يعرض 1 - 6 نتائج من 6 نتيجة بحث عن '"Е. В. Тазина"', وقت الاستعلام: 0.47s تنقيح النتائج
  1. 1
    Academic Journal

    المساهمون: This work was supported by an ANO grant (Agreement No. 1603-32/23с), Работа выполнена при поддержке гранта АНО (Соглашение № 1603-32/23с)

    المصدر: Russian Sklifosovsky Journal "Emergency Medical Care"; Том 12, № 4 (2023); 637-649 ; Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь»; Том 12, № 4 (2023); 637-649 ; 2541-8017 ; 2223-9022

    وصف الملف: application/pdf

    Relation: https://www.jnmp.ru/jour/article/view/1727/1362; Meyer DJ. Enzymatic/non-enzymatic formation of nitric oxide. Nat Med. 1995;1(11):1103–1104. PMID: 7584968 doi:10.1038/nm1195-1103a; Zweier JL, Samouilov A, Kuppusamy P. Non-enzymatic nitric oxide synthesis in biological systems. Biochim Biophys Acta. 1999;1411(2–3):250–262. PMID: 10320661 doi:10.1016/s0005-2728(99)00018-3; Граник В.Г., Григорьев Н.Б. Оксид азота (NO). Новый путь к поиску лекарств. Москва: Вузовская книга; 2004.; Houde M, Desbiens L, D’Orléans-Juste P. Endothelin-1: biosynthesis, signaling and vasoreactivity. Adv Pharmacol. 2016;77:143–175. PMID: 27451097 doi:10.1016/bs.apha.2016.05.002; Cortese-Krott MM, Rodriguez-Mateos A, Sansone R, Kuhnle GG, Thasian-Sivarajah S, Krenz T, et al. Human red blood cells at work: identification and visualization of erythrocytic eNOS activity in health and disease. Blood. 2012;120(20):4229–4237. PMID: 23007404 doi:10.1182/blood-2012-07-442277; Voraphani N, Gladwin MT, Contreras AU, Kaminski N, Tedrow JR, Milosevic J, et al. An airway epithelial iNOS-DUOX2-thyroid peroxidase metabolome drives Th1/Th2 nitrative stress in human severe asthma. Mucosal Immunol. 2014;7(5):1175–1185. PMID: 24518246 doi:10.1038/mi.2014.6; Осипов А.Н., Борисенко Г.Г., Владимиров Ю.А. Биологическая роль нитрозильных комплексов гемопротеинов. Успехи биологической химии. 2007;47:259–292.; Derbyshire ER, Marletta MA. Structure and regulation of soluble guanylate cyclase. Annu Rev Biochem. 2012;81:533–59. PMID: 22404633 doi:10.1146/annurev-biochem-050410-100030; Cipolla MJ. The cerebral circulation. Colloquium Series on Integrated Systems Physiology. 2016;8(1):1–80. doi:10.4199/C00141ED2V01Y201607ISP066; Attwell D, Buchan AM, Charpak S, Lauritzen M, Macvicar BA, Newman EA. Glial and neuronal control of brain blood flow. Nature. 2010;468(7321):232–243 PMID: 21068832 doi:10.1038/nature09613; Ally A, Powell I, Ally MM, Chaitoff K, Nauli SM. Role of Neuronal Nitric Oxide Synthase on Cardiovascular Functions in Physiological and Pathophysiological States. Nitric Oxide. 2020;102:52–73. PMID: 32590118 doi:10.1016/j.niox.2020.06.004; Toda N, Ayajiki K, Okamura T. Cerebral blood flow regulation by nitric oxide: recent advances. Pharmacol Rev. 2009;61(1):62–97. PMID: 19293146 doi:10.1124/pr.108.000547; Tejero J, Shiva S, Gladwin MT. Sources of vascular nitric oxide and reactive oxygen species and their regulation. Physiol Rev. 2019;99(1):311–379. PMID: 30379623 doi:10.1152/physrev.00036.2017; Reina-Torres E, De Ieso ML, Pasquale LR, Madekurozwa M, van Batenburg-Sherwood J, Overby DR. The vital role for nitric oxide in intraocular pressure homeostasis. Prog Retin Eye Res. 2021; 83:100922. PMID: 33253900 doi:10.1016/j.preteyeres.2020.100922; Vanin AF. Physico-Chemistry of Dinitrosyl Iron Complexes as a Determinant of Their Biological Activity. Int J Mol Sci. 2021;22(19):10356. PMID: 34638698 doi:10.3390/ijms221910356; Kosmachevskaya OV, Nasybullina EI, Shumaev KB, Novikova NN, Topunov AF. Protective Effect of Dinitrosyl Iron Complexes Bound with Hemoglobin on Oxidative Modification by Peroxynitrite. Int J Mol Sci. 2021;22(24):13649. PMID: 34948445 doi:10.3390/ijms222413649; Hsiao HY, Chung CW, Santos JH, Villaflores OB, Lu TT. Fe in biosynthesis, translocation, and signal transduction of NO: Toward bioinorganic engineering of dinitrosyl iron complexes into NO-delivery scaffolds for tissue engineering. Dalton Trans. 2019;48(26):9431–9453. doi:10.1039/C9DT00777F; Mülsch A, Mordvintcev P, Vanin AF, Busse R. The potent vasodilating and guanylylcyclase activating dinitrozyl-iron (11) complex is stored in a protein-bound form in vascular tissue and is re-leased by thiols. FEBS Lett. 1991;294(3):252–256. PMID: 1684553 doi:10.1016/0014-5793(91)81441-a; Stomberski CT, Hess DT, Stamler JS. Protein S-nitrosylation: Determinants of Specificity and Enzymatic Regulation of S-nitrosothiol-based Signaling. Antiox Redox Signal. 2019;30(10):1331–1351. PMID: 29130312 doi:10.1089/ars.2017.7403; Gow AJ. The biological chemistry of nitric oxide as it pertains to the extrapulmonary effects of inhaled nitric oxide. Proc Am Thorac Soc. 2006;3(2):150–152. PMID: 16565423 doi:10.1513/pats.200506-058BG; McMahon TJ, Doctor A. Extrapulmonary effects of inhaled nitric oxide: role of reversible S-nitrosylation of erythrocytic hemoglobin. Proc Am Thorac Soc. 2006;3(2):153–160. PMID: 16565424 doi:10.1513/pats.200507-066BG; Erwin PA, Lin AJ, Golan DE, Michel T. Receptor-regulated dynamic S-nitrosylation of endothelial nitric-oxide synthase in vascular endothelial cells. J Biol Chem. 2005;280(20):19888–19894. PMID: 15774480 doi:10.1074/jbc.M413058200; Jung CS, Iuliano BA, Harvey-White J, Espey MG, Oldfield EH, Pluta RM. Association between cerebrospinal fluid levels of asymmetric dimethyl-L-arginine, an endogenous inhibitor of endothelial nitric oxide synthase, and cerebral vasospasm in a primate model of subarachnoid hemorrhage. J Neurosurg. 2004;101(5):836–842. PMID: 15543672 doi:10.3171/jns.2004.101.5.0836; Stamler JS, Jia L, Eu JP, McMahon TJ, Demchenko IT, Bonaventura J, et al. Blood flow regulation by S-nitrosohemoglobin in the physiological oxygen gradient. Science. 1997;276(5321):2034–2037. PMID: 9197264 doi:10.1126/science.276.5321.2034; Крылов В.В., Петриков С.С., Солодов А.А. Внутричерепная гипертензия. Москва: Бином; 2016.; Claassen JAHR, Thijssen DHJ, Panerai RB, Faraci FM. Regulation of cerebral blood flow in humans: physiology and clinical implications of autoregulation. Physiol Rev. 2021;101(4):1487–1559. PMID: 33769101 doi:10.1152/physrev.00022.2020; Fog M. The relationship between the blood pressure and the tonic regulation of the pial arteries. J Neurol Psychiatry. 1938;1(3):187–197. PMID: 21610927 doi:10.1136/jnnp.1.3.187; Peixoto AJ. Acute severe hypertension. N Engl J Med. 2019;381(19):1843–1852. PMID: 31693807 doi:10.1056/NEJMcp1901117; Pluta RM. Delayed cerebral vasospasm and nitric oxide : review, new hypothesis, and proposed treatment. Pharmacol Ther. 2005;105(1):23–56. PMID: 15626454 doi:10.1016/j.pharmthera.2004.10.002; Macdonald RL, Schweizer TA. Spontaneous subarachnoid haemorrhage. Lancet. 