-
1Academic Journal
المؤلفون: Alexey I. Firumyants, Leyla S. Namazova-Baranova, George A. Karkashadze, Olga P. Kovtun, Viktor V. Dyachenko, Nikita S. Shilko, Elena N. Rudenko, Alexey V. Meshkov, Natalia S. Sergienko, Yuliya V. Nesterova, Leonid M. Yatsick, Anastasiya I. Rykunova, А. И. Фирумянц, Л. С. Намазова-Баранова, Г. А. Каркашадзе, О. П. Ковтун, В. В. Дьяченко, Н. С. Шилко, Е. Н. Руденко, А. В. Мешков, Н. С. Сергиенко, Ю. В. Нестерова, Л. М. Яцык, А. И. Рыкунова
المصدر: Current Pediatrics; Том 22, № 6 (2023); 521-527 ; Вопросы современной педиатрии; Том 22, № 6 (2023); 521-527 ; 1682-5535 ; 1682-5527
مصطلحات موضوعية: морфометрия мозга, magnetic resonance imaging, neurovisualization, brain morphometry, магнитно-резонансная томография, нейровизуализация
وصف الملف: application/pdf
Relation: https://vsp.spr-journal.ru/jour/article/view/3360/1354; van Erp TGM, Walton E, Hibar DP, et al. Cortical Brain Abnormalities in 4474 Individuals With Schizophrenia and 5098 Control Subjects via the Enhancing Neuro Imaging Genetics Through Meta Analysis (ENIGMA) Consortium. Biol Psychiatry. 2018;84(9): 644–654. doi: https://doi.org/10.1016/j.biopsych.2018.04.023; Opel N, Goltermann J, Hermesdorf M, et al. Cross-Disorder Analysis of Brain Structural Abnormalities in Six Major Psychiatric Disorders: A Secondary Analysis of Mega- and Meta-analytical Findings From the ENIGMA Consortium. Biol Psychiatry. 20201;88(9):678–686. doi: https://doi.org/10.1016/j.biopsych.2020.04.027; Vetter NC, Backhausen LL, Buse J, et al. Altered brain morphology in boys with attention deficit hyperactivity disorder with and without comorbid conduct disorder/oppositional defiant disorder. Hum Brain Mapp. 2020;41(4):973–983. doi: https://doi.org/10.1002/hbm.24853; Arribarat G, Peran P. Quantitative MRI markers in Parkinson’s disease and parkinsonian syndromes. Curr Opin Neurol. 2020;33(2):222–229. doi: https://doi.org/10.1097/WCO.0000000000000796; Dipietro L, Gonzalez-Mego P, Ramos-Estebanez C, et al. The evolution of Big Data in neuroscience and neurology. J Big Data. 2023; 10(1):116. doi: https://doi.org/10.1186/s40537-023-00751-2; Martínez K, Colom R. Imaging the Intelligence of Humans. In: The Cambridge Handbook of Intelligence and Cognitive Neuroscience. Barbey AK, Karama S, Haier RJ, eds. Cambridge University Press; 2021. pp. 44–69. doi: https://doi.org/10.1017/9781108635462; Gaser C. Structural MRI: Morphometry. In: Neuroeconomics. Reuter M, Montag C, eds. Springer Berlin, Heidelberg; 2016. pp. 399–409. doi: https://doi.org/10.1007/978-3-642-35923-1; Marquand AF, Kia SM, Zabihi M, et al. Conceptualizing mental disorders as deviations from normative functioning. Mol Psychiatry. 2019;24(10):1415–1424. doi: https://doi.org/10.1038/s41380-019-0441-1; Shah PJ, Ebmeier KP, Glabus MF, Goodwin GM. Cortical grey matter reductions associated with treatment-resistant chronic unipolar depression. Controlled magnetic resonance imaging study. Br J Psychiatry. 1998;172:527–532. doi: https://doi.org/10.1192/bjp.172.6.527; Hayashi T, Hou Y, Glasser MF, et al. The nonhuman primate neuroimaging and neuroanatomy project. Neuroimage. 2021;229: 117726. doi: https://doi.org/10.1016/j.neuroimage.2021.117726; Hoogman M, Muetzel R, Guimaraes JP, et al. Brain Imaging of the Cortex in ADHD: A Coordinated Analysis of Large-Scale Clinical and Population-Based Samples. Am J Psychiatry. 2019;176(7): 531–542. doi: https://doi.org/10.1176/appi.ajp.2019.18091033; Kong XZ, Postema MC, Guadalupe T, et al. Mapping brain asymmetry in health and disease through the ENIGMA consortium. Hum Brain Mapp. 2022;43(1):167–181. doi: https://doi.org/10.1002/hbm.25033; Grasby KL, Jahanshad N, Painter JN, et al. The genetic architecture of the human cerebral cortex. Science. 