يعرض 1 - 6 نتائج من 6 نتيجة بحث عن '"Е. А. Садовская"', وقت الاستعلام: 0.46s تنقيح النتائج
  1. 1
    Academic Journal

    المصدر: Science & Technique; Том 23, № 3 (2024); 219-224 ; НАУКА и ТЕХНИКА; Том 23, № 3 (2024); 219-224 ; 2414-0392 ; 2227-1031 ; 10.21122/2227-1031-2024-23-3

    وصف الملف: application/pdf

    Relation: https://sat.bntu.by/jour/article/view/2771/2327; Zaitsev Yu. V., Kovler K. A., Krasnovsky R. O., Krol I. S., Taher M. (1989) Crack Resistance of Concretes with Various Degrees of Heterogeneity of the Structure. Beton i Zhelezobeton = Concrete and Reinforced Concrete, (11), 25–27 (in Russian).; Fedyuk R. S., Baranov A. V., Liseitsev Yu. L. Ginevskiy V., Baranov A., Liseitsev Yu. (2019) Increasing the Dynamic Strength of Fiber Concretes. Vestnik Inzhenernoi shkoly DVFU = FEFU: School of Engineering Bulletin, (2), 90–99 (in Russian). https://doi.org/10.24866/2227-6858/2019-2-11.; Lam M.N.-T., Le D.-H., Jaritngam S. (2018) Compressive Strength and Durability Properties of Roller-Compacted Concrete Pavement Containing Electric Arc Furnace Slag Aggregate and Fly Ash. Construction and Building Materials, 191, 912–922. https://doi.org/10.1016/j.conbuildmat.2018.10.080.; Yener E., Hinislioğlu S. (2011) The Effects of Silica Fume and Fly ash on the Scaling Resistance and Flexural Strength of Pavement Concretes. Road Materials and Pavement Design, 12 (1), 177–194. https://doi.org/10.1080/14680629.2011.9690358.; Hassani A., Arjmandi M. (2010) Enhancement of Concrete Properties for Pavement Slabs Using Waste Metal Drillings and Silica Fume. Waste Management & Research, 28 (1), 56–63. https://doi.org/10.1177/0734242X09104143; Pranav S., Aggarwal S., Yang E.-H., Sarkar A.K., Singh A.P., Lahoti M. (2020) Alternative Materials for Wearing Course of Concrete Pavements: a Critical Review. Construction and Building Materials, 236, 117609 https://doi.org/10.1016/j.conbuildmat.2019.117609.; Zhdanok, S. A., Leonovich S. N., Polonina E. N. (2022) Synergetic Effect of SiO2 Nanoparticles and Carbon Nanotubes on Concrete Properties. Doklady of the National Academy of Sciences of Belarus, 66 (1), 109–112. https://doi.org/10.29235/1561-8323-2022-66-1-109-112 (in Russian).; Zhdanok S. A., Polonina E. N., Leonovich S. N., Khroustalev B. M., Koleda E. A. (2019) Physicomechanical Characteristics of Concrete Modified by a Nanostructured-Carbon-Based Plasticizing Admixture. Journal of Engineering Physics and Thermophysics, 92 (1), 12–18. https://doi.org/10.1007/s10891-019-01902-0.; Polonina E. N., Leonovich S. N., Khroustalev B. M., Sadovskaya E. A., Budrevich N. A. (2021) Cement-Based Materials Modified with Nanoscale Additives. Nauka i Tehnika = Science & Technique, 20 (3), 189–194. https://doi.org/10.21122/2227-1031-2021-20-3-189-194.; Leonovich S. N., Sadovskaya E. A. (2022) Nanofiber Concrete: Multi-Level Reinforcement. Nauka i Tehnika = Science and Technique, 21 (5), 392–396. https://doi.org/ 10.21122/2227-1031-2022-21-5-392-396.; Sadovskaya E. A., Leonovich S. N. (2022) Optimization of Composition of Nanofiber Concrete in Terms of Fracture Toughness by Matrix Modifiсation. Nauka i Tehnika = Science and Technique, 21 (6), 499–503. https://doi.org/10.21122/2227-1031-2022-21-6-499-503(in Russian).; Sadovskaya E. A., Polonina E. N., Leonovich S. N., Zhdanok S. A., Potapov V. V. (2022) Fracture Toughness of Nanofiber-Reinforced Concrete on Normal Separation and In-Plane Shear. Journal of Engineering Physics and Thermophysics, 95 (4), 945–952. https://doi.org/10.1007/s10891-022-02551-6.; Sadovskaya E. A., Leonovich S. N., Zhdanok S. A., Polonina E. N. (2020) Tensile Strength of Nanofibrous Concrete. Journal of Engineering Physics and Thermophysics, 93 (4), 1015–1019. https://doi.org/10.1007/s10891-020-02202-8.; Zhdanok S. A., Polonina E. N., Leonovich S. N., Khroustalev B. M., Koleda E. A. (2018) Strength Enhancement of Concrete with a Plasticizer on the Basis of Nano-Structured Carbon. Stroitel'nye Materialy = Construction Materials, (6), 67–72. https://doi.org/10.31659/0585-430X-2018-760-6-67-72 (in Russian).; Khroustalev B. M., Leonovich S. N., Yakovlev G. I., Polianskich I. S., Lahayne O., Eberhardsteiner J., Skripkiunas G., Pudov I. A., Karpova E. A. (2017) Structural Modification of New Formations in Cement Matrix Using Carbon Nanotube Dispersions and Nanosilica. Nauka i Tehnika = Science & Technique, 16 (2), 93–103. https://doi.org/10.21122/2227-1031-2017-16-2-93-103.; Zhdanok, S. A., Polonina E. N., Leonovich S. N. (2022) Influence of Polymer Superplasticizers on Various Types of Carbon Nanomaterials. Journal of Engineering Physics and Thermophysics, 95 (1), 163–167. https://doi.org/10.1007/s10891-022-02464-4.; Koleda E. A., Leonovich S. N., Zhdanok S. A. (2018) Results of Tensile Tests of nanofibre Concrete With Complex Fiber Reinforcement. Vestnik of Volga State University of Technology. Series «Materials. Constructions. Technologies», (2), 16–23 (in Russian).; https://sat.bntu.by/jour/article/view/2771