2017;389(10069):655–666. PMID: 27637674 doi:10.1016/S0140-6736(16)30668-7; Sehba FA, Bederson JB. Nitric oxide in early brain injury after subarachnoid hemorrhage. Acta Neurochir Suppl. 2011;110(Pt1):89–103. PMID: 21116923 doi:10.1007/978-3-7091-0353-1_18; Dodd WS, Laurent D, Dumont AS, Hasan DM, Jabbour PM, Starke RM, et al. Pathophysiology of delayed cerebral ischemia after subarachnoid hemorrhage : a review. J Am Heart Assoc. 2021;10(15):e021845. PMID: 34325514 doi:10.1161/JAHA.121.021845; Ikram A, Javaid MA, Ortega-Gutierrez S, Selim M, Kelangi S, Anwar SMH, et al. Delayed cerebral ischemia after subarachnoid hemorrhage. J Stroke Cerebrovasc Dis. 2021;30(1):106064. PMID: 34464924 doi:10.1016/j.jstrokecerebrovasdis.2021.106064; Siuta M, Zuckerman SL, Mocco J. Nitric oxide in cerebral vasospasm: theories, measurement, and treatment. Neurol Res Int. 2013;2013:972417. PMID: 23878735 doi:10.1155/2013/972417; Woszczyk A, Deinsberger W, Böker DK. Nitric oxide metabolites in cisternal CSF correlate with cerebral vasospasm in patients with a subarachnoid haemorrhage. Acta Neurochir. 2003;145(4):257–264. PMID: 12748885 doi:10.1007/s00701-003-0004-7; Jung CS, Oldfield EH, Harvey-White J, Espey MG, Zimmermann M, Seifert V, et al. Association of an endogenous inhibitor of nitric oxide synthase with cerebral vasospasm in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg. 2007;107(5):945–950. PMID: 17977265 doi:10.3171/JNS-07/11/0945; Durmaz R, Ozkara E, Kanbak G, Arslan OC, Dokumacioğlu A, Kartkaya K, et al. Nitric oxide level and adenosine deaminase activity in cerebrospinal fluid of patients with subarachnoid hemorrhage. Turk Neurosurg. 2008;18(2):157–164. PMID: 18597230; Калинкин А.А. Нимодипин и сульфат магния в профилактике и лечении сосудистого спазма у больных с субарахноидальным кровоизлиянием вследствие разрыва церебральных аневризм : дисс. … канд. мед. наук. Москва; 2016.; Kho GS, Kandasamy R, Bujang MA, Swammy M, Mustapha M, Abdullah JM. Ratio of Nitric Oxide Metabolite Levels in Cerebrospinal Fluid and Serum, and Their Correlation with Severity and Outcome in Patients with Subarachnoid Haemorrhage. Malays J Med Scie. 2021;28(6):42–54. PMID: 35002489 doi:10.21315/mjms2021.28.6.5; Staub F, Graf R, Gabel P, Köchling M, Klug N, Heiss WD. Multiple interstitial substances measured by microdialysis in patients with subarachnoid hemorrhage. Neurosurg. 2000;47(5):1106–1116. PMID: 11063103 doi:10.1097/00006123-200011000-00016; Khaldi A, Zauner A, Reinert M, Woodward JJ, Bullock MR. Measurement of nitric oxide and brain tissue oxygen tension in patients after severe subarachnoid hemorrhage. Neurosurg. 2001;49(1):33–40. PMID: 11440457 doi:10.1097/00006123-200107000-00005; Sakowitz OW, Wolfrum S, Sarrafzadeh AS, Stover JF, Lanksch WR, Unterberg AW. Temporal profiles of extracellular nitric oxide metabolites following aneurysmal subarachnoid hemorrhage. Acta Neurochir Suppl. 2002;81:351–354. PMID: 12168345 doi:10.1007/978-3-7091-6738-0_89; Hosmann A, Milivojev N, Dumitrescu S, Reinprecht A, Weidinger A, Kozlov AV. Cerebral nitric oxide and mitochondrial function in patients suffering aneurysmal subarachnoid hemorrhage—a translational approach. Acta Neurochir. 2021;163(1):139–149. PMID: 32839865 doi:10.1007/s00701-020-04536-x; Pluta RM, Thompson BG, Dawson TM, Snyder SH, Boock RJ, Oldfield EH. Loss of nitric oxide synthase immunoreactivity in cerebral vasospasm. J Neurosurg. 1996;84(4):648–654. PMID: 8613858 doi:10.3171/jns.1996.84.4.0648; Pluta RM. Dysfunction of nitric oxide synthases as a cause and therapeutic target in delayed cerebral vasospasm after SAH. Acta Neurochir Suppl. 2008;104:139–147. PMID: 18456999 doi:10.1007/978-3-211-75718-5_28; Berra LV, Carcereri De Prati A, Suzuki H, Pasqualin A. The role of constitutive and inducible nitric oxide synthase in the human brain after subarachnoid hemorrhage. J Neurosurg Sci. 2007;51(1):1–9. PMID: 17369785; Sobey CG. Cerebrovascular dysfunction after subarachnoid haemorrhage: novel mechanisms and directions for therapy. Clin Exp Pharmacol Physiol. 2001;28(11):926–929. PMID: 11703398 doi:10.1046/j.1440-1681.2001.03550.x; Sobey CG, Quan L. Impaired cerebral vasodilator responses to NO and PDE V inhibition after subarachnoid hemorrhage. Am J Physiol. 1999;277(5):H1718–H1724. PMID: 10564124 doi:10.1152/ajpheart.1999.277.5.H1718; Inoha S, Inamura T, Ikezaki K, Nakamizo A, Amano T, Fukui M. Type V phosphodiesterase expression in cerebral arteries with vasospasm after subarachnoid hemorrhage in a canine model. Neurol Res. 2002;24(6):607–612. PMID: 12238630 doi:10.1179/016164102101200447; Atalay B, Caner H, Cekinmez M, Ozen O, Celasun B, Altinors N. Systemic Administration Of Phosphodiesterase V Inhibitor, Sildenafil Citrate, Forattenuation Of Cerebral Vasospasm After Experimental Subarachnoid Hemorrhage. Neurosurgery. 2006;59(5):1102–1108. PMID: 17143244 doi:10.1227/01.NEU.0000245605.22817.44; Han BH, Vellimana AK, Zhou ML, Milner E, Zipfel GJ. Phosphodiesterase 5 inhibition attenuates cerebral vasospasm and improves functional recovery after experimental subarachnoid hemorrhage. Neurosurgery. 2012;70(1):178–187. PMID: 21796010 doi:10.1227/NEU.0b013e31822ec2b0; Washington CW, Derdeyn CP, Dhar R, Arias EJ, Chicoine MR, Cross DT, et al. A Phase I proof-of-concept and safety trial of sildenafil to treat cerebral vasospasm following subarachnoid hemorrhage. J Neurosurg. 2016;124(2):318–327. PMID: 26314998 doi:10.3171/2015.2.JNS142752; Mukherjee KK, Singh SK, Khosla VK, Mohindra S, Salunke P. Safety and efficacy of sildenafil citrate in reversal of cerebral vasospasm: a feasibility study. Surg Neurol Int. 2012;3:3. PMID: 22347673 URL: https://surgicalneurologyint.com/surgicalint-articles/safety-and-efficacy-of-sildenafil-citrate-in-reversal-of-cerebral-vasospasm-a-feasibility-study/; Dhar R, Washington C, Diringer M, Zazulia A, Jafri H, Derdeyn C, et al. Acute effect of intravenous sildenafil on cerebral blood flow in patients with vasospasm after subarachnoid hemorrhage. Neurocrit Care. 2016;25(2):201–204. PMID: 26940913 doi:10.1007/s12028-016-0243-0; Zhao D, Liu Q, Ji Y, Wang G, He X, Tian W, et al. Effect of 18β-glycyrrhetinic acid on cerebral vasospasm caused by asymmetric dimethylarginine after experimental subarachnoid hemorrhage in rats. Neurol Res. 2015;37(6):476–483. PMID: 25475507 doi:10.1179/1743132814Y.0000000462; Li H, Wu W, Liu M, Zhang X, Zhang QR, Ni L, Hang CH. Increased cerebrospinal fluid concentrations of asymmetric dimethylarginine correlate with adverse clinical outcome in subarachnoid hemorrhage patients. J Clin Neurosci. 2014;21(8):1404–1408. PMID: 24814854 doi:10.1016/j.jocn.2013.11.038; https://www.jnmp.ru/jour/article/view/1727

