG, Thasian-Sivarajah S, Krenz T, et al. Human red blood cells at work: identification and visualization of erythrocytic eNOS activity in health and disease. Blood. 2012;120(20):4229–4237. PMID: 23007404 doi:10.1182/blood-2012-07-442277; Voraphani N, Gladwin MT, Contreras AU, Kaminski N, Tedrow JR, Milosevic J, et al. An airway epithelial iNOS-DUOX2-thyroid peroxidase metabolome drives Th1/Th2 nitrative stress in human severe asthma. Mucosal Immunol. 2014;7(5):1175–1185. PMID: 24518246 doi:10.1038/mi.2014.6; Осипов А.Н., Борисенко Г.Г., Владимиров Ю.А. Биологическая роль нитрозильных комплексов гемопротеинов. Успехи биологической химии. 2007;47:259–292.; Derbyshire ER, Marletta MA. Structure and regulation of soluble guanylate cyclase. Annu Rev Biochem. 2012;81:533–59. PMID: 22404633 doi:10.1146/annurev-biochem-050410-100030; Cipolla MJ. The cerebral circulation. Colloquium Series on Integrated Systems Physiology. 2016;8(1):1–80. doi:10.4199/C00141ED2V01Y201607ISP066; Attwell D, Buchan AM, Charpak S, Lauritzen M, Macvicar BA, Newman EA. Glial and neuronal control of brain blood flow. Nature. 2010;468(7321):232–243 PMID: 21068832 doi:10.1038/nature09613; Ally A, Powell I, Ally MM, Chaitoff K, Nauli SM. Role of Neuronal Nitric Oxide Synthase on Cardiovascular Functions in Physiological and Pathophysiological States. Nitric Oxide. 2020;102:52–73. PMID: 32590118 doi:10.1016/j.niox.2020.06.004; Toda N, Ayajiki K, Okamura T. Cerebral blood flow regulation by nitric oxide: recent advances. Pharmacol Rev. 2009;61(1):62–97. PMID: 19293146 doi:10.1124/pr.108.000547; Tejero J, Shiva S, Gladwin MT. Sources of vascular nitric oxide and reactive oxygen species and their regulation. Physiol Rev. 2019;99(1):311–379. PMID: 30379623 doi:10.1152/physrev.00036.2017; Reina-Torres E, De Ieso ML, Pasquale LR, Madekurozwa M, van Batenburg-Sherwood J, Overby DR. The vital role for nitric oxide in intraocular pressure homeostasis. Prog Retin Eye Res. 2021; 83:100922. PMID: 33253900 doi:10.1016/j.preteyeres.2020.100922; Vanin AF. Physico-Chemistry of Dinitrosyl Iron Complexes as a Determinant of Their Biological Activity. Int J Mol Sci. 2021;22(19):10356. PMID: 34638698 doi:10.3390/ijms221910356; Kosmachevskaya OV, Nasybullina EI, Shumaev KB, Novikova NN, Topunov AF. Protective Effect of Dinitrosyl Iron Complexes Bound with Hemoglobin on Oxidative Modification by Peroxynitrite. Int J Mol Sci. 2021;22(24):13649. PMID: 34948445 doi:10.3390/ijms222413649; Hsiao HY, Chung CW, Santos JH, Villaflores OB, Lu TT. Fe in biosynthesis, translocation, and signal transduction of NO: Toward bioinorganic engineering of dinitrosyl iron complexes into NO-delivery scaffolds for tissue engineering. Dalton Trans. 2019;48(26):9431–9453. doi:10.1039/C9DT00777F; Mülsch A, Mordvintcev P, Vanin AF, Busse R. The potent vasodilating and guanylylcyclase activating dinitrozyl-iron (11) complex is stored in a protein-bound form in vascular tissue and is re-leased by thiols. FEBS Lett. 1991;294(3):252–256. PMID: 1684553 doi:10.1016/0014-5793(91)81441-a; Stomberski CT, Hess DT, Stamler JS. Protein S-nitrosylation: Determinants of Specificity and Enzymatic Regulation of S-nitrosothiol-based Signaling. Antiox Redox Signal. 