2020 Mar 20;367(6484):eaay6690. doi: https://doi.org/10.1126/science.aay6690; Bookheimer SY, Salat DH, Terpstra M, et al. The Lifespan Human Connectome Project in Aging: An overview. Neuroimage. 2019;185:335–348. doi: https://doi.org/10.1016/j.neuroimage.2018.10.009; Hoogman M, Bralten J, Hibar DP, et al. Subcortical brain volume differences in participants with attention deficit hyperactivity disorder in children and adults: a cross-sectional mega-analysis. Lancet Psychiatry. 2017;4(4):310–319. doi: https://doi.org/10.1016/S2215-0366(17)30049-4; van Rooij D, Anagnostou E, Arango C, et al. Cortical and Subcortical Brain Morphometry Differences Between Patients With Autism Spectrum Disorder and Healthy Individuals Across the Lifespan: Results From the ENIGMA ASD Working Group. Am J Psychiatry. 2018;175(4):359–369. doi: https://doi.org/10.1176/appi.ajp.2017.17010100; Nam KW, Castellanos N, Simmons A, et al. Alterations in cortical thickness development in preterm-born individuals: Implications for high-order cognitive functions. Neuroimage. 2015;115:64–75. doi: https://doi.org/10.1016/j.neuroimage.2015.04.015; Vargha -Khadem F, Watkins KE, Price CJ, et al. Neural basis of an inherited speech and language disorder. Proc Natl Acad Sci U S A. 1998;95(21):12695–12700. doi: https://doi.org/10.1073/pnas.95.21.12695; Wright IC, Ellison ZR, Sharma T, et al. Mapping of grey matter changes in schizophrenia. Schizophr Res. 1999;35(1):1–14. doi: https://doi.org/10.1016/s0920-9964(98)00094-2; Wright IC, McGuire PK, Poline JB, et al. A voxel-based method for the statistical analysis of gray and white matter density applied to schizophrenia. Neuroimage. 1995;2(4):244–252. doi: https://doi.org/10.1006/nimg.1995.1032; Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage. 1999;9(2):179–194. doi: https://doi.org/10.1006/nimg.1998.0395; Ai L, Craddock RC, Tottenham N, et al. Is it time to switch your T1W sequence? Assessing the impact of prospective motion correction on the reliability and quality of structural imaging. Neuroimage. 2021;226:117585. doi: https://doi.org/10.1016/j.neuroimage.2020.117585; Ashburner J, Friston KJ. Voxel-based morphometry — the methods. Neuroimage. 2000;11(6 Pt 1):805–821. doi: https://doi.org/10.1006/nimg.2000.0582; De Bellis MD, Keshavan MS, Beers SR, et al. Sex differences in brain maturation during childhood and adolescence. Cereb Cortex. 2001;11(6):552–557. doi: https://doi.org/10.1093/cercor/11.6.552; Backhausen LL, Herting MM, Tamnes CK, Vetter NC. Best Practices in Structural Neuroimaging of Neurodevelopmental Disorders. Neuropsychol Rev. 2022;32(2):400–418. doi: https://doi.org/10.1007/s11065-021-09496-2; Dong HM, Castellanos FX, Yang N, et al. Charting brain growth in tandem with brain templates at school age. Sci Bull (Beijing). 2020;65(22):1924–1934. doi: https://doi.org/10.1016/j.scib.020.07.027; Raznahan A, Shaw P, Lalonde F, et al. How does your cortex grow? J Neurosci. 2011;31(19):7174–7177. doi: https://doi.org/10.1523/JNEUROSCI.0054-11.2011; Greve DN. An Absolute Beginner’s Guide to Surface- and Voxel-based Morphometric Analysis. In: Proceedings of the International Society for Magnetic Resonance in Medicine. 2011. vol. 19. p. 33.; Noorde rmeer SDS, Luman M, Greven CU, et al. Structural Brain Abnormalities of Attention-Deficit/Hyperactivity Disorder With Oppositional Defiant Disorder. Biol Psychiatry. 2017;82(9): 642–650. doi: https://doi.org/10.1016/j.biopsych.2017.07.008; Whitwell JL. Voxel-based morphometry: an automated technique for assessing structural changes in the brain. J Neurosci. 