  2. 2
    Academic Journal

    المصدر: Transplantologiya. The Russian Journal of Transplantation; Том 15, № 1 (2023); 10-22 ; Трансплантология; Том 15, № 1 (2023); 10-22 ; 2542-0909 ; 2074-0506 ; 10.23873/2074-0506-2017-0-7

    وصف الملف: application/pdf

    Relation: https://www.jtransplantologiya.ru/jour/article/view/741/750; Incalza MA, D'Oria R, Natalicchio A, Perrini S, Laviola L, Giorgino F. Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vascul Pharmacol. 2018;100:1–19. PMID: 28579545 https://doi.org/10.1016/j.vph.2017.05.005; Russ M, Menk M, Graw JA, Skrypnikov V, Hunsicker O, Rudat K, et al. COVID-19 patients require prolonged extracorporeal membrane oxygenation support for survival compared with nonCOVID-19 patients. Crit Care Explor. 2022;4(4):e0671. https://doi.org/10.1097/CCE.0000000000000671; World Health Organization: Weekly Epidemiological Update on COVID-19–17 August 2021. Available at: https://www.who.int/publications/m/item/weekly-epidemiological-update-oncovid-19---17-august-2021 [Accessed December 12, 2022].; Extracorporeal Life Support Organization (ELSO) Registry. 2021. Available at: https://www.elso.org/ [Accessed December 12, 2022].; Henry BM, Lippi G. Poor survival with extracorporeal membrane oxygenation in acute respiratory distress syndrome (ARDS) due to coronavirus disease 2019 (COVID-19): pooled analysis of early reports. J Crit Care. 2020;58:27–28. PMID: 32279018 https://doi.org/10.1016/j.jcrc.2020.03.011; Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. China Medical Treatment Expert Group for C. Clinical characteristics of coronavirus disease 2019 in china. N Engl J Med. 2020;382(18):1708–1720. PMID: 32109013 https://doi.org/10.1056/NEJMoa2002032; Levy JH, Iba T, Gardiner EE. Endothelial injury in COVID-19 and acute infections: putting the pieces of the puzzle together. Arterioscler Thromb Vasc Biol. 2021;41(5):1774–1776. PMID: 33792345 https://doi.org/10.1161/ATVBAHA.121.316101; Kowalewski M, Fina D, Słomka A, Raffa GM, Martucci G, Coco LV, et al. COVID-19 and ECMO: the interplay between coagulation and inflammation–a narrative review. Crit Care. 2020;24(1):205. PMID: 32384917 https://doi.org/10.1186/s13054-020-02925-3; Гаврилов В.Б., Гаврилова А.Р., Мажуль Л.М. Анализ методов определения продуктов перекисного окисления липидов по тесту с тиобарбитуровой кислотой. Вопросы медицинской химии. 1987;33(1):118–122.; Bell ML, Rabe BA. The mixed model for repeated measures for cluster randomized trials: a simulation study investigating bias and type I error with missing continuous data. Trials. 2020;21(1):148. PMID: 32033617 https://doi.org/10.1186/s13063-020-4114-9; Feng C, Wang H, Lu N, Chen T, He H, Lu Y, et al. Log-transformation and its implications for data analysis. Shanghai Arch Psychiatry. 2014;26(2):105-109. PMID: 25092958 https://doi.org/10.3969/j.issn.1002-0829.2014.02.009; Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res. 2000;87(10):840-844. PMID: 11073878 https://doi.org/10.1161/01.res.87.10.840; Yan C, Kim D, Aizawa T, Berk BC. Functional interplay between angiotensin II and nitric oxide: cyclic GMP as a key mediator. Arterioscler Thromb Vasc Biol. 2003;23(1):26–36. PMID: 12524221 https://doi.org/10.1161/01.atv.0000046231.17365.9d; Pueyo ME, Arnal JF, Rami J, Michel JB. Angiotensin II stimulates the production of NO and peroxynitrite in endothelial cells. Am J Physiol. 1998;274(1):C214–220. PMID: 9458730 https://doi.org/10.1152/ajpcell.1998.274.1.C214; Клычникова Е.В., Тазина Е.В., Солодов А.А., Петриков С.С., Годков М.А., Крылов В.В. Влияние нормобарической гипероксии на окислительный стресс и факторы эндогенной сосудистой регуляции у больных с нетравматическими субарахноидальными кровоизлияниями, находящихся в критическом состоянии. Нейрохимия. 2013;30(3):264–270.; Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, et al. Dysregulation of Immune Response in Patients with Coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis. 2020;71(15):762–768. PMID: 32161940 https://doi.org/10.1093/cid/ciaa248; Yang AP, Liu JP, Tao WQ, Li HM. The diagnostic and predictive role of NLR, d-NLR and PLR in COVID-19 patients. Int Immunopharmacol. 2020;84:106504. PMID: 32304994 https://doi.org/10.1016/j.intimp.2020.106504; Chan AS, Rout A. Use of Neutrophilto-Lymphocyte and Platelet-to-Lymphocyte Ratios in COVID-19. J Clin Med Res. 2020;12(7):448–453. PMID: 32655740 https://doi.org/10.14740/jocmr4240; Kazancioglu S, Bastug A, Ozbay BO, Kemirtlek N, Bodur H. The role of haematological parameters in patients with COVID-19 and influenza virus infection. Epidemiol Infect. 2020;148:e272. PMID: 33148349 https://doi.org/10.1017/S095026882000271X; Rokni, M, Ahmadikia K, Asghari S, Mashaei S, Hassanali F. Comparison of clinical, para-clinical and laboratory findings in survived and deceased patients with COVID-19: diagnostic role of inflammatory indications in determining the severity of illness. BMC Infect Dis. 2020;20(1):869. 3 PMID: 33225909 https://doi.org/10.1186/s12879-020-05540-3; Colantuoni A, Martini R, Caprari P, Ballestri M, Capecchi PL, Gnasso A, et al. COVID-19 sepsis and microcirculation dysfunction. Front Physiol. 2020;11:747. PMID: 32676039 https://doi.org/10.3389/fphys.2020.00747; Yusuff H, Zochios V, Brodie D. Thrombosis and coagulopathy in COVID-19 patients receiving ECMO: a narrative review of current literature. J Cardiothorac Vasc Anesth. 2022;36(8 Pt B):3312-3317. PMID: 35577652 https://doi.org/10.1053/j.jvca.2022.03.032; Carpio-Orantes LD, García-Méndez S, Hernández-Hernández SN. Neutrophilto-lymphocyte ratio, platelet-to-lymphocyte ratio and systemic immuneinflammation index in patients with COVID-19-associated pneumonia. Gac Med Mex. 2020;156(6):527–531. PMID: 33877106 https://doi.org/10.24875/GMM.M21000480; Hirahara T, Arigami T, Yanagita S, Matsushita D, Uchikado Y, Kita Y, et al. Combined neutrophil-lymphocyte ratio and platelet-lymphocyte ratio predicts chemotherapy response and prognosis in patients with advanced gastric cancer. BMC Cancer. 2019;19(1):672. PMID: 31286873 https://doi.org/10.1186/s12885-019-5903-y; Qu R, Ling Y, Zhang YH, Wei L-Y, Chen X, Li X-M, et al. Platelet-to-lymphocyte ratio is associated with prognosis in patients with coronavirus disease-19. J Med Virol. 2020;92(9):1533–1541. PMID: 32181903 https://doi.org/10.1002/jmv.25767; https://www.jtransplantologiya.ru/jour/article/view/741

