-
1Academic Journal
المؤلفون: G. S. Ritter, V. P. Nikolin, N. A. Popova, A. S. Proskurina, P. E. Kisaretova, O. S. Taranov, T. D. Dubatolova, E. V. Dolgova, E. A. Potter, S. S. Kirikovich, Y. R. Efremov, S. I. Bayborodin, M. V. Romanenko, M. I. Meschaninova, A. G. Venyaminova, N. A. Kolchanov, S. S. Bogachev, Г. С. Риттер, В. П. Николин, Н. А. Попова, А. С. Проскурина, П. Э. Кисаретова, О. С. Таранов, Т. Д. Дубатолова, Е. В. Долгова, Е. А. Поттер, С. С. Кирикович, Я. Р. Ефремов, С. И. Байбородин, М. В. Романенко, М. И. Мещанинова, А. Г. Веньяминова, Н. А. Колчанов, С. С. Богачев
المساهمون: This work was supported by State Budgeted Project No. 0324-2019-0042-C-01 for the Institute of Cytology and Genetics, Novosibirsk, registration ID AAAA-А17-117071240065-4, and the Russian Foundation for Basic Research, project No. 18-34-00205. Microscopical examination of cells was supported by State Budgeted Project No. 0310-2019-0005 for the Institute of Molecular and Cellular Biology, Novosibirsk.
المصدر: Vavilov Journal of Genetics and Breeding; Том 24, № 6 (2020); 643-652 ; Вавиловский журнал генетики и селекции; Том 24, № 6 (2020); 643-652 ; 2500-3259 ; 2500-0462 ; 10.18699/VJ20.647
مصطلحات موضوعية: двуцепочечные разрывы, B-190, spleen colonies, double-stranded breaks, Б-190, селезеночные колонии
وصف الملف: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/2780/1427; Озеров И.В., Осипов А.Н. Кинетическая модель репарации двунитевых разрывов ДНК в первичных фибробластах человека при действии редкоионизирующего излучения с различной мощностью дозы. Компьютерные исследования и моделирование. 2015;7(1):159-176. DOI 10.20537/2076-7633-2015-7-1-159-176. [Ozerov I.V., Osipov A.N. Kinetic model of DNA double-strand break repair in primary human fibroblasts exposed to low-LET irradiation with various dose rates. Kompyuternye Issledovaniya i Modelirovanie = Computer Research and Modeling. 2015;7(1):159- 176. DOI 10.20537/2076-7633-2015-7-1-159-176. (in Russian)]; Риттер Г.С., Николин В.П., Попова Н.А., Кисаретова П.Э., Долгова Е.В., Проскурина А.С., Поттер Е.А., Кирикович С.С., Байбородин С.И., Таранов О.С., Ефремов Я.Р., Колчанов Н.А., Богачев С.С. Изучение радиопротекторного действия двуцепочечной РНК, выделенной из дрожжей Saccharomyces cerevisiae. В: Четвертый междисципл. науч. форум с междунар. участием «Новые материалы и перспективные технологии»: Сб. материалов. М., 2018;II:161-167. [Ritter G.S., Nikolin V.P., Popova N.A., Kisaretova P.E., Dolgova E.V., Proskurina A.S., Potter E.A., Kirikovich S.S., Bayborodin S.I., Taranov O.S., Efremov Y.R., Kolchanov N.A., Bogachev S.S. Study of radioprotective action of double-stranded RNA extracted from Saccharomyces cerevisiae. In: The Fourth interdisciplinary scientific forum with international participation “New Materials and Promising Technologies”: Proceedings. Moscow, 2018;II: 161-167. (in Russian)]; Bärtsch S., Kang L.E., Symington L.S. RAD51 is required for the repair of plasmid double-stranded DNA gaps from either plasmid or chromosomal templates. Mol. Cell. Biol. 2000;20(4):1194-1205. DOI 10.1128/mcb.20.4.1194-1205.2000.; Belli M., Sapora O., Tabocchini M.A. Molecular targets in cellular response to ionizing radiation and implications in space radiation protection. J. Radiat Res. 2002;43(S):S13-S19. DOI 10.1269/jrr.43.s13.; Bergonié J., Tribondeau L. Interpretation of some results from radiotherapy and an attempt to determine a rational treatment technique (1906). Yale J. Biol. Med. 2003;76(4):181-182.; Dent P., Yacoub A., Contessa J., Caron R., Amorino G., Valerie K., HaganM.P., GrantS., Schmidt-UllrichR. Stress and radiation-induced activation of multiple intracellular signaling pathways. Radiat. Res. 2003;159(3):283-300. DOI 10.1667/0033-7587(2003)159[0283:sariao]2.0.co;2.; Dische Z. In: Colowick S.P., Kaplan N.O. (Eds.). Methods in Enzymology. Vol. III. New York: Acad. Press, 1957.; Dolgova E.V., Alyamkina E.A., Efremov Y.R., Nikolin V.P., Popova N.A., Tyrinova T.V., Kozel A.V., Minkevich A.M., Andrushkevich O.M., Zavyalov E.L., Romaschenko A.V., Bayborodin S.I., Taranov O.S., Omigov V.V., Shevela E.Y., Stupak V.V., Mishinov S.V., Rogachev V.A., Proskurina A.S., Mayorov V.I., Shurdov M.A., Ostanin A.A., Chernykh E.R., Bogachev S.S. Identification of cancer stem cells and a strategy for their elimination. Cancer Biol. Ther. 2014;15(10):1378-1394. DOI 10.4161/cbt.29854.; Dolgova E.V., Efremov Y.R., Orishchenko K.E., Andrushkevich O.M., Alyamkina E.A., Proskurina A.S., Bayborodin S.I., Nikolin V.P., Popova N.A., Chernykh E.R., Ostanin A.A., Taranov O.S., Omigov V.V., Minkevich A.M., Rogachev V.A., Bogachev S.S., Shurdov M.A. Delivery and processing of exogenous double-stranded DNA in mouse CD34+ hematopoietic progenitor cells and their cell cycle changes upon combined treatment with cyclophosphamide and double-stranded DNA. Gene. 2013a;528(2):74-83. DOI 10.1016/j.gene.2013.06.058.; Dolgova E.V., Nikolin V.P., Popova N.A., Proskurina A.S., Orishchenko K.E., Alyamkina E.A., Efremov Y.R., Baiborodin S.I., Chernykh E.R., Ostanin A.A., Bogachev S.S., Gvozdeva T.S., Malkova E.M., Taranov O.S., Rogachev V.A., PanovA.S., Zagrebelnyi S.N., Shurdov M.A. Pathological changes in mice treated with cyclophosphamide and exogenous DNA. Russ. J. Genet.: Appl. Res. 2013b; 3(4):291-304. DOI 10.1134/S2079059713040035.; Fridovich I. Superoxide radical and superoxide dismutases. Annu. Rev. Biochem. 1995;64(1):97-112. DOI 10.1146/annurev.bi.64.070195.000525.; Goodhead D.T. Initial events in the cellular effects of ionizing radiations: clustered damage in DNA. Int. J. Radiat. Biol. 1994;65(1): 7-17. DOI 10.1080/09553009414550021.; Leung W., Malkova A., Haber J.E. Gene targeting by linear duplex DNA frequently occurs by assimilation of a single strand that is subject to preferential mismatch correction. Proc. Natl. Acad. Sci. USA. 1997;94(13):6851-6856. DOI 10.1073/pnas.94.13.6851.; Li J., Read L.R., Baker M.D. The mechanism of mammalian gene replacement is consistent with the formation of long regions of heteroduplex DNA associated with two crossing-over events. Mol. Cell. Biol. 2001;21(2):501-510. DOI 10.1128/mcb.21.2.501-510.2001.; Likhacheva A.S., Nikolin V.P., Popova N.A., Rogachev V.A., Prokhorovich M.A., Sebeleva T.E., Bogachev S.S., Shurdov M.A. Exogenous DNA can be captured by stem cells and be involved in their rescue from death after lethal-dose γ-radiation. Gene Ther. Mol. Biol. 2007;11(2):305-314.; Maréchal A., Zou L. DNA damage sensing by the ATM and ATR kinases. Cold Spring Harb. Perspect. Biol. 2013;5(9). DOI 10.1101/cshperspect.a012716.; Meers C., Keskin H., Storici F. DNA repair by RNA: templated, or not templated, that is the question. DNA Repair (Amst). 2016;44:17-21. DOI 10.1016/j.dnarep.2016.05.002.; Morgan W.F. Non-targeted and delayed effects of exposure to ionizing radiation: I. Radiation-induced genomic instability and bystander effects in vitro. Radiat. Res. 2003a;159(5):567-580. DOI 10.1667/0033-7587(2003)159[0567:nadeoe]2.0.co;2.; Morgan W.F. Non-targeted and delayed effects of exposure to ionizing radiation: II. Radiation-induced genomic instability and bystander effects in vivo, clastogenic factors and transgenerational effects. Radiat. Res. 2003b;159(5):581-596. DOI 10.1667/0033-7587(2003)159[0581:nadeoe]2.0.co;2.; Patt H.M., Tyree E.B., Straube R.L., Smith D.E. Cysteine protection against X irradiation. Science. 1949;110(2852):213-214. DOI 10.1126/science.110.2852.213.; Peitzsch C., Kurth I., Kunz-Schughart L., Baumann M., Dubrovska A. Discovery of the cancer stem cell related determinants of radioresistance. Radiother. Oncol. 2013;108(3):378-387. DOI 10.1016/j.radonc.2013.06.003.; Rogakou E.P., Boon C., Redon C., Bonner W.M. Megabase chromatin domains involved in DNA double-strand breaks in vivo. J. Cell Biol. 1999;146(5):905-915. DOI 10.1083/jcb.146.5.905.; Rogakou E.P., Pilch D.R., Orr A.H., Ivanova V.S., Bonner W.M. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem. 1998;273(10):5858-5868. DOI 10.1074/jbc.273.10.5858.; Shemetun O.V., Pilinska M.A. Radiation-induced bystander effect – modeling, manifestation, mechanisms, persistence, cancer risks. Probl. Radiac. Med. Radiobiol. 2019;24:65-92. DOI 10.33145/2304-8336-2019-24-65-92.; Storici F., Bebenek K., Kunkel T.A., Gordenin D.A., Resnick M.A. RNA-templated DNA repair. Nature. 2007;447(7142):338-341. DOI 10.1038/nature05720.; Symington L.S. Focus on recombinational DNA repair. EMBO Rep. 2005;6(6):512-517. DOI 10.1038/sj.embor.7400438.; Vogin G., Foray N. The law of Bergonié and Tribondeau: a nice formula for a first approximation. Int. J. Radiat. Biol. 2013;89(1):2-8. DOI 10.3109/09553002.2012.717732.; Wang Y., Xu C., Du L.Q., Cao J., Liu J.X., Su X., Zhao H., Fan F.Y., Wang B., Katsube T., Fan S.J., Liu Q. Evaluation of the comet assay for assessing the dose-response relationship of DNA damage induced by ionizing radiation. Int. J. Mol. Sci. 2013;14(11):22449- 22461. DOI 10.3390/ijms141122449.; Ward J.F. DNA damage produced by ionizing radiation in mammalian cells: identities, mechanisms of formation, and reparability. Prog. Nucleic Acid Res. Mol. Biol. 1988;35(C):95-125. DOI 10.1016/S0079-6603(08)60611-X.; https://vavilov.elpub.ru/jour/article/view/2780
-
2Academic Journal
المؤلفون: E. V. Levites, S. S. Kirikovich, E. V. Dolgova, A. S. Proskurina, G. S. Ritter, А. A. Ostanin, E. R. Chernykh, S. S. Bogachev, Е. В. Левитес, С. С. Кирикович, Е. В. Долгова, А. С. Проскурина, Г. С. Риттер, А. А. Останин, Е. Р. Черных, С. С. Богачев
المساهمون: The authors are grateful to Head of the Shared Access Center "Cell technologies” Institute of Cytology and Genetics, Novosibirsk, for access to the microscope. This work was supported by the companies Activator MAF and BA Pharma and by State Budgeted Project 0324-2019-0042 (registration ID АААА-А17-117071240065-4)
المصدر: Vavilov Journal of Genetics and Breeding; Том 24, № 3 (2020); 284-291 ; Вавиловский журнал генетики и селекции; Том 24, № 3 (2020); 284-291 ; 2500-3259
مصطلحات موضوعية: перитонеальные макрофаги, vitamin D3-binding protein (DBP), phagocytosis, nitrogen monoxide (NO), peritoneal macrophages, витамин D3-связывающий белок (DBP), фагоцитоз, монооксид азота (NO)
وصف الملف: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/2596/1382; Гржибовский А.М. Анализ трех и более независимых групп количественных данных. Экология человека. 2008;3:50-58.; Останин А.А., Кирикович С.С., Долгова Е.В., Проскурина А.С., Черных Е.Р., Богачев С.С. Тернистый путь макрофаг-активирующего фактора (GcMAF): от открытия к клинической практике. Вавиловский журнал генетики и селекции. 2019;23(5):624-631. DOI 10.18699/VJ19.535.; Asaoka Y., Ota M., Yoshida K., Sasaki Y., Nishizuka Y. Role of ly-sophosphatidylcholine in T-lymphocyte activation: involvement of phospholipase A2 in signal transduction through protein kinase C. Proc. Natl. Acad. Sci. USA. 1992;89(14):6447-6451. DOI 10.1073/pnas.89.14.6447.; Borges C.R., Rehder C.R. Glycan structure of Gc protein-derived macrophage activating factor as revealed by mass spectrometry. Arch. Biochem. Biophys. 2016;606:167-179. DOI 10.1016/j.abb.2016.08.006.; Cassetta L., Cassol E., Poli G. Macrophage polarization in health and disease. Sci. World J. 2011;11:2391-2402. DOI 10.1100/2011/213962.; Delanghe J.R., Speeckaert R., Speeckaert M.M. Behind the scenes of vitamin D binding protein: more than vitamin D binding. Best Pract. Res. Clin. Endocrinol. Metab. 2015;29(5):773-786. DOI 10.1016/j.beem.2015.06.006.; de Souza M.G., Grossi A.L., Pereira E.L., da Cruz C.O., Mendes F.M., Cameron L.C., Paiva C.L. Actin immobilization on chitin for purifying myosin II: a laboratory exercise that integrates concepts of molecular cell biology and protein chemistry. Biochem. Mol. Biol. Educ. 2008;36(1):55-60. DOI 10.1002/bmb.122.; Gordon S. Alternative activation of macrophages. Nat. Rev. Immunol. 2003;3(1):23-35. DOI 10.1038/nri978.; Green L.C., Wagner D.A., Glogowski J., Skipper P.L., Wishnok J.S., Tannenbaum S.R. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal. Biochem. 1982;126(1):131-138. DOI 10.1016/0003-2697(82)90118-x.; Greilberger J., Herwig R. Vitamin D - deglycosylated vitamin D-bind-ing protein dimer: positive synergistic effects on recognition, activation, phagocytosis and oxidative stress on macrophages. Clin. Lab. 2020;66(1):169-177. DOI 10.7754/Clin.Lab.2019.191121.; Haddad J.G., Kowalski M.A., Sanger J.W. Actin affinity chromatography in the purification of human, avian and other mammalian plasma proteins binding vitamin D and its metabolites (Gc globulins). Biochem. J. 1984;218(3):805-810. DOI 10.1042/bj2180805.; Hammarstrom S., Kabat E.A. Studies on specificity and binding properties of the blood group A reactive hemagglutinin from Helix pomatia. Biochemistry. 