2019;30(10):1331–1351. PMID: 29130312 doi:10.1089/ars.2017.7403; Gow AJ. The biological chemistry of nitric oxide as it pertains to the extrapulmonary effects of inhaled nitric oxide. Proc Am Thorac Soc. 2006;3(2):150–152. PMID: 16565423 doi:10.1513/pats.200506-058BG; McMahon TJ, Doctor A. Extrapulmonary effects of inhaled nitric oxide: role of reversible S-nitrosylation of erythrocytic hemoglobin. Proc Am Thorac Soc. 2006;3(2):153–160. PMID: 16565424 doi:10.1513/pats.200507-066BG; Erwin PA, Lin AJ, Golan DE, Michel T. Receptor-regulated dynamic S-nitrosylation of endothelial nitric-oxide synthase in vascular endothelial cells. J Biol Chem. 2005;280(20):19888–19894. PMID: 15774480 doi:10.1074/jbc.M413058200; Jung CS, Iuliano BA, Harvey-White J, Espey MG, Oldfield EH, Pluta RM. Association between cerebrospinal fluid levels of asymmetric dimethyl-L-arginine, an endogenous inhibitor of endothelial nitric oxide synthase, and cerebral vasospasm in a primate model of subarachnoid hemorrhage. J Neurosurg. 2004;101(5):836–842. PMID: 15543672 doi:10.3171/jns.2004.101.5.0836; Stamler JS, Jia L, Eu JP, McMahon TJ, Demchenko IT, Bonaventura J, et al. Blood flow regulation by S-nitrosohemoglobin in the physiological oxygen gradient. Science. 1997;276(5321):2034–2037. PMID: 9197264 doi:10.1126/science.276.5321.2034; Крылов В.В., Петриков С.С., Солодов А.А. Внутричерепная гипертензия. Москва: Бином; 2016.; Claassen JAHR, Thijssen DHJ, Panerai RB, Faraci FM. Regulation of cerebral blood flow in humans: physiology and clinical implications of autoregulation. Physiol Rev. 2021;101(4):1487–1559. PMID: 33769101 doi:10.1152/physrev.00022.2020; Fog M. The relationship between the blood pressure and the tonic regulation of the pial arteries. J Neurol Psychiatry. 1938;1(3):187–197. PMID: 21610927 doi:10.1136/jnnp.1.3.187; Peixoto AJ. Acute severe hypertension. N Engl J Med. 2019;381(19):1843–1852. PMID: 31693807 doi:10.1056/NEJMcp1901117; Pluta RM. Delayed cerebral vasospasm and nitric oxide : review, new hypothesis, and proposed treatment. Pharmacol Ther. 2005;105(1):23–56. PMID: 15626454 doi:10.1016/j.pharmthera.2004.10.002; Macdonald RL, Schweizer TA. Spontaneous subarachnoid haemorrhage. Lancet. 2017;389(10069):655–666. PMID: 27637674 doi:10.1016/S0140-6736(16)30668-7; Sehba FA, Bederson JB. Nitric oxide in early brain injury after subarachnoid hemorrhage. Acta Neurochir Suppl. 2011;110(Pt1):89–103. PMID: 21116923 doi:10.1007/978-3-7091-0353-1_18; Dodd WS, Laurent D, Dumont AS, Hasan DM, Jabbour PM, Starke RM, et al. Pathophysiology of delayed cerebral ischemia after subarachnoid hemorrhage : a review. J Am Heart Assoc. 