  3. 3
    Academic Journal

    المصدر: Messenger of ANESTHESIOLOGY AND RESUSCITATION; Том 19, № 4 (2022); 15-21 ; Вестник анестезиологии и реаниматологии; Том 19, № 4 (2022); 15-21 ; 2541-8653 ; 2078-5658

    وصف الملف: application/pdf

    Relation: https://www.vair-journal.com/jour/article/view/691/575; Бахарев С. А., Попугаев К. А., Киселев К. В. и др. Механизмы развития геморрагических осложнений при проведении экстракорпоральной мембранной оксигенации. Пилотное исследование // Анестезиология и реаниматология. – 2020. – № 1. – С. 25–34. doi:10.17116/anaesthesiology202001125.; Брыгин П. А., Журавель С. В., Троицкий Д. А. и др. Предикторы эффективности применения экстракорпоральной мембранной оксигенации при острой дыхательной недостаточности // Трансплантология. – 2020. – Т. 12, № 3. – С. 220–230. doi:10.23873/2074-0506-2020-12-3-220-230.; Неймарк М. И., Эпп Д. П., Николаева М. Г. и др. Роль нарушений сосудисто-тромбоцитарного гемостаза в генезе дыхательной недостаточности у пациентов с COVID-19 // Вестник анестезиологии и реаниматологии. – 2022. – Т. 19, № 3. – С. 15–24. DOI:10.21292/2078-5658-2022-19-3-15-24.; Bilaloglu S., Aphinyanaphongs Y., Jones S. et al. Thrombosis in hospitalized patients with COVID-19 in a New York City Health System // JAMA. – 2020. – Vol. 324, № 8. – P. 799–801. doi:10.1001/jama.2020.13372. PMID: 3270209.; Friedrichson B., Kloka J. A., Neef V. et al. Extracorporeal membrane oxygenation in coronavirus disease 2019: A nationwide cohort analysis of 4279 runs from Germany // Eur. J. Anaesthesiol. – 2022. – doi:10.1097/EJA.0000000000001670.; Helms J., Tacquard C., Severac F. et al. CRICS TRIGGERSEP Group. High risk of thrombosis in patients with severe SARS-CoV-2 infection: A multicenter prospective cohort study // Int. Care Med. – 2020. – Vol. 46, № 6. – Р. 1089–1098. doi:10.1007/s00134-020-06062-xТ.; Koster A., Ljajikj E., Faraoni D. Traditional and non-traditional anticoagulation management during extracorporeal membrane oxygenation // Ann. Cardiothorac Surg. – 2019. – Vol. 8, № 1. – P. 129–136. doi:10.21037/acs.2018.07.03.; Libby P., Luscher T. COVID-19 is, in the end, an endothelial disease // Eur. Heart J. – 2020. – Vol. 413, № 2. – P. 3038–3044. doi:10.1093/eurheartj/ehaa623.; Martucci G., Słomka A., Lebowitz S. E. et al. Thoracic research centre. COVID-19 and extracorporeal membrane oxygenation // Adv. Exp. Med. Biol. – 2021. – Vol. 1353. – P. 173–195. doi:10.1007/978-3-030-85113-2_10.; Sadeghipour P., Talasaz A. H., Rashidi F. et al. Effect of intermediate-dose vs standard-dose prophylactic anticoagulation on thrombotic events, extracorporeal membrane oxygenation treatment, or mortality among patients with COVID-19 admitted to the Intensive Care Unit. INSPIRATION Randomized Clinical Trial // JAMA. – 2021. – Vol. 325, № 16. – P. 1620–1630. doi:10.1001/jama.2021.4152.; Smilowitz N. R., Subashchandran V., Yuriditsky E. et al. Thrombosis in hospitalized patients with viral respiratory infections versus COVID-19 // Am. Heart J. – 2021. – Vol. 231. – P. 93–95. doi:10.1016/j.ahj.2020.10.075.; Taccone F. S., Gevenois P. A., Peluso L. et al. Higher intensity thromboprophylaxis regimens and pulmonary embolism in critically ill coronavirus disease 2019 patients // Crit. Care Med. – 2020. – Vol. 48, № 11. – Р. e1087–1090. doi:10.1097/CCM.0000000000004548.; Tacquard C., Mansour A., Godon A. et al. Anticoagulation in COVID-19: not strong for too long? // Anaesth. Crit. Care Pain. Med. – 2021. – Vol. 40, № 2. – 100857. doi:10.1016/j.accpm.2021.100857. PMID: 33798761.; Yuriditsky E., Horowitz J. M., Merchan C. et al. Thromboelastography profiles of critically ill patients with coronavirus disease 2019 // Crit. Care Med. – 2020. ‒ Vol. 48, № 9. ‒ Р. 1319–1326. doi:10.1097/CCM.0000000000004471.; Yusuff H., Zochios V., Brodie D. Thrombosis and coagulopathy in COVID-19 patients requiring extracorporeal membrane oxygenation // Am. Soc. Artif. Intern. Organs. J. – 2020. – Vol. 66, № 8. – Р. 844–846. doi:10.1097/MAT.0000000000001208.; Zaaqoq A., Sallam T., Merley C. et al. The interplay of inflammation and coagulation in COVID-19 patients receiving extracorporeal membrane oxygenation support // Perfusion. – 2022. – doi:10.1177/02676591211057506.; https://www.vair-journal.com/jour/article/view/691