2009; 29(31):9661–9664. doi: https://doi.org/10.1523/JNEUROSCI.2160-09.2009; Li Z, Zhang J, Wang F, et al. Surface-based morphometry study of the brain in benign childhood epilepsy with centrotemporal spikes. Ann Transl Med. 2020;8(18):1150. doi: https://doi.org/10.21037/atm-20-5845; Fischl B. FreeSurfer. Neuroimage. 2012;62(2):774–781. doi: https://doi.org/10.1016/j.neuroimage.2012.01.021; Winkler AM, Kochunov P, Blangero J, et al. Cortical thickness or grey matter volume? The importance of selecting the phenotype for imaging genetics studies. Neuroimage. 2010;53(3):1135–1146. doi: https://doi.org/10.1016/j.neuroimage.2009.12.028; Pua EPK, Barton S, Williams K, et al. Individualised MRI training for paediatric neuroimaging: A child-focused approach. Dev Cogn Neurosci. 2020;41:100750. doi: https://doi.org/10.1016/j.dcn.2019.100750; Raschle NM, Lee M, Buechler R, et al. Making MR imaging child’s play — pediatric neuroimaging protocol, guidelines and procedure. J Vis Exp. 2009;(29):1309. doi: https://doi.org/10.3791/1309; Reuter M, Tisdall MD, Qureshi A, et al. Head motion during MRI acquisition reduces gray matter volume and thickness estimates. Neuroimage. 2015;107:107–115. doi: https://doi.org/10.1016/j.neuroimage.2014.12.006; Tijsse n RH, Jansen JF, Backes WH. Assessing and minimizing the effects of noise and motion in clinical DTI at 3 T. Hum Brain Mapp. 2009;30(8):2641–2655. doi: https://doi.org/10.1002/hbm.20695; Barisano G, Sepehrband F, Ma S, et al. Clinical 7 T MRI: Are we there yet? A review about magnetic resonance imaging at ultra-high field. Br J Radiol. 2019;92(1094):20180492. doi: https://doi.org/10.1259/bjr.20180492; Backhausen LL, Herting MM, Buse J, et al. Quality Control of Structural MRI Images Applied Using FreeSurfer-A Hands-On Workflow to Rate Motion Artifacts. Front Neurosci. 2016;10:558. doi: https://doi.org/10.3389/fnins.2016.00558; Desikan RS, Ségonne F, Fischl B, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage. 2006;31(3):968–980. doi: https://doi.org/10.1016/j.neuroimage.2006.01.021; Destrieux C, Fischl B, Dale A, Halgren E. Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. Neuroimage. 2010;53(1):1–15. doi: https://doi.org/10.1016/j.neuroimage.2010.06.010; Ma J, Miller MI, Younes L. A bayesian generative model for surface template estimation. Int J Biomed Imaging. 2010:2010:974957. doi: https://doi.org/10.1155/2010/974957; Tsai CJ, Lin HY, Tseng IW, Gau SS. Brain voxel-based morphometry correlates of emotion dysregulation in attention-deficit hyperactivity disorder. Brain Imaging Behav. 2021;15(3):1388–1402. doi: https://doi.org/10.1007/s11682-020-00338-y; Paus T, Wong AP, Syme C, Pausova Z. Sex differences in the adolescent brain and body: Findings from the saguenay youth study. J Neurosci Res. 2017;95(1-2):362–370. doi: https://doi.org/10.1002/jnr.23825; Mills KL, Goddings AL, Herting MM, et al. Structural brain development between childhood and adulthood: Convergence across four longitudinal samples. Neuroimage. 2016;141:273–281. doi: https://doi.org/10.1016/j.neuroimage.2016.07.044; Vijayakumar N, Mills KL, Alexander-Bloch A, et al. Structural brain development: A review of methodological approaches and best practices. Dev Cogn Neurosci. 2018;33:129–148. doi: https://doi.org/10.1016/j.dcn.2017.11.008; Ingre M. Why small low-powered studies are worse than large high-powered studies and how to protect against “trivial” findings in research: comment on Friston (2012). Neuroimage. 2013;81: 496–498. doi: https://doi.org/10.1016/j.neuroimage.2013.03.030; https://vsp.spr-journal.ru/jour/article/view/3360