2021;10(15):e021845. PMID: 34325514 doi:10.1161/JAHA.121.021845; Ikram A, Javaid MA, Ortega-Gutierrez S, Selim M, Kelangi S, Anwar SMH, et al. Delayed cerebral ischemia after subarachnoid hemorrhage. J Stroke Cerebrovasc Dis. 2021;30(1):106064. PMID: 34464924 doi:10.1016/j.jstrokecerebrovasdis.2021.106064; Siuta M, Zuckerman SL, Mocco J. Nitric oxide in cerebral vasospasm: theories, measurement, and treatment. Neurol Res Int. 2013;2013:972417. PMID: 23878735 doi:10.1155/2013/972417; Woszczyk A, Deinsberger W, Böker DK. Nitric oxide metabolites in cisternal CSF correlate with cerebral vasospasm in patients with a subarachnoid haemorrhage. Acta Neurochir. 2003;145(4):257–264. PMID: 12748885 doi:10.1007/s00701-003-0004-7; Jung CS, Oldfield EH, Harvey-White J, Espey MG, Zimmermann M, Seifert V, et al. Association of an endogenous inhibitor of nitric oxide synthase with cerebral vasospasm in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg. 2007;107(5):945–950. PMID: 17977265 doi:10.3171/JNS-07/11/0945; Durmaz R, Ozkara E, Kanbak G, Arslan OC, Dokumacioğlu A, Kartkaya K, et al. Nitric oxide level and adenosine deaminase activity in cerebrospinal fluid of patients with subarachnoid hemorrhage. Turk Neurosurg. 2008;18(2):157–164. PMID: 18597230; Калинкин А.А. Нимодипин и сульфат магния в профилактике и лечении сосудистого спазма у больных с субарахноидальным кровоизлиянием вследствие разрыва церебральных аневризм : дисс. … канд. мед. наук. Москва; 2016.; Kho GS, Kandasamy R, Bujang MA, Swammy M, Mustapha M, Abdullah JM. Ratio of Nitric Oxide Metabolite Levels in Cerebrospinal Fluid and Serum, and Their Correlation with Severity and Outcome in Patients with Subarachnoid Haemorrhage. Malays J Med Scie. 2021;28(6):42–54. PMID: 35002489 doi:10.21315/mjms2021.28.6.5; Staub F, Graf R, Gabel P, Köchling M, Klug N, Heiss WD. Multiple interstitial substances measured by microdialysis in patients with subarachnoid hemorrhage. Neurosurg. 2000;47(5):1106–1116. PMID: 11063103 doi:10.1097/00006123-200011000-00016; Khaldi A, Zauner A, Reinert M, Woodward JJ, Bullock MR. Measurement of nitric oxide and brain tissue oxygen tension in patients after severe subarachnoid hemorrhage. Neurosurg. 2001;49(1):33–40. PMID: 11440457 doi:10.1097/00006123-200107000-00005; Sakowitz OW, Wolfrum S, Sarrafzadeh AS, Stover JF, Lanksch WR, Unterberg AW. Temporal profiles of extracellular nitric oxide metabolites following aneurysmal subarachnoid hemorrhage. Acta Neurochir Suppl. 2002;81:351–354. PMID: 12168345 doi:10.1007/978-3-7091-6738-0_89; Hosmann A, Milivojev N, Dumitrescu S, Reinprecht A, Weidinger A, Kozlov AV. Cerebral nitric oxide and mitochondrial function in patients suffering aneurysmal subarachnoid hemorrhage—a translational approach. Acta Neurochir. 2021;163(1):139–149. PMID: 32839865 doi:10.1007/s00701-020-04536-x; Pluta RM, Thompson BG, Dawson TM, Snyder SH, Boock RJ, Oldfield EH. Loss of nitric oxide synthase immunoreactivity in cerebral vasospasm. J Neurosurg. 1996;84(4):648–654. PMID: 8613858 doi:10.3171/jns.1996.84.4.0648; Pluta RM. Dysfunction of nitric oxide synthases as a cause and therapeutic target in delayed cerebral vasospasm after SAH. Acta Neurochir Suppl. 