  2. 2
    Academic Journal

    المصدر: Science & Technique; Том 22, № 5 (2023); 397-404 ; НАУКА и ТЕХНИКА; Том 22, № 5 (2023); 397-404 ; 2414-0392 ; 2227-1031 ; 10.21122/2227-1031-2023-22-5

    وصف الملف: application/pdf

    Relation: https://sat.bntu.by/jour/article/view/2707/2287; Sadovskaya E. A., Leonovich S. N. (2022) Optimization of Composition of Nanofiber Concrete in Terms of Fracture Toughness by Matrix Modification. Nauka i Tekhnika = Science and Technique, 21 (6), 499–503 (in Russian). https://doi.org/10.21122/2227-1031-2022-21-6-499-503.; Sadovskaya E. A., Leonovich S. N., Zhdanok S. A., Polonina E. N. (2020) Tensile Strength of Nanofibrous Concrete. Journal of Engineering Physics and Thermophysics, 93 (4), 1015–1019. https://doi.org/10.1007/s10891-020-02202-8.; Koleda E. A., Leonovich S. N., Zhdanok S. A. (2018) Results of tensile tests of Nanofibre Concrete with Complex Fiber Reinforcement. Vestnik Povolzhskogo Gosudarstvennogo Tekhnologicheskogo Universiteta. Ser.: Materialy. Konstruktsii. Tekhnologii = Vestnik of Volga State University of Technology. Series “Materials. Constructions. Technologies”, (2), 16–23 (in Russian).; Koleda E. A., Leonovich S. N. (2016) Non-Destructive Quality Control of Fiber-Reinforced Concrete Structures as a Component of the Risk Monitoring System During the Operation of a Production Facility. Sistemnye Tekhnologii = System Technologies, (2), 85–95 (in Russian).; Sadovskaya E. A., Polonina E. N., Leonovich S. N., Zhdanok S. A., Potapov V. V. (2022) Fracture Toughness of Nanofiber-Reinforced Concrete on Normal Separation and In-Plane Shear. Journal of Engineering Physics and Thermophysics, 95 (4), 945–952. https://doi.org/10.1007/s10891-022-02551-6.; Polonina E. N., Leonovich S. N., Khroustalev B. M., Sadovskaya E. A., Budrevich N. A. (2021) Cement-Based Materials Modified with Nanoscale Additives. Nauka i Tekhnika = Science and Technique, 20 (3), 189–194. https://doi.org/10.21122/2227-1031-2021-20-3-189-194.; Xuesen Li, Jie Dai, Mingke Deng (2021) Shear Behavior of High Ductile Fiber Reinforced Concrete Beams. Alexandria Engineering Journal, 60 (1), 1665–1675. https://doi.org/10.1016/j.aej.2020.11.017.; Zhdanok S. A., Polonina E. N., Leonovich S. N., Khroustalev B. M., Koleda E. A. (2019) Physicomechanical Characteristics of Concrete Modified by a Nanostructured-Carbon-Based Plasticizing Admixture. Journal of Engineering Physics and Thermophysics, 92 (1), 12–18. https://doi.org/10.1007/s10891-019-01902-0.; Bazhenov Yu. M., Chernyshov E. M., Korotkikh D. N. (2014) Construction of Modern Concrete Structures: Defining Principles and Technological Platforms. Stroitel’nye Materialy = Construction Materials, (3), 6–14 (in Russian).; Congro M., Sanchez E.C.M., Roehl D., Marangon E. (2019) Fracture Modeling of Fiber Reinforced Concrete in a Multiscale Approach. Composites Part B: Engineering, 174, 106958. https://doi.org/10.1016/j.compositesb.2019.106958.; Leonovich S. N., Sadovskaya E. A. (2022) Nanofiber Concrete: Multi-Level Reinforcement. Nauka i Tekhnika = Science and Technique, 21 (5), 