يعرض 1 - 2 نتائج من 2 نتيجة بحث عن '"Е. А. Олохова"', وقت الاستعلام: 0.47s تنقيح النتائج
  1. 1
    Academic Journal

    المساهمون: This study did not have financial support from outside organizations., Данное исследование не имело финансовой поддержки от сторонних организаций.

    المصدر: Pharmacy & Pharmacology; Том 11, № 5 (2023); 422-431 ; Фармация и фармакология; Том 11, № 5 (2023); 422-431 ; 2413-2241 ; 2307-9266 ; 10.19163/2307-9266-2023-11-5

    وصف الملف: application/pdf

    Relation: https://www.pharmpharm.ru/jour/article/view/1395/1007; https://www.pharmpharm.ru/jour/article/view/1395/1008; Cush J.J. Rheumatoid Arthritis: Early Diagnosis and Treatment // Rheum Dis Clin North Am. – 2022. – Vol. 48, No. 2. – P. 537–547. DOI:10.1016/j.rdc.2022.02.010; Ngo S.T., Steyn F.J., McCombe P.A. Gender differences in autoimmune disease // Front Neuroendocrinol. – 2014. – Vol. 35, No. 3. – P. 347–369. DOI:10.1016/j.yfrne.2014.04.004; Wen Y.P., Yu Z.G. Identifying shared genetic loci and common risk genes of rheumatoid arthritis associated with three autoimmune diseases based on large-scale cross-trait genome-wide association studies // Front Immunol. – 2023. – Vol. 14. – Art. ID: 1160397. DOI:10.3389/fimmu.2023.1160397; Галушко Е.А., Насонов Е.Л. Распространенность ревматических заболеваний в России // Альманах клинической медицины. – 2018. – Т. 46, № 1. – С. 32–39. DOI:10.18786/2072-0505-2018-46- 1-32-39; Jang S., Kwon E.J., Lee J.J. Rheumatoid arthritis: pathogenic roles of diverse immune cells // Int J Mol Sci. – 2022. – Vol. 23, No. 2. – Art. ID: 905. DOI:10.3390/ijms23020905.; Yoshitomi H. Regulation of immune responses and chronic inflammation by fibroblast-like synoviocytes // Front Immunol. – 2019. – Vol. 10. – Art. ID: 1395. DOI:10.3389/fimmu.2019.01395; Cush JJ. Rheumatoid Arthritis: Early Diagnosis and Treatment. Med Clin North Am. – 2021. – Vol. 105, No. 2. – P. 355–365. DOI:10.1016/j.mcna.2020.10.006; Smolen J.S., Landewé R.B.M., Bijlsma J.W.J., Burmester G.R., Dougados M., Kerschbaumer A., McInnes I.B., Sepriano A., van Vollenhoven R.F., de Wit M., Aletaha D., Aringer M., Askling J., Balsa A., Boers M., den Broeder A.A., Buch M.H., Buttgereit F., Caporali R., Cardiel M.H., De Cock D., Codreanu C., Cutolo M., Edwards C.J., van Eijk-Hustings Y., Emery P., Finckh A., Gossec L., Gottenberg J.E., Hetland M.L., Huizinga T.W.J., Koloumas M., Li Z., Mariette X., Müller-Ladner U., Mysler E.F., da Silva J.A.P., Poór G., Pope J.E., Rubbert-Roth A., Ruyssen-Witrand A., Saag K.G., Strangfeld A., Takeuchi T., Voshaar M., Westhovens R., van der Heijde D. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2019 update // Ann Rheum Dis. – 2020. – Vol. 79, No. 6. – P. 685–699. DOI:10.1136/annrheumdis-2019-216655; Huang J., Fu X., Chen X., Li Z., Huang Y., Liang C. Promising therapeutic targets for treatment of rheumatoid arthritis // Front Immunol. – 2021. – Vol. 12. – Art. ID: 686155. DOI:10.3389/fimmu.2021.686155; Pozdnyakov D.I., Zolotych D.S., Rukovitsyna V.M., Oganesyan E.T. Chromone derivatives suppress neuroinflammation and improve mitochondrial function in the sporadic