1971;10(9):1684-1692. DOI 10.1021/bi00785a028.; Inui T., Amitani H., Kubo K., Kuchike D., Uto Y., Nishikata T., Mette M. Case report: a non-small cell lung cancer patient treated with GcMAF, sonodynamic therapy and tumor treating fields. Anticancer Res. 2016a;36:3767-3770. PMID: 27354652.; Inui T., Katsuura G., Kubo K., Kuchiike D., Chenery L., Uto Y., Nishikata T., Mette M. Case report: GcMAF treatment in a patient with multiple sclerosis. Anticancer Res. 2016b;36:3771-3774. PMID: 27354653.; Inui T., Kuchiike D., Kubo K., Mette M., Uto Y., Hori H., Sakamoto N. Clinical experience of integrative cancer immunotherapy with GcMAF. Anticancer Res. 2013;33(7):2917-2919. PMID: 23780980.; Ioannou Y.A., Bishop D.F., Desnick R.J. Overexpression of human alpha-galactosidase A results in its intracellular aggregation, crystallization in lysosomes, and selective secretion. J. Cell Biol. 1992; 119:1137-1150. DOI 10.1083/jcb.119.5.1137.; Ishikawa M., Inoue T., Inui T., Kuchiike D., Kubo K., Uto Y., Nishi-kata T. A novel assay system for macrophage-activating factor activity using a human U937 cell line. Anticancer Res. 2014;34(8): 4577-4581. PMID: 25075102.; Kisker O., Onizuka S., Becker C.M., Fannon M., Flynn E., D’Amato R., Zetter B., Folkman J., Ray R., Swamy N., Pirie-Shepherd S. Vitamin D binding protein-macrophage activating factor (DBP-maf) inhibits angiogenesis and tumor growth in mice. Neoplasia. 2003; 5(1):32-40. DOI 10.1016/S1476-5586(03)80015-5.; Klokol D., Teppone M. Management of metastatic colorectal carcinoma with GcMAF Forte and thymus peptides: a case report. J. Clin. Cell. Immunol. 2016;7:4. DOI 10.4172/2155-9899.1000449.; Korbelik M., Naraparaju V.R., Yamamoto N. Macrophage-directed immunotherapy as adjuvant to photodynamic therapy of cancer. Br. J. Cancer. 1997;75(2):202-207. DOI 10.1038/bjc.1997.34.; Korbelik M., Naraparaju V.R., Yamamoto N. The value of serum a-N-acetylgalactosaminidase measurement for the assessment of tumour response to radio- and photodynamic therapy. Br. J. Cancer. 1998; 77:1009-1014. DOI 10.1038/bjc.1998.166.; Kuchiike D., Uto Y., Mukai H., Ishiyama N., Abe C., Tanaka D., Kawai T., Kubo K., Mette M., Inui T., Endo Y., Hori H. Degalacto-sylated/desialylated human serum containing GcMAF induces macrophage phagocytic activity and in vivo antitumor activity. Anticancer Res. 2013;33(7):2881-2885. PMID: 23780974.; Lamagna C., Aurrand-Lions M., Imhof B.A. Dual role of macrophages in tumor growth and angiogenesis. J. Leukoc. Biol. 2006;80(4):705-713. DOI 10.1189/jlb.1105656.; Link R.P., Perlman K.L., Pierce E.A., Schnoes H.K., DeLuca H.F. Purification of human serum vitamin D-binding protein by 25-hydro-xyvitamin D3-Sepharose chromatography. Anal. Biochem. 1986; 157(2):262-269. DOI 10.1016/0003-2697(86)90624-x.; Malik S., Fu L., Juras D.J., Karmali M., Wong B.Y., Gozdzik A., Cole D.E. Common variants of the vitamin D binding protein gene and adverse health outcomes. Crit. Rev. Clin. Lab. Sci. 2013;50(1): 1-22. DOI 10.3109/10408363.2012.750262.; Matsuura T., Uematsu T., Yamaoka M., Furusawa K. Effect of salivary gland adenocarcinoma cell-derived a-N-acetylgalactosaminidase on the bioactivity of macrophage activating factor. Int. J. Oncol. 2004; 24(3):521-528. DOI 10.3892/ijo.24.3.521.; Mohamad S.B., Nagasawa H., Uto Y., Hori H. Preparation of Gc protein-derived macrophage activating factor (GcMAF) and its structural characterization and biological activities. Anticancer Res. 2002; 22(6C):4297-4300. PMID: 12553073.; Mosser D.M. The many faces of macrophage activation. J. Leukoc. Biol. 2003;73(2):209-212. DOI 10.1189/jlb.0602325.; Moya R., Chan M.K.S., Klokol D., Pan S.Yi. Active specific immunotherapy (ASI) and GcMAF Forte in management of metastatic invasive carcinoma - overview of the therapeutic modalities and a case report. J. Clin. Exp. Immunol. 2018;3(2):1-4.; Murray P.J., Wynn T.A. Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol. 2011;11:723-737. DOI 10.1038/nri3073.; Nagasawa H., Uto Y., Sasaki H., Okamura N., Murakami A., Kubo S., Kirk K.L., Hori H. Gc protein (vitamin D-binding protein): Gc ge-notyping and GcMAF precursor activity. Anticancer Res. 2005;25: 3689-3696. PMID: 16302727.; Naraparaju V.R., Yamamoto N. Roles of P-galactosidase of B lymphocytes and sialidase of T lymphocytes in inflammation-primed activation of macrophages. Immunol. Lett. 1994;43(3):143-148. DOI 10.1016/0165-2478(94)90214-3.; Ngwenya B.Z., Yamamoto N. Effects of inflammation products on immune systems. Lysophosphatidylcholine stimulates macrophages. Cancer Immunol. Immunother. 1986;21(3):174-182. DOI 10.1007/bf00199358.; Pacini S., Punzi T., Morucci G., Gulisano M., Ruggiero M. Effects of vitamin D-binding protein-derived macrophage-activating factor on human breast cancer cells. Anticancer Res. 2012;32(1):45-52. PMID: 22213287.; Paduraru D.N., Bouariu A., Ion D., Andronic O., Dumitrascu M.C., Bolocan A. Considerations regarding GcMAF treatement in breast cancer. Rom. Biotechnol. Lett. 2019;24(5):851-855. DOI 10.25083/rbl/24.5/851.855.; Rehder D.S., Nelson R.W., Borges C.R. Glycosylation status of vitamin D binding protein in cancer patients. Protein Sci. 2009;18(10): 2036-2042. DOI 10.1002/pro.214.; Ruggiero M., Reinwald H., Pacini S. Is chondroitin sulfate responsible for the biological effect attributed to the GC protein-derived Macrophage Activating Factor (GcMAF)? Med. Hypotheses. 2016;94: 126-131. DOI 10.1016/j.mehy.2016.07.012.; Ruggiero M., Ward E., Smith R., Branca J.J., Noakes D., Morucci G., Taubmann M., Thyer L., Pacini S. Oleic acid, deglycosylated vitamin D-binding protein, nitric oxide: a molecular triad made lethal to cancer. Anticancer Res. 2014;34(7):3569-3578. PMID: 24982371.; Saburi E., Saburi A., Ghanei M. Promising role for Gc-MAF in cancer immunotherapy: from bench to bedside. Caspian J. Intern. Med. 2017a;8(4):228-238. DOI 10.22088/cjim.8.4.228.; Saburi E., Tavakol-Afshari J., Biglari S., Mortazavi Y. Is a-N-acetyl-galactosaminidase the key to curing cancer? A mini-review and hypothesis. JBUON. 2017b;22(6):1372-1377. PMID: 29332325.; Sica A., Bronte V. Altered macrophage differentiation and immune dysfunction in tumor development. J. Clin. Invest. 2007;117(5):1155-1166. DOI 10.1172/JCI31422.; Smith R., Thyer L., Ward E., Meacci E., Branca J.J.V., Morucci G., Gu-lisano M., Ruggiero M., Pacini A., Paternostro F., Mannelli L.D.C., Noakes D.J., Pacini S. Effects of Gc-macrophage activating factor in human neurons; implications for treatment of chronic fatigue syndrome. Am. J. Immunol. 2013;9(4):120-129. DOI 10.3844/ajisp.2013.120.129.; Spudich J.A., Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J. Biol. Chem. 1971;246(15):4866-4871. PMID: 4254541.; Swamy N., Ray R. 25-Hydroxy[26,27-methyl-3H]vitamin D3-3P-(1,2-epoxypropyl)ether: an affinity labeling reagent for human vitamin D-binding protein. Arch. Biochem. Biophys. 1995;319(2):504-507. DOI 10.1006/abbi.1995.1323.; Thyer L., Ward E., Smith R., Branca J.J., Morucci G., Gulisano M., Noakes D., Eslinger R., Pacini S. GC protein-derived macrophageactivating factor decreases a-N-acetylgalactosaminidase levels in advanced cancer patients. Oncoimmunology. 2013a;2(8):e25769. DOI 10.4161/onci.25769.; Thyer L., Ward E., Smith R., Fiore M.G., Magherini S., Branca J.J., Morucci G., Gulisano M., Ruggiero M., Pacini S. A novel role for a major component of the vitamin D axis: vitamin D binding protein-derived macrophage activating factor induces human breast cancer cell apoptosis through stimulation of macrophages. Nutrients. 2013b;5(7):2577-2589. DOI 10.3390/nu5072577.; Toyohara Y., Hashitani S., Kishimoto H., Noguchi K., Yamamoto N., Urade M. Inhibitory effect of vitamin D-binding protein-derived macrophage activating factor on DMBA-induced hamster cheek pouch carcinogenesis and its derived carcinoma cell line. Oncol. Lett. 2011;2(4):685-691. DOI 10.3892/ol.2011.306.; Ugarte A., Bouche G., Meheus L. Inconsistencies and questionable reliability of the publication “Immunotherapy of metastatic colorectal cancer with vitamin D-binding protein-derived macrophages-acti-vating, GcMAF” by Yamamoto et al. Cancer Immunol. Immunother. 2014;63(12):1347-1348. DOI 10.1007/s0262-014-1587-y.; Yamamoto N. Structural definition of a potent macrophage activating factor derived from vitamin D3-binding protein with adjuvant activity for antibody production. Mol. Immunol. 1996;33:1157-1164. PMID: 8360493.; Yamamoto N., Homma S. Vitamin D3 binding protein (group-specific component) is a precursor for the macrophage-activating signal factor from lysophosphatidylcholine-treated lymphocytes. Proc. Natl. Acad. Sci. USA. 1991;88(19):8539-8543. DOI 10.1073/pnas. 88.19.8539.; Yamamoto N., Kumashiro R. Conversion of vitamin D3 binding protein (group-specific component) to a macrophage activating factor by the stepwise action of beta-galactosidase of B cells and sialidase of T cells. J. Immunol. 1993;151(5):2794-2802. PMID: 8360493.; Yamamoto N., Naraparaju V.R., Asbell S.O. Deglycosylation of serum vitamin D3-binding protein leads to immunosuppression in cancer patients. Cancer Res. 1996;56(12):2827-2831. PMID: 8665521.; Yamamoto N., Suyama H., Yamamoto N. Immunotherapy for prostate cancer with Gc protein-derived macrophage-activating factor, GcMAF. Transl. Oncol. 2008;1(2):65-72. DOI 10.1593/tlo.08106.; https://vavilov.elpub.ru/jour/article/view/2596
-
3Academic Journal
المؤلفون: A. A. Ostanin, S. S. Kirikovich, E. V. Dolgova, А. S. Proskurina, E. R. Chernykh, S. S. Bogachev, А. А. Останин, С. С. Кирикович, Е. В. Долгова, А. С. Проскурина, Е. Р. Черных, С. С. Богачев
المساهمون: This work was supported by State Budgeted Project 0324-2019-0042. The authors also acknowledge the financial support provided by I.N. Zaytseva, BA-Farma Company.
المصدر: Vavilov Journal of Genetics and Breeding; Том 23, № 5 (2019); 624-631 ; Вавиловский журнал генетики и селекции; Том 23, № 5 (2019); 624-631 ; 2500-3259
مصطلحات موضوعية: противоопухолевая терапия, Gc protein-derived macrophage activating factor (GcMAF), N-acetylgalactosamine (GalNAc), α-N-acetylgalactosaminidase (nagalase), anticancer therapy, макрофаг-активирующий фактор (GcMAF), N-ацетилгалактозамин (GalNAc), α-N-ацетилгалактозаминидаза (нагалаза)
وصف الملف: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/2215/1261; Сахно Л.В., Шевела Е.Я., Тихонова М.А., Останин А.А., Черных Е.Р. Молекулярные механизмы иммуносупрессорной активности М2-макрофагов. Иммунология. 2016;37(6):311-315.; Allavena P., Sica A., Garlanda C., Mantovani A. The Yin-Yang of tumor-associated macrophages in neoplastic progression and immune surveillance. Immunol. Rev. 2008;222(1):155-161. DOI 10.1111/j.1600-065X.2008.00607.x.; Bradstreet J.J., Vogelaar E., Thyer L. Initial observations of elevated alpha-N-acetylgalactosaminidase activity associated with autism and observed reductions from Gcprotein-macrophage activating factor injections. Autism Insights. 2012;4:31-38. DOI 10.4137/AUI.S10485.; Delanghe J.R., Speeckaert R., Speeckaert M.M. Behind the scenes of vitamin D binding protein: more than vitamin D binding. Best Pract. Res. Clin. Endocrinol. Metab. 2015;29(5):773-786. DOI 10.1016/j.beem.2015.06.006.; Dunn G.P., Bruce A.T., Ikeda H., Old L.J., Schreiber R.D. Cancer immunoediting: from immunosurveillance to tumor escape. Nat. Immunol. 2002;3(11):991-998. DOI 10.1038/ni1102-991.; Gregory K.J., Zhao B., Bielenberg D.R., Dridi S., Wu J., Jiang W., Huang B., Pirie-Shepherd S., Fannon M. Vitamin D binding protein-macrophage activating factor directly inhibits proliferation, migration, and uPAR expression of prostate cancer cells. PLoS One. 2010;5(10):e13428. DOI 10.1371/journal.pone.0013428.; Haddad J.G., Hu Y.Z., Kowalski M.A., Laramore C., Ray K., Robzyk P., Cooke N.E. Identification of the steroland actin-binding domains of plasma vitamin D binding protein (Gc-globulin). Biochemistry. 1992;31(31):7174-7181. DOI 10.1021/bi00146a021.; Homma S., Yamamoto M., Yamamoto N. Vitamin D-binding protein (group-specific component) is the sole serum protein required for macrophage activation after treatment of peritoneal cells with lysophosphatidylcholine. Immunol. Cell Biol. 1993;71(Pt. 4):249-257. DOI 10.1038/icb.1993.29.; Inui T., Kuchiike D., Kubo K., Mette M., Uto Y., Hori H., Sakamoto N. Clinical experience of integrative cancer immunotherapy with GcMAF. Anticancer Res. 2013;33(7):2917-2919.; Ioannou Y.A., Bishop D.F., Desnick R.J. Overexpression of human alpha-galactosidase A results in its intracellular aggregation, crystallization in lysosomes, and selective secretion. J. Cell Biol. 1992;119: 1137-1150. DOI 10.1083/jcb.119.5.1137.; Ishikawa M., Inoue T., Inui T., Kuchiike D., Kubo K., Uto Y., Nishikata T. A novel assay system for macrophage-activating factor activity using a human U937 cell line. Anticancer Res. 2014;34(8):45774581.; Kanan R.M., Cook D.B., Datta H.K. Lectin immunoassay for macrophage-activating factor (Gc-MAF) produced by deglycosylation of Gc-globulevidence for noninducible generation of Gc-MAF. Clin. Chem. 2000;46:412-414.; Kim R., Emi M., Tanabe K. Cancer immunoediting from immune surveillance to immune escape. Immunology. 2007;121(1):1-14. DOI 10.1111/j.1365-2567.2007.02587.x.; Kisker O., Onizuka S., Becker C.M., Fannon M., Flynn E., D’Amato R., Zetter B., Folkman J., Ray R., Swamy N., Pirie-Shepherd S. Vitamin D binding protein-macrophage activating factor (DBP-maf) inhibits angiogenesis and tumor growth in mice. Neoplasia. 2003; 5(1):32-40. DOI 10.1016/S1476-5586(03)80015-5.; Korbelik M., Naraparaju V.R., Yamamoto N. Macrophage-directed immunotherapy as adjuvant to photodynamic therapy of cancer. Br. J. Cancer. 