392–396. https://doi.org/10.21122/2227-1031-2022-21-5-392-396.; Snezhkov D. Yu, Leonovich S. N. (2017) Multiwave Ultrasonic Control of Concrete. Nauka i Tekhnika = Science and Technique, 16 (4), 289–297 (in Russian). https://doi.org/10.21122/2227-1031-2017-16-4-289-297.; Snezhkov D. Yu., Leonovich S. N. (2012) Improving the Reliability of the Control of Concrete Strength by Non-Destructive Methods Based on Their Combination. Promyshlennoe i Grazhdanskoe Stroitel’stvo = Industrial and Civil Engineering, (1), 25–32 (in Russian).; Shevaldykin V. G., Samokrutov A. A., Kozlov V. N. (2003) Ultrasonic Low-Frequency Piezoelectric Transducers with Dry Point Contact and their Application for Non-Destructive Testing. Kontrol’. Diagnostika = Testing. Diagnostics, (2), 30–39 (in Russian).; Kozlov V. N., Samokrutov A. A., Shevaldykin V. G. (2002) Ultrasonic Flaw Detection of Concrete by the Echo Method: State and Prospects. V Mire Nerazrushayushchego Kontrolya, (2), 6–10 (in Russian).; Zhdanok S. A., Polonina E. N., Leonovich S. N., Khroustalev B. M., Koleda E. A. Influence of the Nanostructured-Carbon-Based Plasticizing Admixture in a Self-Compacting Concrete Mix on its Technological Properties. Journal of Engineering Physics and Thermophysics, 92 (2), 376–382. https://doi.org/10.1007/s10891-019-01941-7.; Sadovskaya E. A., Leonovich S. N., Polonina E. N., Budrevich N. A. (2020) Method of Quality Control of Steel Fiber Reinforced Concrete by Stress Intensity Factor at Normal Separation. Povedenie Betonov i Zhelezobetonnykh Konstruktsii Pri Nalichii Nagruzok i Teplovlazhnostnykh Vozdeistvii Razlichnoi Dlitel'nosti: Elktronnyi Sbornik Nauchnykh Trudov Mezhdunarodnoi Nauch.-Tekhn. Konf. [Behavior of Concrete and Reinforced Concrete Structures in the Presence of Loads and Heat and Moisture Influences of Various Durations: Electronic Collection of Scientific Papers of the International Scientific and Technical Conference]. Makeevka, DONNASA, 47–52 (in Russian).; Leonovich S. N., Zverev V. F., Litvinovsky D. A. Brittle Fracture Criteria for High-Strength Concrete. Mekhanika Razrusheniya Stroitel'nykh Materialov i Konstruktsii: Materialy VIII Akademicheskikh Chtenii RAASN. [Fracture Mechanics of Building Materials and Structures. Proceedings of the 8th Academic Readings of the RAASN Russian Academy of Architecture and Construction Sciences]. Kazan, Kazan State University of Architecture and Engineering (KSUAE), 169–173 (in Russian).; Leonovich S. N., Litvinovskii D. A. (2021) Method for Determining the Critical Stress Intensity Factor of High-Strength Concrete. Patent of the Republic of Belarus No 16194 (in Russian).; Leonovich S. N., Litvinovskii D. A., Kim L. V. (2017) Method for Determining the Critical Stress Intensity Factor of High-Strength Concrete. Patent RU 2621618 (in Russian).; https://sat.bntu.by/jour/article/view/2707

  3. 3
    Academic Journal

    المصدر: Doklady of the National Academy of Sciences of Belarus; Том 67, № 4 (2023); 340-344 ; Доклады Национальной академии наук Беларуси; Том 67, № 4 (2023); 340-344 ; 2524-2431 ; 1561-8323 ; 10.29235/1561-8323-2023-67-4