form of Alzheimer’s disease under experimental conditions // Iran J Basic Med Sci. – 2022. – Vol. 25, No.7. – P. 871–881. DOI:10.22038/IJBMS.2022.65377.14387; Percie du Sert N., Hurst V., Ahluwalia A., Alam S., Avey M.T., Baker M., Browne W.J., Clark A., Cuthill I.C., Dirnagl U., Emerson M., Garner P., Holgate S.T., Howells D.W., Karp N.A., Lazic S.E., Lidster K., MacCallum C.J., Macleod M., Pearl E.J., Petersen O.H., Rawle F., Reynolds P., Rooney K., Sena E.S., Silberberg S.D., Steckler T., Würbel H. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research // PLoS Biol. – 2020. – Vol. 18, No. 7. – Art. ID: e3000410. DOI:10.1371/journal.pbio.3000410; Jin H., Ma N., Li X., Kang M., Guo M., Song L. Application of GC/MS-based metabonomic profiling in studying the therapeutic effects of Aconitum carmichaeli with ampelopsis japonica extract on collagen-induced arthritis in rats // Molecules. – 2019. – Vol. 24, No. 10. – Art. ID: 1934. DOI:10.3390/molecules24101934; Rukovitsina V., Oganesyan E., Pozdnyakov D. Synthesis and study of the effect of 3-substituted chromone derivatives on changes in the activity of mitochondrial complex III under experimental cerebral ischemia // J Res Pharm. – 2022. – Vol. 26, No. 2. – P. 408–420. DOI:10.29228/jrp.138; Черников М.В., Поздняков Д.И., Руковицина В.М., Оганесян Э.Т. Антицитокиновые эффекты аналогов халкона при экспериментальном «цитокиновом шторме» у крыс // Медицинский академический журнал. – 2021. – Т. 21, № 1. – С. 31–38. DOI 10.17816/MAJ60081; Xiao J., Lin F., Pan L., Dai H., Jing R., Lin J., Liang F. [Dexamethasone on alleviating lung ischemia/reperfusion injury in rats by regulating PI3K/AKT pathway] // Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. – 2020. – Vol. 32, No. 2. – P. 188–193. DOI:10.3760/cma.j.cn121430-20190723-00035. Chinese; Moases Ghaffary E., Abtahi Froushani S.M. Immunomodulatory benefits of mesenchymal stem cells treated with Caffeine in adjuvant-induced arthritis // Life Sci. – 2020. – Vol. 246. – Аrt. ID: 117420. DOI:10.1016/j.lfs.2020.117420; Abtahi Froushani S.M., Mashhouri S. The effect of mesenchymal stem cells pulsed with 17 beta-estradiol in an ameliorating rat model of ulcerative colitis // Zahedan J Res Med Sci. – 2019. – Vol. 21, No. 4. – Art. ID: e83762. DOI:10.5812/zjrms.83762; Blüml S. Biologika und “small molecules” bei der rheumatoiden Arthritis [Biologicals and small molecules for rheumatoid arthritis] // Z Rheumatol. – 2020. – Vol. 79, No. 3. – P. 223–231. DOI:10.1007/s00393-020-00766-7; Wang S.S., Lewis M.J., Pitzalis C. DNA methylation signatures of response to conventional synthetic and biologic disease-modifying antirheumatic drugs (DMARDs) in rheumatoid arthritis // Biomedicines. – 2023. – Vol. 11, No. 7. – Art. ID: 1987. DOI:10.3390/biomedicines11071987; Tanaka Y. Recent progress in treatments of rheumatoid arthritis: an overview of developments in biologics and small molecules, and remaining unmet needs // Rheumatology (Oxford). – 2021. – Vol. 60 (Suppl 6). – P. vi12–vi20. DOI:10.1093/rheumatology/keab609; Stojanovic S.K., Stamenkovic B.N., Cvetkovic J.M., Zivkovic V.G., Apostolovic