1997;75(2):202-207. DOI 10.1038/bjc.1997.34.; Kuchiike D., Uto Y., Mukai H., Ishiyama N., Abe C., Tanaka D., Kawai T., Kubo K., Mette M., Inui T., Endo Y., Hori H. Degalactosylated/desialylated human serum containing GcMAF induces macrophage phagocytic activity and in vivo antitumor activity. Anticancer Res. 2013;33(7):2881-2885.; Malik S., Fu L., Juras D.J., Karmali M., Wong B.Y., Gozdzik A., Cole D.E. Common variants of the vitamin D binding protein gene and adverse health outcomes. Crit. Rev. Clin. Lab. Sci. 2013;50(1): 1-22. DOI 10.3109/10408363.2012.750262.; Mantovani A., Sozzani S., Locati M., Allavena P., Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002;23(11): 549-555. DOI 10.1016/S1471-4906(02)02302-5.; Martinez F.O., Gordon S., Locati M., Mantovani A. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J. Immunol. 2006;177(10):7303-7311. DOI 10.4049/jimmunol.177.10.7303.; Matsuura T., Uematsu T., Yamaoka M., Furusawa K. Effect of salivary gland adenocarcinoma cell-derived alpha-N-acetylgalactosaminidase on the bioactivity of macrophage activating factor. Int. J. Oncol. 2004;24(3):521-528. DOI 10.3892/ijo.24.3.521.; McCarty F. Overview of macrophage activating factor and the nagalase assay – potential for control of micrometastatic or early primary cancer. 2013. Available at https://pdfs.semanticscholar.org/8c6d/d28ae1280f52d857145bbd7b14d4a6146e2d.pdf.; Mohamad S.B., Nagasawa H., Uto Y., Hori H. Tumor cell alpha-N-acetylgalactosaminidase activity and its involvement in GcMAF-related macrophage activation. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 2002a;132(1):1-8. DOI 10.1016/S1095-6433(02)00190-3.; Mohamad S.B., Nagasawa H., Uto Y., Hori H. Preparation of Gc protein-derived macrophage activating factor (GcMAF) and its structural characterization and biological activities. Anticancer Res. 2002b; 22(6C):4297-4300.; Morales E.M. GcMAF: a polemic or a highly promising molecule? World Scientific News. 2017;65:20-36.; Nagasawa H., Uto Y., Sasaki H., Okamura N., Murakami A., Kubo S., Kirk K.L., Hori H. Gc protein (vitamin D-binding protein): Gc genotyping and GcMAF precursor activity. Anticancer Res. 2005;25: 3689-3696.; Nonaka K., Onizuka S., Ishibashi H., Uto Y., Hori H., Nakayama T., Matsuura N., Kanematsu T., Fujioka H. Vitamin D binding proteinmacrophage activating factor inhibits HCC in SCID mice. J. Surg. Res. 2012;172(1):116-122. DOI 10.1016/j.jss.2010.07.057.; Ohm J.E., Carbone D.P. VEGF as a mediator of tumor-associated immunodeficiency. Immunol. Res. 2001;23(2-3):263-272. DOI 10.1385/IR:23:2-3:263.; Otterbein L.R., Cosio C., Graceffa P., Dominguez R. Crystal structures of the vitamin D-binding protein and its complex with actin: structural basis of the actin-scavenger system. Proc. Natl. Acad. Sci. USA. 2002;99:8003-8008. DOI 10.1073/pnas.122126299.; Pacini S., Morucci G., Punzi T., Gulisano M., Ruggiero M. Gc proteinderived macrophage-activating factor (GcMAF) stimulates cAMP formation in human mononuclear cells and inhibits angiogenesis in chick embryo chorionallantoic membrane assay. Cancer Immunol. Immunother. 2011;60(4):479-485. DOI 10.1007/s00262-010-0953-7.; Pacini S., Morucci G., Punzi T., Gulisano M., Ruggiero M., Amato M., Aterini S. Effect of paricalcitol and GcMAF on angiogenesis and human peripheral blood mononuclear cell proliferation and signaling. J. Nephrol. 2012a;25(4):577-581. DOI 10.5301/jn.5000035.; Pacini S., Punzi T., Morucci G., Gulisano M., Ruggiero M. Effects of vitamin D-binding protein-derived macrophage-activating factor on human breast cancer cells. Anticancer Res. 2012b;32(1):45-52.; Rehder D.S., Nelson R.W., Borges C.R. Glycosylation status of vitamin D binding protein in cancer patients. Protein Sci. 2009;18(10): 2036-2042. DOI 10.1002/pro.214.; Saburi E., Saburi A., Ghanei M. Promising role for Gc-MAF in cancer immunotherapy: from bench to bedside. Caspian J. Intern. Med. 2017;8(4):228-238. DOI 10.22088/cjim.8.4.228.; Song Y.H., Naumova A.K., Liebhaber S.A., Cooke N.E. Physical and meiotic mapping of the region of human chromosome 4q11-q13 encompassing the vitamin D binding protein DBP/Gc-globulin and albumin multigene cluster. Genome Res. 1999;9(6):581-587.; Thyer L., Ward E., Smith R., Branca J.J., Morucci G., Gulisano M., Noakes D., Eslinger R., Pacini S. GC protein-derived macrophageactivating factor decreases α-N-acetylgalactosaminidase levels in advanced cancer patients. Oncoimmunology. 2013a;2(8):e25769. DOI 10.4161/onci.25769.; Thyer L., Ward E., Smith R., Fiore M.G., Magherini S., Branca J.J., Morucci G., Gulisano M., Ruggiero M., Pacini S. A novel role for a major component of the vitamin D axis: vitamin D binding proteinderived macrophage activating factor induces human breast cancer cell apoptosis through stimulation of macrophages. Nutrients. 2013b;5(7):2577-2589. DOI 10.3390/nu5072577.; Toutirais O., Chartier P., Dubois D., Bouet F., Leveque J., CatrosQuemener V., Genetet N. Constitutive expression of TGF-beta1, interleukin-6 and interleukin-8 by tumor cells as a major component of immune escape in human ovarian carcinoma. Eur. Cytokine Netw. 2003;14(4):246-255.; Toyohara Y., Hashitani S., Kishimoto H., Noguchi K., Yamamoto N., Urade M. Inhibitory effect of vitamin D-binding protein-derived macrophage activating factor on DMBA-induced hamster cheek pouch carcinogenesis and its derived carcinoma cell line. Oncol. Lett. 2011;2(4):685-691. DOI 10.3892/ol.2011.306.; Ugarte A., Bouche G., Meheus L. Inconsistencies and questionable reliability of the publication “Immunotherapy of metastatic colorectal cancer with vitamin D-binding protein-derived macrophages-activating, GcMAF” by Yamamoto et al. Cancer Immunol. Immunother. 2014;63(12):1347-1348. DOI 10.1007/s00262-014-1587-y.; Uto Y., Hori H., Kubo K., Ichihashi M., Sakamoto N., Mette M., Inui T. GcMAF: our next-generation immunotherapy. Nature. 2012;485: S67-S70.; Verboven C., Rabijns A., De Maeyer M., Van Baelen H., Bouillon R., De Ranter C. A structural basis for the unique binding features of the human vitamin D-binding protein. Nat. Struct. Biol. 2002;9(2):131136. DOI 10.1038/nsb754.; Yamamoto N., Homma S. Vitamin D3 binding protein (group-specific component) is a precursor for the macrophage-activating signal factor from lysophosphatidylcholine-treated lymphocytes. Proc. Natl. Acad. Sci. USA. 1991;88(19):8539-8543. DOI 10.1073/pnas. 88.19.8539.; Yamamoto N., Kumashiro R. Conversion of vitamin D3 binding protein (group-specific component) to a macrophage activating factor by the stepwise action of beta-galactosidase of B cells and sialidase of T cells. J. Immunol. 1993;151(5):2794-2802.; Yamamoto N., Naraparaju V.R., Asbell S.O. Deglycosylation of serum vitamin D3-binding protein leads to immunosuppression in cancer patients. Cancer Res. 1996;56(12):2827-2831.; Yamamoto N., Suyama H., Nakazato H., Yamamoto N., Koga Y. Immunotherapy of metastatic colorectal cancer with vitamin D-binding protein-derived macrophage-activating factor, GcMAF. Cancer Immunol. Immunother. 2008a;57:1007-1016. DOI 10.1007/s00262-007-0431-z.; Yamamoto N., Suyama H., Yamamoto N. Immunotherapy for prostate cancer with Gc protein-derived macrophage-activating factor, GcMAF. Transl. Oncol. 2008b;1(2):65-72. DOI 10.1593/tlo.08106.; Yamamoto N., Suyama H., Yamamoto N., Ushijima N. Immunotherapy of metastatic breast cancer patients with vitamin D-binding proteinderived macrophage activating factor (GcMAF). Int. J. Cancer. 2008c;122:461-467. DOI 10.1002/ijc.23107.; Yamamoto N., Ushijima N., Koga Y. Immunotherapy of HIV-infected patients with Gc protein-derived macrophage activating factor (GcMAF). J. Med. Virol. 2009;81:16-26. DOI 10.1002/jmv.21376.; https://vavilov.elpub.ru/jour/article/view/2215
-
4Academic Journal
المؤلفون: E. Dolgova, V. Slepova, Е. В. Долгова, В. В. Слепова
المصدر: Vestnik Universiteta; № 7 (2018); 5-11 ; Вестник университета; № 7 (2018); 5-11 ; 2686-8415 ; 1816-4277
مصطلحات موضوعية: инициативное бюджетирование, state intervention, administrative decision, self-organization, public sphere, public management, initiative budgeting, государственная интервенция, управленческие решения, самоорганизация, публичная сфера, публичное управление
وصف الملف: application/pdf
Relation: https://vestnik.guu.ru/jour/article/view/1078/501; Гавра, Д. П. Основы теории коммуникации: Учебное пособие. Стандарт третьего поколения. - СПб.: Питер, 2011. - 288 с.; Осипов, В. А. Концепция политических сетей: переход к исследованию качественных характеристик и его значение для российской политической теории и практики // Вестник Российского университета дружбы народов. Серия: Политология. - 2015. - С. 90.; Синкина, А. А. Бюджет для граждан, как инструмент публичного управления общественными финансами // Сибирская финансовая школа. - 2017. - № 1. - С. 79-85.; Сморгунов, Л. В. Сетевой подход к политике и управлению // Полис. Политические исследования. - 2001. - № 3. - С. 103.; Стрежнева, М. В. «Трансправительственные сети» в ЕС // Международные процессы. - 2008. - № 1 (16). - Т. 6.[Электронный документ]. - Режим доступа: http://www.intertrends.ru/sixteenth/016.htm (дата обращения: 04.06.2018).; Атлас новых профессий: [Электронный ресурс]. - Режим доступа: http://atlas100.ru (дата обращения: 09.06.2018).; Börzel, T. A. Organizing Babylon - On the different conceptions of policy networks // Public Administration. - 1998. - V. 76. - I. 2. - p. 253-273.; Christopoulus, D. C. The Governance of Networks: Heuristic or Formal Analysis? // Political Studies. - 2008. - V. 54. - I. 2. - Pp. 475-481.; Kassim, H. Policy Networks, Networks and EuropeanUnion Policy-Making: a Sceptical View // WestEuropean Politics. - 1993. - V. 17. - I. 4. - pp. 15-27.; Kenis P., Policy Networks and Policy Analysis: Scrutinizing a New Analytical Toolbox / P. Kenis, V. Schneider // Policy Network: Empirical Evidence and Theoretical Considerations / B. Marin, R. Mayntz (eds.). Frankfurt a/M: Campus Verlag, 1991. 24 p.; Knoke D. Network Analysis / D. Knoke, J. Kuklinski. - Bewerly Hills, 1982. - 96 p.; Peterson J. Policy networks // Political Scienceseries, Institute fürHöhereStudien (IHS). Wien, 2003 [Электронный ресурс]. - Режим доступа: http://www.ihs.ac.at/publications/pol/pw_90.pdf (дата обращения: 04.06.2018).; Report of Working Group, Networking People for a Good Governance in Europe, May 2001 [Электронный ресурс]. - Режим доступа: http://ec.europa.eu/governance/areas/group9/report_en.pdf (дата обращения: 14.06.2018).; Wasserman S. Social Network Analysis. Cambridge University Press / S. Wasserman, K. Faust. - Cambridge, 1994, 825 p.; White Paper on European Governance, European Comission, July 2001 [Электронный ресурс]. - Режим доступа: http://ec.europa.eu/governance/white_paper/index_en.htm (дата обращения: 18.05.2018).; https://vestnik.guu.ru/jour/article/view/1078
-
5Academic Journal
المؤلفون: A. S. Proskurina, K. E. Orishchenko, E. A. Potter, E. V. Dolgova, A. V. Spaselnikova, G. S. Ritter, N. A. Varaksin, T. G. Ryabicheva, O. Y. Leplina, A. A. Ostanin, E. R. Chernykh, S. S. Bogachev, А. С. Проскурина, К. Е. Орищенко, Е. А. Поттер, Е. В. Долгова, А. В. Спасельникова, Г. С. Риттер, Н. А. Вараксин, Т. Г. Рябичева, О. Ю. Леплина, А. А. Останин, Е. Р. Черных, С. С. Богачев
المصدر: Vavilov Journal of Genetics and Breeding; Том 21, № 6 (2017); 717-727 ; Вавиловский журнал генетики и селекции; Том 21, № 6 (2017); 717-727 ; 2500-3259 ; 2500-0462
مصطلحات موضوعية: Real-time ПЦР, double-stranded DNA, cyto-kines, dendritic cells, real-time PCR, двуцепочечная ДНК, цитокины, дендритные клетки