  4. 4
    Academic Journal

    المصدر: General Reanimatology; Том 18, № 3 (2022); 38-44 ; Общая реаниматология; Том 18, № 3 (2022); 38-44 ; 2411-7110 ; 1813-9779

    وصف الملف: application/pdf

    Relation: https://www.reanimatology.com/rmt/article/view/2238/1620; https://www.reanimatology.com/rmt/article/view/2238/1627; Лужников Е.А. (ред.) Медицинская токсикология: национальное руководство. М.: ГЭОТАР — Медиа. 2012: 928. ISBN 978-5-9704-2971-6.; Хоффман Р., Нельсон Л., Хауланд М.-Э., Льюин Н., Фломенбаум Н., Голдфранк Л. Экстренная медицинская помощь при отравлениях. М. Практика. 2010: 1440. ISBN: 978-5-89816-095-1.; Белова М.В., Леженина Н.Ф., Голиков П.П., Гольдфарб Ю.С., Давыдов Б.В., Матвеев С.Б., Лисовик Ж.А., Федорова Н.В., Евграфов С.Ю. Изменения лабораторных показателей экзо- и эндотоксемии при токсико-гипоксическон энцефалопатии, возникающей вследствие острых отравлений психофармакологическими средствами. Анестезиология и реаниматология. 2005; (6): 15–19. ISSN 0201-7563.; Белова М.В., Ильяшенко К.К., Давыдов Б.В., Петров С.И., Батурова И.В., Нимаев Ж.Ц., Лужников Е.А. Особенности окислительного стресса в остром периоде химической болезни. Токсикологический вестник. 2007; (2): 12–15.; Rodríguez M.L., Pérez S., Mena-Mollá S., Desco M.C., Ortega Á.L. Oxidative stress and microvascular alterations in diabetic retinopathy: future therapies. Oxid Med Cell Longev. 2019; 2019: 4940825. DOI:10.1155/2019/4940825. PMID: 31814880.; Violi F., Loffredo L., Carnevale R., Pignatelli P., Pastori D. Atherothrombosis and Oxidative Stress: Mechanisms and Management in Elderly. Antioxid Redox Signal. 2017; 27 (14): 1083–1124. DOI:10.1089/ars.2016.6963. PMID: 28816059.; Bielli A., Scioli M.G., Mazzaglia D., Doldo E., Orlandi A. Antioxidants and vascular health. Life Sci. 2015; 143: 209–216. DOI:10.1016/j.lfs.2015.11.012. PMID: 26585821.; Kudryavtseva A.V., Krasnov G.S., Dmitriev A.A., Alekseev B.Y., Kardymon O.L., Sadritdinova A.F., Fedorova M.S., Pokrovsky A.V., Melnikova N.V., Kaprin A.D., Moskalev A.A., Snezhkina A.V. Mitochondrial dysfunction and oxidative stress in aging and cancer. Oncotarget. 2016; 7 (29): 44879-44905. DOI:10.18632/oncotarget.9821. PMID: 27270647.; Ильяшенко К.К., Евсеев А.К., Боровкова Н.В., Клычникова Е.В., Горончаровская И.В., Тазина Е.В., Ельков А.Н., Поцхверия М.М., Шабанов А.К., Андреев Ю.В. Особенности нарушений маркеров окислительного стресса и апоптоза клеток венозной крови в ранние сроки острых отравлений коррозивными веществами. Токсикологический вестник. 2021; (2): 23–32. DOI:10.36946/0869-7922-2021-2-23-32.; Белова М.В., Ильяшенко К.К., Лужников Е.А. Окислительный стресс в неотложной токсикологии. Общая реаниматология. 2009; 5 (6): 40–44. DOI:10.15360/1813-9779-2009-6-40.; Кишкун А.А. Биологический возраст и старение: возможности определения и пути коррекции. Рук-во для врачей. М.: ГЭОТАР-Медиа; 2008: 976. ISBN 978-5-9704-0786-8.; Волков С.В., Ермолов А.С., Лужников Е.А. Химические ожоги пищевода и желудка: эндоскопическая диагностика и лазеротерапия. М.: Медпрактика-М; 2005: 120. ISBN 5-98803-006-8.; Пинчук Т.П., Абакумов М.М., Лужников Е.А. Ильяшенко К.К., Савинцева Е.А., Гуляев А.А., Дементьева И.В., Тропская Н.С., Азаров Я.Б. Эзофагоимпедансоманометрия при химических ожогах пищевода. Токсикологический вестник. 2005; (3): 15–18.; Гаврилов В.Б., Гаврилова А.Р., Мажуль Л.М. Анализ методов определения продуктов перекисного окисления липидов по тесту с тиобарбитуровой кислотой. Вопросы медицинской химии. 1987; 33 (1): 118–122. PMID: 2437702.; Голиков П.П., Николаева Н.Ю. Метод определения нитрита/нитрата (NOx) в сыворотке крови. Биомедицинская химия. 2004; 50 (1): 79–85. PMID: 15108630.; Daenen K., Andries A., Mekahli D., Van Schepdael A., Jouret F., Bammens B. Oxidative stress in chronic kidney disease. Pediatr. Nephrol. 2019; 34 (6): 975–991. DOI:10.1007/s00467-018-4005-4. PMID: 30105414.; Senoner T., Dichtl W. Oxidative stress in cardiovascular diseases: still a therapeutic target? Nutrients. 2019; 11 (9): 2090. DOI:10.3390/nu11092090. PMID: 31487802.; van der Pol A., van Gilst W.H., Voors A.A., van der Meer P. Treating oxidative stress in heart failure: past, present and future. Eur J Heart Fail. 2019; 21 (4): 425–35. DOI:10.1002/ejhf.1320. PMID: 30338885.; Маткевич В.А., Поцхверия М.М., Гольдфарб Ю.С., Симонова А.Ю. Нарушения параметров гомеостаза при острых отравлениях и пути их коррекции. Токсикологический вестник. 2018; (3): 18–26. DOI:10.36946/0869-7922-2018-3-18-26.; Farahmand S.K., Samini F., Samini M., Samarghandian S. Safranal ameliorates antioxidant enzymes and suppresses lipid peroxidation and nitric oxide formation in aged male rat liver. Biogerontology. 2013; 14 (1): 63–71. DOI:10.1007/s10522-012-9409-0. PMID: 23179288.; Liguori I., Russo G., Curcio F., Bulli G., Aran L., Della-Morte D., Gargiulo G., Testa G., Cacciatore F., Bonaduce D., Abete P. Oxidative stress, aging, and diseases. Clin Interv Aging. 2018; 13: 757–772. DOI:10.2147/CIA.S158513. PMID: 29731617.; Choudhury G., MacNee W. Role of inflammation and oxidative stress in the pathology of ageing in COPD: potential therapeutic interventions. COPD. 2017; 14 (1): 122–135. DOI:10.1080/15412555.2016.1214948. PMID: 27624918.; Baierle M., Nascimento S.N., Moro A.M., Brucker N., Freitas F., Gauer B., Durgante J., Bordignon S., Zibetti M., Trentini C.M., Duarte M.M., Grune T., Breusing N., Garcia S.C. Relationship between inflammation and oxidative stress and cognitive decline in the institutionalized elderly. Oxid Med Cell Longev. 2015; 2015: 804198. DOI:10.1155/2015/804198. PMID: 25874023.; Голиков П.П. Оксид азота в клинике неотложных заболеваний. М.: Медпрактика-М; 2004: 180. ISBN 5-901654-84-6.; Förstermann U., Xia N., Li H. Roles of Vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis. Circ Res. 2017; 120 (4): 713–735. DOI:10.1161/CIRCRESAHA.116.309326. PMID: 28209797.; Wang Z., Zhu Y. The role of plasma placental isoferritin in pathogenesis of preeclampsia and its predictive value for preeclampsia. Zhonghua Fu Chan Ke Za Zhi. (in Chinese). 2001; 36 (4): 209–211. PMID: 11783362.; Брюне Б., Сандау К., фон Кнетен А. Апоптотическая гибель клеток и оксид азота: механизмы активации и антогонистические сигнальные пути. Биохимия. 1998; 63 (7): 966–975. УДК 577.152.6.; Seligman S.P., Buyon J.P., Clancy R.M., Young B.K., Abramson S.B. The role of nitric oxide in the pathogenesis of preeclampsia. Am J Obstet Gynecol. 1994; 171 (4): 944–948. DOI:10.1016/s0002-9378(94)70064-8. PMID: 7943106.; Chandrasekaran A., Idelchik M.D.P.S., Melendez J.A. Redox control of senescence and age-related disease. Redox Biol. 2017; 11: 91–102. DOI:10.1016/j.redox.2016.11.005. PMID: 27889642.; Суходолова Г.Н., Ильяшенко К.К., Белова М.В., Симонова А.Ю., Леженина Н.Ф. Особенности вариабельности ритма сердца в первые часы острых отравлений психофармакологическими препаратами у лиц трудоспособного и пожилого возраста. Medline. Ru. Российский биомедицинский журнал. 2015; 16 (1): 285–292.; https://www.reanimatology.com/rmt/article/view/2238