M.R.A. Matrix metalloproteinase-9 level in synovial fluid-association with joint destruction in early rheumatoid arthritis // Medicina (Kaunas). – 2023. – Vol. 59, No. 1. – Art. ID: 167. DOI:10.3390/medicina59010167; de Almeida L.G.N., Thode H., Eslambolchi Y., Chopra S., Young D., Gill S., Devel L., Dufour A. Matrix metalloproteinases: from molecular mechanisms to physiology, pathophysiology, and pharmacology // Pharmacol Rev. – 2022. – Vol. 74, No. 3. – P. 712–768. DOI:10.1124/pharmrev.121.000349; Malemud C.J. Matrix metalloproteinases and synovial joint pathology // Prog Mol Biol Transl Sci. – 2017. – Vol. 148. – P.305–325. DOI:10.1016/bs.pmbts.2017.03.003; Li N., Qiao Y., Xue L., Xu S., Zhang N. Targeted and MMP-2/9 responsive peptides for the treatment of rheumatoid arthritis // Int J Pharm. – 2019. – Vol. 569. – Art. ID: 118625. DOI:10.1016/j.ijpharm.2019.118625; Pulik Ł., Łęgosz P., Motyl G. Matrix metalloproteinases in rheumatoid arthritis and osteoarthritis: a state of the art review // Reumatologia. – 2023. – Vol. 61, No. 3. – P. 191–201. DOI:10.5114/reum/168503; Lim H., Park H., Kim H.P. Effects of flavonoids on matrix metalloproteinase-13 expression of interleukin-1β-treated articular chondrocytes and their cellular mechanisms: inhibition of c-Fos/AP-1 and JAK/STAT signaling pathways // J Pharmacol Sci. – 2011. – Vol. 116, No. 2. – P. 221–231. DOI:10.1254/jphs.11014fp; Itoh T., Matsuda H., Tanioka M., Kuwabara K., Itohara S., Suzuki R. The role of matrix metalloproteinase-2 and matrix metalloproteinase-9 in antibody-induced arthritis // J Immunol. – 2002. – Vol. 169, No. 5. – P. 643–647. DOI:10.4049/jimmunol.169.5.2643; Aratani Y. Myeloperoxidase: Its role for host defense, inflammation, and neutrophil function // Arch Biochem Biophys. – 2018. – Vol. 640. – P. 47–52. DOI:10.1016/j.abb.2018.01.004; Silva C.F., Pinto D.C., Silva A.M. Chromones: a promising ring system for new anti-inflammatory drugs // Chem Med Chem. – 2016. – Vol. 11, No. 20. – P. 2252–2260. DOI:10.1002/cmdc.201600359; Liu H., Xu R., Feng L., Guo W., Cao N., Qian C., Teng P., Wang L., Wu X., Sun Y., Li J., Shen Y., Xu Q. A novel chromone derivative with anti-inflammatory property via inhibition of ROS-dependent activation of TRAF6-ASK1-p38 pathway // PLoS One. – 2012. – Vol. 7, No. 8. – Art. ID: e37168. DOI:10.1371/journal.pone.0037168; Xing T., Yu S., Qin M., Zhang M., Ma Y., Xiao Z. Synthesis, anti-inflammatory activity, and conformational relationship studies of chromone derivatives incorporating amide groups // Bioorg Med Chem Lett. – 2023. – Vol. 96. – Art. ID: 129539. DOI:10.1016/j.bmcl.2023.129539; https://www.pharmpharm.ru/jour/article/view/1395

  2. 2
    Academic Journal

    المصدر: Pharmacy & Pharmacology; Том 7, № 1 (2019); 20-31 ; Фармация и фармакология; Том 7, № 1 (2019); 20-31 ; 2413-2241 ; 2307-9266 ; 10.19163/2307-9266-2019-7-1

    وصف الملف: application/pdf