وصف الملف: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/1193/982; Alyamkina E.A., Dolgova E.V., Likhacheva A.S., Rogachev V.A., Sebeleva T.E., Nikolin V.P., Popova N.A., Kiseleva E.V., Orishchenko K.E., Sakhno L.V., Gel’fgat E.L., Ostanin A.A., Chernykh E.R., Zagrebelniy S.N., Bogachev S.S., Shurdov M.A. Exogenous allogenic fragmented double-stranded DNA is internalized into human dendritic cells and enhances their allostimulatory activity. Cell. Immunol. 2010a;262:120-126. DOI 10.1016/j.cellimm.2010.01.005.; Alyamkina E.A., Leplina O.Y., Sakhno L.V., Chernykh E.R., Ostanin A.A., Efremov Y.R., Shilov A.G., Proskurina A.S., Orishchenko K.E., Dolgova E.V., Rogachev V.A., Nikolin V.P., Popova N.A., Zagrebelniy S.N., Bogachev S.S., Shurdov M.A. Effect of double-stranded DNA on maturation of dendritic cells in vitro. Cell. Immunol. 2010b; 266: 46-51. DOI 10.1016/j.cellimm.2010.08.011.; Alyamkina E.A., Leplina O.Y., Ostanin A.A., Chernykh E.R., Nikolin V.P., Popova N.A., Proskurina A.S., Gvozdeva T.S., Dolgova E.V., Orishchenko K.E., Rogachev V.A., Sidorov S.V., Varaksin N.A., Ryabicheva T.G., Bogachev S.S., Shurdov M.A. Effects of human exogenous DNA on production of perforin-containing CD8+ cytotoxic lymphocytes in laboratory setting and clinical practice. Cell. Immunol. 2012;276:59-66. DOI 10.1016/j.cellimm.2012.04.004.; Alyamkina Е.А., Dolgova Е.V., Proskurina А.S., Rogachev V.А., Ostanin А.А., Chernych Е.R., Bogachev S.S., Shurdov М.А. Intracellular systems for detection of exogenous nucleic acids and mechanisms triggering the immune response to DNA internalization. Meditsinskaya immunologiya = Medical Immunology (Russia). 2013;15(5):413-430. (in Russian); Anker P. Quantitative aspects of plasma/serum DNA in cancer patients. Ann. N.Y. Acad. Sci. 2000;906:5-7.; Barbalat R., Ewald S.E., Mouchess M.L., Barton G.M. Nucleic acid recognition by the innate immune system. Annu. Rev. Immunol. 2011;29:185-214. DOI 10.1146/annurev-immunol-031210-101340.; Barber G.N. Cytoplasmic DNA innate immune pathways. Immunol. Rev. 2011a;243(1):99-108. DOI 10.1111/j.1600-065X.2011.01051.x.; Barber G.N. Innate immune DNA sensing pathways: STING, AIMII and the regulation of interferon production and inflammatory responses. Curr. Opin. Immunol. 2011b;23(1):10-20. DOI 10.1016/j. coi.2010.12.015.; Choi J.J., Reich C.F. III, Pisetsky D.S. The role of macrophages in the in vitro generation of extracellular DNA from apoptotic and necrotic cells. Immunology. 2005;115(1):55-62. DOI 10.1111/j.1365-2567.2005.02130.x.; Decker P., Singh-Jasuja H., Haager S., Kötter I., Rammensee H.G. Nu-cleosome, the main autoantigen in systemic lupus erythematosus, induces direct dendritic cell activation via a MyD88-independent pathway: consequences on inflammation. J. Immunol. 2005;174(6): 3326-3334.; Fernandes-Alnemri T., Yu J.W., Datta P., Wu J., Alnemri E.S. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature. 2009;458(7237):509-513. DOI 10.1038/nature07710.; Franco L.H., Wowk P.F., Silva C.L., Trombone A.P., Coelho-Caste-lo A.A., Oliver C., Jamur M.C., Moretto E.L., Bonato V.L. A DNA vaccine against tuberculosis based on the 65 kDa heat-shock protein differentially activates human macrophages and dendritic cells. Genet. Vaccines Ther. 2008;6:3. DOI 10.1186/1479-0556-6-3.; Giacona M.B., Ruben G.C., Iczkowski K.A., Roos T.B., Porter D.M., Sorenson G.D. Cell-free DNA in human blood plasma: length measurements in patients with pancreatic cancer and healthy controls. Pancreas. 1998;17(1):89-97.; Hemmi H., Takeuchi O., Kawai T., Kaisho T., Sato S., Sanjo H., Matsumoto M., Hoshino K., Wagner H., Takeda K., Akira S. A Toll-like receptor recognizes bacterial DNA. Nature. 2000;408(6813):740-745. DOI 10.1038/35047123.; Holmgren L., Szeles A., Rajnavölgyi E., Folkman J., Klein G., Ern-berg I., Falk K.I. Horizontal transfer of DNA by the uptake of apoptotic bodies. Blood. 1999;93(11):3956-3963.; Huang L.Y., Ishii K.J., Akira S., Aliberti J., Golding B. Th1-like cyto-kine induction by heat-killed Brucella abortus is dependent on triggering of TLR9. J. Immunol. 2005;175(6):3964-3970. DOI 10.4049/ jimmunol.175.6.3964.; Ishii K.J., Akira S. Innate immune recognition of, and regulation by, DNA. Trends Immunol. 2006;27(11):525-532. DOI 10.1016/j.it. 2006.09.002.; Ishii K.J., Akira S. Potential link between the immune system and metabolism of nucleic acids. Curr. Opin. Immunol. 2008;20(5):524-529. DOI 10.1016/j.coi.2008.07.002.; Ishii K.J., Coban C., Kato H., Takahashi K., Torii Y., Takeshita F., Lud-wig H., Sutter G., Suzuki K., Hemmi H., Sato S., Yamamoto M., Uematsu S., Kawai T., Takeuchi O., Akira S. A Toll-like receptor-independent antiviral response induced by double-stranded B-form DNA. Nat. Immunol. 2006;7(1):40-48. DOI 10.1038/ni1282.; Ishii K.J., Suzuki K., Coban C., Takeshita F., Itoh Y., Matoba H., Kohn L.D., Klinman D.M. Genomic DNA released by dying cells induces the maturation of APCs. J. Immunol. 2001;167(5):2602-2607.; Jiang W., Reich III C.F., Pisetsky D.S. Mechanisms of activation of the RAW264.7 macrophage cell line by transfected mammalian DNA. Cell. Immunol. 2004;229(1):31-40. DOI 10.1016/j.cellimm. 2004.06.003.; Kawai T., Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity. 2011;34(5):637-650. DOI 10.1016/j.immuni.2011.05.006.; Kis-Toth K., Szanto A., Thai T.H., Tsokos G.C. Cytosolic DNA-activated human dendritic cells are potent activators of the adaptive immune response. J. Immunol. 2011;187(3):1222-1234. DOI 10.4049/ jimmunol.1100469.; Krieg A.M. CpG motifs: the active ingredient in bacterial extracts? Nat. Med. 2003;9(7):831-835.; Krogstad D.J., Schlesinger P.H. The basis of antimalarial action: non-weak base effects of chloroquine on acid vesicle pH. Am. J. Trop. Med. Hyg. 1987;36(2):213-220.; Kuznik A., Bencina M., Svajger U., Jeras M., Rozman B., Jerala R. Mechanism of endosomal TLR inhibition by antimalarial drugs and imidazoquinolines. J. Immunol. 2011;186(8):4794-4804. DOI 10.4049/jimmunol.1000702.; Lo Y.M., Corbetta N., Chamberlain P.F., Rai V., Sargent I.L., Red-man C.W., Wainscoat J.S. Presence of fetal DNA in maternal plasma and serum. Lancet. 1997;350(9076):485-487. DOI 10.1016/S0140-6736(97)02174-0.; Macfarlane D.E., Manzel L. Antagonism of immunostimulatory CpG-oligodeoxynucleotides by quinacrine, chloroquine, and structurally related compounds. J. Immunol. 1998;160(3):1122-1131.; Martin D.A., Elkon K.B. Intracellular mammalian DNA stimulates myeloid dendritic cells to produce type I interferons predominantly through a toll-like receptor 9-independent pathway. Arthritis Rheum. 2006;54(3):951-962. DOI 10.1002/art.21677.; Medzhitov R. Recognition of microorganisms and activation of the immune response. Nature. 2007;449(7164):819-826. DOI 10.1038/ nature06246.; Ngan R.K., Yip T.T., Cheng W.W., Chan J.K., Cho W.C., Ma V.W., Wan K.K., Au J.S., Law C.K. Clinical role of circulating Epstein-Barr virus DNA as a tumor marker in lymphoepithelioma-like carcinoma of the lung. Ann. N.Y. Acad. Sci. 2004;1022:263-270. DOI 10.1196/annals.1318.041.; Orishchenko K.E., Ryzhikova S.L., Druzhinina Y.G., Ryabicheva T.G.; Varaksin N.A., Alyamkina E.A., Dolgova E.V., Rogachev V.A., Proskurina A.S., Nikolin V.P., Popova N.A., Strunov A.A., Kiseleva E.V., Leplina O.Y., Ostanin A.A., Chernykh E.R., Sidorov S.V., Mayorov V.I., Bogachev S.S., Shurdov M.A. Effect of human double-stranded DNA preparation on the production of cytokines by dendritic cells and peripheral blood cells from relatively healthy donors. Cancer Therapy. 2013;8:191-205.; Park J., Choi K., Jeong E., Kwon D., Benveniste E.N., Choi C. Reactive oxygen species mediate chloroquine-induced expression of chemokines by human astroglial cells. Glia. 2004;47(1):9-20. DOI 10.1002/glia.20017.; Park J., Kwon D., Choi C., Oh J.W., Benveniste E.N. Chloroquine induces activation of nuclear factor-kappaB and subsequent expression of pro-inflammatory cytokines by human astroglial cells. J. Neurochem. 2003;84(6):1266-1274.; Proskurina A.S., Gvozdeva T.S., Alyamkina E.A., Dolgova E.V., Orishchenko K.E., Nikolin V.P., Popova N.A., Sidorov S.V., Chernykh E.R., Ostanin A.A., Leplina O.Y., Dvornichenko V.V., Ponomarenko D.M., Soldatova G.S., Varaksin N.A., Ryabicheva T.G., Uchakin P.N., Zagrebelniy S.N., Rogachev V.A., Bogachev S.S., Shurdov M.A. Results of multicenter double-blind placebo-controlled phase II clinical trial of Panagen preparation to evaluate its leukostimulatory activity and formation of the adaptive immune response in patients with stage II–IV breast cancer. BMC Cancer. 2015;15(1):122. DOI 10.1186/s12885-015-1142-z.; Proskurina A.S., Gvozdeva T.S., Potter E.A., Dolgova E.V., Orishchenko K.E., Nikolin V.P., Popova N.A., Sidorov S.V., Chernykh E.R., Ostanin A.A., Leplina O.Y., Dvornichenko V.V., Ponomarenko D.M., Soldatova G.S., Varaksin N.A., Ryabicheva T.G., Uchakin P.N., Rogachev V.A., Bogachev S.S., Shurdov M.A. Five-year disease-free survival among stage II–IV breast cancer patients receiving FAC and AC chemotherapy in phase II clinical trials of Panagen. BMC Cancer. 2016;16:651. DOI 10.1186/s12885-016-2711-5.; Rogachev V.A., Likhacheva A., Vratskikh O., Mechetina L.V., Sebeleva T.E., Bogachev S.S., Yakubov L.A., Shurdov M.A. Qualitative and quantitative characteristics of the extracellular DNA delivered to the nucleus of a living cell. Cancer Cell Int. 2006;6:23. DOI 10.1186/1475-2867-6-23.; Schlesinger P.H., Krogstad D.J., Herwaldt B.L. Antimalarial agents: mechanisms of action. Antimicrob. Agents Chemother. 1988;32(6): 793-798.; Sharma S., Fitzgerald K.A. Innate immune sensing of DNA. PLoS Pathog. 2011;7(4):e1001310. DOI 10.1371/journal.ppat.1001310.; Shirota H., Ishii K.J., Takakuwa H., Klinman D.M. Contribution of interferon-beta to the immune activation induced by double-stranded DNA. Immunology. 2006;118(3):302-310.; Stroun M., Lyautey J., Lederrey C., Olson-Sand A., Anker P. About the possible origin and mechanism of circulating DNA apoptosis and active DNA release. Clin. Chim. Acta. 2001;313(1-2):139-142.; Suzuki K., Mori A., Ishii K.J., Saito J., Singer D.S., Klinman D.M., Krause P.R., Kohn L.D. Activation of target-tissue immune-recognition molecules by double-stranded polynucleotides. Proc. Natl. Acad. Sci. USA. 1999;96(5):2285-2290.; Takeshita F., Ishii K.J. Intracellular DNA sensors in immunity. Curr. Opin. Immunol. 2008;20(4):383-388. DOI 10.1016/j.coi.2008.05.009.; Tamkovich S.N., Vlasov V.V., Lactionov P.P. Circulating deoxyribonucleic acids in blood and their using in medical diagnostics. Molekulyarnaya biologiya = Molecular Biology (Moscow). 2008;42(1):12-23. (in Russian); Unterholzner L., Keating S.E., Baran M., Horan K.A., Jensen S.B., Sharma S., Sirois C.M., Jin T., Latz E., Xiao T.S., Fitzgerald K.A., Paludan S.R., Bowie A.G. IFI16 is an innate immune sensor for intracellular DNA. Nat. Immunol. 2010;11(11):997-1004. DOI 10.1038/ni.1932.; von Buttlar H., Siegemund S., Büttner M., Alber G. Identification of Toll-like receptor 9 as parapoxvirus ovis-sensing receptor in plasmacytoid dendritic cells. PLoS ONE. 2014;9(8):e106188. DOI 10.1371/journal.pone.0106188.; Wang T., Liang Z.A., Sandford A.J., Xiong X.Y., Yang Y.Y., Ji Y.L., He J.Q. Selection of suitable housekeeping genes for real-time quantitative PCR in CD4(+) lymphocytes from asthmatics with or without depression. PLoS ONE. 2012;7(10):e48367. DOI 10.1371/ journal.pone.0048367.; Würtele H., Little K.C., Chartrand P. Illegitimate DNA integration in mammalian cells. Gene Ther. 2003;10(21):1791-1799. DOI 10.1038/sj.gt.3302074.; Yasuda K., Ogawa Y., Yamane I., Nishikawa M., Takakura Y. Macrophage activation by a DNA/cationic liposome complex requires en-dosomal acidification and TLR9-dependent and -independent pathways. J. Leukoc. Biol. 2005;77(1):71-79.; Yasuda K., Richez C., Uccellini M.B., Richards R.J., Bonegio R.G., Akira S., Monestier M., Corley R.B., Viglianti G.A., Marshak-Roth-stein A., Rifkin I.R. Requirement for DNA CpG content in TLR9-dependent dendritic call activation induced by DNA-containing immune complexes. J. Immunol. 2009;183(5):3109-3117. DOI 10.4049/jimmunol.0900399.; Yoneyama M., Fujita T. Cytoplasmic double-stranded DNA sensor. Nat. Immunol. 2007;8(9):907-908. DOI 10.1038/ni0907-907. Zhang R., Xing M., Ji X., Gu L., Yang X., Wang H., Jiang P. Interferon-alpha and interleukin-6 in SLE serum induce the differentiation and maturation of dendritic cells derived from CD34+ hematopoietic precursor cells. Cytokine. 2010;50(2):195-203. DOI 10.1016/j.cyto.2010.02.017.; Zhu F.G., Reich C.F., Pisetsky D.S. Effect of cytofectins on the immune response of murine macrophages to mammalian DNA. Immunology. 2003;109(2):255-262.; https://vavilov.elpub.ru/jour/article/view/1193
-
6Academic Journal
المؤلفون: E. A. Potter, E. V. Dolgova, A. M. Minkevich, Ya. R. Efremov, O. S. Taranov, V. V. Omigov, V. P. Nikolin, N. A. Popova, A. S. Proskurina, E. I. Vereschagin, A. V. Kozel, V. A. Rogachev, D. B. Petrov, A. A. Ostanin, E. R. Chernykh, N. A. Kolchanov, S. S. Bogachev, Е. А. Поттер, Е. В. Долгова, А. М. Минкевич, Я. Р. Ефремов, О. С. Таранов, В. В. Омигов, В. П. Николин, Н. А. Попова, А. С. Проскурина, Е. И. Верещагин, А. В. Козел, В. А. Рогачев, Д. Б. Петров, А. А. Останин, Е. Р. Черных, Н. А. Колчанов, С. С. Богачев
المساهمون: бюджетный проект № VI.60.1.3
المصدر: Vavilov Journal of Genetics and Breeding; Том 20, № 1 (2016); 96-107 ; Вавиловский журнал генетики и селекции; Том 20, № 1 (2016); 96-107 ; 2500-3259 ; 2500-0462
مصطلحات موضوعية: перевивочный потенциал, cyclophosphamide, Krebs-2 ascites, tumor-initiating cancer stem cells, NER, homologous recombination, engraftment potential, циклофосфан, асцит Кребс-2, стволовые инициирующие раковые клетки, гомологичная рекомбинация