    وصف الملف: application/pdf

    Relation: https://doklady.belnauka.by/jour/article/view/1146/1145; Механизм повышения прочности цементного материала, модифицированного наночастицами SiO2 и МУНТ / Е. Н. Полонина [и др.] // Инженерно-физ. журн. – 2021. – Т. 94, № 1. – С. 72–83.; Садовская, Е. А. Многоуровневая структура бетона: анализ и классификация уровней организации структуры конгломератных строительных композитов / Е. А. Садовская, Е. Н. Полонина, С. Н. Леонович // Проблемы современного строительства. – Минск, 2019. – С. 285–297.; Физико-механические характеристики бетона, модифицированного пластифицирующей добавкой на основе наноструктурированного углерода / С. А. Жданок [и др.] // Инженерно-физ. журн. – 2019. – Т. 92, № 1. – С. 14–20.; Влияние пластифицирующей добавки, содержащей углеродный наноматериал на свойства самоуплотняющегося бетона / С. А. Жданок [и др.] // Вестн. гражданских инженеров. – 2018. – № 6 (71). – С. 76–85. https://doi.org/10.23968/1999-5571-2018-15-6-76-85; Повышение прочности бетона пластифицирующей добавкой на основе наноструктурированного углерода / С. А. Жданок [и др.] // Строительные материалы. – 2018. – № 6. – С. 67–72. https://doi.org/10.31659/0585-430x-2018-760-6-67-72; Материалы на основе цемента, модифицированные наноразмерными добавками / Е. Н. Полонина [и др.] // Наука и техника. – 2021. – Т. 20, № 3. – С. 189–194. https://doi.org/10.21122/2227-1031-2021-20-3-189-194; Жданок, С. А. Влияние полимерных суперпластификаторов на различные виды углеродных наноматериалов / С. А. Жданок, Е. Н. Полонина, С. Н. Леонович // Инженерно-физ. журн. – 2022. – Т. 95, № 1. – С. 165–168.; Influence of the nanostructured-carbon-based plasticizing admixture in a self-compacting concrete mix on its technological properties / S. A. Zhdanok [et al.] // Journal of Engineering Physics and Thermophysics. – 2019. – Vol. 92, N 2. – P. 376–382. https://doi.org/10.1007/s10891-019-01941-7; Садовская, Е. А. Расчет коэффициента интенсивности напряжения при нормальном отрыве по прочности на растяжение при изгибе / Е. А. Садовская, С. Н. Леонович // Вестн. Полоцкого гос. ун-та. Сер. F. Строительство. Прикладные науки. – 2022. – № 8. – С. 27–31. https://doi.org/10.52928/2070-1683-2022-31-8-27-31; Критический коэффициент интенсивности напряжений при поперечном сдвиге для нанофибробетона / Е. А. Садовская [и др.] // Строительные материалы. – 2021. – № 9. – С. 41–46. https://doi.org/10.31659/0585-430X-2021-795-9-41-46; Вязкость разрушения цементных материалов, модифицированных углеродными нанотрубками / С. А. Жданок [и др.] // Вестник БрГТУ. – 2021. – № 3(126). – С. 48–53. https://doi.org/10.36773/1818-1112-2021-126-3-48-53; Вязкость разрушения нанофибробетона при нормальном отрыве и поперечном сдвиге / Е. А. Садовская [и др.] // Инженерно-физ. журн. – 2022. – Т. 95, № 4. – С. 961–968.; Жданок, С. А. Синергетическое влияние наночастиц SiO2 и углеродных нанотрубок на свойства бетона / С. А. Жданок, С. Н. Леонович, Е. Н. Полонина // Докл. Нац. акад. наук Беларуси. – 2022. – Т. 66, № 1. – С. 109–112. https://doi.org/10.29235/1561-8323-2022-66-1-109-112; https://doklady.belnauka.by/jour/article/view/1146

  4. 4
    Academic Journal

    المصدر: Science & Technique; Том 21, № 6 (2022); 499-503 ; НАУКА и ТЕХНИКА; Том 21, № 6 (2022); 499-503 ; 2414-0392 ; 2227-1031 ; 10.21122/2227-1031-2022-21-6