    Relation: https://www.pharmpharm.ru/jour/article/view/354/518; https://www.pharmpharm.ru/jour/article/view/354/519; Lerner C.A., Sundar I.K., Rahman I. Mitochondrial redox system, dynamics, and dysfunction in lung inflammaging and COPD // Int J Biochem Cell Biol. – 2016. – Vol. 81 (Pt В). – P. 294–306. DOI:10.1016/j.biocel.2016.07.026.; Zielonka J., Joseph J., Sikora A., et al.MitochondriaTargeted Triphenylphosphonium-Based Compounds: Syntheses, Mechanisms of Action, and Therapeutic and Diagnostic Applications // Chem Rev. – 2017. – Vol. 117, №15. – P. 10043–10120. DOI:10.1021/acs.chemrev.7b00042.; Menges S., Minakaki G., Schaefer P.M., et al. Alpha-synuclein prevents the formation of spherical mitochondria and apoptosis under oxidative stress // Sci Rep. – 2017. – Vol. 7. – P. 42942. DOI:10.1038/srep42942.; Zorov D.B., Juhaszova M., Sollott S.J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release // Physiol Rev. – 2014. – Vol. 94, №3. – P. 909–950. DOI:10.1152/physrev.00026.2013.; Bergman O., Ben-Shachar D. Mitochondrial Oxidative Phosphorylation System (OXPHOS) Deficits in Schizophrenia: Possible Interactions with Cellular Processes // Can J Psychiatry. – 2016. – Vol. 61, №8. – P. 457–469. DOI:10.1177/0706743716648290.; Alston C.L., Rocha M.C., Lax N.Z., Turnbull D.M., Taylor R.W. The genetics and pathology of mitochondrial disease // J Pathol. – 2017. – Vol. 241, №2. – P. 236–250. DOI:10.1002/path.4809; Chinnery P.F. Mitochondrial disease in adults: what’s old and what’s new? // EMBO Mol Med. – 2015. – Vol. 7, №12. – P. 1503–1512. DOI:10.15252/emmm.201505079.; O-Uchi J., Ryu S.Y., Jhun B.S., Hurst S., Sheu S.S. Mitochondrial ion channels/transporters as sensors and regulators of cellular redox signaling // Antioxid Redox Signal. – 2014. – Vol. 21, №6. – P. 987–1006. DOI:10.1089/ars.2013.5681.; Di Meo S., Reed T.T., Venditti P., Victor V.M. Role of ROS and RNS Sources in Physiological and Pathological Conditions // Oxid Med Cell Longev. – 2016. – Vol. 2016. – P. 1245049. DOI:10.1155/2016/1245049.; Ferrari D., Stepczynska A., Los M., Wesselborg S., Schulze-Osthoff K. Differential regulation and ATP requirement for caspase-8 and caspase-3 activation during CD95- and anticancer drug-induced apoptosis // J Exp Med. – 1998. – Vol. 188, №5. – P. 979–984.; Khacho M., Tarabay M., Patten D. Acidosis overrides oxygen deprivation to maintain mitochondrial function and cell survival // Nat Commun. – 2014. – Т. 5. DOI:10.1038/ncomms4550.; Bederson J.B., Pitts L.H., Tsuji M., Nishimura M.C., Davis R.L., Bartkowski H. Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination // Stroke. – 1986. – Vol. 17, №3. – P. 472–476.; Воронков А.В., Калашникова С.А., Хури Е.И., Поздняков Д.И. Моделирование черепно-мозговой травмы в условиях эксперимента у крыс // Современные проблемы науки и образования. – 2016. – № 1. URL: http://www.science-education.ru/ru/article/view?id=25242.; Воронков А.В., Поздняков Д.И., Воронкова М.П. Комплексная валидационная оценка нового методического подхода к изучению физического и психоэмоционального перенапряжения в эксперименте // Фундаментальные исследования. – 2015. – №1–5. – С. 915–919.; Сисакян А.С., Оганян В.А., Семерджян A.Б., Петросян М.В., Сисакян С.А., Гуревич М.