وصف الملف: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/467/756; Алямкина Е.А., Лихачева А.С., Николин В.П., Попова Н.А., Долгова Е.В., Рогачев В.А., Себелева Т.Е., Стрункин Д.Н., Богачев С.С., Шурдов М.А. // Действие экзогенной ДНК, ассоциированной с протамином, на рост экспериментальных опухолей мыши // Вопросы онкологии. 2009. Т. 55. No. 6. C. 765-768. Alyamkina E.A., Likhacheva A.S., Nikolin V.P., Popova N.A., Dolgova E.V., Rogachev V.A., Sebeleva T.E., Strunkin D.N., Bogachev S.S., Shurdov M.A. Protamine association with exogenous DNA's versus its ability to inhibit ехреrimental tumors // Voprosy oncologii. 2009. V. 55. No. 6. P. 765-768. (In Russian).; Беспалов В.Г., Жабин А.А., Стуков А.Н., Беляева О.А., Муразов Я.Г., Семенов А.Л., Коньков С.А., Крылова И.М. Синергизм противоопухолевого действия диоксадэта и цисплатина на модели асцитной опухоли яичника // Сибирский онкологический журнал. 2013. No. 1. C. 42-46. Bespalov V.G., Zhabin A.A., Stukov A.N., Belyaeva O.A., Murazov Y.G., Semenov A.L., Konkov S.A., Krylova I.M. Synergistic antitumor effect of dioxodate and cisplatin on the model of ovarian ascites tumor // Sibirskii onkologicheskii zhurnal. 2013. No. 1. P. 42-46.; Блохин Н.Н., Переводчикова Н.И. Химиотерапия опухолевых заболеваний. М.: Медицина, 1984. 302 с. Blohin N.N., Perevodchikova N.I. Chemotherapy of neoplastic diseases. M.: Medicina. 302 p. (In Russian).; Долгова Е.В., Лихачева А.С., Орищенко К.Е., Алямкина Е.А., Богачев С.С., Шурдов М.А. // Репарация межцепочечных сшивок молекулы ДНК // Информационный вестник ВОГиС. 2010. Т. 14.No. 2. С. 332-356. Dolgova E.V., Likhacheva A.S., Orishchenko K.E., Alyamkina E.A., Bogachev S.S., Shurdov M.A. Repair of interstrand crosslinks in a DNA molecule // Informacionnii vestnik VOGiS. 2010. V. 14. No. 2. P. 332-356. (In Russian).; Лайт Р.У. Болезни плевры: пер. с англ. М.: Медицина, 1986. С. 106-119. Layt R.U. Pleural disease. M.: Medicina, 1986. P. 106-119. (In Russian).; Лихачева А.С., Рогачев В.А., Николин В.П., Попова Н.А., Шилов А.Г., Себелева Т.Е., Стрункин Д.Н., Черных Е.Р., Гельфгат Е.Л., Богачев С.С., Шурдов М.А. Участие экзогенной ДНК в молекулярных процессах, протекающих в соматической клетке // Информационный вестник ВОГиС. 2008. Т. 12. No. 3. C. 426-473. Likhacheva A.S., Rogachev V.A., Nikolin V.P., Popova N.A., Shilov A.G., Sebeleva T.E., Strunkin D.N., Chernykh E.R., Gelfgat E.L., Bogachev S.S., Shurdov M.A. Involvement of exogenous DNA in the molecular processes in somatic cell // Informacionnii vestnik VOGiS. 2008. V. 12. No. 3. P. 426-473. (In Russian).; Поттер Е.А., Долгова Е.В., Минкевич А.М., Николин В.П., Попова Н.А., Ефремов Я.Р., Байбородин С.И., Рогачев В.А., Проскурина А.С., Козел А.В., Таранов О.С., Омигов В.В., Верещагин Е.И., Петров Д.Б., Останин А.А., Черных Е.Р., Колчанов Н.А., Богачев С.С. Характеристика режимов терапевтического воздействия циклофосфана и препаратов двуцепочечной ДНК на опухоль Кребс-2, растущей в асцитной форме, приводящих к эрадикации первичного асцита // Вавиловский журнал генетики и селекции. 2015б. В печати. Potter Е.А., Dolgova Е.V., Minkevich А.М., Nikolin V.P., Popova N.A., Efremov Y.R., Bayborodin S.I., Rogachev V.А., Proskurina А.S., Kozel А.V., Taranov О.S., Omigov V.V., Vereschagin Е.I., Petrov D.B., Ostanin А.А., Chernykh Е.R., Kolchanov N.А., Bogachev S.S. Analysis of different therapeutic schemes combining cyclophosphamide and double-stranded DNA preparation for eradication of Krebs-2 primary ascites in mice // Vavilovskii zhurnal genetiki i selekcii. 2015b. In press. (In Russian).; Стенина М.Б. Спорные вопросы в лечении рака яичников // Онкология: Трудный пациент. 2006. Т. 4. No. 11. С. 9-14. Stenina M.B. Controversial issues in the treatment of ovarian cancer // Oncologiya. 2006. V. 4. No. 11. P. 9-14.; Alyamkina E.A., Dolgova E.V., Likhacheva A.S., Rogachev V.A., Sebeleva T.E., Nikolin V.P., Popova N.A., Orishchenko K.E., Strunkin D.N., Chernykh E.R., Zagrebelniy S.N., Bogachev S.S., Shurdov M.A. Combined therapy with cyclophosphamide and DNA preparation inhibits the tumor growth in mice // Genet. Vaccines Ther. 2009. V. 7(1). No. 12. DOI:10.1186/1479-0556-7-12.; Alyamkina E.A., Nikolin V.P., Popova N.A., Dolgova E.V., Proskurina A.S., Orishchenko K.E., Efremov Y.R., Chernykh E.R., Ostanin A.A., Sidorov S.V., Ponomarenko D.M., Zagrebelniy S.N., Bogachev S.S., Shurdov M.A. A strategy of tumor treatment in mice with doxorubicin-cyclophosphamide combination based on dendritic cell activation by human double-stranded DNA preparation // Genet. Vaccines Ther. 2010. V. 8(1). No. 7. DOI:10.1186/1479-0556-8-7.; Alyamkina E.A., Nikolin V.P., Popova N.A., Minkevich A.M., Kozel A.V., Dolgova E.V., Efremov Y.R., Bayborodin S.I., Andrushkevich O.M., Taranov O.S., Omigov V.V., Rogachev V.A., Proskurina A.S., Vereschagin E.I., Kiseleva E.V., Zhukova M.V., Ostanin A.A., Chernykh E.R., Bogachev S.S., Shurdov M.A. Combination of cyclophosphamide and double-stranded DNA demonstrates synergistic toxicity against established xenografts // Cancer Cell Int. 2015. V. 15. No. 32. DOI:10.1186/s12935-015-0180-6.; Brenner D.E. Intraperitoneal chemotherapy: a review // J. Clin. Oncol. 1986. V. 4. No. 7. P. 1135-1147.; Deans A.J., West S.C. DNA interstrand crosslink repair and cancer // Nat. Rev. Cancer. 2011. V. 11. No. 7. P. 467-480. DOI:10.1038/nrc3088.; Dolgova E.V., Proskurina A.S., Nikolin V.P., Popova N.A., Alyamkina E.A., Orishchenko K.E., Rogachev V.A., Efremov Y.R., Dubatolova T.D., Prokopenko A.V., Chernykh E.R., Ostanin A.A., Taranov O.S., Omigov V.V., Zagrebelniy S.N., Bogachev S.S., Shurdov M.A. "Delayed death" phenomenon: A synergistic action of cyclophosphamide and exogenous DNA // Gene. 2012. V. 495. No. 2. P. 134-145. DOI:10.1016/j.gene.2011.12.032.; Dolgova E.V., Efremov Y.R., Orishchenko K.E., Andrushkevich O.M., Alyamkina E.A., Proskurina A.S., Bayborodin S.I., Nikolin V.P., Popova N.A., Chernykh E.R., Ostanin A.A., Taranov O.S., Omigov V.V., Minkevich A.M., Rogachev V.A., Bogachev S.S., Shurdov M.A. Delivery and processing of exogenous double-stranded DNA in mouse CD34+ hematopoietic progenitor cells and their cell cycle changes upon combined treatment with cyclophosphamide and double-stranded DNA // Gene. 2013. V. 528. No. 2. P. 74-83. DOI:10.1016/j.gene.2013.06.058.; Dolgova E.V., Alyamkina E.A., Efremov Y.R., Nikolin V.P., Popova N.A., Tyrinova T.V., Kozel A.V., Minkevich A.M., Andrushkevich O.M., Zavyalov E.L., Romaschenko A.V., Bayborodin S.I., Taranov O.S., Omigov V.V., Shevela E.Y., Stupak V.V., Mishinov S.V., Rogachev V.A., Proskurina A.S., Mayorov V.I., Shurdov M.A., Ostanin A.A., Chernykh E.R., Bogachev S.S. Identification of cancer stem cells and a strategy for their elimination // Cancer Biol. Ther. 2014. V. 15. No. 10. P. 1378-1394. DOI:10.4161/cbt.29854.; Dolgova E.V., Potter E.A., Proskurina A.S., Minkevich A.M., Kozel A.V., Rogachev V.A., Efremov Y.R., Ostanin A.A., Chernykh E.R., Petrov D.B., Bogachev S.S. Properties of internalization factors contributing to the uptake of extracellular DNA into tumor-inducing stem cells of mouse Krebs-2 cell line. 2015, in prep. Likhacheva A.S., Nikolin V.P., Popova N.A., Rogachev V.A., Prokhorovich M.A., Sebeleva T.E., Bogachev S.S., Shurdov M.A. Exogenous DNA can be captured by stem cells and be involved in their rescue from death after lethal-dose γ-radiation // Gene Ther. Mol. Biol. 2007. V. 11. P. 305-314.; Muniandy P.A., Liu J., Majumdar A., Liu S.T., Seidman M.M. DNA interstrand crosslink repair in mammalian cells: step by step // Crit. Rev. Biochem. Mol. Biol. 2010. V. 45. No. 1. P. 23-49. DOI:10.3109/10409230903501819.; Räschle M., Knipscheer P., Enoiu M., Angelov T., Sun J., Griffith J.D., Ellenberger T.E., Schärer O.D., Walter J.C. Mechanism of replication-coupled DNA interstrand crosslink repair // Cell. 2008. V. 134. No. 6. P. 969-980. DOI:10.1016/j.cell.2008.08.030.; https://vavilov.elpub.ru/jour/article/view/467
-
7Academic Journal
المؤلفون: E. A. Potter, E. V. Dolgova, A. S. Proskurina, Ya. R. Efremov, O. S. Taranov, V. P. Nikolin, N. A. Popova, T. D. Dubatolova, D. D. Petrova, E. I. Vereschagin, A. M. Minkevich, O. M. Andrushkevich, S. I. Baiborodin, V. A. Rogachev, A. A. Ostanin, E. R. Chernykh, N. A. Kolchanov, S. S. Bogachev, Е. А. Поттер, Е. В. Долгова, А. С. Проскурина, Я. Р. Ефремов, О. С. Таранов, В. П. Николин, Н. А. Попова, Т. Д. Дубатолова, Д. Д. Петрова, Е. И. Верещагин, А. М. Минкевич, О. М. Андрушкевич, С. И. Байбородин, В. А. Рогачев, А. А. Останин, Е. Р. Черных, Н. А. Колчанов, С. С. Богачев
المصدر: Vavilov Journal of Genetics and Breeding; Том 20, № 5 (2016); 723-735 ; Вавиловский журнал генетики и селекции; Том 20, № 5 (2016); 723-735 ; 2500-3259 ; 2500-0462
مصطلحات موضوعية: двуцепочечная ДНК, циклофосфан, асцит Кребс-2, стволовые инициирующие раковые клетки, репарация, ремиссия, NER, гомологичная рекомбинация, системная воспалительная реакция, полиорганная недостаточность, cyclophosphamide, Krebs-2 ascites, tumor-initiating stem cells, repair, remission, homologous recombination, systemic inflammatory reaction, multiple organ failure
وصف الملف: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/821/843; Alyamkina E.A., Nikolin V.P., Popova N.A., Minkevich A.M., Kozel A.V., Dolgova E.V., Efremov Y.R., Bayborodin S.I., Andrushkevich O.M., Taranov O.S., Omigov V.V., Rogachev V.A., Proskurina A.S., Vereschagin E.I., Kiseleva E.V., Zhukova M.V., Ostanin A.A., Chernykh E.R., Bogachev S.S., Shurdov M.A. Combination of cyclophosphamide and double-stranded DNA demonstrates synergistic toxicity against established xenografts. Cancer Cell Int. 2015;15(32). DOI 10.1186/s12935-015-0180-6.; Deleyrolle L.P., Ericksson G., Morrison B.J., Lopez J.A., Burrage K., Burrage P., Vescovi A., Rietze R.L., Reynolds B.A. Determination of somatic and cancer stem cell self-renewing symmetric division rate using sphere assays. PLoS One. 2011;6(1):e15844. DOI 10.1371/journal.pone.0015844.; Dolgova E.V., Alyamkina E.A., Efremov Y.R., Nikolin V.P., Popova N.A., Tyrinova T.V., Kozel A.V., Minkevich A.M., Andrushkevich O.M., Zavyalov E.L., Romaschenko A.V., Bayborodin S.I., Taranov O.S., Omigov V.V., Shevela E.Y., Stupak V.V., Mishinov S.V., Rogachev V.A., Proskurina A.S., Mayorov V.I., Shurdov M.A., Ostanin A.A., Chernykh E.R., Bogachev S.S. Identification of cancer stem cells and a strategy for their elimination. Cancer Biol. Ther. 2014;15(10):1378- 1394. DOI 10.4161/cbt.29854.; Dolgova E.V., Likhacheva A.S., Orischenko K.E., Alyamkina E.A., Bogachev S.S., Shurdov M.A. Repair of interstrand crosslinks in a DNA molecule. Informatsionnyy vestnik VOGiS = The Herald of Vavilov Society for Geneticists and Breeders. 2010;14(2):332-356. (in Russian); Dolgova E.V., Potter E.A., Proskurina A.S., Minkevich A.M., Chernych E.R., Ostanin A.A., Efremov Y.R., Nikolin V.P., Popova N.A., Kolchanov N.A., Bogachev S.S. Properties of internalization factors contributing to the uptake of extracellular DNA into tumor-initiating stem cells of mouse Krebs-2 cell line. Stem Cell Res. Ther. 2016;7(1):76. DOI 10.1186/s13287-016-0338-8.; Gómez-López S., Lerner R.G., Petritsch C. Asymmetric cell division of stem and progenitor cells during homeostasis and cancer. Cell. Mol. Life Sci. 2014;71:575-597. DOI 10.1007/s00018-013-1386-1.; Lathia J.D., Hitomi M., Gallagher J., Gadani S.P., Adkins J., Vasanji A., Liu L., Eyler C.E., Heddleston J.M., Wu Q., Minhas S., Soeda A., Hoeppner D.J., Ravin R., McKay R.D., McLendon R.E., Corbeil D., Chenn A., Hjelmeland A.B., Park D.M., Rich J.N. Distribution of CD133 reveals glioma stem cells self-renew through symmetric and asymmetric cell divisions. Cell Death Disease. 2011;2(9). DOI 10.1038/cddis.2011.80.; Peshkova I.V., Bogachev S.S., Drobyazgin E.A., Chikinev Y.V., Mitrofanov I.M., Piontkovskaya K.A., Vereschagin E.I. Effect of glutamine on the nucleic acids exchange during the perioperative period in reconstructive esophagus surgery. J. Nutr. Health Food. 2015;2(4). DOI 10.15406/jnhfe.2015.02.00058.; Pine S.R., Liu W. Asymmetric cell division and template DNA cosegregation in cancer stem cells. Front Oncol. 2014;4(226). DOI 10.3389/fonc.2014.00226.; Potter Е.А., Dolgova Е.V., Minkevich А.М., Efremov Y.R., Taranov О.S., Omigov V.V., Nikolin V.P., Popova N.A., Proskurina А.S., Vereschagin Е.I., Kozel А.V., Rogachev V.А., Petrov D.B., Ostanin А.А., Chernykh Е.R., Kolchanov N.А., Bogachev S.S. Therapeutic effects of cyclophosphamide, dsDNA preparations and their combinations against Krebs-2 ascites cancer cells and various cancer transplants. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2016a;20(1):96-107. DOI 10.18699/VJ15.116. (in Russian); Potter Е.А., Dolgova Е.V., Minkevich А.М., Nikolin V.P., Popova N.A., Efremov Y.R., Baiborodin S.I., Rogachev V.А., Proskurina А.S., Kozel А.V., Taranov О.S., Omigov V.V., Vereschagin Е.I., Petrov D.B., Ostanin А.А., Chernykh Е.R., Kolchanov N.А., Bogachev S.S. Analysis of different therapeutic schemes combining cyclophosphamide and double-stranded DNA preparations for eradication of Krebs-2 primary ascites in mice. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2016b;20(1):108-124. DOI 10.18699/VJ15.117. (in Russian); Potter E.A., Dolgova E.V., Minkevich A.M., Nikolin V.P., Popova N.A., Efremov Ya.R., Baiborodin S.I., Rogachev V.A., Proskurina A.S., Kozel A.V., Taranov O.S., Omigov V.V., Vereschagin E.I., Ostanin А.А., Chernykh Е.R., Kolchanov N.А., Bogachev S.S. Eradication of Krebs-2 primary ascites via a single-injection regimen of double-stranded DNA after each cyclophosphamide injection. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2016с;20(5):716-722. DOI 10.18699/VJ16.161. (in Russian); Potter E.A., Dolgova E.V., Proskurina A.S., Minkevich A.M., Efremov Ya.R., Taranov O.S., Omigov V.V., Nikolin V.P., Popova N.A., Bayborodin S.I., Ostanin A.A., Chernykh E.R., Kolchanov N.A., Shurdov M.A., Bogachev S.S. A strategy to eradicate well-developed Krebs- 2 ascites in mice. Oncotarget. 2016;7(10):11580-11594. DOI 10.18632/oncotarget.7311.; https://vavilov.elpub.ru/jour/article/view/821
-
8Academic Journal
المؤلفون: E. A. Potter, E. V. Dolgova, A. M. Minkevich, V. P. Nikolin, N. A. Popova, Ya. R. Efremov, S. I. Baiborodin, V. A. Rogachev, A. S. Proskurina, O. S. Taranov, E. I. Vereschagin, A. A. Ostanin, E. R. Chernykh, N. A. Kolchanov, S. S. Bogachev, Е. А. Поттер, Е. В. Долгова, А. М. Минкевич, В. П. Николин, Н. А. Попова, Я. Р. Ефремов, С. И. Байбородин, В. А. Рогачев, А. С. Проскурина, О. С. Таранов, Е. И. Верещагин, А. А. Останин, Е. Р. Черных, Н. А. Колчанов, С. С. Богачев