    وصف الملف: application/pdf

    Relation: https://sat.bntu.by/jour/article/view/2617/2230; Садовская, Е. А. Многоуровневая структура бетона: анализ и классификация уровней организации структуры конгломератных строительных композитов / Е. А. Садовская, Е. Н. Полонина, С. Н. Леонович // Проблемы современного строительства: материалы Междунар. науч.-техн. конф., 28 мая 2019 г. Минск: БНТУ, 2019. С. 285–297.; Баженов, Ю. М. Наноматериалы и нанотехнологии в современной технологии бетонов / Ю. М. Баженов, В. Р. Фаликман, Б. И. Булгаков // Вестник МГСУ. 2012. № 12. С. 125–133.; Чернышов, Е. М. Концепции и основания технологий наномодифицирования структур строительных композитов. Ч. 2. К проблеме концептуальных моделей наномодифицирования структуры / Е. М. Чернышов, О. В. Артамонова, Г. С. Славчева // Строительные материалы. 2014. № 4. С. 73–83.; Optimum Compositions of Crack-Stability and Waterproof Concrete for the Reliability and Durable Constructionsof Bridges [Electronic Resource] / А. Plugin [et al.] // 7th International Conference on Bridges Across the Danube 2010. Sofia. Mode of access: https://www.researchgate.net/publication/331473908.; Фаликман, В. Р. «Простор за пределом», или Как нанотехнологии могут изменить мир бетона. Ч. 2 [Электронный ресурс] / В. Р. Фаликман, К. Г. Соболев // Нанотехнологии в строительстве. 2011. № 2. Режим доступа: https://www.nanonewsnet.ru/files/nanobuild_1_2011.pdf.; Садовская, Е. А. Многопараметричная методика оценки показателей качества нанофибробетона для строительной площадки / Е. А. Садовская, С. Н. Леонович, Н. А. Будревич // Бетон и железобетон. 2021. № 4. С. 20–28.; Fracture Toughness of Carbon Nanotubes Cement Based Materials Modified / S. А. Zhdanok [et al.] // Вестник БрГТУ. 2021. № 3. С. 48–53. https://doi.org/10.36773/1818-1112-2021-126-3-48-53.; Нанотехнологии в строительном материаловедении: реальность и перспективы / С. А. Жданок [и др.] // Вестник Белорусского национального технического университета. 2009. № 3. С. 5–22.; Влияние пластифицирующей добавки на основе наноструктурированного углерода в самоуплотняющейся бетонной смеси на ее технологические свойства / С. А. Жданок [и др.] // Инженерно-физический журнал. 2019. Т. 92, № 2. С. 391–396.; Критический коэффициент интенсивности напряжений при нормальном отрыве для нанофибробетона / Е. А. Садовская [и др.] // Строительные материалы. 2021. № 9. С. 41–46. https://doi.org/10.31659/0585-430X-2021-795-9-41-46.; Прочность нанофибробетона на растяжение / Е. А. Садовская [и др.] // Инженерно-физический журнал. 2020. Т. 93, № 4. С. 1051–1055.; https://sat.bntu.by/jour/article/view/2617

  5. 5
    Academic Journal

    المصدر: Science & Technique; Том 21, № 5 (2022); 392-396 ; НАУКА и ТЕХНИКА; Том 21, № 5 (2022); 392-396 ; 2414-0392 ; 2227-1031 ; 10.21122/2227-1031-2022-21-5

    وصف الملف: application/pdf

    Relation: https://sat.bntu.by/jour/article/view/2595/2218; Khroustalev B. M., Leonovich S. N., Potapov V. V., Grushevskaya E. N. (2017) Composite Materials Based on Cement Binders Modified with SiO2 Nanoadditives. Nauka i Tekhnika = Science & Technique, 16 (6), 459–465. https://doi.org/10.21122/2227-1031-2017-16-6-459-465.; Zhdanok S. A., Potapov V. V., Polonina E. N., Leonovich S. N. (2021) Modification of Cement Concrete by Admixtures Containing Nanosized Materials. Journal of Engineering Physics and Thermophysics, 93 (3), 648–653. https://doi.org/10.1007/s10891-020-02163-y.; Zhdanok S. A., Polonina E. N., Leonovich S. N., Khroustalev B. M., Koleda E. A. (2019) Physicomechanical Characteristics of Concrete Modified by a Nanostructured-Carbon-Based Plasticizing Admixture. Journal of Engineering Physics and Thermophysics, 92 (1), 12–18. https://doi.org/10.1007/s10891-019-01902-0.; Polonina E. N., Leonovich S. N., Koleda E. A. (2018) Physical and Mechanical Properties of Nano Concrete. Vestnik Inzhenernoi Shkoly Dal’nevostochnogo Federal'nogo Universiteta = Far Eastern Federal University: School of Engineering Bulletin, (4), 100–111 (in Russian).; Zhdanok S. A., Polonina E. N., Leonovich S. N., Khrous-talev B. M., Koleda E. A. (2018) The Influence of the Plasticizing Additive Containing Carbon Nanomaterial on the Properties of Self-Compacting Concrete. Vestnik Grazhdanskih Inzhenerov = Bulletin of Civil Engineers. 2018. 71 (6), 76–85 (in Russian).; Polonina E. N., Potapov V. V., Zhdanok S. A., Leonovich S. N. (2021) Mechanism for Improving the Strength of a Cement Material Modified by SiO2 Nanoparticles and Multiwall Carbon Nanotubes. Journal of Engineering Physics and Thermophysics, 94 (1), 67–78. https://doi.org/10.1007/s10891-021-02274-0.; Zhdanok S. A., Polonina E. N., Leonovich S. N., Khrous-talev B. M., Koleda E. A. (2018) Strength Enhancement of Concrete with a Plasticizer on the Basis of Nano-Structured Carbon. Stroitel’nye Materialy = Construction Materials, (6), 67–72 (in Russian).; Sadovskaya E. A., Leonovich S. N., Budrevich N. A. (2021) Multiparametric Method for Assessing the Quality Indicators of Nanofiber-Reinforced Concrete for a Construction Site. Beton i Zhelezobeton, (4), 20–28 (in Russian).; Zhdanok S. A., Polonina E. N., Sadovskaya E. A., Leonovich S. N. (2021) Fracture Toughness of Carbon Nanotubes Modified Cement Based Materials. Vestnik Brestskogo Gosudarstvennogo Tekhnicheskogo Universiteta = Vestnik of Brest State Technical University, (3), 48–53. https://doi.org/10.36773/1818-1112-2021-126-3-48-53 (in Russian).; Sadovskaya E. A., Polonina E. N., Leonovich S. N., Zhdanok S. A., Potapov V. V. (2021) Critical Stress Intensity Coefficient at Transverse Shear for Nanofibrobeton. Stroitel’nye Materialy = Construction Materials, (9), 41–46. https://doi.org/10.31659/0585-430X-2021-795-9-41-46 (in Russian).; Sadovskaya E. A., Leonovich S. N., Zhdanok S. A., Polonina E. N. (2020) Tensile Strength of Nanofibrous Concrete. Journal of Engineering Physics and Thermophysics, 93 (4), 1015–1019. https://doi.org/10.1007/s10891-020-02202-8.; https://sat.bntu.by/jour/article/view/2595