А. Влияние фактора ангиогенеза на морфофункциональное состояние миокарда у крыс при экспериментальном инфаркте миокарда // Российский кардиоло-гический журнал. – 2008. – Т. 13, № 2. – С. 63–66.; Patel S.P., Sullivan P.G., Pandya J.D et al. N-acetylcysteine amide preserves mitochondrial bioenergetics and improves functional recovery following spinal trauma // Exp Neurol. – 2014. – Vol. 257. – P. 95–105. DOI:10.1016/j.expneurol.2014.04.026.; Redmann M., Benavides G.A., Wani W.Y. et al. Methods for assessing mitochondrial quality control mechanisms and cellular consequences in cell culture // Redox Biol. – 2018. – Vol. 17. – P. 59–69. https://doi.org/10.1016/j.redox.2018.04.005.; Picard M., Wallace D.C., Burelle Y. The rise of mitochondria in medicine // Mitochondrion. – 2016. – Vol. 30. – P. 105–116. DOI:10.1016/j.mito.2016.07.003.; Lesnefsky E.J., Chen Q., Hoppel C.L. Mitochondrial Metabolism in Aging Heart // Circ Res. – 2016. – Vol. 118, №10. – P. 1593–1611. DOI:10.1161/CIRCRESAHA.116.307505.; Cai Q., Tammineni P. Mitochondrial Aspects of Synaptic Dysfunction in Alzheimer’s Disease // J Alzheimers Dis. – 2017. – Vol. 57, №4. – P. 1087– 1103. DOI:10.3233/JAD-160726.; Boengler K., Kosiol M., Mayr M., Schulz R., Rohrbach S. Mitochondria and ageing: role in heart, skeletal muscle and adipose tissue // J Cachexia Sarcopenia Muscle. – 2017. – Vol. 8, №3. – P. 349– 369. DOI:10.1002/jcsm.12178.; Choudhury A.R., Singh K.K. Mitochondrial determinants of cancer health disparities // Semin Cancer Biol. – 2017. – Vol. 47. – P. 125–146. DOI:10.1016/j.semcancer.2017.05.001.; Szeto H.H., Birk A.V. Serendipity and the discovery of novel compounds that restore mitochondrial plasticity // Clin PharmacolTher. – 2014. – Vol. 96, №6. – P. 672–683. DOI:10.1038/clpt.2014.174.; Dranka B.P., Benavides G.A., Diers A.R., Giordano S., Zelickson B.R., Reily C., Zou L., Chatham J.C., Hill B.G., Zhang J., Landar A., Darley-Usmar VM. Assessing bioenergetic function in response to oxidative stress by metabolic profiling // Free Radic Biol Med. – 2011. – Vol. 51. – P. 1621–1635. DOI:10.1016/j.freeradbiomed.2011.08.005.; Salabei J.K., Gibb A.A., Hill B.G. Comprehensive measurement of respiratory activity in permeabilized cells using extracellular flux analysis // Nat Protoc. – 2014. – Vol. 9, №2. – P. 421–438. DOI:10.1038/nprot.2014.018; Kim Y.M, Kim S.J, Tatsunami R., Yamamura H., Fukai T., Ushio-Fukai M. ROS-induced ROS release orchestrated by Nox4, Nox2, and mitochondria in VEGF signaling and angiogenesis // Am J Physiol Cell Physiol. – 2017. – Vol. 312, №6. – P. C749– C764. DOI:10.1152/ajpcell.00346.2016.; Shanmugasundaram K., Nayak B.K., Friedrichs W.E., Kaushik D., Rodriguez R., Block K. NOX4 functions as a mitochondrial energetic sensor coupling cancer metabolic reprogramming to drug resistance // Nat Commun. – 2017. – Vol. 8, №1. – P. 997. DOI:10.1038/s41467-017-01106-1.; Smith M.R., Vayalil P.K., Zhou F., et al. Mitochondrial thiol modification by a targeted electrophile inhibits metabolism in breast adenocarcinoma cells by inhibiting enzyme activity and protein levels // Redox Biol. – 2016. – Vol. 8. – P. 136–148. DOI:10.1016/j.redox.2016.01.002.; https://www.pharmpharm.ru/jour/article/view/354