  5. 5
    Academic Journal

    المصدر: General Reanimatology; Том 16, № 6 (2020); 4-18 ; Общая реаниматология; Том 16, № 6 (2020); 4-18 ; 2411-7110 ; 1813-9779 ; 10.15360/1813-9779-2020-6

    وصف الملف: application/pdf

    Relation: https://www.reanimatology.com/rmt/article/view/1983/1459; https://www.reanimatology.com/rmt/article/view/1983/1460; Guan W., Ni Z., Hu Yu, Liang W., Ou C., He J., Liu L., Shan H., Lei C., Hui D.S.C., Du B., Li L., Zeng G., Yuen K.-Y., Chen R., Tang C., Wang T., Chen P., Xiang J., Li S., Wang Jin-lin, Liang Z., Peng Y., Wei L., Liu Y., Hu Ya-hua, Peng P., Wang Jian-ming, Liu J., Chen Z., Li G., Zheng Z., Qiu S., Luo J., Ye C., Zhu S., Zhong N. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 2020; 382 (18): 1708-1720. DOI:10.1056/NEJMoa2002032. PMID: 32109013; Joly B.S., Siguret V., Veyradier A. Understanding pathophysiology of hemostasis disorders in critically ill patients with COVID-19. Intensive Care Med. 2020. DOI:10.1007/s00134-020-06088-1. PMID: 32415314; Bikdeli B., Madhavan M.V, Jimenez D., Chuich T., Dreyfus I., Driggin E., Der Nigoghossian C., Ageno W., Madjid M., Guo Y., Tang L.V., Hu Y., Giri J., Cushman M., Quterte I., Dimakakos E.P., Gibson C.M., Lippi G., Favaloro E.J., Fareed J., Caprini J.A., Tafur A.J., Burton J.R., Francese D.P., Wang E.Y., Falanga A., McLintock C., Hunt B.J., Spyropoulos A.C., Barnes G.D., Eikelboom J.W., Weinberg I., Schulman S., Carrier M., Piazza G., Beckman J.A., Steg P.G., Stone G.W., Rosenkranz S., Goldhaber S.Z., Parikh S.A., Monreal M., Krumholz H.M., Konstantinides S.V., Weitz J.I., Lip G.Y.H. COVID-19 and thrombotic or thromboembolic disease: implications for prevention, antithrombotic therapy, and follow-up. J. Am. Coll. Cardiol. 2020; 75 (23): 2950-2973. DOI:10.1016/j.jacc.2020.04.031. PMID: 32311448; Zhang W., Zhao Y., Zhang F., Wang Q., Li T., Liu Z., Wang J., Qin Y., Zhang X., Yan X., Zeng X., Zhang S. The use of anti-inflammatory drugsin the treatment of people with severe coronavirus disease 2019 (COVID-19): The Perspectives of clinical immunologists from China. Clin Immunol. 2020; 214: 108393. DOI:10.1016/j.clim.2020.108393. PMID: 32222466; Tu W.J., Cao J., Yu L., Hu X., Lui Q. Clinicolaboratory study of 25 fatal cases of COVID-19 in Wuhan. Intensive Care Med. 2020; 46 (6): 1117-1120. DOI:10.1007/s00134-020-06023-4. PMID: 32253448; Klok F.A., Kruip M.J.H.A., van der Meer N.J.M., Arbous M.S., Gommers D.A.M.P.J., Kant K.M., Kaptein F.H.J., van Paassen J., Stals M.A.M., Huisman M.V., Endeman H. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res. 2020; 191: 145-147. DOI:10.1016/j.thromres.2020.04.013. PMID: 32291094; Helms J., Tacquard C., Severac F., Leonard-Lorant I., Ohana M., XaDe-labranche X., Merdji H., Clere-Jehl R., Schenck M., Gandet F.F., Fafi-Kremer S., Castelain V, Schneider F., Grunebaum L., Angltes-Cano E., Sattler L., Mertes P.M., Meziani F. High risk of thrombosis in patients in severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Med. 2020; 46 (6): 1089-1098. DOI:10.1007/s00134-020-06062-x. PMID: 32367170; Lodigiani C., Iapichino G., Carenzo L., Cecconi M., Ferrazzi P., Sebastian T,KucherN., StudtJ.D., Sacco C.,AlexiaB., SandriM.T.,BarcoS. Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in Milan, Italy. Thromb Res. 2020; 191: 9-14. DOI:10.1016/j.thromres.2020.04.024. PMID: 32353746; Savilov P. On the possibilities of hyperbaric oxygen therapy in the treatment of SARS-CoV-2 infected patients. Znanstvena misel journal. 2020; 42 (2): 55-60. ISSN 3124-1123; Harch P.G. Hyperbaric oxygen treatment of novel coronavirus (COVID-19) respiratory failure. Med. Gas Res. 2020; 10 (2): 61-62. DOI:10.4103/2045-9912.282177. PMID: 32541128; Гринцова А.А., Ладария Е.Г., Боева И.А., Дмитриенко В.В., Денисенко А.Ф. Применение гипербарической оксигенации в комплексной терапии пациентов с профессиональным ХОЗЛ. Университетская клиника. 2015; 11 (2): 52-54.; Mathieu D. (ed.) Handbook of Hyperbaric Medicine. Dordrecht: Springer; 2006: 816. DOI:10.1007/1-4020-4448-8. ISBN 978-1-40204448-9; Higuchi T., Oto T., Millar I.L., Levvey B.J., Williams T.J., Snell G.I. Preliminary Report of the Safety and Efficacy of Hyperbaric Oxygen Therapy for Specific Complications of Lung Transplantation. J. Heart Lung. Transplant. 2006; 25 (11): 1302-1309. DOI:10.1016/j.healun.2006.08.006. PMID: 17097493; Шабунин А.В., Митрохин А.А., Воднева М.М., Готье С.В., Попцов В.Н., Головинский С.В., Цирульникова О.М., Спирина Е.А., Ахаладзе Д.Г., Нечаев Н.Б., Латыпов Р.А. Гипербарическая оксигенация при трансплантации органов (клинический опыт на примере трансплантации легких). Вестник трансплантологии и искусственных органов. 2016; 18 (S): 71. DOI:10.15825/1995-1191-2016-0; Qi Z., Gao C.J., Wang Y.B., Ma X.M., Zhao L., Liu F.J., Liu X.H., Sun X.J., Wang X.J. Effects of hyperbaric oxygen preconditioning on ischemiareperfusion inflammation and skin flap survival. Chin Med J (Engl). 2013; 126 (20): 3904-3909. DOI:10.3760/cma.j.issn.0366-6999.20121165. PMID: 24157154; Muralidharan V., Christophi C. Hyperbaric oxygen therapy and liver transplantation. HPB (Oxford). 2007; 9 (3): 174-182. DOI:10.1080/13651820601175926. PMID: 18333218; Memar M.Y., Yekani M. Alizadeh N., Baghi H.B. Hyperbaric oxygen therapy: Antimicrobial mechanisms and clinical application for in-fections. Biomed Pharmacother 2019; 109: 440-447. DOI:10.1016/j.biopha.2018.10.142. PMID: 30399579; Benko R., MiklosZ., Agoston VA., Ihonvien K., Repas C., Csepanyi-Komi R., Kerek M., Beres N.J., Horvath E.M. Hyperbaric Oxygen Therapy Dampens Inflammatory Cytokine Production and Does Not Worsen the Cardiac Function and Oxidative State of Diabetic Rats. Antioxidants (Basel). 