  6. 6
    Academic Journal

    المصدر: Science & Technique; Том 20, № 3 (2021); 189-194 ; НАУКА и ТЕХНИКА; Том 20, № 3 (2021); 189-194 ; 2414-0392 ; 2227-1031 ; 10.21122/2227-1031-2021-20-3

    وصف الملف: application/pdf

    Relation: https://sat.bntu.by/jour/article/view/2443/2124; Shabanova N. A., Sarkisov P. D. (2012) Sol-Gel Technologies. Nanodispersed Silica. Moscow, BINOM Publ. 328 (in Russian).; Kondratenko V. S., Kobysh A. N., Petrulyanis N. E., Sorokin A. V., Filimonova E. V. (2006) The Adsorption Properties of SiO2 Micropowders Obtained by the Sol-Gel Method. Mezhdunarodnaya Nauchno-Tekhnicheskaya Kon-ferentsiya “Informatsionnye Tekhnologii v Nauke, Tekhnike i Obrazovanii” [International Scientific and Technical Conference “Information Technologies in Sci-ence, Technology and Education”]. Egypt, 46–48 (in Russian).; Shena Y., Zhaoa P., Shao Q. (2014) Porous Silica and Carbon Derived Materials from Rice Husk Pyrolysis Char. Microporous and Mesoporous Materials, 188, 46–76. https://doi.org/10.1016/j.micromeso.2014.01.005.; Kuskov N. I., Boguslavskii L. Z., Smal'ko A. A., Zubenko A. A. (2007) Obtaining Nanocarbon by the Method of Electric Dis-charge Treatment of Organic Liquids. Elektronnaya Obrabotka Materialov = Electronic Processing of Materials, (4), 46–52 (in Russian).; Sergienko I. G., Znosko K. F., Tarkovsky V. V. (2017) Obtaining Nanosized Particles by the Method of Electric-Discharge De-struction of Materials in Liquid and Study of their Properties. Vesnik Hrodzenskaha Dziarzhaunaha Universiteta imia Ianki Kupaly. Seryia 6. Tekhnika = Vesnik of Yanka Kupala State University of Grodno. Series 6. Engineering Science, 7 (1), 56–65 (in Russian).; Kolosov A. D., Nemarov A. A., Nebogin S. A. (2017) Technology of Obtaining and Using Nanosilica in the Production of New Materials for Mechanical Engineering. Sovremennye Tekhnologii. Sistemnyi Analiz. Modelirovanie = Modern Technologies. System Analysis. Modeling, (3), 59–66 (in Russian).; Bazhenov Yu. M., Falikman V. R., Bulgakov B. I. (2012) Nanomaterials and Nanotechnologies in Modern Concrete Technology. Vestnik MGSU = Monthly Journal on Construction and Architecture, (12), 125–133 (in Russian).; Khroustalev B. M., Leonovich S. N., Yakimovich B. A., Yakovlev G. I., Pervushin G. N., Polyanskikh I. S., Pudov I. A., Khazeev D. R., Shaybadullina A. V., Gordina A. F., Ali El Sayed Mohamed, Keriene Ja. (2014) Dispersion оf Multi-Walled Carbon Nano-tubes in Building Science оf Materials. Nauka i Tekhnika = Science & Technique, (1), 44–52 (in Russian).; Singh L. P., Zhu W., Howind T., Sharma U. (2017) Quantification and Characterization of C–S–H in Silica Nanoparticles Incorpo-rated Cementitious System. Cement & Concrete Composites, 79, 106–116. https://doi.org/10.1016/j.cemcon comp.2017.02.004.; Constantinides G., Ulm F. J. (2007) The Nanogranular Nature of C–S–H. Journal of the Mechanics and Physics of Solids, 55 (1), 64–90. https://doi.org/10.1016/j.jmps.2006.06.003.; Gorkaya D. O., Chulkova I. L. (2018) Modification of the Properties of Cement Stone with an Aqueous Suspension of Technical Carbon. Fundamental’nye i Prikladnye Issledovaniya Molodykh Uchenykh: Sbornik Nauchnykh Trudov II Mezhdunarodnoi Nauch-no-Prakticheskoi Konferentsii Studentov, Aspirantov i Molodykh Uchenykh [Fundamental and Applied Research of Young Scien-tists. Collection of Scientific Papers of the II International Scientific and Practical Conference of Students, Postgraduates and Young Scientists]. Omsk, Siberian State Automobile and Highway University, 423–426 (in Russian).; Rassokhin A. S., Ponomarev