المصدر: Vavilov Journal of Genetics and Breeding; Том 20, № 5 (2016); 716-722 ; Вавиловский журнал генетики и селекции; Том 20, № 5 (2016); 716-722 ; 2500-3259
مصطلحات موضوعية: полиорганная недостаточность, cyclophosphamide, Krebs-2 ascites, tumor-initiating cancer stem cells, repair, remission, NER, homologous recombination, systemic inflammatory reaction, multiple organ failure, циклофосфан, асцит Кребс-2, стволовые инициирующие раковые клетки, репарация, ремиссия, гомологичная рекомбинация, системная воспалительная реакция
وصف الملف: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/820/842; Alyamkina E.A., Dolgova E.V., Likhacheva A.S., Rogachev V.A., Sebeleva T.E., Nikolin V.P., Popova N.A., Orishchenko K.E., Strunkin D.N., Chernykh E.R., Zagrebelniy S.N., Bogachev S.S., Shurdov M.A. Combined therapy with cyclophosphamide and DNA preparation inhibits the tumor growth in mice. Genet Vaccines Ther. 2009;7(1):12. DOI 10.1186/1479-0556-7-12.; Alyamkina E.A., Dolgova E.V., Likhacheva A.S., Rogachev V.A., Sebeleva T.E., Nikolin V.P., Popova N.A., Kiseleva E.V., Orishchenko K.E., Sakhno L.V., Gel’fgat E.L., Ostanin A.A., Chernykh E.R., Zagrebelniy S.N., Bogachev S.S., Shurdov M.A. Exogenous allogenic fragmented double-stranded DNA is internalized into human dendritic cells and enhances their allostimulatory activity. Cell. Immunol. 2010a;262(2):120-126.; Alyamkina E.A., Leplina O.Y., Sakhno L.V., Chernykh E.R., Ostanin A.A., Efremov Y.R., Shilov A.G., Proskurina A.S., Orishchenko K.E., Dolgova E.V., Rogachev V.A., Nikolin V.P., Popova N.A., Zagrebelniy S.N., Bogachev S.S., Shurdov M.A. Effect of doublestranded DNA on maturation of dendritic cells in vitro. Cell. Immunol. 2010b;266(1):46-51.; Alyamkina E.A., Nikolin V.P., Popova N.A., Dolgova E.V., Proskurina A.S., Orishchenko K.E., Efremov Y.R., Chernykh E.R., Ostanin A.A., Sidorov S.V., Ponomarenko D.M., Zagrebelniy S.N., Bogachev S.S., Shurdov M.A. A strategy of tumor treatment in mice with doxorubicin- cyclophosphamide combination based on dendritic cell activation by human double- stranded DNA preparation. Genet. Vaccines Ther. 2010c;8:7. DOI 10.1186/1479-0556-8-7.; Alyamkina E.A., Nikolin V.P., Popova N.A., Minkevich A.M., Kozel A.V., Dolgova E.V., Efremov Y.R., Bayborodin S.I., Andrushkevich O.M., Taranov O.S., Omigov V.V., Rogachev V.A., Proskurina A.S., Vereschagin E.I., Kiseleva E.V., Zhukova M.V., Ostanin A.A., Chernykh E.R., Bogachev S.S., Shurdov M.A. Combination of cyclophosphamide and double-stranded DNA demonstrates synergistic toxicity against established xenografts. Cancer Cell Int. 2015;15:32. DOI 10.1186/s12935-015-0180-6.; Dolgova E.V., Alyamkina E.A., Efremov Y.R., Nikolin V.P., Popova N.A., Tyrinova T.V., Kozel A.V., Minkevich A.M., Andrushkevich O.M., Zavyalov E.L., Romaschenko A.V., Bayborodin S.I., Taranov O.S., Omigov V.V., Shevela E.Y., Stupak V.V., Mishinov S.V., Rogachev V.A., Proskurina A.S., Mayorov V.I., Shurdov M.A., Ostanin A.A., Chernykh E.R., Bogachev S.S. Identification of cancer stem cells and a strategy for their elimination. Cancer Biol. Ther. 2014;15(10):1378- 1394. DOI 10.4161/cbt.29854.; Dolgova E.V., Rogachev V.A, Nikolin V.P., Popova N.A., Likhacheva A.S., Alyamkina E.A., Sebeleva T.E., Chernykh Е.R., Gelfgat E.L., Bogachev S.S., Shurdov M.A. The leukocyte- stimulating action of protamine-protected exogenous DNA in -myelosuppression induced in mice by cyclophosphane. Voprosy onkologii = Problems in Oncology. 2009;55(6):761-764. (in Russian); Peshkova I.V., Bogachev S.S., Drobyazgin E.A., Chikinev Y.V., Mitrofanov I.M., Piontkovskaya K.A., Vereschagin E.I. Effect of glutamine on the nucleic acids exchange during the perioperative period in reconstructive esophagus surgery. J. Nutr. Health Food Eng. 2015;2(4):00058. DOI 10.15406/jnhfe.2015.02.00058.; Potter Е.А., Dolgova Е.V., Minkevich А.М., Efremov Y.R., Taranov О.S., Omigov V.V., Nikolin V.P., Popova N.A., Proskurina А.S., Vereschagin Е.I., Kozel А.V., Rogachev V.А., Petrov D.B., Ostanin А.А., Chernykh Е.R., Kolchanov N.А., Bogachev S.S. Therapeutic effects of cyclophosphamide, dsDNA preparations and their combinations against Krebs-2 ascites cancer cells and various cancer transplants. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2016a;20(1):96-107. DOI 10.18699/VJ15.116. (in Russian); Potter Е.А., Dolgova Е.V., Minkevich А.М., Nikolin V.P., Popova N.A., Efremov Y.R., Baiborodin S.I., Rogachev V.А., Proskurina А.S., Kozel А.V., Taranov О.S., Omigov V.V., Vereschagin Е.I., Petrov D.B., Ostanin А.А., Chernykh Е.R., Kolchanov N.А., Bogachev S.S. Analysis of different therapeutic schemes combining cyclophosphamide and double-stranded DNA preparations for eradication of Krebs-2 primary ascites in mice. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2016b;20(1):108-124. DOI 10.18699/VJ15.117. (in Russian); Scharovsky O.G., Mainetti L.E., Rozados V.R. Metronomic chemotherapy: changing the paradigm that more is better. Curr. Oncol. 2009; 16(2):7-15.; https://vavilov.elpub.ru/jour/article/view/820
-
9Academic Journal
المؤلفون: E. A. Potter, E. V. Dolgova, A. M. Minkevich, V. P. Nikolin, N. A. Popova, Ya. R. Efremov, S. I. Baiborodin, V. A. Rogachev, A. S. Proskurina, A. V. Kozel, O. S. Taranov, V. V. Omigov, E. I. Vereschagin, D. B. Petrov, A. A. Ostanin, E. R. Chernykh, N. A. Kolchanov, S. S. Bogachev, Е. А. Поттер, Е. В. Долгова, А. М. Минкевич, В. П. Николин, Н. А. Попова, Я. Р. Ефремов, С. И. Байбородин, В. А. Рогачев, А. С. Проскурина, А. В. Козел, О. С. Таранов, В. В. Омигов, Е. И. Верещагин, Д. Б. Петров, А. А. Останин, Е. Р. Черных, Н. А. Колчанов, С. С. Богачев
المساهمون: бюджетным проектом № VI.60.1.3
المصدر: Vavilov Journal of Genetics and Breeding; Том 20, № 1 (2016); 108-124 ; Вавиловский журнал генетики и селекции; Том 20, № 1 (2016); 108-124 ; 2500-3259
مصطلحات موضوعية: полиорганная недостаточность, cyclophosphamide (CP), Krebs-2 ascites, tumor-initiating stem cells, remission, NER, homologous recombination, systemic inflammatory reaction, multiple organ failure, циклофосфан, асцит Кребс-2, стволовые инициирующие раковые клетки, ремиссия, гомологичная рекомбинация, системная воспалительная реакция
وصف الملف: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/468/757; Беспалов В.Г., Жабин А.А., Стуков А.Н., Беляева О.А., Муразов Я.Г., Семенов А.Л., Коньков С.А., Крылова И.М. Синергизм противоопухолевого действия диоксадэта и цисплатина на модели асцитной опухоли яичника // Сибирский онкологический журнал. 2013. No. 1. C. 42-46. Bespalov V.G., Zhabin A.A., Stukov; A.N., Belyaeva O.A., Murazov Y.G., Semenov A.L., Konkov S.A., Krylova I.M. Synergistic antitumor effect of dioxodate and cisplatin on the model of ovarian ascites tumor // Sibirskii onkologicheskii zhurnal. 2013. No. 1. P. 42-46.; Блохин Н.Н., Переводчикова Н.И. Химиотерапия опухолевых заболеваний. М.: Медицина, 1984. 302 с. Blohin N.N., Perevodchikova N.I. Chemotherapy of neoplastic diseases. M.: Medicina. 302 p. (In Russian).; Волкова О.В., Елецкий Ю.К. Основы гистологии и гистологической техники. М.: Медицина, 1971. 272 с. Volkova O.V., Eleckii Yu.K. The fundamentals of histology and histological technique // M: Medicina, 1971. P. 272. (In Russian).; Гаврилов О.К. Проблемы и гипотезы в учении о свертывании крови // М.: Медицина, 1981. Gavrilov O.K. Problems and hypotheses in the study of blood coagulation. M.: Medicina, 1981. (In Russian).; Долгова Е.В., Рогачев В.А., Николин В.П., Попова Н.А., Лихачева А.С., Алямкина Е.А., Себелева Т.Е., Черных Е.Р., Гельфгат Е.Л., Богачев С.С., Шурдов М.А. Лейкостимулирующее действие фрагментов экзогенной ДНК, защищенных протамином, при вызванной циклофосфаном миелосупрессии мышей // Вопросы онкологии. 2009. Т. 55, No. 6, С. 761-764. Dolgova E.V., Rogachev V.A., Nikolin V.P., Popova N.A., Likhacheva A.S., Sebeleva T.E., Chernykh E.R., Gelfgat E.L., Bogachev S.S., Shurdov M.A. Leukostimulatory effect of exogenous DNA fragments protected by protamine in mica in the case of myelosuppression caused by cyclophosphamide // Voprosy oncologii. 2009. V. 55, No 6, P. 761-764. (In Russian).; Лайт Р.У. Болезни плевры: пер. с англ. М.: Медицина, 1986. С. 106-119. Layt R.U. Pleural disease. M.: Medicina, 1986. P. 106-119. (In Russian).; Поттер Е.А., Долгова Е.В., Минкевич А.М., Ефремов Я.Р., Таранов О.С., Омигов В.В., Николин В.П., Попова Н.А., Проскурина А.С., Верещагин Е.И., Козел А.В., Рогачев В.А., Петров Д.Б., Останин А.А., Черных Е.Р., Колчанов Н.А., Богачев С.С. Терапевтические эффекты воздействия циклофосфана, препаратов двуцепочечной ДНК и их сочетания на раковые клетки асцита Кребс-2 и различные формы трансплантатов // Вавиловский журнал генетики и селекции. 2015а. В печати. Potter Е.А., Dolgova Е.V., Minkevich А.М., Efremov Ya.R., Taranov О.S., Omigov V.V., Nikolin V.P., Popova N.A., Proskurina А.S., Vereschagin Е.I., Kozel А.V., Rogachev V.А., Petrov D.B., Ostanin А.А., Chernykh Е.R., Kolchanov N.А., Bogachev S.S. Therapeutic effects of cyclophosphamide, dsDNA preparations and combinations thereof against Krebs-2 ascites cancer cells and various cancer transplants // Vavilovskii zhurnal genetiki I selekcii. 2015a. (In Russian) (In press).; Стенина М.Б. Спорные вопросы в лечении рака яичников // Онкология: Трудный пациент. 2006. Т. 4. No. 11. С. 9-14. Stenina M.B. Controversial issues in the treatment of ovarian cancer // Oncologiya. 2006. V. 4. No. 11. P. 9-14.; Туаева Н.О., Софронов В.В., Амикеева В.А., Абрамова З.И., Винтер В.Г., Мустафина Д.М., Туточкина К.В. Взаимосвязь концентрации внеклеточной ДНК в плазме крови и содержания антител к нативной ДНК у новорожденных с пневмопатией // Казанский медицинский журнал. 2006. Т. 87. Вып. 4. С. 254-257.; Tuaeva N.O., Sofronov V.V., Amikeeva V.A., Abramova Z.I., Winter V.G., Mustafina D.M., Tutochkina K.V. Interconnection of extracellular DNA concentration in blood plasma and amount of antibodies to native DNA in newborns with pneumopathy // Kazanskii medicinskii zhurnal. 2006. V. 87. No. 4. P. 254-257. (In Russian).; Alyamkina E.A., Dolgova E.V., Likhacheva A.S., Rogachev V.A., Sebeleva T.E., Nikolin V.P., Popova N.A., Orishchenko K.E., Strunkin D.N., Chernykh E.R., Zagrebelniy S.N., Bogachev S.S., Shurdov M.A. Combined therapy with cyclophosphamide and DNA preparation inhibits the tumor growth in mice // Genet. Vaccines Ther. 2009. V. 7(1). No. 12. DOI:10.1186/1479-0556-7-12.; Alyamkina E.A., Dolgova E.V., Likhacheva A.S., Rogachev V.A., Sebeleva T.E., Nikolin V.P., Popova N.A., Kiseleva E.V., Orishchenko K.E., Sakhno L.V., Gel’fgat E.L., Ostanin A.A., Chernykh E.R., Zagrebelniy S.N., Bogachev S.S., Shurdov M.A. Exogenous allogenic fragmented double-stranded DNA is internalized into human dendritic cells and enhances their allostimulatory activity // Cell Immunol. 2010a. V. 262. P. 120-126. DOI:10.1016/j.cellimm.2010.01.005.; Alyamkina E.A., Leplina O.Y., Sakhno L.V., Chernykh E.R., Ostanin A.A., Efremov Y.R., Shilov A.G., Proskurina A.S., Orishchenko K.E., Dolgova E.V., Rogachev V.A., Nikolin V.P., Popova N.A., Zagrebelniy S.N., Bogachev S.S., Shurdov M.A. Effect of double-stranded DNA on maturation of dendritic cells in vitro // Cell Immunol. 2010b. V. 266. P. 46-51. DOI:10.1016/j.cellimm.2010.08.011.; Alyamkina E.A., Nikolin V.P., Popova N.A., Dolgova E.V., Proskurina A.S., Orishchenko K.E., Efremov Y.R., Chernykh E.R., Ostanin A.A., Sidorov S.V., Ponomarenko D.M., Zagrebelniy S.N., Bogachev S.S., Shurdov M.A. A strategy of tumor treatment in mice with doxorubicin-cyclophosphamide combination based on dendritic cell activation by human double-stranded DNA preparation // Genet. Vaccines Ther. 2010c. V. 8(1). No. 7. DOI:10.1186/1479-0556-8-7.; Alyamkina E.A., Leplina O.Y., Ostanin A.A., Chernykh E.R., Nikolin V.P., Popova N.A., Proskurina A.S., Gvozdeva T.S., Dolgova E.V., Orishchenko K.E., Rogachev V.A., Sidorov S.V., Varaksin N.A., Ryabicheva T.G., Bogachev S.S., Shurdov M.A. Effects of human exogenous DNA on production of perforin-containing CD8+ cytotoxic lymphocytes in laboratory setting and clinical practice // Cell Immunol. 2012. V. 276. P. 59-66. DOI:10.1016/j.cellimm.2012.04.004.; Alyamkina E.A., Nikolin V.P., Popova N.A., Minkevich A.M., Kozel A.V., Dolgova E.V., Efremov Y.R., Bayborodin S.I., Andrushkevich O.M., Taranov O.S., Omigov V.V., Rogachev V.A., Proskurina A.S., Vereschagin E.I., Kiseleva E.V., Zhukova M.V., Ostanin A.A., Chernykh E.R., Bogachev S.S., Shurdov M.A. Combination of cyclophosphamide and double-stranded DNA demonstrates synergistic toxicity against established xenografts // Cancer Cell Int. 2015. V. 15. No. 32. DOI:10.1186/s12935-015-0180-6.; Anker P., Mulcahy H., Chen X.Q., Stroun M. Detection of circulating tumour DNA in the blood (plasma/serum) of cancer patients // Cancer Metastasis Rev. 1999. V. 18. No. 1. P. 65-73.; Bleiblo F., Michael P., Brabant D., Ramana C.V., Tai T., Saleh M., Parrillo J.E., Kumar A., Kumar A. The role of immunostimulatory nucleic acids in septic shock // Int. J. Clin. Exp. Med. 2012. V. 5. ISSN:1940-5901/IJCEM1112008.; Brenner D.E. Intraperitoneal chemotherapy: a review // J. Clin. Oncol. 