2019; 8 (12): 607. DOI:10.3390/antiox8120607. PMID: 31801203; Rossignol D.A., Rossignol L.W., James S.J., Melnyk S., Mumper E. The effects of hyperbaric oxygen therapy on oxidative stress, inflammation, and symptoms in children with autism: an open-label pilot study. BMC Pediatr. 2007; 7: 36. DOI:10.1186/1471-2431-7-36. PMID: 18005455; Francis A., Baynosa R.C. Hyperbaric Oxygen Therapy for the Compromised Graft or Flap. Adv. Wound Care (New Rochelle). 2017; 6 (1): 23-32. DOI:10.1089/wound.2016.0707. PMID: 28116225; Sheikh A.Y., Gibson J.J., Rollins M.D., Hopf H.W., Hussain Z., Hunt T.K. Effect of hyperoxia on vascular endothelial growth factor levels in a wound model. Arch Surg. 2000; 135 (11): 1293-1297. DOI:10.1001/archsurg.135.11.1293. PMID: 11074883; Mazariegos G.V., O’Toole K., Mieles L.A., Dvorchik I., Meza M., Brias-soulis G., Arzate J., Osorio G., Fung J.J., Reyes J. Hyperbaric Oxygen Therapy for Hepatic Artery Thrombosis After Liver Transplantation in Children. Liver Transpl. Surg. 1999; 5 (5): 429-436. DOI:10.1002/lt.500050518. PMID: 10477845; Godman C.A., Joshi R., Giardina C., Perdrizet G., Hightower L.E. Hyperbaric oxygen treatment induces antioxidant gene expression. Ann. N. Y. Acad. Sci. 2010; 1197: 178-183. DOI:10.1111/j.1749-6632.2009.05393.x. PMID: 20536847; Gurer A., Ozdogan M., Gomceli I., Demirag A., Gulbahar O., Arikok T., Kulacoglu H., Dundar K., Ozlem N. Hyperbaric oxygenation attenuates renal ischemia-reperfusion injury in rats. Transplant. Proc. 2006; 38 (10): 3337-3340. DOI: 1010.1016/j.transproceed.2006.10.184. PMID: 17175266; Ozden T.A., Uzun H., Bohloli M., Toklu A.S., Paksoy M., Simsek G., Durak H., Issever H., Ipek T. The Effects of Hyperbaric Oxygen Treatment on Oxidant and Antioxidants Levels During Liver Regeneration in Rats. Tohoku J. Exp. Med. 2004; 203 (4): 253-265. DOI:10.1620/tjem.203.253. PMID: 15297730; Zhong X., Tao X., Tang Y., Chen R. The outcomes of hyperbaric oxygen therapy to retrieve hypoxemia of severe novel coronavirus pneumonia: first case report. Zhonghua Hanghai Yixue yu Gaoqiya Yixue Zazhi. 2020. DOI:10.3760/cma.j.issn.1009-6906.2020.0001; Tug T., Karatas F., Terzi S.M., Ozdemir N. Comparison of Serum Malondialdehyde Levels Determined by Two Different Methods in Patients With COPD: HPLC or TBARS Methods. Lab Med. 2005; 36 (1): 41-44. DOI:10.1309/WTEET9TJ2LUMB3C3; Khubutiya M.S., Evseev A.K., Kolesnikov V.A., Goldin M.M., Davydov A.D., Volkov A.G., Stepanov A.A. Measurements of platinum electrode potential in blood and blood plasma and serum. Russ. J. Electrochem. 2010; 46 (5): 537-541. DOI:10.1134/S1023193510050071; COVID-19 Therapeutic Trial Synopsis https://www.who.int/blue-print/priority-diseases/key-action/COVID-19_Treatment_Trial_De-sign_Master_Protocol_synopsis_Final_18022020.pdf; Sies H. Oxidative stress: A concept in redox biology and medicine. Redox Biol. 2015; 4: 180-183. DOI:10.1016/j.redox.2015.01.002. PMID: 25588755; Van den Brand J.M.A., Haagmans B.L., van Riel D. The pathology and pathogenesis of experimental severe acute respiratory syndrome and influenza in animal models. J. Comp. Pathol. 2014; 151 (1): 83-112. DOI:10.1016/j.jcpa.2014.01.004. PMID: 24581932; Smith J.T., Willey N.J., Hancock J.T. Low dose ionizing radiation produces too few reactive oxygen species to directly affect antioxidant concentrations in cells. Biol. Lett. 2012; 8 (4): 594-597. DOI:10.1098/rsbl.2012.0150. PMID: 22496076; Goldin Michael M., Khubutiya M.Sh., Evseev A.K., Goldin M.M., Pinchuk A.V., Pervakova E.I., Tarabrin Y.A., Hall P.J. Noninvasive diagnosis of dysfunctions in patients after organ transplantation by monitoring the redox potential of blood serum. Transplantation. 2015; 99 (6): 1288-1292. DOI:10.1097/tp.0000000000000519. PMID: 25606793; Леонов А.Н. Гипероксия: Адаптация. Саногенез. — Воронеж: ВГМА, 2006. — 192 с. ISBN 5-91132-003-7; Савилов П.Н. Генетические механизмы гипероксического сано-генеза. Бюллетень гипербарической биологии и медицины. 2007; 15 (1-4): 3-56.; Сомова Л.М., Беседнова Н.Н., Плехова Н.Г. Апоптоз и инфекционные болезни. Инфекция и иммунитет. 2014; 4 (4): 303-318. DOI:10.15789/2220-7619-2014-4-303-318; Azkur A.K., Akdis M., Azkur D., Sokolowska M., van de Veen W., Brdggen M.C., O’Mahony L., Gao Y., Nadeau K., Akdis C.A. Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19. Allergy. 2020; 75 (7): 1564-1581. DOI:10.1111/all.14364. PMID: 32396996; Fathi N., Rezaei N. Lymphopenia in COVID-19: Therapeutic opportunities. Cell Biol. Int. 2020: 1-6. DOI:10.1002/cbin.11403. PMID: 32458561; Giamarellos-Bourboulis E.J., Netea M.G., Rovina N., Akinosoglou K., Antoniadou A., Antonakos N., Damoraki G., Gkavogianni T., Adami M.E., Katsaounou P., Ntaganou M., Kyriakopoulou M., Dimopoulos G., Koutsodimitropoulos I., Velissaris D., Koufargyris P., Karageorgos A., Katrini K., Lekakis V., Lupse M., Kotsaki A., Renieris G., Theodoulou D., Panou V., Koukaki E., Koulouris N., Gogos C., Koutsoukou A. Complex Immune Dysregulation in COVID-19 Patients with Severe Respiratory Failure. Cell Host Microbe. 2020; 27 (6) 992-1000.e3. DOI:10.1016/j.chom.2020.04.009. PMID: 32320677; https://www.reanimatology.com/rmt/article/view/1983