A. N., Figovsky O. L. (2018) Silica Fumes of Different Types for High-Performance Fine-Grained Concrete. Magazine of Civil Engineering, (2), 151–160.; Derevyanko V. M., Grishko G. M., Frost V. Yu. (2018) The Influence of Nanoadditives on the Hydration of Gypsum Binders. Zbіrnik Naukovikh Prats’ Ukraїns’kogo Derzhavnogo Unіversitetu Zalіznichnogo Transportu = Collected Scientific Works of Ukrainian State University of Railway Transport, (178), 88–97 (in Russian).; Nizina T. A., Ponomarev A. N., Balykov A. S., Pankin N. A. (2017) Fine-Grained Fiber Concretes Modified by Complexed Nanoadditives. International Journal of Nanotechnology, 14 (7–8), 665–679. https://doi.org/10. 1504/ijnt.2017.083441.; Burmistrov I. N., Il'inykh I. A., Mazov I. N., Kuznetsov D. V., Yudintseva T. I., Kuskov K. V. (2013) Physical and Mechanical Properties of Composite Concrete Modified with Carbon Nanotubes. Sovremennye Problemy Nauki i Obrazovaniya = Modern Problems of Science and Education, (5), 80–87 (in Russian).; Sheida O. Yu., Batyanovsky E. I. (2015) Production Testing of a New Chemical Additive Containing Carbon Nanomaterial. Sov-remennye Problemy Vnedreniya Evropeiskikh Standartov v Oblasti Stroitel’stva: Sbornik Mezhdunarodnykh Nauchno-Tekhnicheskikh Statei (Materialy Nauchno-Metodicheskoi Konferentsii), 27–28 Maya 2014 g. Ch. 2 [Modern Problems of the Im-plementation of European Standards in the Field of Construction: Materials Scientist. Conf., May 27–28, 2014. Part 2]. Minsk, BNTU, 7–19 (in Russian).; Pukharenko Yu. V., Aubakirova I. U., Nikitin V. A., Letenko D. G., Staroverov V. D. (2010) Mixed Nanocarbon Material in Ce-ment Composites. Stroitel'nye Materialy, Oborudovanie, Tekhnologii XXI Veka [Building Materials, Equipment, Technologies of the XXI Century], (10), 16–17 (in Russian).; Khroustalev B. M., Leonovich S. N., Yakovlev G. I., Polianskich I. S., Lahayne O., Eberhardsteiner J., Skripkiunas G., Pudov I. A., Karpova E. A. (2017) Structural Modification of New Formations in Cement Matrix Using Carbon Nanotube Dispersions and Na-nosilica. Nauka i Tekhnika = Science and Technique, 16 (2), 93–103. https://doi.org/10.21122/2227-1031-2017-16-2-93-103 (in Russian).; Yakovlev G. I., Pervushin G. N., Pudov I. A., Eberkhardshtainer Dzh., Lakhain O., Al’rfai A., Leonovich S. N. (2014) Influence of Multilayer Carbon Nanotubes on the Elastic Modulus and Microhardness of the Cement Matrix. Sovremennye Problemy Stroi-tel’stva i Zhizneobespecheniya: Bezopasnost', Kachestvo, Energo- i Resursosberezhenie: Sbornik Materialov III Vserossiiskoi Nauchno-Prakticheskoi Konferentsii, Yakutsk, 3–4 Marta 2014 g. [Modern Problems of Construction and Life Support: Safety, Quality, Energy and Resource Conservation. Proceedings of the III All-Russian Scientific-Practical. Conf., 3–4 March, 2014], Ya-kutsk, 387–393 (in Russian).; Fakhratov, M. A. Girshtel M. A., Evdokimov V. O., Borodin A. S. (2018) Prospects for the Use of Nanostructured Concrete in Construction. Don's Engineering Gazette, 3 (50), 124–132. Available at: https://cyberleninka.ru/article/n/perspektivy-primeneniya-nanostrukturirovannogo-betona-v-stroitelstve (Accessed 12.02.2020).; Lkhasaranov S. A., Urkhanova L. A., Buyantuev S. L., Kondratenko A. S., Danzanov A. B., Pshenichnikova L. I. (2012) In-creased Strength Concretes Based on Composite Binders. Stroitel'nyi Kompleks Rossii. Nauka. Obrazovanie. Praktika: Mat. Mezhdunar. Nauch.-Prakt. Konf. [Building Complex of Russia. The Science. Education. Practice: Mat. International Scientific-Practical. Conf.]