1986. V. 4. No. 7. P. 1135-1147.; Decker P., Wolburg H., Rammensee H.G. Nucleosomes induce lymphocyte necrosis // Eur. J. Immunol. 2003. V. 33. No. 7. P. 1978–1987. DOI:10.1002/eji.200323703.; Dolgova E.V., Proskurina A.S., Nikolin V.P., Popova N.A., Alyamkina E.A., Orishchenko K.E., Rogachev V.A., Efremov Y.R., Dubatolova T.D., Prokopenko A.V., Chernykh E.R., Ostanin A.A., Taranov O.S., Omigov V.V., Zagrebelniy S.N., Bogachev S.S., Shurdov M.A. “Delayed death” phenomenon: A synergistic action of cyclophosphamide and exogenous DNA // Gene. 2012. V. 495. No. 2. P. 134-145. DOI:10.1016/j.gene.2011.12.032.; Dolgova E.V., Efremov Y.R., Orishchenko K.E., Andrushkevich O.M., Alyamkina E.A., Proskurina A.S., Bayborodin S.I., Nikolin V.P., Popova N.A., Chernykh E.R., Ostanin A.A., Taranov O.S., Omigov V.V., Minkevich A.M., Rogachev V.A., Bogachev S.S., Shurdov M.A. Delivery and processing of exogenous double-stranded DNA in mouse CD34+ hematopoietic progenitor cells and their cell cycle changes upon combined treatment with cyclophosphamide and double-stranded DNA // Gene. 2013. V. 528. No. 2. P. 74-83. DOI:10.1016/j.gene.2013.06.058.; Dolgova E.V., Alyamkina E.A., Efremov Y.R., Nikolin V.P., Popova N.A., Tyrinova T.V., Kozel A.V., Minkevich A.M., Andrushkevich O.M., Zavyalov E.L., Romaschenko A.V., Bayborodin S.I., Taranov O.S., Omigov V.V., Shevela E.Y., Stupak V.V., Mishinov S.V., Rogachev V.A., Proskurina A.S., Mayorov V.I., Shurdov M.A., Ostanin A.A., Chernykh E.R., Bogachev S.S. Identification of cancer stem cells and a strategy for their elimination // Cancer Biol. Ther. 2014. V. 15. No. 10. P. 1378-1394. DOI:10.4161/cbt.29854.; Garlatti V., Chouquet A., Lunardi T., Vives R., Paidassi H., Lortat-Jacob H., Thielens N.M., Arlaud G.J., Gaboriaud C. Cutting edge: C1q binds deoxyribose and heparin sulfate through neighboring sites of its recognition domain // J. Immunol. 2010. V. 185. No. 2. P. 808-812. DOI:10.4049/jimmunol.1000184.; Garcia-Olmo D., Garcia-Olmo D.C., Ontanon J., Martinez E. Horizontal transfer of DNA and the “genometastasis hypothesis” // Blood. 2000. V. 95. № 2. P. 724-725.; Gupta P.B., Fillmore C.M., Jiang G., Shapira S.D., Tao K., Kuperwasser C., Lander E.S. Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells // Cell. 2011. V. 146. No. 4. P. 633-644. DOI:10.1016/j.cell.2011.07.026.; Jahr S., Hentze H., Englisch S., Hardt D., Fackelmayer F.O., Hesch R.D., Knippers R. DNA fragments in the blood plasma of cancer patients quantitations and evidence for their origin from apoptotic and necrotic cells // Cancer Res. 2001. V. 61. No. 4. P. 1659-1665.; Jiang H., Cooper B., Robey F.A., Gewurz H. DNA binds and activates complement via residues 14-26 of the human C1q A chain // J. Biol. Chem. 1992. V. 267. No. 35. P. 25597-25601.; Kaczorowski D.J., Scott M.J., Pibris J.P., Afrazi A., Nakao A., Edmonds R.D., Kim S., Kwak J.H., Liu Y., Fan J., Billiar T.R. Mammalian DNA is an endogenous danger signal that stimulates local synthesis and release of complement factor B // Mol. Med. 2012. V. 18. No. 1. P. 851–860. DOI:10.2119/molmed.2012.00011.; Laktionov P.P., Tamkovich S.N., Rykova E.Y., Bryzgunova O.E., Starikov A.V., Kuznetsova N.P., Sumarokov S.V., Kolomiets S.A., Sevostianova N.V., Vlassov V.V. Extracellular circulating nucleic acids in human plasma in health and disease // Nucleosides Nucleotides Nucleic Acids. 2004. V. 23. No. 6-7. P. 879-883.; Parsons D.F., Marko M., Braun S.J., Wansor K.J. Ascites tumor invasion of mouse peritoneum studied by high-voltage electron microscope stereoscopy // Cancer Res. 1982. V. 42. No. 11. P. 4574-4583.; Tissot B., Daniel R., Place C. Interaction of the C1 complex of the complement with sulfated polysaccharide and DNA probed by single molecule fluorescence microscopy // Eur. J. Biochem. 2003. V. 270. No. 23. P. 4714-4720.; https://vavilov.elpub.ru/jour/article/view/468
-
10Academic Journal
المؤلفون: E. V. Dolgova, V. P. Nicolin, N. A. Popova, A. S. Proskurina, K. E. Orishchenko, E. A. Alyamkina, Y. R. Efremov, E. R. Chernykh, A. A. Ostanin, E. M. Malkova, O. S. Taranov, V. A. Rogachev, S. V. Sidorov, S. S. Bogachev, M. A. Shurdov, Е. В. Долгова, В. П. Николин, Н. А. Попова, А. С. Проскурина, К. Е. Орищенко, Е. А. Алямкина, Я. Р. Ефремов, Е. Р. Черных, А. А. Останин, Е. М. Малкова, О. С. Таранов, В. А. Рогачев, С. В. Сидоров, С. С. Богачев, М. А. Шурдов
المساهمون: О.В.Воробьева, Н.А.Сердюкова, федеральная целевая программа "Научные и научно-технические кадры инновационной России", ООО "Панаген"
المصدر: Vavilov Journal of Genetics and Breeding; Том 16, № 2 (2012); 397-414 ; Вавиловский журнал генетики и селекции; Том 16, № 2 (2012); 397-414 ; 2500-3259 ; 2500-0462
مصطلحات موضوعية: конкатамеризация, fragments of exogenous DNA, episome, concatemerization, фрагменты экзогенной ДНК, эписома
وصف الملف: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/56/53; Алямкина Е.А., Лихачева А.С., Николин В.П. и др. Действие экзогенной ДНК, ассоциированной с протамином, на рост экспериментальных опухолей мыши // Вопросы онкологии. 2009. Т. 55. № 6. С. 765–768.; Долгова Е.В., Лихачева А.С., Орищенко К.Е. и др. Репарация межцепочечных сшивок молекулы ДНК // Информ. вестник ВОГиС. 2010. Т. 14. № 2. С. 332–356.; Долгова Е.В., Николин В.П., Попова Н.А. и др. Патологические изменения, возникающие в организме мышей, обработанных сочетанием циклофосфана и экзогенной ДНК // В печати.; Долгова Е.В., Проскурина А.С., Николин В.П. и др. Характеристика временных параметров проявления э ффекта токсического действия инъекций экзогенной ДНК на фоне предобработки цитостатиком циклофосфаном // Информ. вестник ВОГиС. 2011. Т. 15. № 4. С. 485–492.; Долгова Е.В., Рогачев В.А., Николин В.П. и др. Лейкостимулирующее действие фрагментов экзогенной ДНК, защищенных протамином, при вызванной циклофосфаном миелосупрессии мышей // Вопросы онкологии. 2009. Т. 55. № 6. С. 761–764.; Лихачева А.С., Рогачев В.А., Николин В.П. и др. Участие экзогенной ДНК в молекулярных процессах, протекающих в соматической клетке // Информ. вестник ВОГиС. Т.12 № 3. 2008. Т. 12. № 3. С. 426–473.; https://vavilov.elpub.ru/jour/article/view/56
-
11Academic Journal
المؤلفون: E. V. Dolgova, V. P. Nikolin, N. A. Popova, A. S. Proskurina, K. E. Orishchenko, E. A. Alyamkina, Ya. R. Efremov, S. I. Baiborodin, E. R. Chernykh, A. A. Ostanin, S. S. Bogachev, T. S. Gvozdeva, E. M. Malkova, O. S. Taranov, V. A. Rogachev, A. S. Panov, S. N. Zagrebelnyi, M. A. Shurdov, Е. В. Долгова, В. П. Николин, Н. А. Попова, А. С. Проскурина, К. Е. Орищенко, Е. А. Алямкина, Я. Р. Ефремов, С. И. Байбородин, Е. Р. Черных, А. А. Останин, С. С. Богачев, Т. С. Гвоздева, Е. М. Малкова, О. С. Таранов, В. А. Рогачев, А. В. Панов, С. Н. Загребельный, М. А. Шурдов
المصدر: Vavilov Journal of Genetics and Breeding; Том 17, № 1 (2013); 129-146 ; Вавиловский журнал генетики и селекции; Том 17, № 1 (2013); 129-146 ; 2500-3259
مصطلحات موضوعية: акцидентальная инволюция лимфоидных органов, exogenous DNA, bone marrow cells, apoptosis, systemic inflammation, accidental involution of lymphoid organs, экзогенная ДНК, клетки костного мозга, апоптоз, системное воспаление
وصف الملف: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/120/120; Афанасьева Ю.И., Кузнецова С.Л., Юрина Н.А. Гистология, цитология и эмбриология. М.: Медицина, 2004. 768 с.; Волкова О.В., Елецкий Ю.К. Основы гистологии и гистологической техники. М.: Медицина, 1971. 272 с.; Долгова Е.В., Николин В.П., Попова Н.А. и др. Интернализация экзогенной ДНК во внутренние компартменты клеток костного мозга мышей // Вавилов. журн. генет. и селекции. 2012. Т. 16. № 2. С. 397–414.; Долгова Е.В., Прокопенко А.В., Николин В.П. и др. Характеристика изменения количества умеренных повторов в геноме клеток костного мозга экспериментальных мышей на фоне инъекции циклофосфана и экзогенной ДНК человека // Вавилов. журн. генет. и селекции. 2013. В печати.; Долгова Е.В., Проскурина А.С., Николин В.П. и др. Характеристика временных параметров проявления эффекта токсического действия инъекций экзогенной ДНК на фоне предобработки цитостатиком циклофосфаном // Вавилов. журн. генет. и селекции. 2011. Т. 15. № 4. С. 674–689.; Кругляков П.В., Соколова И.Б., Полынцев Д.Г. Стволовые клетки дифференцированных тканей взрослого организма // Цитология. 2008. Т. 50. № 7. С. 557–567.; Макгрегор Г., Варли Дж. Методы работы с хромосомами животных: Пер. с англ. М.: Мир, 1986. С. 31.; Мейл Д., Бростофф Дж., Рот Д.Б., Ройтт А. Иммунология: Пер. с англ. М.: Логосфера, 2007. 568 с.; Проскуряков С.Я., Гавай В.П., Коноплянников А.Г. Иммунология некроза и апоптоза // Биохимия. 2005. Т. 70. С. 1593–1605.; Рыкова Е.Ю., Лактионов П.П., Власов В.В. Активирующее влияние ДНК на иммунную систему // Усп. соврем. биологии. 2001. Т. 121. С. 160–171.; Andrews N.W. Membrane repair and immunological danger // EMBO Rep. 2005. V. 6. No. 9. P. 826–830.; Buckley R.H. Primary immunodefi ciency diseases due to defects in lymphocytes // N. Engl. J. Med. 2000. V. 343. No. 18. P. 1313–1324.; Coban C., Koyama S., Takeshita F. et al. Molecular and cellular mechanisms of DNA vaccines // Hum. Vaccin. 2008. V. 4. P. 453–456.; Cook R., Wu C.C., Kang Y.J., Han J. The role of the p38 pathway in adaptive immunity // Cell. Mol. Immunol. 2007. V. 4. No. 4. P. 253–259.; De Gregorio E., Rappuoli R. Inside sensors detecting outside pathogens // Nat. Immunol. 2004. V. 5. No. 11. P. 1099–1100.; Decker P., Wolburg H., Rammensee H.G. Nucleosomes induce lymphocyte necrosis // Eur. J. Immunol. 2003. V. 33. No. 7. P. 1978–1987.; Decker P., Singh-Jasuja H., Haager S. et al. Nucleosome, the main autoantigen in systemic lupus erythematosis, induces direct dendritic cell activation via a MyD88-independent pathway: consequences on infl ammation // J. Immunol. 2005. V. 174. No. 6. P. 3326–3334.; Derbyshire M.K., Epstein L.H., Young C.S.H. et al. Nonhomologous recombination in human cells // Mol. Cell Biol. 1994. V. 14. No. 1. P. 156–169.; Fugmann S.D. RAG1 and RAG2 in V(D)J recombination and transposition // Immunol. Res. 2001. V. 23. No. 1. P. 23–39.; Harty J.T., Tvinnereim A.R., White D.W. CD8+ T cell effector mechanisms in resistance to infection // Annu. Rev. Immunol. 2000. V. 18. P. 275–308.; Ishii K.J., Akira S. Innate immune recognition of, and regulation by, DNA // Trends Immunol. 2006. V. 27. P. 525–532.; Kaufmann S.H., Schaible U.E. Antigen presentation and recognition in bacterial infections // Curr. Opin. Immunol. 2005. V. 17. No. 1. P. 79–87.; Kotnis A., Du L., Liu C. et al. Non-homologous end joining in class switch recombination: the beginning of the end // Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2009. V. 364. No. 1517. P. 653–665.; Krishan A. Rapid fl ow cytofl uorometric analysis of mammalian cell cycle by propidium iodide staining // J. Cell Biol. 1975. V. 66. No. 1. P. 188–193.; Lee S., Oshige M., Durant S.T. et al. The SET domain protein Metnase mediates foreign DNA integration and links integration to nonhomologous end-joining repair // Proc. Natl Acad. Sci. USA. 2005. V. 102. No. 50. P. 18075–18080.; Lees-Miller S.P., Meek K. Repair of DNA double strand breaks by non-homologous end joining // Biochimie. 2003. V. 85. No. 11. P. 1161–1173.; Lekstrom-Himes J.A., Gallin J.I. Immunodefi ciency diseases caused by defects in phagocytes // N. Engl. J. Med. 2000. V. 343. No. 23. P. 1703–1714.; Martin D.A., Elkon K.B. Intracellular mammalian DNA stimulates myeloid dendritic cells to produce type I interferons predominantly through a toll-like receptor 9-independent pathway // Arthritis Rheum. 2006. V. 54. P. 951–962.; Medzhitov R. Recognition of microorganisms and activation of the immune response // Nature. 2007. V. 449. No. 7164. P. 819–826.; Merrell D.S., Falkow S. Frontal and stealth attack strategies in microbial pathogenesis // Nature. 2004. V. 430. No. 6996. P. 250–256.; Monack D.M., Mueller A., Falkow S. Persistent bacterial infections: the interface of the pathogen and the host immune system // Nat. Rev. Microbiol. 2004. V. 2. Nо. 9. P. 747–765.; Napirei M., Karsunky H., Zevnik B. et al. Features of systemic lupus erythematosis in Dnase1-defi cient mice // Nat. Genet. 2000. V. 25. No. 2. P. 177–181.; Orkin S.H., Zon L.I. Hematopoiesis: an evolving paradigm for stem cell biology // Cell. 2008. V. 132. No. 4. P. 631–644.; Ravetch J.V. A full complement of receptors in immune complex diseases // J. Clin. Invest. 2002. V. 110. No. 12. P. 1759–1761.; Rosen F.S., Cooper M.D., Wedgwood R.J. The primary immunodefi ciencies // N. Engl. J. Med. 1995. V. 333. No. 7. P. 431–440.; Rossi D.J., Jamieson C.H., Weissman I.L. Stems cells and the pathways to aging and cancer // Cell. 2008. V. 132. No. 4. P. 681–696.; Rouse B.T., Suvas S. Regulatory cells and infectious agents: detentes cordiale and contraire // J. Immunol. 2004. V. 173. No. 4. P. 2211–2215.; Sambrook J., Fritsch E.F., Maniatis T. Molecular Cloning, a Laboratory Manual. Second Edition. Cold Spring Harbor Laboratory Press, 1989.; Shirota H., Ishii K.J., Takakuwa H., Klinman D.M. Contribution of interferon-beta to the immune activation induced by double-stranded DNA // Immunology. 2006. V. 118. P. 302–310.; Silva J., Smith A. Capturing pluripotency // Cell. 2008. V. 132. Nо. 4. P. 532–536.; Takeshita F., Ishii K.J. Intracellular DNA sensors in immunity // Curr. Opin. Immunol. 2008. V. 20. P. 383–388.; Wang H., Rosidi B., Perrault R. et al. DNA ligase III as a candidate component of backup pathways of nonhomologous end joining // Cancer Res. 2005. V. 65. No. 10. P. 4020–4030.; Warren J.S., Yabroff K.R., Remick D.G. et al. Tumor necrosis factor participates in the pathogenesis of acute immune complex alveolitis in the rat // J. Clin. Invest. 1989. V. 84. No. 6. P. 1873–1882.; Whaley K. Complement and immune complex diseases // Complement in Health and Disease / Ed. K. Whaley. Lancaster: MTP Press Ltd, 1987.; Yu J., Thomson J.A. Pluripotent stem cell lines // Genes Dev. 2008. V. 22. No. 15. P. 1987–1997.; https://vavilov.elpub.ru/jour/article/view/120