-
2Academic Journal
المؤلفون: S. A. Malmberg, E. N. Rudenko, С. А. Мальмберг, Е. Н. Руденко
المصدر: Neuromuscular Diseases; № 4 (2012); 59-65 ; Нервно-мышечные болезни; № 4 (2012); 59-65 ; 2413-0443 ; 2222-8721 ; 10.17650/2222-8721-2012-0-4
مصطلحات موضوعية: дифференциальная диагностика, chronic inflammatory demyelinating polyneuropathy, diabetic polyneuropathy, corticosteroids, differential diagnosis, хроническая воспалительная демиелинизирующая полиневропатия, диабетическая полиневропатия, кортикостероиды
وصف الملف: application/pdf
Relation: https://nmb.abvpress.ru/jour/article/view/100/96; Куренков А.Л., Никитин С.С., Бурсагова Б.И., Кузенкова Л.М. Особенности хронической воспалительной демиелинизирующей полинейропатии у детей. Нервно-мышечные болезни 2012;2:40–51.; Аверочкин А.И., Мозолевский Ю.В., Штульман Д.Р. Заболевания периферической нервной системы. В кн.: Болезни нервной системы. Руководство. В 2 т. Под. ред. акад. РАМН Н.Н. Яхно. М.: Медицина, 2005. С.460–570; Quvrier R.A., McLeod J.G., Pollard J.D. Peripheral neuropathy in childhood. Mac Keith press. Sydney, Australia. 1999.; Van den Bergh P.Y.K., Hadden R.D.M., Bouche P. et al. Chronic inflammatory demyelinating polyradiculoneuropathy. In: N.E. Gilhus, M.P. Barnes, M. Brainin (eds.). European Handbook of Neurological Management. Oxford: Blackwell Publishing Ltd, 2011. P. 333–342.; Николаев С.Г. Атлас по электромиографии. Иваново: ИПК «ПресСто», 2010.; Гехт Б.М., Касаткина Л.Ф., Самойлов М.И., Санадзе А.Г. Электромиография в диагностике нервно-; мышечных заболеваний. Таганрог, 1997.; Левин О.С. Полинейропатии. М.: МИА, 2005.; Freeman R. Not all neuropathy in diabetes is of diabetic etiology: differentialdiagnosis of diabetic neuropathy. Curr Diab Rep 2009;9(6):423–31.; Azhary H., Farooq M.U., Bhanushali M. et al. Peripheral neuropathy: differential diagnosis and management. Am Fam Physician 2010;1;81(7):887–92.; Jann S., Bramerio M.A., Facchetti D., Sterzi R. Intravenous immunoglobulin is effective in patients with diabetes and with chronic inflammatory demyelinating polyneuropathy: long term follow-up. J Neurol Neurosurg Psychiatry 2009;80(1):70–3.; Ayyar D.R., Sharma K.R. Chronic inflammatory demyelinating polyradiculoneuropathy in diabetes mellitus. Curr Diab Rep 2004;4(6):409–12.; Jann S., Bramerio M.A., Beretta S. et al. Diagnostic value of sural nerve matrix metalloproteinase-9 in diabetic patients with CIDP. Neurology 2003;61(11): 1607–10.; Lozeron P., Nahum L., Lacroix C. et al. Symptomatic diabetic and non-diabetic neuropathies in a series of 100 diabetic patients. J Neurol 2002;249(5):569–75.; Dyck P.J., Norell J.E., Dyck P.J. Non-diabetic lumbosacral radiculoplexus neuropathy: natural history, outcome and comparison with the diabetic variety. Brain 2001;124(Pt 6):1197–207.; Dyck P.J., Windebank A.J. Diabetic and nondiabetic lumbosacral radiculoplexus neuropathies: new insights into pathophysiology and treatment. Muscle Nerve 2002;25(4):477–91.; Pascoe M.K., Low P.A., Windebank A.J, Litchy W.J. Subacute diabetic proximal neuropathy. Mayo Clin Proc 1997;72(12):1123–32.; Amato A.A., Barohn R.J. Diabetic Lumbosacral Polyradiculoneuropathies. Curr Treat Options Neurol 2001;3(2):139–46.; Rotta F.T., Sussman A.T., Bradley W.G. et al. The spectrum of chronic inflammatory demyelinating polyneuropathy. J Neurol Sci 2000;173(2):129–39.; Krendel D.A., Costigan D.A., Hopkins L.C. Successful treatment of neuropathies in patients with diabetes mellitus. Arch Neurol 1995;52(11):1053–61.; https://nmb.abvpress.ru/jour/article/view/100