. Ulan-Ude, East Siberian State University of Technology and Management, 225–228 (in Russian).; Urkhanova L. A., Hardaev P. K., Lhasaranov S. A. (2015) Modification of Cement Concretes with Nanodispersed Additives. Stroi-tel’stvo i Rekonstruktsiya = Building and Reconstruction, (3), 167–175 (in Russian).; Khroustalev B. M., Yaglov V. V., Kovalev Ya. N., Romaniuk V. N., Burak G. A., Mezhentsev A. A., Gurinenko N. S. (2015) Nanomodified Concrete. Nauka i Tekhnika = Science & Technique, (6), 3–8 (in Russian).; Urkhanova L. A., Khardaev P. K., Lhasaranov S. A. (2015) Modification of Cement Concretes with Nanodispersed Additives. Stroitel’stvo i Rekonstruktsiya = Building and Reconstruction, (3), 167–175 (in Russian).; Sanchez F., Sobolev K. (2013) Nanotechnology in Concrete Production. Overview. Vestnik Tomskogo Gosudarstvennogo Arkhitekturno-Stroitel’nogo Universiteta = Journal of Construction and Architecture, (3), 262–289 (in Russian).; Gorev D. S., Potapov V. V., Goreva T. S. (2014) Obtaining a Sol of Silicon Dioxide by Membrane Concentration of Aqueous Solu-tions. Fundamental'nye Issledovaniya = Fundamental Research, (11), 1233–1239 (in Russian).; Potapov V. V., Efmenko Y. V., Gorev D. S. (2019) Determination of the Amount of Ca(OH)2 Bound by Additive Nano-SiO2 in Cement Matrices. Nanotehnologii v Stroitel’stve = Nanotechnologies in Construction, 11 (4), 308–325 (in Russian).; Potapov V. V., Gorev D. S. (2018) Physico-Chemical Characteristics of Nanosilica (Sol, Nanopowder-Shock) and Microsilica. Fundamental’nye Issledovaniya = Fundamental Research, (6), 23–29 (in Russian).; Zhdanok S. A., Krauklis A. V., Samtsov P. P., Volzhankin V. M. (2006) Installation for the Production of Carbon Nanomaterials. Patent RB No 2839 (in Russian).; Zhdanok S. A., Khrustalev B. M., Batyanovsky E. I., Leonovich S. N. (2009) Nanotechnology in Building Materials Science: Reali-ty and Perspectives. Vestnik BNTU [Bulletin of the Belarusian National Technical University], (3), 5–22 (in Russian).; Eberhardsteiner J., Zhdanok S., Khrustalev B., Batyanovskii E. I., Leonovich S., Samtsov P. (2012) Investigation of the Effect of Nanosized Additives on the Mechanical Behavior of Cement Blocks. Nauka i Tekhnika = Science & Technique, (1), 52–55 (in Russian).; Zhdanok S. A., Solntsev A. P., Krauklis A. V. (2005) A Method for Producing Carbon Nanomaterials. Patent RB No 10010 (in Russian).; Eberhardsteiner J., Zhdanok S., Khroustalev B., Batsianouski E., Leonovich S., Samtsou P. (2011) Characterization of the Influence of Carbon Nanomaterials on the Mechanical Behavior of Cement Stone. Journal of Engineering Physics and Thermophysics, 84 (4), 697–704. https://doi.org/10.1007/s10891-011-0531-7.; Zhdanok S. A., Potapov V. V., Polonina E. N., Leonovich S. N. (2020) Modification of Cement Concrete with Additives Contain-ing Nano-Sized Materials. Journal of Engineering Physics and Thermophysics, 93 (3), 669–673. https://doi.org/10.1007/s10891-020-02163-y.; Zhdanok S. A., Polonina E. N., Leonovich S. N., Khroustalev B. M., Koleda E. A. (2019) Physicomechanical Characteristics of Concrete Modified by a Anostructured-Carbon-Based Plasticizing Admixture. Journal of Engineering Physics and Thermophysics, 92 (1), 12–18. https://doi.org/10.1007/s10891-019-01902-0.; Zhdanok S. A., Polonina E. N., Leonovich S. N., Khroustalev B. M., Koleda E. A. (2019) Influence of the Nanostructured-Carbon-Based Plasticizing Admixture in a Self-compacting Concrete Mix on its Technological Properties. Journal of Engineering Physics and Thermophysics, 92 (2), 376–382. https://doi.org/10.1007/s10891-019-01941-7.; https://sat.bntu.by/jour/article/view/2443