-
12Academic Journal
المؤلفون: E. V. Dolgova, A. V. Prokopenko, V. P. Nikolin, N. A. Popova, A. S. Proskurina, K. E. Orishchenko, E. A. Alyamkina, Ya. R. Efremov, E. R. Chernykh, A. A. Ostanin, S. S. Bogachev, T. S. Gvozdeva, E. M. Malkova, O. S. Taranov, V. A. Rogachev, A. V. Panov, S. N. Zagrebelnyi, M. A. Shurdov, Е. В. Долгова, А. В. Прокопенко, В. П. Николин, Н. А. Попова, А. С. Проскурина, К. Е. Орищенко, Е. А. Алямкина, Я. Р. Ефремов, Е. Р. Черных, А. А. Останин, С. С. Богачев, Т. С. Гвоздева, Е. М. Малкова, О. С. Таранов, В. А. Рогачев, А. В. Панов, С. Н. Загребельный, М. А. Шурдов
المصدر: Vavilov Journal of Genetics and Breeding; Том 17, № 2 (2013); 246-264 ; Вавиловский журнал генетики и селекции; Том 17, № 2 (2013); 246-264 ; 2500-3259
مصطلحات موضوعية: гомологичная рекомбинация, exogenous DNA, interstrand cross-links, short interspersed repeat (SINE), homologous recombination, экзогенная ДНК, межцепочечные сшивки, умеренные повторы генома
وصف الملف: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/147/149; Бутовская П.Р., Павлова Г.В., Мартиросян И.А. и др. Соматический мозаицизм у мышей, выявляемый методом RAPD-PCR // Молекуляр. генет., микробиол. и вирусология. 2009. № 1. С. 3–7.; Долгова Е.В., Николин В.П., Попова Н.А. и др. Интернализация экзогенной ДНК во внутренние компартменты клеток костного мозга мышей // Вавилов. журн. генет. и селекции. 2012. Т. 16. № 2. С. 397–414.; Долгова Е.В., Николин В.П., Попова Н.А. и др. Патологические изменения, возникающие в организме мышей, обработанных сочетанием циклофосфана и экзогенной ДНК // Вавилов. журн. генет. и селекции. 2013. Т. 17. № 1. С. 129–146.; Долгова Е.В., Проскурина А.С., Николин В.П. и др. Характеристика временных параметров проявления эффекта токсического действия инъекций экзогенной ДНК на фоне предобработки цитостатиком циклофосфаном // Вавилов. журн. генет. и селекции. 2011. Т. 15. № 4. С. 674–689.; Кимиссаренко С.В., Лукинов Д.И., Черепенко Е.И. Биосинтез различных классов последовательностей ядерной ДНК при пролиферации клеток мышиной плазмоцитомы MOPC-21 // Биополимеры и клетка. 1986. Т. 2. № 4. С. 220–23.; Лихачева А.С., Рогачев В.А., Николин В.П. и др. Участие экзогенной ДНК в молекулярных процессах, протекающих в соматической клетке // Вестник ВОГиС. 2008. Т. 12. № 3. С. 426–473.; Маниатис Е., Фрич Э., Сэмбрук Дж. Методы генетической инженерии. Молекулярное клонирование: Пер. с англ. М.: Мир, 1984. 480 с.; Николин В.П., Попова Н.А., Себелева Т.Е. и др. Влияние экзогенной ДНК на восстановление лейкопоэза и противоопухолевый эффект циклофосфана // Вопр. онкологии. 2006. Т. 52. С. 336–340.; Смирнов Г.Б. Почему редуцируются бактериальные геномы? // Бреслеровские чтения. Спб.: Наука, 2007. С. 34–60.; Abrams R.A., McCormack K., Bowles C., Deisseroth A.B. Cyclophosphamide treatment expands the circulating hematopoietic stem cell pool in dogs // J. Clin. Invest. 1981. V. 67. Nо. 5. P. 1392–1399.; Akkari Y.M., Bateman R.L., Reifsteck C.A. et al. DNA replication is required to elicit cellular responses to psoraleninduced DNA interstrand cross-links // Mol. Cell Biol. 2000. V. 20. Nо. 21. P. 8283–8289.; De Silva I.U., McHugh P.J., Clingen P.H. et al. Defi ning the roles of nucleotide excision repair and recombination in the repair of DNA interstrand cross-links in mammalian cells // Mol. Cell Biol. 2000. V. 20. P. 7980–7990.; Farzaneh F., Zalin R., Brill D., Shall S. DNA strand breaks and ADP-ribosyl transferase activation during cell differentiation // Nature. 1982. V. 300. Nо. 5890. P. 362–366.; Fleming R.A. An overview of cyclophosphamide and ifosfamide pharmacology // Pharmacotherapy. 1997. V. 17. P. 146–154.; Jack H.M., McDowell M., Steinberg C.M. et al. Looping out and deletion mechanism for the immunoglobulin heavychain class switch // Proc. Natl Acad. Sci. USA. 1988. V. 85. P. 1581–1585.; Jahn C.L., Klobutcher L.A. Genome remodeling in ciliated protozoa // Annu. Rev. Microbiol. 2002. V. 56. P. 489–520.; Jurka J., Kohany O., Pavlicek A. et al. Clustering, duplication and chromosomal distribution of mouse SINE retrotransposons // Cytogenet. Genome Res. 2005. V. 110. P. 117–123.; Hamlin J.L. Mammalian origins of replication // Bioаssays. 1992. V. 14. Nо. 10. P. 651–659.; Hancock J.M. Gene factories, microfunctionalization and the evolution of gene families // Trends Genet. 2005. V. 21. P. 591–595.; Herriсk J. Genetic variation and DNA replication timing, or why is there late replicating DNA? // Evolution. 2011. V. 65. Nо. 11. P. 3031–3047.; Holmquist G.P., Caston L.A. Replication time of interspersed repetitive DNA sequences in hamsters // Biochim. Biophys Acta. 1986. V. 868. No. 2/3. P. 164–177.; Johnstone A.P., Williams G.T. Role of DNA breaks and ADPribosyl transferase activity in eukaryotic differentiation demonstrated in human lymphocytes // Nature. 1982. V. 300. No. 5890. P. 368–370.; Kobayashi T. A new role of the rDNA and nucleolus in the nucleus--rDNA instability maintains genome integrity // Bioаssays. 2008. V. 30. No. 3. P. 267–272.; Kotnis A., Kannan S., Sarin R. et al. Case-control study and meta-analysis of SULT1A1 Arg213His polymorphism for gene, ethnicity and environment interaction for cancer risk // Br. J. Cancer. 2008. V. 99. P. 1340–1347.; Kramerov D.A., Vassetzky N.S. Short retroposons in eukaryotic genomes // Int. Rev. Cytol. 2005. V. 247. Р. 165–221.; Krayev A.S., Kramerov D.A., Skryabin K.G. et al. The nucleotide sequence of the ubiquitous repetitive DNA sequence B1 complementary to the most abundant class of mouse fold-back RNA // Nucl. Acids Res. 1980. V. 8. Nо. 6. P. 1201–1215.; Lansdorp P.M. Major cutbacks at chromosome ends // Trends Biochem. Sci. 2005. V. 30. P. 388–395.; Le Breton C., Hennion M., Arimondo P.B. et al. Replicationfork stalling and processing at a single psoralen interstrand crosslink in Xenopus egg extracts // PloS one. 2011. V. 6. Nо. 4. P. e18554.; Likhacheva A.S., Nikolin V.P., Popova N.A. et al. Integration of human DNA fragments into the cell genomes of certain tissues from adult mice treated with cytostatic cyclophosphamide in combination with human DNA // Gene Ther. Mol. Biol. 2007. V. 11. P. 185–202.; Mazur L., Czyzewska A. Immunocytochemical analysis of apoptotic bone marrow cells after treatment of mice with WR-2721 and chemotherapeutic drugs // Folia Histochem. Cytobiol. 2001. V. 39. Nо. 2. P. 63–66.; Moore R.C., Purugganan M.D. The evolutionary dynamics of plant duplicate genes // Curr. Opin. Plant Biol. 2005. V. 8. P. 122–128.; Niedernhofer L.J., Odijk H., Budzowska M. et al. The structure-specific endonuclease Ercc1-Xpf is required to resolve DNA interstrand cross-link-induced double-strand breaks // Mol. Cell Biol. 2004. V. 24. Nо. 13. P. 5776–5787.; Paques F., Haber J.E. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae // Microbiol. Mol. Biol. Rev. 1999. V. 63. Nо. 2. P. 349–404.; Pвques F., Leung W.Y., Haber J.E. Expansions and contractions in a tandem repeat induced by double-strand break repair // Mol. Cell. Biol. 1998. V. 18. Nо. 4. P. 2045–2054.; Roberts D.B. Drosophila: a practical approach. Oxford-Washington, DC: IRL Press, 1986. 295 p.; Salem M.L., El-Naggar S.A., Cole D.J. Cyclophosphamide induces bone marrow to yield higher numbers of precursor dendritic cells in vitro capable of functional antigen presentation to T cells in vivo // Cell Immunol. 2010. V. 261. Nо. 2. P. 134–143.; Serdobova I.M., Kramerov D.A. Short retroposons of the B2 superfamily: evolution and application for the study of rodent phylogeny // J. Mol. Evol. 1998. V. 46. P. 202–214.; Shibata A., Barton O., Noon A.T. et al. Role of ATM and the damage response mediator proteins 53BP1 and MDC1 in the maintenance of G(2)/M checkpoint arrest // Mol. Cell. Biol. 2010. V. 30. Nо. 13. P. 3371–3383.; Tanaka H., Cao Y., Bergstrom D.A. et al. Intrastrand annealing leads to the formation of a large DNA palindrome and determines the boundaries of genomic amplifi cation in human cancer // Mol. Cell. Biol. 2007 . V. 6. P. 1993–2002.; Taussig M.J. Molecular genetics of immunoglobulins // Immunol. Suppl. 1988. V. 1. P. 7–15.; Tower J. Developmental gene amplifi cation and origin regulation // Annu. Rev. Genet. 2004. V. 38. P. 273–304.; Tseng H., Chou W., Wang J. et al. Mouse ribosomal RNA genes contain multiple differentially regulated variants // PLoS One. 2008. V. 3. P. e1843.; Vassetzky N.S., Ten O.A., Kramerov D.A. B1 and related SINEs in mammalian genomes // Gene. 2003. V. 319. P. 149–160.; Vatolin S.Y., Okhapkina E.V., Matveeva N.M. et al. Scheduled perturbation in DNA during in vitro differentiation of mouse embryo-derived cells // Mol. Reprod. Dev. 1997. V. 47. Nо. 1. P. 1–10.; Wang R.C., Smogorzewska A., de Lange T. Homologous recombination generates T-loop-sized deletions at human telomeres // Cell. 2004. V. 119. Nо. 3. P. 355–368.; Warmerdam D.O., Kanaar R. Dealing with DNA damage: relationships between checkpoint and repair pathways // Mutat Res. 2010. V. 704. Nо. 1/3. P. 2–11.; Yakubov L.A., Rogachev V.A., Likhacheva A.C. et al. Natural human gene correction by small extracellular genomic DNA fragments // Cell Cycle. 2007. V. 6. P. 2293–2301.; https://vavilov.elpub.ru/jour/article/view/147
-
13Academic Journal
المؤلفون: E. V. Dolgova, M. G. D’yakova, V. A. Tverskoy, Е. В. Долгова, М. Г. Дьякова, В. А. Тверской
المصدر: Fine Chemical Technologies; Vol 9, No 5 (2014); 30-33 ; Тонкие химические технологии; Vol 9, No 5 (2014); 30-33 ; 2686-7575 ; 2410-6593
مصطلحات موضوعية: избирательная сольватация, радикальная сополимеризация, стирол, винилбензилтриметил-аммонийхлорид
وصف الملف: application/pdf
Relation: https://www.finechem-mirea.ru/jour/article/view/435/481; Otaigbe J., Banks R., Smith S. Polymeric reagents: Part 1. Synthesis of polymer-anchored amines useful for curing epoxy resins // Br. Polym. J. 1988. V. 20. P. 53-59.; Ford W., Yu H. Catalysis of hydrolysis of p-nitrophenyl diphenyl phosphate by o-iodosobenzoate in cationic latexes and polyelectrolytes // Langmuir. 1993. V. 9. P. 1999-2007.; Bon S., Beek H., Piet P., German A. Emulsifier-free synthesis of monodisperse core-shell polymer colloids containing chloromethyl groups // J. Appl. Polym. Sci. 1995. V. 58. P. 19-29.; Sasagawa Y., Ishikawa O., Yamashita T., Tsuji A. The new design concept of SB-latex for paper coating // Jpn. Tappi J. 1993. V. 47. P. 334-339.; Шапиро Б.И., Исаева А.Н., Тверской В.А. Матричный синтез агрегатов карбоцианиновых красителей на катионных полиэлектролитах // Рос, нанотехнологии. 2010. Т. 5. № 7-8. С. 35-40.; Афиногенов Г.Е., Панарин Е.Ф. Антимикробные полимеры. СПб: Гиппократ, 1993. 264 с.; Tashiro T., Antibacterial and bacterium adsorbing macromolecules // Macromol. Mater. Eng. 2001. V. 286. P. 63-87.; Upson D. Reactive functional latex polymers // J. Polym. Sci. Polym. Symp. 1985. V. 72. P. 45-54.; Ford W., Yu H., Lee J., El-Hamshary H. Synthesis of monodisperse crosslinked polystyrene latexes containing (vinylbenzyl)trimethylammonium chloride units // Langmuir. 1993. V. 9. P. 1698-1703.; Senuma M., Tashiro T., Iwakura M., Kaeriyama K., Shimura Y. Synthesis and antibacterial activity of copolymers having a quaternary ammonium salt side group // J. Appl. Polym. Sci. 1989. V. 37. P. 2837-2843.; Deng Y., Yan Z., Yang N. Synthesis of polystyrene-based cationic copolymers and their colloidal properties in water // Colloid Polym. Sci. 1999. V. 277. P. 227-233.; Кабанов В.А., Зубов В.П., Семчиков Ю.Д. Комплексно-радикальная полимеризация. М.: Химия, 1987. 253 c.; Семчиков Ю.Д., Смирнова Л.А. Модель сополимеризации, учитывающая избирательную сольватацию макрорадикалов // Высокомолек. соед. Б. 1999. Т. 41. № 4. С. 734-748.; Ito K., Uchida K., Kitano T., Yamada E., Matsumoto T. Solvent effects in radical copolymerization between hydrophilic and hydrophobic monomers; 2-hydroxyethyl methacrylate and lauryl methacrylate // Polym. J. 1985. V. 17. № 6. P. 761-766.; Прохорова Е.В., Дьякова М.Г., Зубов В.П., Шевлякова Н.В, Тверской В.А. Особенности сополимеризации стирола с пара-стиролсульфонатом натрия в растворителях различной полярности // Высоколмолек. соед. Б. 2014. Т. 56. № 1. С. 23-26; Harwood H.J. Structures and compositions of copolymers // Macromol. Chem., Macromol. Symp. 1987. V. 10-11. P. 331-354.; https://www.finechem-mirea.ru/jour/article/view/435
-
14Academic Journal
Alternate Title: THE REPRESENTATION OF KNOWLEDGE ABOUT A HUMAN BEING BY BRITISH AND RUSSIAN IDIOMS.
المؤلفون: Л. В., Бабина1 ludmila-babina@yandex.ru, Е. В., Долгова1 lenochka5dol@yandex.ru
المصدر: International Dialogue: East-West. apr2017, Vol. 4 Issue 4, p41-45. 5p.