2008;104:139–147. PMID: 18456999 doi:10.1007/978-3-211-75718-5_28; Berra LV, Carcereri De Prati A, Suzuki H, Pasqualin A. The role of constitutive and inducible nitric oxide synthase in the human brain after subarachnoid hemorrhage. J Neurosurg Sci. 2007;51(1):1–9. PMID: 17369785; Sobey CG. Cerebrovascular dysfunction after subarachnoid haemorrhage: novel mechanisms and directions for therapy. Clin Exp Pharmacol Physiol. 2001;28(11):926–929. PMID: 11703398 doi:10.1046/j.1440-1681.2001.03550.x; Sobey CG, Quan L. Impaired cerebral vasodilator responses to NO and PDE V inhibition after subarachnoid hemorrhage. Am J Physiol. 1999;277(5):H1718–H1724. PMID: 10564124 doi:10.1152/ajpheart.1999.277.5.H1718; Inoha S, Inamura T, Ikezaki K, Nakamizo A, Amano T, Fukui M. Type V phosphodiesterase expression in cerebral arteries with vasospasm after subarachnoid hemorrhage in a canine model. Neurol Res. 2002;24(6):607–612. PMID: 12238630 doi:10.1179/016164102101200447; Atalay B, Caner H, Cekinmez M, Ozen O, Celasun B, Altinors N. Systemic Administration Of Phosphodiesterase V Inhibitor, Sildenafil Citrate, Forattenuation Of Cerebral Vasospasm After Experimental Subarachnoid Hemorrhage. Neurosurgery. 2006;59(5):1102–1108. PMID: 17143244 doi:10.1227/01.NEU.0000245605.22817.44; Han BH, Vellimana AK, Zhou ML, Milner E, Zipfel GJ. Phosphodiesterase 5 inhibition attenuates cerebral vasospasm and improves functional recovery after experimental subarachnoid hemorrhage. Neurosurgery. 2012;70(1):178–187. PMID: 21796010 doi:10.1227/NEU.0b013e31822ec2b0; Washington CW, Derdeyn CP, Dhar R, Arias EJ, Chicoine MR, Cross DT, et al. A Phase I proof-of-concept and safety trial of sildenafil to treat cerebral vasospasm following subarachnoid hemorrhage. J Neurosurg. 2016;124(2):318–327. PMID: 26314998 doi:10.3171/2015.2.JNS142752; Mukherjee KK, Singh SK, Khosla VK, Mohindra S, Salunke P. Safety and efficacy of sildenafil citrate in reversal of cerebral vasospasm: a feasibility study. Surg Neurol Int. 2012;3:3. PMID: 22347673 URL: https://surgicalneurologyint.com/surgicalint-articles/safety-and-efficacy-of-sildenafil-citrate-in-reversal-of-cerebral-vasospasm-a-feasibility-study/; Dhar R, Washington C, Diringer M, Zazulia A, Jafri H, Derdeyn C, et al. Acute effect of intravenous sildenafil on cerebral blood flow in patients with vasospasm after subarachnoid hemorrhage. Neurocrit Care. 2016;25(2):201–204. PMID: 26940913 doi:10.1007/s12028-016-0243-0; Zhao D, Liu Q, Ji Y, Wang G, He X, Tian W, et al. Effect of 18β-glycyrrhetinic acid on cerebral vasospasm caused by asymmetric dimethylarginine after experimental subarachnoid hemorrhage in rats. Neurol Res. 2015;37(6):476–483. PMID: 25475507 doi:10.1179/1743132814Y.0000000462; Li H, Wu W, Liu M, Zhang X, Zhang QR, Ni L, Hang CH. Increased cerebrospinal fluid concentrations of asymmetric dimethylarginine correlate with adverse clinical outcome in subarachnoid hemorrhage patients. J Clin Neurosci. 2014;21(8):1404–1408. PMID: 24814854 doi:10.1016/j.jocn.2013.11.038; https://www.jnmp.ru/jour/article/view/1727