  6. 6
    Academic Journal

    المصدر: Russian Journal of Transplantology and Artificial Organs; Том 15, № 3 (2013); 38-43 ; Вестник трансплантологии и искусственных органов; Том 15, № 3 (2013); 38-43 ; 2412-6160 ; 1995-1191 ; 10.15825/1995-1191-2013-3

    وصف الملف: application/pdf

    Relation: https://journal.transpl.ru/vtio/article/view/428/370; Kuga T., Mohri M. Bradykinin-induced vasodilatation of human coronary arteries in vivo: role of nitric oxide and angiotensin-converting enzyme. J. Am. Coll. Cardiol. 1997; 30: 108–112.; Cooke J.P., Dzau V.J. Nitric oxide synthase: Role in the genesis of vascular disease. Annu. Rev. Med. 1997; 48: 489–509.; Rossaint R., Falke K.J., Lopez F., Slama K., Pison U., Zapol W.M. Inhaled nitric oxide for the adult respiratory distress syndrome. N. Engl. J. Med. 1993; 328: 399–405.; Ichinose F., Roberts J.D. Jr., Zapol W.M. Inhaled nitric oxide: a selective pulmonary vasodilator: current uses and therapeutic potential. Circulation. 2004; 109: 3106–3111.; Young J.D., Sear J.W., Valvini E.M. Kinetics of methae- moglobin and serum nitrogen oxide production during inhalation of nitric oxide in volunteers. Br. J. Anaesth. 1996; 76: 652–656.; Weinberger B., Laskin D.L., Heck D.E., Laskin J.D. The toxicology of inhaled nitric oxide. Toxicol. Sci. 2001; 59 (1): 5–16.; Sokol G.M., Van Meurs K.P., Wright L.L., Rivera O., Thorn W.J., Chu P.M., Sams R.L. Nitrogen dioxide for- mation during inhaled nitric oxide therapy. Clin. Chem. 1999; 45 (3): 382–387.; Kirmse M., Hess D., Fujino Y., Kacmarek R.M., Hur- ford W.E. Delivery of inhaled nitric oxide using the Ohmeda INOvent Delivery System. Chest. 1998; 113 (6): 1650–1657.; Golikov P.P., Nikolaeva N.Yu. Method for determination of nitrite/nitrate (NOx) in serum. Vopr. biomed. himii. 2004; 1: 79–85 (in rus).; Steudel W., Hurford W.E., Zapol W.M. Inhaled nitric oxi- de: basic biology and clinical applications. Anesthesiol- ogy. 1999; 91: 1090–1121.; De Andrade J.A., Crow J.P., Viera L., Bruce Alexan- der C., Randall Young K., McGiffin D.C., Zorn G.L., Zhu S., Matalon S., Jackson R.M. Protein nitration, metabolites of reactive nitrogen species, and inflammation in lung allografts. Am. J. Respir. Crit. Care Med. 2000; 161 (6): 2035–2042.; De Andrade J.A., Crow J., Viera L., Bruce Alexander C., Randall Young K., McGiffin D.C., Zorn G.L., Matalon S., Jackson R.M. Reactive nitrogen species, airway inflam- mation, and fibrosis in lung transplant. Chest. 2001; 120: 58–59.; Reid D., Snell G., Ward C., Krishnaswamy R., Ward R., Zheng L., Williams T., Walters H. Iron overload and nitric oxide-derived oxidative stress following lung transplan- tation. J. Heart Lung Transplant. 2001; 20: 840–849.; Wiklund L., Lewis D.H., Sjöquist P.O., Nilsson F., Taze- laar H., Miller V.M., McGregor C.G. Increased levels of circulating nitrates and impaired endothelium-mediated vasodilation suggest multiple roles of nitric oxide during acute rejection of pulmonary allografts. J. Heart Lung Transplant. 1997; 16 (5): 517–523.; Worrall N.K., Boasquevisque C.H., Misko T.P., Sulli- van P.M., Ferguson T.B. Jr., Patterson G.A. Inducible nitric oxide synthase is expressed during experimental acute lung allograft rejection. J. Heart Lung Transplant. 1997; 16: 334–339.; Johnson M.L., Billiar T.R. Roles of nitric oxide in surgi- cal infection and sepsis. World J. Surg. 1998; 22: 187– 196.; Vospel’nikova N.D. Nitric oxide as a regulator of cellular functions. Biohimicheskie osnovy patologicheskih pro- cessov. Pod red. E.S. Severina. M. Medicina. 2000; 10: 266–291 (in rus).; https://journal.transpl.ru/vtio/article/view/428